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Abstract

Theoretical study on magnetic properties of pseudo-one-dimensional (pseudo-1D)

quantum spin systems is made by developing new useful theoretical methods. Particular

attention is paid to magnetic phenomena in which interchain coupling plays an important

role.

1. Magnetic Properties of Pseudo-1D Exchange-Alternating Systems

The pair dynamical correlated-effective-field approximation (Pair-DCEFA) is formu-

lated by extending the DCEFA developed originally by Suzuki. This Pair-DCEFA is suit-

able for treating exchange-alternating systems such as antiferromagnetic-ferromagnetic

(AF–F) alternating chains, and also has advantages of being able to calculate easily the

q- and ω-dependent susceptibility and its temperature dependence. Magnetic phase tran-

sitions of pseudo-1D S=1/2 AF–F alternating systems under zero and non-zero magnetic

fields are investigated by the combined method of the Pair-DCEFA and the usual mean-

field approximation (MFA). Interchain exchange couplings of a couple of pseudo-1D S=1/2

AF–F alternating systems are successfully evaluated.

The q-dependent staggered susceptibilities at finite temperatures of S=1/2 exchange-

alternating chains are calculated for the first time by using the exact diagonalization

method (EDM) for finite chains. It is shown that interchain couplings of pseudo-1D

S=1/2 exchange-alternating systems can be evaluated more quantitatively with use of

the staggered susceptibilities obtained by the EDM and by applying the MFA to inter-

chain interaction.

Intensities of inelastic neutron scattering of pure-1D S=1/2 AF–F alternating chains

are calculated by numerical method based on the EDM, and several interesting natures of

the magnetic excitations are predicted: (1) the so-called second gap exists always, (2) the

lowest energy in the continuum region above the second gap takes the maximum value

at q = π/2, (3) the magnitude of the second gap at q=0 decreases with increasing the

magnitude of the ferromagnetic coupling, (4) the continuum states above the second gap

may be observable at large q, and (5) the intensity due to the lowest triplet states takes

the maximum value at q = π/2 in the whole range of the exchange ratio.

2. Magnetic Resonance in Spin Peierls System CuGeO3

The interchain exchange integral J ′ along the b-axis of CuGeO3 has been evaluated

by analyzing the exchange splitting of EPR spectra observed at T=300 K under ultra-high
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magnetic fields on the basis of the mean-field random-phase approximation (MF–RPA).

The two peak structure of the observed EPR spectra and its dependence on the field

direction are explained successfully, and by solving the equation of motion for the spins

it is clarified that the observed two peaks correspond to the ferromagnetic and antiferro-

magnetic resonance, respectively.

Origins of two kinds of ESR lines (2 meV and 5 meV) in the spin Peierls phase of

CuGeO3 are clarified or proposed. By assuming the Dzyaloshinsky-Moriya interaction

and the different g values for spin pairs of the Cu dimer, which can be expected reason-

ably from the supposed crystal structure, it is shown that the 2 meV line is ascribed to

the transition to the lowest triplet state with q=0 from the singlet ground state. As the

origin for the 5 meV line, transition to two triplet excited states above the second gap is

proposed. This model can explain well the configuration dependence of the observed ESR

spectra and also the recent experimental findings such as observation under zero magnetic

field.
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Chapter 1

Introduction

The low-dimensional quantum spin systems have been attracting much attention as

typical examples which manifest remarkable quantum effect. In particular, the mag-

netic properties of the quantum spin gap systems which have a spin singlet ground state

with a finite gap to the lowest excited state are the most interesting problem among

them. Examples are the exchange-alternating chains [1, 2, 3] inclusive of spin Peierls

[4] systems, Haldane systems [5] and S=1/2 double spin chain systems [6] and so on.

These systems have been studied extensively both experimentally and theoretically, and

many interesting results have been reported so far. Theoretically purely one-dimensional

exchange-alternating chain systems have been extensively studied mostly on the basis

of the exact diagonalization method (EDM) for finite chains [7, 8, 9]. However, it is

the present status that there are few theoretical works about role of interchain coupling

in pseudo one-dimensional systems. To be important, the real systems are pseudo-one-

dimensional and there are many phenomena in which interchain coupling can not be

neglected. In fact, the magnetic phase transitions have been observed experimentally in

a couple of pseudo one-dimensional systems [1, 2, 10], which show clearly the importance

of the interchain coupling. By focusing our attention on the effect of interchain coupling,

we have developed quite useful methods which can take into account interchain coupling

quantitatively and performed theoretical analyses of magnetic properties of a couple of

pseudo-one-dimensional quantum spin systems.

Magnetic properties of S=1/2 exchange-alternating chains

Recently, interesting one-dimensional exchange-alternating chain systems such as

antiferromagnetic-ferromagnetic (AF–F) alternating chains have been synthesized and the

magnetic properties of these systems are activatively investigated. Quite recently three
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dimensional magnetic order has been observed in pseudo-one-dimensional AF–F alternat-

ing systems such as Cu(TIM)CuCl4, (4-BzpipdH)CuCl3 [1] and MeNN [2]. However there

were few effective methods to discuss these phenomenon, and it is desired to develop a

practically useful method which can take account properly the interchain coupling. So, as

one of such methods we propose the following combined method: the intrachain and inter-

chain couplings are treated by the pair dynamical correlated-effective-field approximation

(Pair-DCEFA) and the mean field approximation (MFA), respectively. This Pair-DCEFA

has advantages of being able to calculate easily the q- and ω-dependent susceptibility

and its temperature dependence and also being applicable to three dimensional systems

without difficulty. By using this combined method, the magnetic phase transitions of

pseudo-one-dimensional S=1/2 exchange-alternating chains are investigated, and the ex-

change couplings in real S=1/2 AF–F alternating systems are evaluated. Further, the

same phenomena are studied also by another combined method in which the intrachain

and interchain couplings are treated by the exact diagonalizaion method (EDM) for finite

chains and the MFA, respectively.

By specific heat measurements H. Manaka et al. have observed magnetic phase tran-

sitions [10] under magnetic fields in a pseudo-one-dimensional S=1/2 AF–F alternating

chain (CH3)2CHNH3CuCl3 [3] which does not order in zero field. So, we have extended

the combined method of Pair-DCEFA and MFA to the case under magnetic fields, and in-

vestigated the magnetic phase transition observed in (CH3)2CHNH3CuCl3. Also we have

analyzed by Pair-DCEFA the temperature dependence of nuclear spin-lattice relaxation

time T1 of this system, which has been measured by T. Kubo et al. [11].

Finally, as an theoretical propose, the intensity of neutron scattering is calculated for

the one dimensional AF–F alternating chain by using EDM for finite chain. In particular,

we focus ourselves on whether the excited states above the second gap is observable or not.

