Title	A note on the equivariant Whitehead groups of dihedral groups
Author(s)	Inoue, Tsuyoshi
Citation	Osaka Journal of Mathematics. 1990, 27(2), p. $421-430$
Version Type	VoR
URL	https://doi.org/10.18910/10500
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

A NOTE ON THE EQUIVARIANT WHITEHEAD GROUPS OF DIHEDRAL GROUPS

Dedicated to Professor Shôrô Araki on his 60th birthday

Tsuyoshi INOUE

(Received March 23, 1989)

0. Introduction

This note is intended as "The equivariant Whitehead torsions of equivariant homotopy equivalence between the unit spheres of representations II". Therefore, we shall use the notations in [11]. In this note, restriction maps in Whitehead groups play an importnat role. To illustrate this, we begin with an example pointed out by M. Masuda. Let C_{n} and D_{n} be the cyclic group and dihedral group of order n and $2 n$ respectively. As we remarked in [11], a generator of $W h\left(C_{5}\right)$ appears as the reduced equivariant Whitehead torsion of any C_{5}-homptopy equivalence

$$
f: S\left(V_{3} \oplus V_{2}\right) \rightarrow S\left(V_{1} \oplus V_{1}\right)
$$

where $V_{a}(a=1,2,3)$ denotes the complex C_{5}-module \boldsymbol{C} with $g \in C_{5}$ acting as multiplication by $\exp 2 \pi i a / 5$ and $S(V)$ denotes the unit sphere of C_{5}-module V. Since the torsion does not depend on the choice of f, we can assume that f is the map due to T. Petrie (see $\S 2$). By the complex conjugation, C_{5}-modules V_{a} can be regarded as D_{5}-modules. Then the Petrie's map f turns out to be a D_{5}-homotopy equivalence. The reduced equivariant Whitehead torsion $\bar{\tau}_{D_{5}}(f)=$ $p_{*} \tau_{D_{5}}(f)$ of f as a D_{5}-homotpoy equivalence lies in $W h_{D_{5}}(*) \cong W h\left(D_{5}\right)$ where p_{*} : $W h_{D_{5}}\left(S\left(V_{3} \oplus V_{2}\right)\right) \rightarrow W h_{D_{5}}(*)$ is the induced map by the obvious map $p: S\left(V_{3} \oplus V_{2}\right)$ $\rightarrow *$. It is obvious that the restriction map from D_{5} to C_{5} sends the torsion to the generator of $W h_{C_{5}}(*) \cong W h\left(C_{5}\right)$. Therefore the restriction map induces an isomorphism of the Whitehead groups because $W h\left(D_{5}\right)$ is a free abelian group of rank 1 (see [3], [21], [19], [20] and [17]). Moreover we see that the torsion is a generator of $W h\left(D_{5}\right)$. Our main result (Theorem A) is a generalization of this observation.

Theorem A. The restriction map induces an isomorphism

$$
\operatorname{Res}_{C_{n}}^{D_{n}}: W h_{\mathrm{rep}}\left(D_{n}\right) \rightarrow W h_{\mathrm{rep}}\left(C_{n}\right),
$$

where $W h_{\mathrm{rep}}(G)$ denotes the subgroups of $W h_{G}(*)$ generated by the reduced torsions of G-homotpoy equivalences between the unit spheres of \boldsymbol{G} modules.

By the Thorem A, the same conclusion as [11, Theorem C] holds for dihedral groups.

Corollary B. $W h_{\mathrm{rep}}\left(D_{n}\right)$ is of finite index in $W h_{D_{n}}(*)$ if and only if $n=$ $8,9,12,16,18, p$ or $2 p$ for odd prime integers p.

In §1, we discuss the restriction maps of Whitehead groups from dihedral groups to cyclic groups. We give a sufficient condition for the restriction map being an isomorphism. In $\S 2$, we investigate the C_{n}-homotopy equivalences between the unit spheres of C_{n}-modules due to T. Petrie. In $\S 3$, we state the main results and prove them. We also exhibit an example concerning generators of Whitehead groups of dihedral groups in $\S 3$.

The author owes to Professors Shôrô Araki and Mikiya Masuda by useful discussions and advices, and would like to express here his hearty thanks to them.

1. The restriction maps from dihedral group to cyclic group

In this section, we shall investigate the restriction map of Whitehead groups from a dihedral group to a cyclic group. First, we consider the standard involution on Whitehead groups. Let \boldsymbol{G} be a finite group. The assignment " $g \mapsto g^{-1 \text { " }}$ in \boldsymbol{G} induces a conjugation ${ }^{-}: \boldsymbol{Z}[\boldsymbol{G}] \rightarrow \boldsymbol{Z}[\boldsymbol{G}]$. This conjugation induces the standard involution ${ }^{-}: W h(\boldsymbol{G}) \rightarrow W h(\boldsymbol{G})$. The following lemma is fundamental in our investigation.

