

Title	The cut locus and the diastasis of a Hermitian symmetric space of compact type
Author(s)	Tasaki, Hiroyuki
Citation	Osaka Journal of Mathematics. 1985, 22(4), p. 863-870
Version Type	VoR
URL	https://doi.org/10.18910/10526
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Tasaki, H.
Osaka J. Math.
22 (1985), 863-870

THE CUT LOCUS AND THE DIASTASIS OF A HERMITIAN SYMMETRIC SPACE OF COMPACT TYPE

HIROYUKI TASAKI

(Received October 9, 1984)

1. Introduction

For a complete Riemannian manifold M and a point p in M , we denote by $C_p(M)$ the cut locus of M with respect to p . As a property of the cut locus of a simply connected compact symmetric space M , it is known in [2] that the cut locus $C_p(M)$ coincides with the first conjugate locus of M with respect to p . Sakai [5] proved that in general the cut locus of a compact symmetric space is determined by that of its maximal totally geodesic flat submanifold (see Section 4 for details). Using this, Sakai [6] and Takeuchi [8], [9] gave stratifications of the cut loci of compact symmetric spaces.

Calabi [1] introduced the notion “diastasis” to study Kähler imbeddings. The diastasis of a Kähler manifold M is a real analytic function defined on its domain of real analyticity in $M \times M$ containing the diagonal set and behaves like as the square of the geodesic distance in the small (see Section 2 for the definition). The most characteristic property of the diastasis proved by Calabi will be that the diastasis of a Kähler submanifold N of a Kähler manifold M coincides with the restriction of the diastasis of M to N . Making use of these properties, Calabi obtained various fundamental results of Kähler imbeddings. In particular, he proved the rigidity of a Kähler submanifold of a space of constant holomorphic sectional curvature.

It seems to be interesting to study relations between the geodesic distance and the diastasis in the large. In this note we shall show a relation between the cut locus and the diastasis of a Hermitian symmetric space of compact type. More precisely, the main result of this note is the following:

Theorem. *Let M be a Hermitian symmetric space of compact type and D be the diastasis of M . Then, for each point p in M , the cut locus $C_p(M)$ is equal to the set of points q at which $D(p, q)$ cannot be defined.*

In other words, $M - C_p(M)$ is the domain of real analyticity of the real analytic function $q \mapsto D(p, q)$. This result gives a relation between the cut locus of a Hermitian symmetric space of compact type and that of its symmetric

Kähler submanifold (Corollary 8). In particular, the cut locus of a symmetric Kähler submanifold of a complex projective space is a hyperplane section of the submanifold.

2. The diastasis

In this section we shall give the definition of the diastasis of a Kähler manifold due to Calabi [1] and state some basic properties of the diastasis. At the end of this section we shall show that, for $P = P^1(\mathbf{C}) \times \cdots \times P^1(\mathbf{C})$ with the product metric of Hermitian symmetric metrics on $P^1(\mathbf{C})$ and a point p in P , the cut locus $C_p(P)$ is the set of points q at which the diastasis $D(p, q)$ cannot be defined.

Let M be a k -dimensional complex manifold with an analytic Kähler metric and \bar{M} be its conjugate manifold. For each point p in M , the point corresponding to p in \bar{M} is denoted by \bar{p} . For each complex coordinate system (z^1, z^2, \dots, z^k) in M , put

$$z^{\alpha*}(\bar{q}) = \overline{z^\alpha(q)}.$$

Then (z^{1*}, \dots, z^{k*}) is a complex coordinate system in \bar{M} and $(z^1, \dots, z^k, z^{1*}, \dots, z^{k*})$ is a complex coordinate system in the product complex manifold $M \times \bar{M}$. Imbedding M into $M \times \bar{M}$ as the diagonal set $\{(p, \bar{p}); p \in M\}$, we can uniquely extend a real analytic functional element in M to a complex analytic functional element in $M \times \bar{M}$.