Magnetic Resonance in spin Peierls System CuGeO3

Since Hase, Terasaki and Uchinokura [4] reported the first example of spin-Peierls

system (Tsp=14 K) in an inorganic linear Cu2+ (S=1/2) chain compound, CuGeO3, a

large number of experimental studies of various types have been carried out. The neutron

scattering experiments [12] confirmed a finite gap between the singlet ground state and the

triplet excited states, and also showed clearly that the interchain coupling, particularly

along the b-axis, is quite large compared with other spin Peierls systems. Existence of

significant interchain coupling has been also indicated from high field EPR measurements
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[13]. These experimental evidences for large interchain coupling challenge the view that

one-dimensional nature is very important for spin-Peierls system. The neutron scattering

experiments [14] discovered also the existence of the second gap above the lowest triplet

excited states, which is characteristic to the exchange alternating systems.

Another quite interesting experimental result is the two kinds of transition from the

singlet ground state to the triplet excited states in the spin-Peierls phase, which were ob-

served by ESR measurements [13, 15]. The transition between the singlet ant the triplet

states is usually forbidden in the Heisenberg model, and the origin of these ESR lines is

still open to question.

Exchange splitting of high field EPR

Recently, the exchange splitting of the high field EPR spectra has been observed due

to the differences between the principal axes of the g-values of two adjacent Cu2+ ions,

named respectively as sublattices 1 and 2 [13]. It should be noted that interchain ex-

change coupling has a great influence on this phenomenon. However, there were no useful

methods to discuss quantitatively this phenomenon. In practice, though we have analyzed

by using Hamano-Shibata theory [16], the reasonable results have not been obtained. So,

we have analyzed the observed exchange splitting of EPR spectra by the Mean-Field

Random-Phase-Approximation (MF–RPA), and estimated the interchain exchange inte-

grals. Further, the origin of respective peaks is discussed by solving the equation of

motion for the spins with use of the MF–RPA’s Hamiltonian. It is shown that the spins

at sublattices 1 and 2 perform the motion coupled each other and the obtained mode

correspond to those of the ferromagnetic or antiferromagnetic resonance.

ESR spectra in SP phase

For the ESR spectra of CuGeO3 in the spin-Peierls phase, we focus our attention on

the mechanism of the direct transitions from the singlet ground state to the triplet excited

states lying respectively at 2 meV [13] and 5 meV [15, 17], which are essentialy forbidden.

In order to investigate the possibility of the transitions, we have calculated the intensity of

ESR spectra at T=0 K. The used Hamiltonian is the isotropic Heisenberg model plus the

Dzyaloshinsky-Moriya interaction and the Zeeman interaction with different g values in

the Cu dimer, and the triplet excited states are treated by the singlet-triplet dimer model,

whose framework is described simply as follows: the singlet ground state consists of the

direct products of singlet pairs and the triplet excited states are described as a triplet pair
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traveling in the background of the direct products of singlet pairs. This picture is thought

to be favorable for the respective states in the SP phase. It is noted that the calculated

results can explain well the transition to 2 meV states. On the other hand, the transitions

to 5 meV have been investigated on the basis of the following two cases; in one model the

5 meV transition is ascribed to the transition to the zone folded states originated from

the staggered field induced along the direction of interchain, and in the other model it is

ascribed to that to the excited states above the second gap. To describe the states above

the second gap, we have taken into account a situation that two triplet pairs are traveling

in the singlet background. By considering a couple of new experimental results [17, 18],

we find that the latter model is suitable for explaining the transition to 5 meV states.
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Chapter 2

Magnetic Properties of
Pseudo-One-Dimensional
Exchange-Alternating System

2.1 Pair Dynamical Correlated-Effective-Field Approx-

imation

There are many spin systems which can be regarded as assembly of exchange-coupled

spin pairs. Examples are exchange-alternating systems such as antiferromagnetic (AF) al-

ternating chains and antiferromagnetic-ferromagnetic (AF-F) alternating chains. Theoret-

ically purely one-dimensional exchange-alternating systems have been extensively studied

mostly on the basis of the exact diagonalization method (EDM) for finite chains [7, 8, 9].

Experimentally, on the other hand, there have been few exchange-alternating spin sys-

tems, but the examples are increasing recently. To be important, the real exchange-

alternating chain systems are pseudo-one-dimensional, and there are many cases in which

interchain coupling cannot be neglected. In fact, quite recently three dimensional mag-

netic order has been observed in pseudo-one-dimensional AF-F alternating systems such

as Cu(TIM)CuCl4, (4-BzpipdH)CuCl3 [1] and MeNN [2]. Therefore it is desired to de-

velop a practically useful method which can take into account the interchain coupling. As

one of such methods we propose in this paper the pair dynamical correlated-effective-field

approximation (Pair-DCEFA) in which the spin-pair is solved exactly and the interac-

tion between the pairs is treated by the DCEFA [19]. The original DCEFA developed

by Suzuki has shown sufficiently its effectiveness through its previous successful appli-

cation to the paramagnetic state and the magnetic ordered state in various magnetic

systems [20, 21, 22, 23, 24, 25].
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As examples, Pair-DCEFA is applied to calculate magnetic excitation and uniform

static susceptibility of S=1/2 AF alternating chains and also of S=1/2 AF-F alternat-

ing chains, and the results are compared with those obtained by the EDM for finite

spins [7, 9]. Finally, the exchange integrals in Cu(TIM)CuCl4, (4-BzpipdH)CuCl3 [1] and

MeNN [2] are estimated by combining Pair-DCEFA for intrachain coupling and the mean

field approximation (MFA) for interchain coupling.

2.1.1 Formalism

We consider a spin system whose Hamiltonian is expressed as follows:

H = −∑
i

J �Si1 · �Si2 − 1

2

∑
i�=j

∑
μν

Jiμ,jν
�Siμ · �Sjν , (2.1)

where �Siμ (�Sjν) denotes the spin μ (spin ν) in the unit cell i (unit cell j) with μ (ν) being

1 or 2. The first term represents the Hamiltonian of isolated spin-pairs in each of which

two spins are interacting through J , and the second term denotes the interaction between

the pairs. In the following we first solve exactly the spin-pair Hamiltonian −J �Si1 · �Si2, and

then treat the interaction between the pairs by the DCEFA, i.e. the following decoupling

is adopted for the second term of eq. (2.1):

Jiμ,jν
�Siμ · �Sjν → Jiμ,jν [�Siμ · (〈�Sjν〉 − α〈�Siμ〉) + �Sjν · (〈�Siμ〉 − α〈�Sjν〉)] , (2.2)

where 〈�S〉 denotes the spontaneous or the field-induced spin moment and α represents a

parameter which should be determined self-consistently. The parameter α is a quantity

reflecting the correlation between neighboring spins, and in the original DCEFA it has

been shown that α corresponds exactly to the nearest-neighbor (n.n.) spin correlation in

the case of the paramagnetic state of an isotropic Heisenberg system [19]. The effective

spin-pair Hamiltonian for the unit cell i is now given by

Heff
i = −J �Si1 · �Si2 −

∑
j( �=i)

∑
μν

Jiμ,jν
�Siμ · (〈�Sjν〉 − α〈�Siμ〉). (2.3)

Here 〈�Sjν〉 denotes the spontaneous moment, and hence the second term of the above

equation vanishes in the paramagnetic state. From now on we confine ourselves to the

paramagnetic state and calculate the transverse susceptibility tensor χ̃+−(�q, ω) in the

spirit of the DCEFA. For this purpose we apply fictitious rotating magnetic fields for the

respective sublattice as follows:

sublattice 1 : h+
�q,1e

i(�q·�Ri1−ωt), (2.4)

sublattice 2 : h+
�q,2e

i(�q·�Ri2−ωt), (2.5)
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with �Riμ = �Ri + �rμ, where �Ri denotes the position vector of the unit cell i and �rμ the

position vector of the spin μ in a unit cell. By taking into account the field-induced spin

moments of the other unit cells, the effective Zeeman interaction for the i-th unit cell is

expressed in the DCEFA as follows:

Heff
i,Zeeman = −Fi1S

−
i1 − Fi2S

−
i2, (2.6)

where

Fi1 = h+
�q,1e

i(�q·�Ri1−ωt) +
∑

j( �=i)

∑
ν

Ji1,jν

2
(〈S+

jν〉 − α〈S+
i1〉),

(2.7)

Fi2 = h+
�q,2e

i(�q·�Ri2−ωt) +
∑

j( �=i)

∑
ν

Ji2,jν

2
(〈S+

jν〉 − α〈S+
i2〉).