Lemma 1.1. Let \boldsymbol{G} be an abelian group. Then, each element of $(\boldsymbol{Z}[G])^{*} / \pm \boldsymbol{G}$ is represented by a unit $u \in(\boldsymbol{Z}[G])$ * such that $u=\bar{u}$. In particular, if $W h(G)$ is torsion free, each element of $W h(\boldsymbol{G})$ is represented by a unit $u \in(\boldsymbol{Z}[\boldsymbol{G}])^{*}$ such that $u=\boldsymbol{u}$.

Proof. It is well known that the standard involution on $W h(\boldsymbol{G})=W h(\boldsymbol{G}) /$ torsion is trivial (see [24], [2] or [16]). According to the proof of [2] for this fact, for each $u \in(\boldsymbol{Z}[G])^{*}$, there exists $g_{0} \in G$ such that $u \cdot(\bar{u})^{-1}= \pm g_{0}$. Applying the augmention map $\boldsymbol{Z}[\boldsymbol{G}] \rightarrow \boldsymbol{Z}$ to both sides of the identity, we see $u \cdot(\bar{u})^{-1}=g_{0}$. Here, we consider an involution $\theta: G \rightarrow G, \theta(g)=g_{0} g^{-1}$. If we put $u=\sum a_{g} g$ $\left(a_{\boldsymbol{g}} \in \boldsymbol{Z}\right)$, the identity $u \cdot(\bar{u})^{-1}=g_{0}$ implies

$$
a_{g}=a_{\theta(g)} \quad \text { for each } \quad g \in \boldsymbol{G}
$$

Therefore, θ must have a fixed point because $\sum a_{g}= \pm 1$. The fixed point of θ, say $g \in G$, satisfes $g^{2}=g_{0}$. If we put $v=g^{-1} u$, v is a required element because $v=u$ in $(\boldsymbol{Z}[\boldsymbol{G}])^{*} / \pm \boldsymbol{G}$ and

$$
v=g^{-1} u=g^{-1} g_{0} \bar{u}=g \bar{u}=\boldsymbol{v}
$$

Q.E.D.

Notation 1.2.

D_{n} : the dihedral group of order $2 n$ generated by two elements s and t with relations $t^{n}=s^{2}=1$ and $s t s=t^{-1}$.
C_{n} : the cyclic subgroup of D_{n} generated by t.
In later sections, we shall consider the equivariant Whitehead group of D_{n} (called the generalized Whitehead group of D_{n} by Rothenberg). Therefore, we shall treat the classical Whitehead groups and the equivariant Whitehead groups at the same time. To do this, we need the following lemma.

Lemma 1.3. $W h_{D_{n}}(*)=\oplus_{d \mid n} W h\left(D_{d}\right)$
and the following diagram commutes

$$
\begin{gathered}
W h_{D_{n}}(*) \\
\downarrow \\
\downarrow \\
\oplus_{d \mid n} W h\left(D_{d}\right)
\end{gathered} \xrightarrow{\operatorname{Res}_{C_{n}}^{D_{n}}} \quad \begin{gathered}
W h_{C_{n}}(*) \\
\downarrow \\
\downarrow
\end{gathered}
$$

Proof. For a subset A of D_{n}, we denote by $\langle A\rangle$ the subgroup generaied by A. Since $\left\langle s t^{k}, s t^{m}\right\rangle=\left\langle t^{k-m}, s t^{m}\right\rangle$ in D_{n}, any subgroup of D_{n} has a form $\left\langle t^{k}\right\rangle$ or $\left\langle t^{k}, s t^{m}\right\rangle$. On the other hand,

$$
\left\langle t^{k}, s t^{m}\right\rangle \text { is conjugate to } \begin{cases}\left\langle t^{k}, s t\right\rangle & \text { if } m \text { is odd, } \\ \left\langle t^{k}, s\right\rangle & \text { if } m \text { is even. }\end{cases}
$$

Moreover, if n is odd, $\left\langle t^{k}, s t\right\rangle$ is conjugate to $\left\langle t^{k}, s\right\rangle$. Therefore, $C\left(D_{n}\right)$, the conjugacy classes of the subgroups of D_{n}, is

$$
\begin{cases}\left\{\left(\left\langle t^{d}\right\rangle\right),\left(\left\langle t^{d}, s\right\rangle\right)|d| n\right\} & \text { if } n \text { is odd, } \\ \left\{\left(\left\langle t^{d}\right\rangle\right),\left(\left\langle t^{d}, s\right\rangle\right),\left(\left\langle t^{d}, s t\right\rangle\right)|d| n\right\} & \text { if } n \text { is even. }\end{cases}
$$