Let

$$ds^2 = g_{\alpha\beta*}(z, \bar{z}) dz^\alpha dz^{\beta*} \quad (1)$$

be the Kähler metric of M , then there exists a real analytic function $\Phi(z, \bar{z})$ such that

$$g_{\alpha\beta*}(z, \bar{z}) = \frac{\partial^2 \Phi(z, \bar{z})}{\partial z^\alpha \partial z^{\beta*}}. \quad (2)$$

We can extend $\Phi(z, \bar{z})$ to a complex analytic function defined on an open subset of $M \times \bar{M}$. For each points p and q in the open set on which the complex coordinate system (z^1, \dots, z^k) is defined, we define the functional element

$$\begin{aligned} D(p, q) = & \Phi(z(p), \overline{z(p)}) + \Phi(z(q), \overline{z(q)}) \\ & - \Phi(z(p), \overline{z(q)}) - \Phi(z(q), \overline{z(p)}). \end{aligned} \quad (3)$$

These functional elements generate a real analytic function, which is called the *diastasis* of M and denoted by D .

The following proposition is due to Calabi [1].

Proposition 1. *Let M be a Kähler submanifold of a Kähler manifold N*

with an analytic Kähler metric. Then the diastasis of M is the restriction of the diastasis of N to M .

The following lemma follows from (1), (2), and (3).

Lemma 2. *Let M_1, \dots, M_n be Kähler manifolds with analytic Kähler metrics and D_i be the diastasis of M_i for $i=1, \dots, n$, then the diastasis of $M_1 \times \dots \times M_n$ is equal to $D_1 + \dots + D_n$.*

At the end of this section we consider the diastasis of $\mathbf{P}^1(\mathbf{C}) \times \dots \times \mathbf{P}^1(\mathbf{C})$.

Proposition 3. *For $P = \mathbf{P}^1(\mathbf{C}) \times \dots \times \mathbf{P}^1(\mathbf{C})$ with the product metric of Hermitian symmetric metrics on $\mathbf{P}^1(\mathbf{C})$ and a point p in P , the cut locus $C_p(P)$ is equal to the set of points q at which the diastasis $D(p, q)$ cannot be defined.*

Proof. We denote by $[z^0, z^1]$ the homogeneous coordinate of $\mathbf{P}^1(\mathbf{C})$. Without loss of generality it may be assumed that the homogeneous coordinate of p is $[1, 0]$. Let

$$O = \{q \in \mathbf{P}^1(\mathbf{C}); z^0(q) \neq 0\}.$$

O is an open subset containing p and z^1/z^0 is a complex coordinate on O . The diastasis D of $\mathbf{P}^1(\mathbf{C})$ is given by

$$D(p, q) = \alpha \log \left[1 + \left| \frac{z^1(q)}{z^0(q)} \right|^2 \right]$$

for some $\alpha > 0$. Let p' be the point whose homogeneous coordinate is $[0, 1]$, then the set of points q at which $D(p, q)$ cannot be defined is $\{p'\}$, which is equal to the cut locus $C_p(\mathbf{P}^1(\mathbf{C}))$. This proves Proposition 3 for $P = \mathbf{P}^1(\mathbf{C})$. Proposition 3 follows from Lemma 2 and the fact that, for complete Riemannian manifolds M_1, \dots, M_n and points p_i in M_i ($1 \leq i \leq n$),

$$\begin{aligned} & C_{(p_1, \dots, p_n)}(M_1 \times \dots \times M_n) \\ &= C_{p_1}(M_1) \times M_2 \times \dots \times M_n \cup M_1 \times C_{p_2}(M_2) \times M_3 \times \dots \times M_n \\ & \quad \cup \dots \cup M_1 \times M_2 \times \dots \times M_{n-1} \times C_{p_n}(M_n). \end{aligned}$$

3. Certain submanifolds of a Hermitian symmetric space of compact type

Let M be a Hermitian symmetric space of compact type. In this section we shall construct a maximal totally geodesic flat submanifold A of M and a totally geodesic Kähler submanifold P of M which includes A . For details about the results without proofs, see Helgason [3].

