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1. Introduction

Let n be a positive integer, S, be the symmetric group on X={1, ---, n},
T be the set of all transpositions in S, and U=TU {1}. A subset Z of S, is
a l-code in S, if UgN Uh=¢ holds for any distinct two elements g and % in Z.
A l-code Z in S, is perfect if S,,=gLéZUg (see [1]). Let X® be the set of all

ordered k-tuples of distinct elements of X. We consider the natural action
of S, on X®. A subset Z of S, is k-transitive if the following condition holds.
For any x and y in X®, there exists some 2z in Z that moves x
to y, and the number of such elements in Z is a constant that is inde-
pendent of the choice of x and y.
In this paper we shall prove the following result.

Theorem. Perfect 1-codes in symmetric group of degree n are k-tramsitive
for 0=k<(n/2).

From the above theorem we easily get the following corollary by counting
the number of elements of Z that move x to y for fixed x, y& X®,

Corollary. If S, has a perfect 1-code then (g)—]—l divides [(n/2)41]!.

In [4] Rothaus and Thompson proved that if S, has a perfect 1-code then
(g)-&-l is not divisible by any prime exceeding v/ 7 +1. Their proof is based

on the theory of group characters. In this paper we will give a combinatorial
proof without using group characters.

Throughout this paper we assume that # is a fixed positive integer and
S, has a perfect 1-code Z. We shall use the following notations.

NOTATIONS
X={1, ---, n}.
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G=S, the symmetric group on X.

T: the set of all transpositions in G.

U=TU {1}, whete 1 denotes the identity in G.

Sy: the symmetric group on a subset Y of X. We regard Sy as a sub-
group of G.

Ty=TnNSy.

Z: a perfect 1-code in G.

px=|KNZ| for a subset K of G.

X*: the set of all ordered k-tuples of elements of X.

XO={(a, -, ;) €X*|a;*a; if i=j}.

For a=(a,, -+, &), b=(by, -*-, b;) in X*® and g in G:

ag=(a, 8, ***, % ).

a(@)=(ay, -+, @iy, @34y, -+, @) for 1=i<k.

a={a, -+, a;} a subset of X.

[a; B]={g=G | ag—b}.

Proof of the theorem is based on the following equation.

Proposition. Let 0<k<n and a, b€ X®. Then
n—k k . '
( 2 )JF1=k{Pusnt 2 Pres st 2 Pre swr1=(n—k)! .
3 i=1

2. Proof of the proposition

Throughout this section we assume 0<k<n and a=(a, -, &), b=(b;,
e, b)eX®.  We divide the proof into several steps.

Step 1. [[a; 8]l = (n—Fk)!.
Proof. If g[a; b] then a; g=b; for 1<i<k and (X—a)g=X—Db. Since
| X—a|=|X—b| =n—Fk, the number of such permutations is (n—&)!.

Step 2. [a;b]= U ]([a; b1N Ug) .

geznUlad

Proof. We have G= U Uy since Z is a perfect 1-code. Then K= U
&z

&ez
(KN Uyg) for any subset K of G. If he KN Ug, then h=ug for some u€ U,
and g=whe UK. This implies KNUg=¢ when g& UK. Therefore we
have K= U (KN Upg).

EEZNTKR

Step 3. Ula; b] = Un[a; bu] .

Proof. Note that Ula; b]=[a; b]U since U is invariant under conjugation.
Since [a; b] g=[a; bg] holds for g G, we easily get step 3.

Let Y=050= {b, -+, b}y. We divide U into three subsets.
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T, = {G,)ET| i, jeX—Y}U {1},
T,= {6 )T ijeY},
T;={GjeT|icY and jeX—-Y}.
Then U=T,UT,U T; (disjoint). Also we set
Vi= U [a; bu] (1=:i£3).
vET;

Step 4. V, = [a; b].

Proof. If u& T, then bu=>b since u fixes all points in Y.
Step 5. Vo= U ([a(i); b(i)]—[a; B]) -

Proof. Take g€V, Then g&(a; bu] for some usT;. By definition of
T; we have b, uc X—Y for some . Then a; g=bu=+b; and ge&[a; b]. Hence
we have g&[a(i); b(z)]. To show the converse take any g&[a(?); b(7)]—[a; b].
Let u=(d;, a;g)T. Then a;g=+b; and a;g&X—Y. This implies uET;.
Moreover a;g=>b,u implies g&[a; bu]. Hence g€V,

Step 6. If g V; then |[a; 5] N Ug| = (”;k)+1 .

Proof. We have |[a; 8]N Ug|=|[a; b]g'N U | since right translation by
g™ !is a bijection on G. Since gE[a; b] from step 4, [a; bl g7 =]a; bg™']=[a; 4].
Hence |[a; b]N Ug|=|[a; a]N U].—:("Ek)—}—l since [a; a]N U contains 1 and
all transpositions on X—a.

Step 7. IfgeV,orgeV;then |[a; 5]NUg| = 1.

Proof. In either case we have get[a; b]. As in the proof of step 6 we
have |[a; 51N Ug|=|[a; b¢g" 1N U|. Let c=bg '=(c;, ---, ¢;). Thenc=a since
gela; b). Hence a;=¢; for somei. Ifuc[a;c]N U then qu=c; and u=(a;, c;).
Since u is uniquely determined, we have |[a; c]NU|=<1. We also have [a; c]N
U=+¢ since g V,UV,.

Step 8. {(n5k>—i—1} by, FDv,+ by, = (n—Fk)!.
Proof. From step 1 and step 2 we have

3 |[a; 81N Ug| = (n—k)!.

14 - AR CH) ]

From step 3 and definition of V; we have

Ula; 8] = VU V,U V5.
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This implies
ZNUla; bl = (ZNV)U(ZNnTV,)u(ZNnVs).

Then from step 6 and step 7 we get step 8.
Now the proposition follows from step 4, step 5 and step 8.

3. Proof of the theorem

We shall prove that pr,; 3=pr ;41 holds for a, b, ¢, d in X® by induction
on k. We assume 0<<k<((n/2) and the above equality holds for k—1.

Let a, b€ X® and Y=b={b,, ---, b;}. Then from the proposition we
have

rP[a;u—F“g Plais1 =S,
Y

where rz(ngk)—}—l—k, s=(n—k)!—kq and ¢=pr.);s. Note that g is

independent of 4, b and 7 by induction.
Then for g Sy we have

rp[a H bg]+ 2 P[a s bgul = s.
“ET
For simplification we write p,=pr, ; 5,1, then the above is
(1) Pt =5 (2€S).
Y

We regard (1) as a system of linear equations with unknowns p, (g€E€ Sy).
Then (1) has a solution

re=sifr+(%)]  (zesn.

Since r and s are constants which depend only on z and &, we must only show
that (1) has a unique solution.
Let Sy=A{gy, ‘", gu}, m=Fk!, and let D=(d,;) be the coefficient matrix of
(1). Then
r ifi=j
d; =411 if g;u=g; for some ucTy

0 otherwise

Now we consider the graph structure on Sy defined by

“g; is adjacent to g; if giu=g; for some uTy”. Let A be the adjacency
matrix of the graph Sy. Then D=A-rE, where E denotes the unit matrix
of degree m. We must show that det(4-+7E)==0. By way of contradiction,
we assume that det(4+7E)=0. Then (—7) is an eigenvalue of 4. But the
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absolute value of any eigenvalue of regular graph cannot exceeds its valency
(see [3]). Therefore we have ré(é). This implies #*—(2k+1)n+2=<0 and

2k=n. This is a contradiction.
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