Moreover, we have

$$
\begin{array}{ll}
N\left\langle t^{d}\right\rangle=D_{n}, & W\left\langle t^{d}\right\rangle=N\left\langle t^{d}\right\rangle\left\langle t^{d}\right\rangle=D_{d}, \\
N\left\langle t^{d}, s\right\rangle= \begin{cases}\left\langle t^{d}, s\right\rangle & \text { if } d \text { is odd, } \\
\left\langle t^{d / 2}, s\right\rangle & \text { if } d \text { is even, }\end{cases} & W\left\langle t^{d}, s\right\rangle= \begin{cases}1 & \text { if } d \text { is odd }, \\
C_{2} & \text { if } d \text { is even, }\end{cases} \\
N\left\langle t^{d}, s t\right\rangle= \begin{cases}\left\langle t^{d}, s t\right\rangle & \text { if } d \text { is odd, } \\
\left\langle t^{d / 2}, s t\right\rangle & \text { if } d \text { is even, }\end{cases} & W\left\langle t^{d}, t s\right\rangle= \begin{cases}1 & \text { if } d \text { is odd } \\
C_{2} & \text { if } d \text { is even, },\end{cases}
\end{array}
$$

where $N H$ denotes the normalizer of $H \subset D_{n}$ in D_{n} and $W H$ denotes $N H / H$. Since $W h\left(C_{2}\right)=0$, we have

$$
\begin{aligned}
W h_{D_{n}}(*) & \cong \oplus_{(H) \in C\left(D_{n}\right)} W h_{D_{n}}(*,(H)) \\
& \cong \oplus_{(H) \in C\left(D_{n}\right)} W h(W H) \\
& \cong \oplus_{d \mid n} W h\left(W\left\langle t^{d}\right\rangle\right) \quad
\end{aligned}
$$

By the definition of $\operatorname{Res}_{C_{n}}^{D_{n}}: W h_{D_{n}}(*) \rightarrow W h_{C_{n}}(*)$, we have the commutative diagram

This completes the proof.
Q.E.D.

Lemma 1.4. $\operatorname{Res}_{C_{n}}^{D_{n}}: W h\left(D_{n}\right) \rightarrow W h\left(C_{n}\right)$ and $\operatorname{Res}_{C_{n}}^{D_{n}}: W h_{D_{n}}(*) \rightarrow W h_{C_{n}}(*)$ are monomorphisms.

Proof. By Lemma 1.3, it is sufficient to show that $\operatorname{Res}_{C_{n}}^{D_{n}}: W h\left(D_{n}\right) \rightarrow W h\left(C_{n}\right)$ is a monomorphism. We note that $W h\left(D_{n}\right)$ and $W h\left(C_{n}\right)$ are free abelian groups of the same rank by [21], [19], [20] and [17]. Moreover

$$
\operatorname{Res}_{C_{n}^{n}}^{D_{n}} \operatorname{Ind}_{C_{n}}^{D_{n}} y=y^{2} \quad \text { for each } \quad y \in W h\left(C_{n}\right) .
$$

Therefore $\operatorname{Ind}_{C_{n}}^{D_{n}}: W h\left(C_{n}\right) \rightarrow W h\left(D_{n}\right)$ is a monomorphism and its image is a subgroup of finite index. So, for each $x \in W h\left(D_{n}\right)$, there exixt $m \in \boldsymbol{Z}$ adn $y \in W h\left(C_{n}\right)$ such that $x^{m}=\operatorname{Ind}_{C_{n}}^{D_{n}} y$. Suppose that $\operatorname{Res}_{C_{n}}^{D_{n}} x=1$, then

$$
1=\left(\operatorname{Res}_{C_{n}}^{D_{n}} x\right)^{m}=\operatorname{Res}_{C_{n}}^{D_{n}^{n}} x^{m}=\operatorname{Res}_{C_{n}}^{D_{n}} \operatorname{Ind}_{C_{n}}^{D_{n}} y=y^{2}
$$

Since $W h\left(C_{n}\right)$ and $W h\left(D_{n}\right)$ are torsion free, we have $y=1$ and $x=1$. This completes the proof.
Q.E.D.

Now we shall observe the classical restriction homomorphism of the unit groups. The point of our observation is to consider $C_{2 n}$ and D_{n} parallelly. Let r be a generator of $C_{2 n}$. Identifying $t=r^{2}$, we can regard C_{n} as a subgroup of $C_{2 n}$. Because each element of $\boldsymbol{Z}\left[D_{n}\right]$ can be expressed by $a+s b, a, b \in \boldsymbol{Z}\left[C_{n}\right]$, we can define a homomorphism

$$
\begin{array}{ll}
\left(\boldsymbol{Z}\left[D_{n}\right]\right)^{*} & \rightarrow\left(\boldsymbol{Z}\left[C_{n}\right]\right)^{*} \\
a+s b & \mapsto a \bar{a}-b \bar{b} .
\end{array}
$$

Similarly, we can define a homomorphism

$$
\begin{array}{ll}
\left(\boldsymbol{Z}\left[C_{2 n}\right]\right)^{*} & \rightarrow\left(\boldsymbol{Z}\left[C_{n}\right]\right)^{*} \\
a+r b \quad \mapsto a^{2}-t b^{2} .
\end{array}
$$

The above two homomorphisms are the classical restriction homomorphisms in the following sense.