Let (\mathfrak{u}, θ) be the orthogonal symmetric Lie algebra associated with M . We have the canonical direct sum decomposition of \mathfrak{u} :

$$\mathfrak{u} = \mathfrak{k} + \mathfrak{p},$$

where

$$\mathfrak{k} = \{X \in \mathfrak{u}; \theta(X) = X\} \text{ and } \mathfrak{p} = \{X \in \mathfrak{u}; \theta(X) = -X\}.$$

Take a maximal Abelian subalgebra \mathfrak{h} of \mathfrak{k} . We denote the complexifications of \mathfrak{u} , \mathfrak{k} , \mathfrak{p} , and \mathfrak{h} by \mathfrak{g} , $\tilde{\mathfrak{k}}$, $\tilde{\mathfrak{p}}$, and $\tilde{\mathfrak{h}}$ respectively. $\tilde{\mathfrak{h}}$ is a Cartan subalgebra of \mathfrak{g} . Let Δ be the set of nonzero roots of \mathfrak{g} with respect to $\tilde{\mathfrak{h}}$. For each root α in Δ , put

$$\mathfrak{g}^\alpha = \{X \in \mathfrak{g}; [H, X] = \alpha(H)X \text{ for each } H \in \tilde{\mathfrak{h}}\}.$$

Since $\tilde{\mathfrak{h}} \subset \tilde{\mathfrak{k}}$, for each α in Δ , $\mathfrak{g}^\alpha \subset \tilde{\mathfrak{k}}$ or $\mathfrak{g}^\alpha \subset \tilde{\mathfrak{p}}$. A root α is called *compact* [resp. *noncompact*], if $\mathfrak{g}^\alpha \subset \tilde{\mathfrak{k}}$ [resp. $\mathfrak{g}^\alpha \subset \tilde{\mathfrak{p}}$]. By the root space decomposition of \mathfrak{g} , we obtain

$$\mathfrak{k} = \tilde{\mathfrak{h}} + \sum_{\alpha: \text{compact}} \mathfrak{g}^\alpha, \quad \tilde{\mathfrak{p}} = \sum_{\beta: \text{non-compact}} \mathfrak{g}^\beta.$$

We introduce a lexicographic order in the dual of the real vector space $\sqrt{-1}\mathfrak{h}$. Note that each root is real valued on $\sqrt{-1}\mathfrak{h}$.

Let Q be the set of positive noncompact roots in Δ and r be the rank of M . Then there is a strongly orthogonal root system $\{\gamma_1, \dots, \gamma_r\}$ in Q , that is, $\gamma_i \pm \gamma_j \notin \Delta$ for $1 \leq i, j \leq r$. We can choose nonzero vectors $X_\alpha \in \mathfrak{g}^\alpha$ for each roots α in Δ such that

$$X_\alpha - X_{-\alpha}, \sqrt{-1}(X_\alpha + X_{-\alpha}) \in \mathfrak{u}, \quad (4)$$

$$[X_\alpha, X_{-\alpha}] = \frac{2}{\alpha(H_\alpha)} H_\alpha, \quad (5)$$

where H_α is the dual vector of α with respect to the Killing form of \mathfrak{g} . Since $\gamma_i \pm \gamma_j \notin \Delta$,

$$[X_{\pm\gamma_i}, X_{\pm\gamma_j}] = [H_{\pm\gamma_i}, H_{\pm\gamma_j}] = 0, \quad \text{if } i \neq j. \quad (6)$$

By this property

$$\mathfrak{a}_\mathfrak{p} = \sum_{i=1}^r \mathbf{R} \sqrt{-1} (X_{\gamma_i} + X_{-\gamma_i}) \quad (7)$$

is a maximal Abelian subspace in \mathfrak{p} .

Let U be a simply connected Lie group with Lie algebra \mathfrak{u} and K be the analytic subgroup of U with Lie algebra \mathfrak{k} . Since M is simply connected, $M = U/K$. The action of U on M is isometric and holomorphic.

Put

$$A = \exp(\mathfrak{a}_\mathfrak{p})o,$$

where o is the origin of $M = U/K$. The submanifold A is a maximal totally

geodesic flat submanifold of M , because \mathfrak{a}_p is a maximal Abelian subspace in \mathfrak{p} .