(2.8)

Now, within the linear response approximation we get the following relations:

〈S+
i1〉 = φ+−

11 (ω)Fi1 + φ+−
12 (ω)Fi2, (2.9)

〈S+
i2〉 = φ+−

21 (ω)Fi1 + φ+−
22 (ω)Fi2. (2.10)

Here φ+−
μν (ω) (μ, ν=1 or 2) denotes the spin-pair susceptibility calculated on the basis of

the effective spin-pair Hamiltonian eq. (2.3) and is obtained generally from

φ+−
μν (ω) =

∑
m,n

(ρn − ρm)〈m|S+
μ |n〉〈n|S−

ν |m〉
ω + Em − En

, (2.11)

where Em and |m〉 denote the eigenvalue and the eigenstate of eq. (2.3), respectively,

and ρn ≡ exp(−βEn)/
∑

m exp(−βEm) with β = 1/kBT . Performing the spatial Fourier

transformation of eq. (2.9) and (2.10), and then solving the resultant equations we obtain

( 〈S+
�q,1〉

〈S+
�q,2〉

)
= (hh∗ − kk∗)−1 ×

　　
(

h∗φ+−
11 − kφ+−

12 ei�q·�r12 h∗φ+−
12 e−i�q·�r12 − kφ+−

11

−k∗φ+−
11 + hφ+−

12 ei�q·�r12 −k∗φ+−
12 e−i�q·�r12 + hφ+−

11

)(
h+

�q,1e
−iωt

h+
�q,2e

−iωt

)

　 ≡
(
χ+−

11 (�q, ω) χ+−
12 (�q, ω)

χ+−
21 (�q, ω) χ+−

22 (�q, ω)

)(
h+

�q,1e
−iωt

h+
�q,2e

−iωt

)
, (2.12)

where

h = 1 +
1

2
φ+−

11 {J11(�q) − α[J11(0) + J12(0)]} − 1

2
φ+−

12 J21(�q)e
−i�q·�r12 ,

k = −1

2
φ+−

12 {J22(�q) − α[J22(0) + J21(0)]}e−i�q·�r12 − 1

2
φ+−

11 J12(�q), (2.13)
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with

�r12 = �r1 − �r2.

Here the Fourier transforms of spin moments and exchange couplings are defined by

〈S+
�q,μ〉 =

1

N

∑
i

〈S+
iμ〉e−i�q·�Riμ , Jνμ(�q) =

∑
j

Jiμ,jνe
i�q·(�Riμ−�Rjν). (2.14)

Now, we impose the following self-consistency condition to determine the correlation

parameter α:

〈{S+
1 , S

−
1 }〉 =

1

N

∑
�q

1

π

∫ ∞

−∞
dω coth(

βω

2
) Imχ+−

11 (�q, ω + is). (2.15)

Here 〈{S+
1 , S

−
1 }〉 = 〈S+

1 S
−
1 + S−

1 S
+
1 〉 represents the on-site spin correlation calculated by

using the effective spin-pair Hamiltonian eq. (2.3), and in the paramagnetic state we

have 〈{S+
1 , S

−
1 }〉 = 4

3
S(S + 1). The implication of the above self-consistency condition is

that the on-site spin correlation calculated from the dynamical susceptibility (the right-

hand side of eq. (2.15)) should be equal to that calculated from the effective spin-pair

Hamiltonian. It is noted that the self-consistency equation constructed by using χ+−
22 (�q, ω)

gives the same results.

Once the correlation parameter α is determined self-consistently, the form of the

dynamical susceptibility tensor χ̃+−(�q, ω) of the paramagnetic state is fixed and then we

calculate physical quantities from χ̃+−(�q, ω). First, the energy of magnetic excitation ω(�q)

is obtained from the pole of the dynamical susceptibility χ+−
μν (�q, ω). Secondly, the uniform

static susceptibility per unit cell χ(T ) is obtained as follows:

χ(T ) =
(gμB)2

2
[χ+−

11 (0, 0) + χ+−
12 (0, 0) + χ+−

21 (0, 0) + χ+−
22 (0, 0)]. (2.16)

Also, the intensity of neutron scattering S(q, ω(q)) is calculated from,

S(q, ω(q)) ∝ 1

1 − e−βω(q)
Im[χ+−

11 (q, ω(q)) + χ+−
12 (q, ω(q)) + χ+−

21 (q, ω(q)) + χ+−
22 (q, ω(q))].

(2.17)

2.1.2 Application to Purely-One-Dimensional Systems

To see the effectiveness of Pair-DCEFA we apply it to S=1/2 exchange-alternating

chains and compare the results with those obtained by the EDM [7, 9]. The relevant

Hamiltonian is expressed as

H = −∑
i

(J1
�Si,1 · �Si,2 + J2

�Si−1,2 · �Si,1). (2.18)

8



Here we assume J1 < 0. The system is an AF alternating chain if J2 < 0, and an AF-F

alternating chain if J2 > 0. Since we are considering the paramagnetic state, the effective

spin-pair Hamiltonian for the unit cell i is given simply by

Heff
i = −J1

�Si,1 · �Si,2, (2.19)

and the expressions of h and k defined by eq. (2.36) are given explicitly by

h = 1 +
J2

2
[αφ+−

11 − φ+−
12 eiq(c+c′)], k =

J2

2
(−φ+−

11 e−iqc′ + αφ+−
12 eiqc), (2.20)

with

φ+−
11 = βρ2δω,0 + J1(ρ1 − ρ2)

1

ω2 − J 2
1

,

φ+−
12 = βρ2δω,0 − J1(ρ1 − ρ2)

1

ω2 − J 2
1

,

c =| Ri,2 −Ri,1 |, c′ =| Ri+1,1 −Ri,2 |, (2.21)

where

ρ1 =
1

1 + 3eβJ1
, ρ2 =

eβJ1

1 + 3eβJ1
. (2.22)

It is noted here that φ+−
11 = φ+−

22 and φ+−
12 = φ+−

21 . Now, the energy of magnetic excitation

ω(q) and the uniform static susceptibility χ(T ) are given as follows:

ω(q) = |J1|
√

1 +
J2

J1

(ρ2 − ρ1)[α+ cos q(c+ c′)], (2.23)

χ(T ) =
(gμB)2

kBT [3 + exp(
| J1 |
kBT

)] + J2(α− 1)
. (2.24)

We have performed numerical calculations by varying the values of a ≡ J2/J1. Since

we are considering the case of J1 < 0, a > 0 corresponds to an AF alternating chain and

a < 0 to an AF-F alternating chain. In Fig. 2.1 we show the temperature dependence of

the correlation parameter α for several values of a determined from the self-consistency

condition eq. (2.15). The value of α exhibits a characteristic temperature dependence.