Lemma 1.5. The following diagrams commute.

Proof. If we regard $a+s b \in\left(\boldsymbol{Z}\left[D_{n}\right]\right)^{*}$ as a $\boldsymbol{Z}\left[C_{n}\right]$-isomorphism $\boldsymbol{Z}\left[D_{n}\right] \rightarrow$ $\boldsymbol{Z}\left[D_{n}\right]$ and take basis 1 and s of $\boldsymbol{Z}\left[D_{n}\right]$ as a $\boldsymbol{Z}\left[C_{n}\right]$-module, then $a+s b$ is expressed by a matrix

$$
\left(\begin{array}{ll}
a & \bar{b} \\
b & \bar{a}
\end{array}\right)
$$

Since

$$
\operatorname{det}\left(\begin{array}{ll}
a & \bar{b} \\
b & \bar{a}
\end{array}\right)=a \bar{a}-b \bar{b},
$$

we have the commutativity of (1) by the definition of $\operatorname{Res}_{C_{n}}^{D_{n}}$. By the same argument, we have the commutativity of (2).
Q.E.D.

Using the above lemma, we have the following.
Proposition 1.6. If $\operatorname{Res}_{C_{n} C_{n 2}}: W h\left(C_{2 n}\right) \rightarrow W h\left(C_{n}\right)$ is an epimorphism, $\operatorname{Res}_{C_{n}}^{D_{n}}$: $W h\left(D_{n}\right) \rightarrow W h\left(C_{n}\right)$ is an isomorphism.

Proof. By lemma 1.4, it is sufficient to show that $\operatorname{Res}_{C_{n}}^{D_{n}}$ is an epimorphism, i.e., for each $x \in W h\left(C_{n}\right)$, there exists $y \in W h\left(D_{n}\right)$ such that $\operatorname{Res}_{C_{n}}^{D_{n}} y=x$. By the assumption, there exists a $y^{\prime} \in W h\left(C_{2 n}\right)$ such that $\operatorname{Res}_{C_{n}^{2 n}}^{C_{2}} y^{\prime}=x$. According to Lemma 1.1, y^{\prime} is represented by a unit $a+r b \in\left(Z\left[C_{2 n}\right]\right)^{*}$ such that $\overline{a+r b}=a+r b$. Since the condition $\overline{a+r b}=a+r b$ implies $\bar{a}=a$ and $\bar{b}=b r^{2}=b t$, it is easy to see that $a+s b$ is a unit of $\boldsymbol{Z}\left[D_{n}\right]$. By lemma $1.5, \operatorname{Res}_{C_{n}}^{D_{n}}$ sends $a+s b$ to $a \bar{a}-b \bar{b}=$ $a^{2}-t b^{2}$ at the unit level. On the other hand $\operatorname{Res}_{C_{n}}^{C_{2 n}}$ sends $a+r b$ to $a^{2}-t b^{2}$. Therefore $a+s b$ represents the required y.
Q.E.D.

Example 1.7. $\operatorname{Res}_{C_{n}^{2 n}}^{C_{2 n}} W h\left(C_{2 n}\right) \rightarrow W h\left(C_{n}\right)$ is an epimorphism in the following cases.
(1) n : odd.
(2) $n=8$ or 12 .

But if $n=2^{k}(k \geqq 4)$, $\operatorname{Res}_{C_{n}}^{C_{2 n}}$ is $n o t$ an epimoephiam.
Corollary 1.8. If n is odd or $n=8,12, \operatorname{Res}_{C_{n}}^{D_{n}}: W h\left(D_{n}\right) \rightarrow W h\left(C_{n}\right)$ and $\operatorname{Res}_{C_{n}}^{D_{n}}: W h_{D_{n}}(*) \rightarrow W h_{C_{n}}(*)$ are isomorphisms.

Proof of Example 1.7. In the case (2), since the generator of $W h\left(C_{n}\right)$ is
known (see [11]), a direct computation shows that $\operatorname{Res}_{C_{n}}^{C_{2 n}}$ is an epimorphism. By the following Lemma 1.9, it follows from [5, Theorem 3] that $\operatorname{Res}_{C_{n}}^{C_{2 n}}$ is an epimorphism if n is odd. The example that $\operatorname{Res}_{C_{n}}^{C_{2 n}}$ is not an epimorphism is given by [9, Theorem 1.1].
Q.E.D.