We define a linear map $\phi_i: \mathfrak{su}(2) \rightarrow \mathfrak{u}$ by

$$\begin{aligned} \begin{bmatrix} 1 \\ -1 \end{bmatrix} &\mapsto X_{\gamma_i} - X_{-\gamma_i}, \\ \begin{bmatrix} \sqrt{-1} \\ \sqrt{-1} \end{bmatrix} &\mapsto \sqrt{-1}(X_{\gamma_i} + X_{-\gamma_i}), \\ \begin{bmatrix} \sqrt{-1} \\ \sqrt{-1} \end{bmatrix} &\mapsto \frac{2\sqrt{-1}}{\gamma_i(H_{\gamma_i})} H_{\gamma_i}. \end{aligned}$$

By (4) and (5) ϕ_i is a well-defined injective Lie algebra homomorphism of $\mathfrak{su}(2)$ to \mathfrak{u} . Since

$$[\phi_i(\mathfrak{su}(2)), \phi_j(\mathfrak{su}(2))] = \{0\}, \quad 1 \leq i \neq j \leq r,$$

by (6), we can define an injective Lie algebra homomorphism ϕ from the r -fold direct sum $\mathfrak{su}(2)^r$ of $\mathfrak{su}(2)$ into \mathfrak{u} by

$$\phi(X_1, \dots, X_r) = \sum_{i=1}^r \phi_i(X_i) \quad \text{for } X_i \in \mathfrak{su}(2).$$

ϕ also denotes the homomorphism from the r -fold direct product $SU(2)^r$ of $SU(2)$ into U induced by the Lie algebra homomorphism ϕ . Then ϕ induces an equivariant holomorphic imbedding

$$\begin{aligned} \rho: SU(2)^r / S(U(1) \times U(1))^r &\rightarrow M \\ x S(U(1) \times U(1))^r &\mapsto \phi(x) o \quad \text{for } x \in SU(2)^r. \end{aligned}$$

Note that the r -fold direct product $\mathbf{P}^1(\mathbf{C})^r$ of $\mathbf{P}^1(\mathbf{C})$ is canonically identified with $SU(2)^r / S(U(1) \times U(1))^r$.

We denote by P the image of the imbedding ρ . By the definition of ϕ and (7), $\mathfrak{a}_p \subset \phi(\mathfrak{su}(2)^r)$, so $A \subset P$. Since

$$\phi(\mathfrak{su}(2)^r) = \mathfrak{k} \cap \phi(\mathfrak{su}(2)^r) + \mathfrak{p} \cap \phi(\mathfrak{su}(2)^r),$$

P is a totally geodesic submanifold of M . The induced metric on $\mathbf{P}^1(\mathbf{C})^r$ is the product metric of Hermitian symmetric metrics on $\mathbf{P}^1(\mathbf{C})$, because the imbedding ρ is equivariant.

By a theorem of Cartan to the effect that M is given by

$$M = \bigcup_{k \in \mathbb{K}} kA,$$

we obtain

$$M = \bigcup_{k \in \mathbb{K}} kP.$$

The following proposition summarizes this section.

Proposition 4. a) *A is a maximal totally geodesic flat submanifold of M through o .*
 b) *$P \cong \mathbf{P}^1(\mathbf{C})'$ is a totally geodesic Kähler submanifold of M which includes A and its metric is the product metric of Hermitian symmetric metrics on $\mathbf{P}^1(\mathbf{C})$.*
 c)
$$M = \bigcup_{k \in \mathbb{K}} kP.$$

REMARK. The imbedding ρ was used by Takagi and Takeuchi [6] in order to determine the degree of symmetric Kähler submanifolds of a complex projective space.

4. The cut locus and the diastasis of a Hermitian symmetric space of compact type

In this section we shall prove the following main theorem stated in Introduction.

Theorem 5. *Let M be a Hermitian symmetric space of compact type and D be the diastasis of M . Then, for each point p in M , the cut locus $C_p(M)$ is equal to the set of points q at which $D(p, q)$ cannot be defined.*

We retain the notations in Section 3.