First, α is negative for AF alternating chains (J2 < 0) and positive for AF-F alternating

chains (J2 > 0). Secondly, the magnitude of α approaches zero when T → ∞. With

decreasing temperature from high temperatures, it increases monotonously, takes a max-

imum around the temperature corresponding to about 0.3|J1|, and then approaches to

some finite value toward T=0 K. Thirdly, the smaller the value of | a | or | J2 | takes, the

9
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–0.4

–0.2

0

0.2

0.4

α

0

0.6

–0.6

1

a=–1

Figure 2.1: The temperature dependence of the correlation parameter α for a=–1, –
0.6, 0, 0.6, 1.

smaller the magnitude of α becomes. These characteristic behaviors can be understood

essentially by considering that α is related to the spin correlation between the neighboring

spin pairs. But the physical origin of the maximum of |α| as a function of temperature

is not clear. In Fig. 2.2 the dispersion curves of ω(q) at T=0 K calculated for a=–1, –

0.6, 0, 0.6 by Pair-DCEFA are shown by the thick solid lines. It should be noted that

ω(q) has a minimum value at q=0, π in AF alternating chains and at q=±π/2 in AF-F

alternating chains. This magnetic excitation may be regarded as a kind of Frenkel ex-

citon in the sense that the excitation from the ground state to the triplet excited state

within a spin pair propagates in the crystal through the inter-pair exchange interaction

J2. In the isolated spin-pair (a=0), ω(q) of Pair-DCEFA naturally gives a exact result.

Further, ω(q) in an AF alternating chain with a=0.6 agrees fairly well with that of the

EDM for 10 spins [7] shown by the dotted curve. The agreement is better in the high

energy region (q∼π/2) than in the low energy region (q∼0 or π). When Pair-DCEFA is

applied formally to an AF uniform chain (a=1), the obtained ω(q) shown by the thin solid

curve deviates considerably from the exact result [26] shown by the dot–dashed curve. In
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Figure 2.2: The magnetic excitation ω(q) at T=0 K for a=–1, –0.6, 0, 0.6, 1. The
solid curves represent the results calculated by Pair-DCEFA. The dotted curve of a=0.6
denotes ω(q) obtained by the EDM for 10 spins [7]. The dot–dashed curve of a=1 is the
des Cloizeaux and Pearson curve [26]. The unit of q is 2π/(c+ c′).

particular Pair-DCEFA gives a finite gap at q=0, π which contradicts even qualitatively

with the gapless behavior of the exact result. This large discrepancy implies that the

local singlet nature is too stressed in Pair-DCEFA. It is noted, however, that ω(q) of

Pair-DCEFA agrees fairly well with that of the exact results in the high energy region

(q∼π/2) even in case of AF uniform chains.

Also, such magnetic excitation can be observed practically by inelastic neutron scat-

tering measurements. Its scattering intensity S(q, ω(q)) is now obtained as,

S(q, ω(q)) ∝ 1

1 − e−βω(q)

|J1|(ρ1 − ρ2)

ω(q)
[1 − cos(qc)]. (2.25)

The concrete calculational results will be touched upon later.

In Fig. 2.3 the full curve represents the gap energy Δ (i.e. the minimum value

of ω(q)) calculated for −∞ < a ≤ 1 by Pair-DCEFA, and the open circles denote the

gap energy between the singlet ground state and the triplet excited states which was
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Figure 2.3: The gap energy Δ as a function of a = J2/J1. The full curves are the results
of Pair-DCEFA and the open circles those of EDM [8]. The dotted curve represents the
results of Pair-MFA.

extrapolated from the results of EDM calculations for finite spins. In this figure the plot

is made as a function of 1/a for −∞ < a ≤ −1. According to the EDM results the gap

exists always except for the case of a=1, and the gap at a = −∞ (1/a=0) can be regarded

as the Haldane gap [8]. By comparing the gap energy of Pair-DCEFA with that of EDM

we can point out the two important points. First, for 0 < a ≤ 1 the gap energy of Pair-

DCEFA is overestimated, and it is finite for a=1 which contradicts qualitatively with the

EDM result as mentioned previously. Secondly, for a < 0 the gap energy of Pair-DCEFA

is underestimated, and it vanishes at a 
 −10 (1/a 
 −0.1). For a ≤ −10 we cannot

obtain a self-consistent solution of α at T=0 K. These results imply that the effective-

field theory like Pair-DCEFA is not appropriate for treating the Haldane gap behavior

(a = −∞) or the quantum liquid behavior of a uniform AF chain (a=1) which are truly of

quantum nature. But, judging from this figure, we can emphasize that Pair-DCEFA will

be practically useful for a fairly wide range of a, particularly for a < 0. In case of a < −1,

namely when the magnitude of the F coupling is larger than that of the AF coupling,
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we may expect to obtain better results by solving the F pairs exactly and treating the

AF coupling in terms of DCEFA. We have actually performed such calculations, but the

results have never been improved in the sense no gap is obtained for the whole range of

a < −1, reflecting the degenerate ground state of the pair.

In Fig. 2.4 the temperature dependence of the uniform static susceptibility χ(T ) of

0 0.5 1
kBT/|J1|

0

0.1

0.2

|J
1|χ

(T
)/

(g
μ B

)2

0
0.6

1

–0.6
a=–1

Figure 2.4: The uniform static susceptibility χ(T ) for a=–1, –0.6, 0, 0.6, 1. The full curves
are the results of by Pair-DCEFA. The dotted curves for a=–1, –0.6 and 0.6 are those of
EDM for 14 spins [9] and 10 spins [7], respectively. The dot–dashed curve of a=1 is that
obtained from the Bethe ansatz [27]. The thin dotted curve of a = −1 is that obtained
by Pair-MFA.

Pair-DCEFA is shown by the full curve. In the vicinity of T=0 K χ(T ) behaves as χ(T ) ∝
(gμB)2

kBT
exp(− |J1|

kBT
) and hence χ(T ) vanishes at T=0 K. With increasing temperature

it increases rapidly, shows a broad maximum around a temperature corresponding to

Tmax=0.6∼0.7|J1|, and finally approaches to zero towards T = ∞. Compared with the

results of EDM calculations for a=–1, –0.6 and 0.6 [7, 9] (thick dotted curves in Fig. 2.4)

the susceptibilities of Pair-DCEFA agree well with the EDM results at temperatures higher

than Tmax. On going toward 0 K from Tmax, however, χ(T ) of Pair-DCEFA decreases more
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rapidly than that of EDM. We consider that this large deviation of Pair-DCEFA χ(T )

from EDM χ(T ) at low temperatures originates from that the singlet-ground-state nature

of the individual spin-pair is too stressed in Pair-DCEFA. In an AF uniform chain (a=1)

the behavior of χ(T ) of Pair-DCEFA at low temperatures differs even qualitatively from

the highly accurate result [27] shown by the dot–dashed curve in Fig. 2.4.