Lemma 1.9. The following are equivalent to each other:
(1) $\operatorname{Res}_{C_{n}}^{C_{m n}}: W h\left(C_{m n}\right) \rightarrow W h\left(C_{n}\right)$ is an epimorphism.
(2) $\tilde{\operatorname{tr}}:\left(R_{C_{m n}}\right)^{*} / \pm C_{m n} \rightarrow\left(R_{C_{n}}\right) * / \pm C_{n}$ is an epimorphism where $R_{C_{n}}=\boldsymbol{Z}\left[C_{n}\right] /\left(\sum_{g \in C_{n}} g\right)$ (see [5] and [9] for the definition of $\widetilde{\mathrm{tr}}$).
(3) Any free C_{n}-action on $S^{2 k+1}(k \geqq 2)$ extends to a free $C_{m n}$-action.

Proof. [5, Theorem 4] shows that (2) and (3) are equivalent to each other. To show $(1) \Leftrightarrow(2)$, we note that there exists a split extension

$$
1 \rightarrow W h\left(C_{n}\right) \rightarrow\left(R_{C_{n}}\right)^{*} / \pm C_{n} \xrightarrow{A}(\boldsymbol{Z} / n \boldsymbol{Z})^{*} / \pm 1 \rightarrow 1
$$

where $A:\left(R_{C_{n}}\right)^{*} / \pm C_{n} \rightarrow(\boldsymbol{Z} / n \boldsymbol{Z})^{*} / \pm 1$ is induced by the augmentation. Moreover we have the commutative diagram

$$
\begin{array}{cc}
1 \rightarrow W h\left(C_{m n}\right) \rightarrow\left(R_{C_{m n}}\right)^{*} / \pm C_{m n} \rightarrow(\boldsymbol{Z} / m n \boldsymbol{Z})^{*} / \pm 1 \rightarrow 1 \\
\downarrow \operatorname{Res}_{C_{n}^{m n}}^{\operatorname{tr} \downarrow} \quad \stackrel{\downarrow}{\operatorname{tr}} & \downarrow \\
1 \rightarrow W h\left(C_{n}\right) \rightarrow\left(R_{C_{n}}\right)^{*} / \pm C_{n} & \rightarrow(\boldsymbol{Z} / n \boldsymbol{Z})^{*} / \pm 1 \rightarrow 1
\end{array}
$$

where $(\boldsymbol{Z} / m n \boldsymbol{Z})^{*} / \pm 1 \rightarrow(\boldsymbol{Z} / n \boldsymbol{Z})^{*} / \pm 1$ is the natural map. A simple diagram chasing shows that (1) and (2) are equivalent to each other.
Q.E.D.

2. The Petrie's maps

In this section, we shall discuss an interesting example of maps between C_{n}-modules due to T. Petrie.

Notation 2.1.

V_{a} : The complex C_{n}-module \boldsymbol{C} with $g \in C_{n}$ acting as multiplication by $\exp 2 \pi i a / n$.
Let a and b be integers which are relatively prime and prime to n. Choose integers p, q such that $-a p+b q=1$. It is well known that the Petrie's map

$$
\begin{aligned}
f: V_{a} \oplus V_{b} & \rightarrow \quad V_{1} \oplus V_{a b} \\
(x, y) & \mapsto\left(x^{p} \bar{y}^{q}, x^{b}+y^{a}\right)
\end{aligned}
$$

is a C_{a}-homotopy equivalence. This induces a C_{n}-homotpoy equivalence

$$
\begin{aligned}
h: S\left(V_{a} \oplus V_{b}\right) & \rightarrow \quad S\left(V_{1} \oplus V_{a b}\right) \\
(x, y) & \mapsto f(x, y) /\|f(x, y)\|
\end{aligned}
$$

which will be also called Petrie's map.
Lemma 2.2. Let V and V^{\prime} be complex C_{n}-modules such that C_{n} acts freely on $S(V)$ and $S\left(V^{\prime}\right)$. If $S(V)$ and $S\left(V^{\prime}\right)$ are C_{n}-homotopy equivalent, then one can choose a C_{n}-homotopy equivalence as composition of suitable suspension of Petrie's maps, inverse of Petrie's maps, and a complex conjugation.