Lemma 6.

$$C_o(M) \cap A = C_o(A) \text{ and } C_o(M) = \bigcup_{k \in \mathbb{K}} kC_o(A).$$

This lemma is due to Sakai [5].

Lemma 7.

$$C_o(M) = \bigcup_{k \in \mathbb{K}} kC_o(P).$$

Proof. Put

$$U_1 = \phi(SU(2)') \text{ and } K_1 = U_1 \cap K.$$

Then (U_1, K_1) is a Riemannian symmetric pair and $P = U_1/K_1$.

Since P is a totally geodesic submanifold of M , A is also a maximal totally geodesic flat submanifold of P . Applying Lemma 6 to $P = U_1/K_1$ and A , we have

$$\begin{aligned} C_o(P) &= \bigcup_{k_1 \in \mathbb{K}_1} k_1 C_o(A) \\ &= \bigcup_{k_1 \in \mathbb{K}_1} k_1 (A \cap C_o(M)) \\ &= P \cap C_o(M), \end{aligned}$$

hence from c) of Proposition 4

$$\begin{aligned}
\bigcup_{k \in K} kC_o(P) &= \bigcup_{k \in K} k(P \cap C_o(M)) \\
&= M \cap C_o(M) \\
&= C_o(M).
\end{aligned}$$

Now we shall prove Theorem 5. Without loss of generality we may assume that p is the origin o of $M = U/K$. Since P is a Kähler submanifold of M , the restriction of D to P is the diastasis of P by Proposition 1. The action of K on M is isometric and holomorphic, hence

$$\begin{aligned}
&\{q \in M; D(p, q) \text{ cannot be defined}\} \\
&= \bigcup_{k \in K} k \{q \in P; D(p, q) \text{ cannot be defined}\} \\
&= \bigcup_{k \in K} kC_o(P) \\
&= C_o(M).
\end{aligned}$$

This completes the proof of Theorem 5.

Corollary 8. *Let M_1 and M_2 be Hermitian symmetric spaces of compact type. If M_1 is a Kähler submanifold of M_2 , then*

$$C_p(M_1) = M_1 \cap C_p(M_2)$$

for each point p in M_1 .

REMARK. In case of $M_2 = \mathbf{P}''(\mathbf{C})$, Theorem 4.3 in Nakagawa and Takagi [4] implies that the imbedding of M_1 into $\mathbf{P}''(\mathbf{C})$ is equivariant. So we can describe the behavior of a geodesic of M_1 in $\mathbf{P}''(\mathbf{C})$ and directly show the assertion of Corollary 8 in this case.

References

- [1] E. Calabi: *Isometric imbedding of complex manifolds*, Ann. of Math. **58** (1953), 1–23.
- [2] R. Crittenden: *Minimum and conjugate points in symmetric spaces*, Canad. J. Math. **14** (1962), 320–328.
- [3] S. Helgason: *Differential geometry, Lie groups, and symmetric spaces*, Academic Press, New York, 1978.
- [4] H. Nakagawa and R. Takagi: *On locally symmetric Kähler submanifolds in a complex projective space*, J. Math. Soc. Japan **28** (1976), 638–667.
- [5] T. Sakai: *On cut loci of compact symmetric spaces*, Hokkaido Math. J. **6** (1977), 136–161.
- [6] T. Sakai: *On the structure of cut loci in compact Riemannian symmetric spaces*, Math. Ann. **235** (1978), 129–148.
- [7] R. Takagi and M. Takeuchi: *Degree of symmetric Kählerian submanifolds of a complex projective space*, Osaka J. Math. **14** (1977), 501–518.

- [8] M. Takeuchi: *On conjugate loci and cut loci of compact symmetric spaces I*, Tsukuba J. Math. **2** (1978), 35–68.
- [9] M. Takeuchi: *On conjugate loci and cut loci of compact symmetric spaces II*, Tsukuba J. Math. **3** (1979), 1–29.

Department of Mathematics
Tokyo Gakugei University
Koganei, Tokyo 184
Japan