2.1.3 Effect of Interchain Coupling

One of the advantages of Pair-DCEFA is that it can calculate easily the q-dependent

susceptibility and its temperature dependence. As an example we show in Fig. 2.5 the

q-dependence of the susceptibility χ+(q, T ) ≡ χ+−
11 (q)+ | χ+−

12 (q) | of exchange-alternating

chains for several temperatures in case of a=–0.6 and 0.6. As a function of q, χ+(q, T )

0 0.1 0.2 0.3 0.4 0.5
q

0

0.5

1

1.5

2

|J
1|χ

+
(q

,T
)

kBT/|J1| =0.01

0.5

1.0

2.0

Figure 2.5: The q-dependence of the staggered susceptibility χ+(q, T ) calculated for sev-
eral temperatures in case of a=–0.6 and 0.6 are shown by the full curves and the dotted
curves, respectively. The unit of q is 2π/(c+ c′).

of a=–0.6 and 0.6 takes the maximum at q=π/2 and q=0, respectively, and the maxi-

mum value increases with decreasing temperature. Here, it is noted that χ±(qz) are in

proportion to the two eigenvalues of the transverse susceptibility tensor χ+−
ij (qz), and
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χ+(qz) [χ−(qz)] represents susceptibility when magnetic fields at sublattices 1 and 2 are

antiparallel [parallel]. In particular, χ−(0, T ) corresponds to the uniform static suscepti-

bility. If the interchain interaction is switched on to the assembly of exchange-alternating

chains, three-dimensional magnetic order may be realized at low temperatures. For sim-

plicity we treat the interchain coupling by the MFA, and then within the linear response

approximation we can easily get the following relations:

1

Nz

∑
k

〈S+
ijk1〉e−iqzzk1 = χ+−

11 G
0
1(1) + χ+−

12 G
1
2(1), (2.26)

1

Nz

∑
k

〈S+
ijk2〉e−iqzzk2 = χ+−

21 G
−1
1 (2) + χ+−

22 G
0
2(2), (2.27)

where

Gv
u(w) = h+

�q,ue
i(qxxi+qyyj+qzc×v−ωt) +

1

Nz

∑
i′j′k′

J ′
ij,i′j′〈S+

i′j′k′u〉e−iqzzk′w . (2.28)

Here the chains are formed along z-axis and J ′
ij,i′j′ denotes the interchain exchange integral

in x, y plane. By performing spatial Fourier transformation in x, y direction, q-dependent

susceptibility tensor is finally obtained as follows:

1

HH∗ −KK∗

(
H∗χ+−

11 −Kχ+−
12 eiqzc H∗χ+−

12 e−iqzc −Kχ+−
11

−K∗χ+−
11 +Hχ+−

12 eiqzc −K∗χ+−
12 e−iqzc +Hχ+−

11

)
, (2.29)

where

H = 1 − χ+−
11 (qz, ω)(J ′

qx,qy
− αJ ′

0)/2,

K = χ+−
12 (qz, ω)(J ′

qx,qy
eiqzc − αJ ′

0)/2,

J ′
qx,qy

=
∑
i′j′
J ′

ij,i′j′e
i[qx(xi−xi′ )+qy(yj−yj′ )]. (2.30)

The expression obtained on condition that the q-dependent susceptibility tensor diverges

is written as:

HH∗ −KK∗ = [(2/J ′
qx,qy

) − χ+(qz, T )][(2/J ′
qx,qy

) − χ−(qz, T )] = 0. (2.31)

If we assume four n.n. chains, the transition temperature is determined from 1/ | 2J ′ |=
χ+(π/2, T ) for a < 0 and 1/ | 2J ′ |= χ+(0, T ) for a > 0, respectively. Here J ′ denotes the

n.n. interchain exchange integral.

Quite recently the measurements of uniform static susceptibility have been done

in detail for Cu(TIM)CuCl4, (4-BzpipdH)CuCl3 and MeNN, which are S=1/2 AF-F al-

ternating chains, and a phase transition has been observed at about 1 K, 2 K [1] and
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Figure 2.6: The uniform static susceptibilities χ(T ) of Cu(TIM)CuCl4, (4-BzpipdH)CuCl3
and MeNN. The solid curves show the results obtained by Pair-DCEFA and the experi-
mental data [1, 2] are shown by the open circles.

1.3 K [2], respectively. The uniform susceptibility observed in these three compounds [1, 2]

are shown by the open circles in Fig. 2.6. We have evaluated the values of J1 and J2

in these systems by fitting the Pair-DCEFA susceptibility to the observed data. In the

fitting procedure we have tried to reproduce the data particularly well at higher temper-

atures. The determined values of J1 and J2 are given in Table 2.1, and the full curves

in Fig. 2.6 show the theoretical uniform susceptibilities of the AF-F alternating chains

calculated by Pair-DCEFA with use of those intrachain exchange integrals. Then, we

have estimated the magnitude of the interchain exchange integral |J ′| so as to reproduce

the observed transition temperature TN on the basis of the above combined method of

Pair-DCEFA and MFA. Explicitly speaking, |J ′| has been determined from the condition

1/ | 2J ′ |= χ+(π/2, TN). As examples of the temperature dependence of the staggered

susceptibility Fig. 2.7 shows χ+(π/2, T ) and TN of Cu(TIM)CuCl4 and MeNN. The values

of |J ′| determined in this way are also shown in Table 2.1.
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Figure 2.7: The temperature dependence of the staggered susceptibility χ+(π/2, T ) of
Cu(TIM)CuCl4 and MeNN.

2.1.4 Discussion and Conclusion

First we compare the results of Pair-DCEFA with those of Pair-MFA in which the

exchange interaction between the spin pairs is treated by MFA instead of DCEFA. As

easily understood, the results of Pair-MFA can be obtained by putting α=0 in those of

Pair-DCEFA. In Fig. 2.3 the dot–dashed curve denotes the gap energy obtained by Pair-

MFA for an S=1/2 exchange-alternating chain. For a > 0 the gap of Pair-MFA apparently

agrees better with EDM result in comparison with that of Pair-DCEFA. In particular, it

vanishes at a=1 as required from the exact theory. However, this does not necessarily

mean that Pair-MFA gives reasonable results also for other physical quantities or it is

superior to Pair-DCEFA. For example, with decreasing a from zero for a < 0 the gap of

Pair-MFA deviates significantly from the EDM, and it vanishes only at a=–1 (note that

the gap of Pair-DCEFA vanishes at a 
 −10). Further, the low temperature behavior of

χ(T ) obtained by Pair-MFA is essentially the same as that obtained by Pair-DCEFA. As

an example, χ(T ) of Pair-MFA for a=–1 is shown by the thin dotted curve in Fig. 2.4.
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Table 2.1: The intrachain exchange integrals (J1 and J2) and the interchain exchange
integral (J ′) evaluated for three pseudo-one-dimensional AF-F alternating systems,
Cu(TIM)CuCl4, (4-BzpipdH)CuCl3 and MeNN. The unit of the exchange integral is K
and a = J2/J1.

compound J1/kB J2/kB a |J ′/kB| |J ′/J1|
Cu(TIM)CuCl4 −2.92 4.09 −1.40 0.38 0.130
(4-BzpipdH)CuCl3 −8.74 38.46 −4.40 0.22 0.025
MeNN −5.00 10.00 −2.00 0.34 0.068

In general, at temperatures higher than Tmax χ(T ) of Pair-DCEFA is closer to the EDM

result than that of Pair-MFA.