Proof. Let $\oplus_{i=1}^{j} V_{a_{i}}$ be a direct sum decomposition of V to irreducible C_{n} modules. Since C_{n} acts freely on $S(V)$, each a_{i} is prime to n. Relacing a_{i} with $a_{i}+m n$, we can assume $a_{i}(i=1, \cdots, j)$ are mutually distinct prime integers. Now we have a composition of Petrie's maps

$$
\begin{aligned}
f: & S(V)=S\left(V_{a_{1}} \oplus V_{a_{2}} \oplus \cdots \oplus V_{a_{j}}\right) \rightarrow S\left(V_{1} \oplus V_{a_{1} a_{2}} \oplus V_{a_{3}} \oplus \cdots \oplus V_{a_{j}}\right) \\
& \rightarrow S\left(V_{1} \oplus V_{1} \oplus V_{a_{1} a_{2} a_{3}} \oplus \cdots \oplus V_{a_{j}}\right) \rightarrow \cdots \rightarrow S\left(V_{1} \oplus \cdots \oplus V_{1} \oplus V_{a_{1} \cdots a_{i}}\right) .
\end{aligned}
$$

Similarly for $V^{\prime}=\bigoplus_{i=1}^{k} V_{b_{i}}$, we have a composition of Petrie's maps

$$
f^{\prime}: S\left(V^{\prime}\right) \rightarrow S\left(V_{1} \oplus \cdots \oplus V_{1} \oplus V_{b_{1} \cdots b_{k}}\right)
$$

Since $S(V)$ and $S\left(V^{\prime}\right)$ are C_{n}-homotopy equivalent, we have

$$
j=k \quad \text { and } \quad a_{1} \cdots a_{j} \equiv \pm b_{1} \cdots b_{j} \quad(\bmod n)
$$

In case $a_{1} \cdots a_{j} \equiv b_{1} \cdots b_{j}(\bmod n), f^{\prime-1} \circ f$ is a required C_{n}-homotpoy equivalence. In case $a_{1} \cdots a_{j} \equiv-b_{1} \cdots b_{j}(\bmod n), f^{\prime-1} \circ c \circ f$ is a required one where

$$
\begin{array}{ccc}
c: S\left(V_{1} \oplus \cdots \oplus V_{1} \oplus V_{a_{1} \cdots a_{j}}\right) & \rightarrow S\left(V_{1} \oplus \cdots \oplus V_{1} \oplus V_{b_{1} \cdots b_{j}}\right) \\
\left(x_{1}, \cdots, x_{j}\right) & \mapsto & \left(x_{1}, \cdots, x_{j}\right)
\end{array}
$$

is a suspension of a complex conjugation.
Q.E.D.

Since $D_{n}=C_{n} \times C_{2}, V_{a}$ can be considered as a real D_{n}-module on which $s \in C_{2}$ acts by complex conjugation. The following lemma was pointed out by M. Masuda.

Lemma 2.3. The Petrie's map

$$
h: S\left(V_{a} \oplus V_{b}\right) \rightarrow S\left(V_{1} \oplus V_{a b}\right)
$$

is a D_{n}-homotopy equivalence.
Proof. A direct computation shows that h is a D_{n}-map. Therefore it is sufficient to show that h is homotopy equivalence on the fixed point set of each subgroup H of D_{n}. We shall show that

$$
\begin{aligned}
f: \boldsymbol{R}^{2} & \rightarrow \boldsymbol{R}^{2} \\
(x, y) & \mapsto\left(x^{p} y^{q}, x^{b}+y^{a}\right)
\end{aligned}
$$

has degree ± 1. This is sufficient because h is C_{n}-homotopy equivalence. To calculate the degree of \bar{f}, we consider the image of $S^{1}=\left\{(\cos \theta, \sin \theta) \in \boldsymbol{R}^{2} \mid\right.$ $0 \leqq \theta \leqq 2 \pi\}$ by \bar{f}. We put $S_{\theta_{1}, \theta_{2}}^{1}=\left\{(\cos \theta, \sin \theta) \mid \theta_{1} \leqq \theta \leqq \theta_{2}\right\}$. Then $S^{1}=S_{0, \pi / 2}^{1} \cup$ $S_{\pi / 2, \pi}^{1} \cup S_{\pi, 3 \pi / 2}^{1} \cup S_{3 \pi / 2,2 \pi}^{1}$. We shall distinguish the following four cases.
(1) a : odd, b : even, p : odd and q : even.
(2) $a:$ even, $b:$ odd, $p:$ even and $q:$ odd.
(3) a : odd, b : odd, $p:$ even, and q : odd.
(4) a : odd, b : odd, $p:$ odd, and q : odd.

We note that the other cases do not occur by the choice of a, b, p and q. Since the arguments for the cases (1), (2), (3) and (4) are similar, we shall only discuss the case (1). In this case,
$\bar{f}\left(S_{0, \pi / 2}^{1}\right)$ is a loop at $(0,1)$ in $\{(x, y) \mid x \geqq 0, y \geqq 0\}$,
$\bar{f}\left(S_{\pi / 2, \pi}^{1}\right)$ is a loop at $(0,1)$ in $\{(x, y) \mid x \leqq 0, y \geqq 0\}$,
$\bar{f}\left(S_{\pi, 3 \pi / 2}^{1}\right)$ is a path from $(0,1)$ to $(0,-1)$ in $\{(x, y) \mid x \leqq 0\}$ and $\bar{f}\left(S_{3 \pi / 2,2 \pi}^{1}\right)$ is a path from $(0,-1)$ to $(0,1)$ in $\{(x, y) \mid x \geqq 0\}$.
Therefore \bar{f} must have degree +1 .
Q.E.D.