Secondly, we discuss the temperature dependence of the staggered susceptibility

χ+(π/2, T ) of S=1/2 exchange-alternating chains. The characteristic behavior that χ+(π/2, T )

of Pair-DCEFA takes the finite maximum value at T=0 K and decreases monotonously

as a function of T is expected to be unchanged even if we obtain the exact solution of

χ+(π/2, T ). In fact, this has been confirmed from our preliminary results of EDM calcula-

tions of χ+(π/2, T ) for finite chains up to twelve spins. Our preliminary results also show

that χ+(π/2, T ) of Pair-DCEFA is larger (smaller) than that of EDM for a < 0 (a > 0),

which is reasonably understood from the fact that Pair-DCEFA underestimates (over-

estimates) the gap energy. Therefore, the values of |J ′| determined for Cu(TIM)CuCl4,

(4-BzpipdH)CuCl3 and MeNN are expected to be underestimated.

In conclusion, we have developed a new method called Pair-DCEFA by extending

DCEFA originally proposed by Suzuki to the pair-approximation. By applying Pair-

DCEFA to S=1/2 exchange-alternating chains it has been shown that Pair-DCEFA is

practically useful for a fairly wide range of a, particularly for a < 0, with a = J2/J1 and

J1 < 0. It has been also shown that Pair-DCEFA cannot treat the Haldane gap behavior

or the quantum liquid behavior of a uniform AF chain. Pair-DCEFA has an advantage

of being able to calculate the q-dependent susceptibility and its temperature dependence

without difficulty. Because of this advantage the effect of interchain coupling in pseudo-

one-dimensional S=1/2 exchange-alternating systems can be easily investigated by using

the combined method of Pair-DCEFA and MFA. The method has been applied to esti-

mate the intrachain and the interchain exchange integrals of real pseudo-one-dimensional

AF-F exchange-alternating systems, Cu(TIM)CuCl4, (4-BzpipdH)CuCl3 and MeNN. We
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are also calculating the staggered susceptibility of S=1/2 exchange-alternating chains by

performing detailed EDM calculations for finite spins. The results will be reported in the

following section.

2.2 Pair-DCEFA under Magnetic Fields

Quite recently, by specific heat measurements Manaka et al. [10] have observed

magnetic phase transitions under magnetic fields in a pseudo-1D S=1/2 AF–F alternating

chain (CH3)2CHNH3CuCl3 [3] which does not order in zero field. In this section, we

extend the combined method of Pair-DCEFA and MFA to the case under magnetic fields,

and investigate the magnetic phase transition observed in (CH3)2CHNH3CuCl3. We also

analyze by Pair-DCEFA the temperature dependence of nuclear spin-lattice relaxation

time T1 of this system, which has been measured by T. Kubo et al. [11].

2.2.1 Formalism

We first consider a single S=1/2 AF–F alternating chain under magnetic fields along

the z-axis. The relevant Hamiltonian is expressed as,

H = −∑
i

[
J1
�Si,1 · �Si,2 + J2

�Si−1,2 · �Si,1 − gμBH(Sz
i,1 + Sz

i,2)
]
. (2.32)

Here we have assumed the nearest neighbor (n.n.) exchange couplings J1 (< 0) and J2

(> 0). H represents the strength of the magnetic field and �Si,μ denotes the spin μ in the

unit cell i with μ being 1 or 2. Within the framework of Pair-DCEFA the first and the

third terms in eq. (2.32), i.e. the antiferromagnetic coupling spin-pair, is treated exactly,

and for the second term J2
�Si−1,2 · �Si,1 in eq. (2.32), i.e. the interaction between the pairs,

the following decoupling is adopted:

J2

[
�Si−1,2 · (〈�Si,1〉 − α〈�Si−1,2〉) + �Si,1 · (〈�Si−1,2〉 − α〈�Si,1〉)

]
, (2.33)

where 〈�S〉 denotes the field-induced spin moment and α represents a correlation parameter

which should be determined self-consistently.

The effective spin-pair Hamiltonian for the unit cell i is now given by

Heff
i = −J1

�Si,1 · �Si,2 +H ′(Sz
i,1 + Sz

i,2), (2.34)

with

H ′ = gμBH − J2〈Sz〉(1 − α),
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where 〈Sz〉 (≡ 〈Sz
i,1〉 = 〈Sz

i,2〉) denotes the site-independent spin moment induced by

the uniform external filed. By using the eigenvalues and eigenstates of the above effective

Hamiltonian and in the spirit of the DCEFA we can calculate the transverse susceptibility

tensor χ̃+−(q, ω) of the whole system. The final expression of χ̃+−(q, ω) is written as

follows: (
χ+−

11 (q, ω) χ+−
12 (q, ω)

χ+−
21 (q, ω) χ+−

22 (q, ω)

)
= (hh∗ − kk∗)−1 ×

(
h∗φ+−

11 − kφ+−
12 e−iqc h∗φ+−

12 eiqc − kφ+−
11

−k∗φ+−
11 + hφ+−

12 e−iqc −k∗φ+−
12 eiqc + hφ+−

11

)
, (2.35)

with

h = 1 +
1

2
J2

(
αφ+−

11 − φ+−
12 eiq(c+c′)

)
,

k = −1

2
J2

(
φ+−

11 e−iqc′ − αφ+−
12 eiqc

)
,

φ+−
11 =

1

2

(
ρs − ρt,1

ω − J1 +H ′ +
ρt,−1 − ρs

ω + J1 +H ′ +
ρt,−1 − ρt,1

ω +H ′

)
,

φ+−
12 =

1

2

(
ρt,1 − ρs

ω − J1 +H ′ +
ρs − ρt,−1

ω + J1 +H ′ +
ρt,−1 − ρt,1

ω +H ′

)
,

where c and c′ represent the bond length for AF and F interactions, respectively, and

ρs = e−βJ1/Z and ρt,m = e−βH′m/Z (m=−1, 0, 1) with Z = e−βJ1 + eβH′
+ 1 + e−βH′

and

β = 1/kBT .

In order to determine 〈Sz〉 and α simultaneously, we impose the following self-

consistency conditions:

〈Sz〉 = Tr[Sz
i1 exp(−βHeff

i )]/Tr[exp(−βHeff
i )], (2.36)

〈{S+
1 , S

−
1 }〉 =

2

N

∑
q

1

π

∫ ∞

−∞
dω coth(

βω

2
) Imχ+−

11 (q, ω + is), (2.37)

where N denotes the total number of spins and 〈{S+
1 , S

−
1 }〉 ≡ 〈S+

1 S
−
1 +S−

1 S
+
1 〉 = 2{S(S+

1)−〈(Sz)2〉} represents the on-site spin correlation calculated by using the effective spin-

pair Hamiltonian eq. (2.34). Equation (2.36) represents the usual self-consistency condi-

tion for 〈Sz〉. Equation (2.37) is required from the fluctuation-dissipation theorem, and

its implication is that the on-site spin correlation calculated from the dynamical suscep-

tibility (the right-hand side of eq. (2.37)) should be equal to that calculated from the

effective spin-pair Hamiltonian.

Equation (2.36) is expressed more explicitly as

〈Sz〉 =
1

2
(ρt,1 − ρt,−1). (2.38)
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The actual calculational procedure of the right-hand side of eq. (2.37) is as follows. We

first solve hh∗ − kk∗=0 to obtain poles ωi(q) (i=1∼3) of χ+−
11 (q, ω). Then, by using these

ωi(q), χ
+−
11 (q, ω) is transformed as

χ+−
11 (q, ω) =

3∑
i=1

γi(q)

ω − ωi(q)
, (2.39)

with

γl(q) = G(q, ωl(q))
3∏

i=1

(ωl(q) + xi)/
3∏

m,n=1
(m �=n)

(ωm(q) − ωn(q)), (2.40)

where

G(q, ω) = h∗φ+−
11 − kφ+−

12 e−iqc,

x1 = −J1 +H ′, x2 = J1 +H ′, x3 = H ′.

Inserting eq. (2.39) into the righthand side of eq. (2.37) we can rewrite eq. (2.37) in the

following form:

〈(Sz)2〉 − 3

4
=

1

N

∑
q

[
3∑

i=1

γi(q) coth(βωi(q)/2)

]
. (2.41)

From eq. (2.38) and eq. (2.41), 〈Sz〉 and α are determined self-consistently.

In Figs. 2.8(A) and (B) we show examples of temperature and magnetic-field depen-

dencies of α. As seen from Fig. 2.8(A), with decreasing temperature from high tempera-

tures, α increases monotonously, takes a maximum around the temperature corresponding

to about 0.3|J1|, and then approaches to a finite value toward T=0 K. Further, α becomes

large when H increases. Figure 2.8(B) shows that the smaller the value of J2/|J1| takes,

the smaller α becomes. Most of these characteristic behaviors of α can be understood by

considering that spin correlation between the spin pairs become strong for large J2 and

also they develop with decreasing temperature or increasing magnetic fields. However, the

physical origin of the maximum of α as a function of temperature is not clear at present.

As to the temperature and magnetic-field dependencies of 〈Sz〉 we simply note that it

takes rather small values in the whole temperature range for magnetic fields smaller than

the gap energy. Once 〈Sz〉 and α are determined, the dynamical susceptibility tensor

χ̃+−(q, ω) is fixed and we can calculate various physical quantities from χ̃+−(q, ω).

21



0 0.5 1
 kBT/|J1|

0.4

0.5

0.6

α

 gμBH/|J1| =0.06
 0.12

 0.18

J2/|J1| =2

(A)

0 0.5 1
 kBT/|J1|

0

0.2

0.4

0.6

α

gμBH/|J1| =0.03

J2/|J1| =2

1

0.5

(B)

Figure 2.8: (A) The temperature dependence of the correlation parameter α for
gμBH/|J1|=0.06, 0.12, 0.18 and J2/|J1|=2. (B) The temperature dependence of the cor-
relation parameter α for J2/|J1|=0.5, 1, 2 and gμBH/|J1|=0.03.

2.2.2 Effect of Interchain Coupling

Recently, magnetic phase transitions under magnetic fields have been observed in

an organic pseudo-1D S=1/2 AF–F exchange alternating chain (CH3)2CHNH3CuCl3 [10]

which does not order at zero field. Motivated by this experimental results, we have

investigated the effect of interchain coupling on the magnetic phase transition under

magnetic fields. For this purpose we have adopted the combined method of Pair-DCEFA

and the mean-field approximation (MFA), that is, we use Pair-DCEFA for intrachain

coupling and MFA for interchain coupling. According to this method the generalized

susceptibility for the whole three dimensional system can be obtained in terms of the

interchain coupling and the susceptibility of a single chain obtained by Pair-DCEFA.

Occurrence of phase transitions is generally determined from the condition of divergence

of the generalized susceptibility and in the present case the condition is expressed as,

[(1/|2J ′|) − χ+(q,H, T )][(1/|2J ′|) − χ−(q,H, T )] = 0, (2.42)

where J ′ denotes the n.n. interchain exchange integral (the number of n.n. spins is

assumed to be four), and χ±(q,H, T ) denote χ+−
11 (q, 0) ± |χ+−

12 (q, 0)| which are the two

eigenvalues of the static susceptibility tensor χ̃+−(q, 0) of a single chain. It is noted

here that χ−(0, 0, T ) corresponds to the uniform static susceptibility of a single chain.

In Fig. 2.9, we show as an example q- and temperature dependence of χ+(q,H, T ) for
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Figure 2.9: The temperature dependence of χ+(q,H, T ) calculated for several values of q
by fixing J2/|J1| and gμBH/|J1| to 2 and 0.03, respectively. The unit of q is 1/(c+ c′).

J2/|J1| = 2 and gμBH/|J1|=0.03. To be important, for AF–F chains χ+(q,H, T ) is larger

than χ−(q,H, T ) for any value of q. Furthermore, at each temperature for a given field

χ+(q,H, T ) takes the maximum value at q = π as a function of q, and this behavior can

be explained by considering that the gap has the minimum value at q=π. It should be

also noted that for a given temperature the value of χ+(q,H, T ) increases with increasing

H.

The actual transition temperature (Néel temperature TN) is defined as the highest

temperature which satisfies the condition (2.42). Hence, by taking into consideration the

characteristic behaviors of χ±(q,H, T ) mentioned above the equation to determine TN is

expressed simply as

1/|2J ′| − χ+(π,H, T ) = 0. (2.43)

It is easily recognized that TN is practically determined from the crossing between the

curve of χ+(π,H, T ) as a function of T and the straight line corresponding to 1/|2J ′|.
Since χ+(π,H, T ) is a decreasing function of T , if 1/|2J ′| > χ+(π,H, 0) is satisfied,

no crossing point is obtained, i.e. phase transition does not occur. In particular, if

1/|2J ′| > χ+(π, 0, 0), it means that the system does not order at zero field. Even in

23



that case, the phase transition is expected to occur for finite fields because χ+(π,H, 0)

increases with increasing H and hence 1/|2J ′| < χ+(π,H, 0) may be fulfilled for H larger

than some critical value.