Using the above lemma, we have
Propisition 2.4. Let U and U^{\prime} be real C_{n}-modules such that $S(U)$ and $S\left(U^{\prime}\right)$ are C_{n}-homotopy equivalent. Then there exist real D_{n}-modules V and V^{\prime} such that

$$
\begin{equation*}
\operatorname{Res}_{C_{n}}^{D_{n}} V=U \quad \text { and } \quad \operatorname{Res}_{C_{n}}^{D_{n}} V^{\prime}=U^{\prime} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
S(V) \text { and } S\left(V^{\prime}\right) \text { are } D_{n} \text {-homotopy equivalent. } \tag{2}
\end{equation*}
$$

Proof. We write

$$
U=\oplus_{H \subset c_{n}} U(H) \quad \text { and } \quad U^{\prime}=\oplus_{H \subset c_{n}} U^{\prime}(H)
$$

where $U(H)$ and $U^{\prime}(H)$ collects the irreducible submodules of U and U^{\prime} respectively which have kernel H. It is well known that $S(U)$ is homotopy equivalent to $S\left(U^{\prime}\right)$ if and only if $S\left(U(H)\right.$) is homotopy equivalent to $S\left(U^{\prime}(H)\right.$) for each $H \subset C_{n}$. Therefore, it is sufficient to show this lemma for each $U(H)$ and $U^{\prime}(H)$. In case $H=C_{n}$ or the subgroup of index 2, it is obvious. Since C_{n} / H acts freely on $S\left(U(H)\right.$), we may assume that C_{n} acts freely on $S(U)$ and $S\left(U^{\prime}\right)$. If we can choose a C_{n}-homotopy equivalence $S(U) \rightarrow S\left(U^{\prime}\right)$ as a Petrie's map (or its suitable suspension), the Petrie's map itself gives a D_{n}-homotopy equivalence by Lemma 2.3. Of course, the complex conjugation gives a D_{n}-homotopy equivalence. This together with Lemma 2.2 completes the proof. Q.E.D.

3. Main results

Finally, we state our main results which are easy consequences of previous
sections.
Theorem A. $\operatorname{Res}_{C_{n}}^{D_{n}}: W h_{\text {rep }}\left(D_{n}\right) \rightarrow W h_{\text {rep }}\left(C_{n}\right)$ is an isomorphism.
Proof. Since $W h_{\text {rep }}\left(D_{n}\right)$ and $W h_{\text {iep }}\left(C_{n}\right)$ are subgroups of $W h_{D_{n}}(*)$ and $W h_{C_{n}}(*)$ respectively, Lemma 1.4 shows the injectivity. On the other hand Proposition 2.4 shows the surjectivity because the reduced torsion depends only on G-modules if $W h_{G}(*)$ is 2-torsion free.
Q.E.D.

Using [11, Theorem C], we have a corollary to Theorem A.
Corollary B. $W h_{\text {rep }}\left(D_{n}\right)$ is of finite index in $W h_{D_{n}}(*)$ if and only if $n=$ $8,9,12,16,18, p$ or $2 p$ for odd prime integers p.

We shall conclude this note by referring the generators of Whitehead group of dihedral groups.

Example. The generators of $W h\left(D_{5}\right), W h\left(D_{8}\right)$ or $W h\left(D_{12}\right)$ are given by the reduced torsions of D_{i}-homotopy equivalences between the unit sphere of D_{i}-modules. The units which represent the generators of $W h\left(D_{5}\right), W h\left(D_{8}\right)$ and $W h\left(D_{12}\right)$ are
(1) $1+\left(t+t^{-1}\right)-\left(t^{2}+t^{-2}\right)+s\left(-2+\left(t^{2}+t^{-2}\right)\right)$ in case $W h\left(D_{5}\right)$,
(2) $-1+\left(t^{2}+t^{-2}\right)+s\left(t-t^{3}-t^{4}+t^{-2}\right)$ in case $W h\left(D_{8}\right)$,

$$
\begin{align*}
4 & +2\left(t+t^{-1}\right)-\left(t^{2}+t^{-2}\right)-\left(t^{4}+t^{-4}\right)-\left(t^{5}+t^{-5}\right)-t^{6} \tag{3}\\
& +s\left(3+t-t^{2}-t^{3}-t^{4}-t^{5}-t^{6}-t^{-5}-t^{-4}-t^{-3}+t^{-2}+3 t^{-1}\right) \quad \text { in case } W h\left(D_{12}\right) .
\end{align*}
$$

Proof. We note that the generators of $W h\left(C_{5}\right), W h\left(C_{8}\right)$ and $W h\left(C_{12}\right)$ appear as the reduced torsions of the Petrie's maps $S\left(V_{2} \oplus V_{3}\right) \rightarrow S\left(V_{1} \oplus V_{1}\right)$, $S\left(V_{3} \oplus V_{5}\right) \rightarrow S\left(V_{1} \oplus V_{7}\right)$ and $S\left(V_{5} \oplus V_{7}\right) \rightarrow S\left(V_{1} \oplus V_{1}\right)$ respectively (see [11]). Therefore the reduced torsions of the above Petrie's maps (as D_{n}-homotopy equivalences) represent each generator of $W h\left(D_{5}\right), W h\left(D_{8}\right)$ and $W h\left(D_{12}\right)$. Using the method of Proposition 1.6, we can find the elements of (1), (2) and (3).
Q.E.D.

References

[1] S. Araki: Equivariant Whitehead groups and G-expansion categories, in Homotopy Theory and Related Topics, Advanced studies in Pure Mathematics 9, Kinokuniya, Tokyo (1987), 1-25.
[2] A. Bak: The involution on Whitehead torsion, General Topology and Appl. 7 (1977), 201-206.
[3] H. Bass: Algebraic K-theory, Benjamin, New York, 1968.
[4] M.M. Cohen: A course in simple homotopy theory, Graduate Texts in Math. 10, Springer-Verlag, 1973.
[5] F. Connolly and R. Geist: On extending free group actions on sphere and a conjecture of Iwasawa, Trans. Amer. Math. Soc. 274 (1982), 631-640.
[6] T. tom Dieck: Transformation Groups, de Gruyter Studies in Mathematics 8,

Berlin; New York: de Gruyter, 1987.
[7] T. tom Dieck: Transformation Groups and Representation Theory, Lect. Notes in Math. 766, Springer-Verlag 1979.
[8] K.H. Dovermann and M. Rothenberg: The Generalized Whitehead Torsion of a G Fibre Homotopy Equivalence, in Transformation Groups, Lect. Notes in Math, 1375, Springer-Verlag (1989), 60-88.
[9] J. Ewing: Extending free cyclic action on spheres, Trans. Amer. Math. Soc. 273 (1982), 695-703.
[10] H. Hauschild: Äquivariant Whiteheadtorsion, Manuscripta math. 26 (1978), 6382.
[11] T. Inoue: The equivariant Whitehead torsions of equivariant homotopy equivalences between the unit spheres of representations of cyclic groups, in Transformation Groups, Lect. Notes in Math, 1375, Springer-Verlag (1989), 111-125.
[12] S. Illman: Whitehead torsion and group actions, Ann. Acad. Sci. Fenn. Ser. AI 588 (1975), 1-44.
[13] S. Illman: Actions of compact Lie groups and the equivariant Whitehead group, Osaka J. Math., 23 (1986), 881-927.
[14] S. Illman: On some recent questions in equivariant simple homotopy theory, preprint.
[15] T.Y. Lam: Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Sci, Ecole Norm. Sup. (4) 1 (1968), 91-148.
[16] J. Milnor: Whitehead torsion, Bull, Amer. Math. Soc. 72 (1966), 358-426.
[17] B. Magurn: $S K_{1}$ of dihedral groups, J. Algebra 51 (1978), 399-415.
[18] R. Oliver: Whitehead Groups of Finite Groups, London Mathematical Society Lecture Note Series 132, Cambridge University Press, 1988.
[19] T. Obayashi: On the Whitehead group of the dihedral group of order $2 p$, Osaka J. Math. 8 (1971), 291-297.
[20] T. Obayashi: The Whitehead group of dihedral 2-groups, J. Pure Appl. Algebra 3 (1973), 59-71.
[21] M. Keating: Whitehead groups of some metacyclic groups and order, J. Algebra 22 (1972), 332-349.
[22] T. Petrie: Pseudo equivalences of G-manifolds, Proc. Symp. Pure Math. 32 (1978), 169-210.
[23] M. Rothenberg: Torsion invariants and finite transformation groups, Proc. Symp. Pure Math. 32 (1978), 269-311.
[24] C.T.C. Wall: Norms of units in group rings, Proc. London Math. Soc. (3) 29 (1974), 593-632.

Department of Mathematics
Osaka City University
Sugimoto-3, Sumiyoshi-ku
Osaka 558, Japan
and
Intelligent Wave Inc. C. Itoh Bldg. 8F 2-5-1, Kita-Aoyama, Minato-ku, Tokyo 107, Japan