In applying the above method to (CH3)2CHNH3CuCl3 we first analyzed by Pair-

DCEFA the observed uniform static susceptibility [3] at temperatures higher than TN and

estimated the intrachain exchange integrals as J1=−47.0 K and J2=94.0 K. The observed
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Figure 2.10: (A) The temperature dependence of inverse of the uniform susceptibility
of (CH3)2CHNH3CuCl3. The circles denote the experimental data [?] and the full curve
represents the theoretical results for a single AF–F chain obtained by Pair-DCEFA with
use of J1=−47.0 K and J2=94.0 K. (B) The temperature dependence of χ+(π, T,H)
of (CH3)2CHNH3CuCl3 calculated for several values of H. The horizontal dotted line
represents 1/|2J ′| = 2. (C) The magnetic-field dependence of TN. The open triangles
denote the experimental data [10] and the closed circles the theoretical results.

and the calculated uniform static susceptibilities as functions of temperature are shown

in Fig. 2.10(A). Next, by making use of χ+(π, T,H) calculated with use of g=2.26 [10]

and the determined J1 and J2 we have estimated the magnitude of J ′ so as to reproduce

the observed Néel temperature at H=10.2 T (see Figs. 2.10(B) and (C)). The magnitude

of interchain exchange coupling determined in this way is |J ′|=0.125 K.
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2.2.3 Nuclear Spin-Lattice Relaxation Rate

Quite recently, T. Kubo et al. [11] have measured proton spin-lattice relaxation rate

1/T1 of (CH3)2CHNH3CuCl3 under magnetic fields. According to their results 1/T1 shows

at a low temperature region a behavior of activate energy type expressed as exp[−(Δ −
gμBH)/kBT ], but its origin is not clear. Hence, in this section we try to understand this

behavior of 1/T1 by performing analysis with use of the susceptibility under magnetic

fields obtained by Pair-DCEFA. First of all, it should be noted that there are no methods

of analysis for this phenomena, and in such a sense the challenge of using susceptibility

of Pair-DCEFA is quite significant.

Now, the nuclear spin-lattice relaxation rate 1/T1 [28] in this system is written as,

1/T1 ∝
∫

dteiω0t
∑
q

2∑
m,n=1

[
1

4
A⊥

mn(q)〈{S+
q (t), S−

−q(0)}〉 + A//
mn(q)〈{Sz

q (t), S
z
−q(0)}〉

]
, (2.44)

where ω0 denotes the resonance energy and is thought to be about one thousands of ωi(q)

in eq. (2.39), that is, the energy of the spin system. Further Al
mn(q) (m, n=1 or 2, l=⊥ or

//) are the coefficients of hyperfine structure which are defined as the Fourier component

of the product of two dipole-dipole interaction between electric spin Si and nuclear spin

[29]. Explicitly Al
mn(q) are given as follows:

A⊥
mn(q) =

∑
i,j

(1 − 3 cos2 θp,im)(1 − 3 cos2 θp,jn) + 9 sin2 θp,im sin2 θp,jn

r3
p,imr

3
p,jn

×eiq(rim−rjn), (2.45)

A//
mn(q) =

∑
i,j

9 sin θp,im cos θp,im sin θp,jn cos θp,jn

r3
p,imr

3
p,jn

eiq(rim−rjn), (2.46)

where rim (rjn) represents m (n) site in ith (jth) unit cell with m (n) being 1 or 2, and

rp,im (rp,jn) denotes the distance between proton site and rim (rjn). Further, the θp,im

(θp,jn) is defined as the angle between the direction of electric spin at rim (rjn) and that

of proton spin.

By using the fluctuation dissipation theorem (2.15) and the condition T � ω0, the

above expression is given as,

1/T1 ∝ T
∑
q

2∑
m,n=1

[
1

4
A⊥

mn(q)
Imχ+−

mn(q, ω0)

ω0

+ A//
mn(q)

Imχzz
mn(q, ω0)

ω0

]
. (2.47)

Within the Pair-DCEFA, we can certainly investigate the temperature dependence of

Imχ(q, ωi(q)). Unfortunately, however, in the Pair-DCEFA the damping effect is not

taken into account, and as the result Imχ(q, ω0) does not have finite values at all. In the
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present study, we try to calculate 1/T1 on the basis of the q-dependent static susceptibility

of Pair-DCEFA. Then we assume the following standard form [30, 31]:

Imχij
mn(q, ω0) = χij

mn(q)
ω0Γq

ω2
0 + Γ2

q

, (2.48)

where Γq is damping constant [31], and ij denote +− or zz. Further under condition

Γq > ω0, we obtain

Imχij
mn(q, ω0)

ω0

∼ χij
mn(q)

Γq

. (2.49)

In actual calculation of Al
mn(q) we have taken into account the proton and copper
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Figure 2.11: (A) The positions of protons in the vicinity of Cu ions in
(CH3)2CHNH3CuCl3. (B) The q-dependencies of A⊥

11(q), Re[A⊥
12(q)] and Im[A⊥

12(q)] in
(CH3)2CHNH3CuCl3 are shown by the solid, dotted and dot-dashed curves, respectively.
The unit of q is π/(c+ c′).

positions as shown in Fig. 2.11(A) and the following distances are used: Cu-Cu [short]

=3.417 Å, Cu-Cu [long] =3.506 Å [32], and distance between proton and Cu chain ∼ 6.0

Å. In Fig. 2.11(B), q-dependencies of A⊥
11(q), Re[A⊥

12(q)] and Im[A⊥
12(q)] are shown by the

solid, dotted and dot-dashed curves, respectively. As seen from Fig. 2.11(B) A⊥
11(q) and

|Re[A⊥
12(q)]| have large values around q=0 and 2π, but they are small around q=π. Further

the magnitude of Im[A⊥
12(q)] is rather small compared with those of A⊥

11(q) and Re[A⊥
12(q)],

and it should be noted also that A//
mn(q) (m, n=1 or 2) have quite small magnitude for

any value of q. Considering all of these characteristic features of Al
mn(q) we adopt the

following drastic approximation, namely we take into account only A⊥
11(q) and Re[A⊥

12(q)]

for q=0 and 2π and neglect all of other Al
mn(q). Furtheremore, for simplicity we assume
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Figure 2.12: The temperature dependence of 1/T1 of (CH3)2CHNH3CuCl3 at H=3.5 T.
The solid and dotted curves represent the results obtained by using Pair-DCEFA and by
assuming the activate energy type, respectively. The circles denote the experimental data
[11].

that Γq=0 is equal to Γq=2π and they are independent of temperature. As the results, 1/T1

can be represented by A(q) and χij
mn(q). Then the resultant 1/T1 is expressed simply as,

1/T1 ∝ T{A⊥
11(0)χ+−

11 (0) + Re[A⊥
12(0)]Re[χ+−

12 (0)]

+A⊥
11(2π)χ+−

11 (2π) + Re[A⊥
12(2π)]Re[χ+−

12 (2π)]}. (2.50)

From this equation we have calculated the temperature dependence of 1/T1 at H=3.5 T

by using χ+−
11 (q) and Re[χ+−

12 (q)] (q=0, 2π) obtained in the previous section. The results

are shown in Fig. 2.12 by the full curve. The agreement is better in the high temperature

region than in the low temperature region. The large discrepancy at low temperature

region may imply the necessity of taking account of the effects which are not included in

the expression of 1/T1 (2.50). For example, it may be necessary to consider temperature

and wave-vector dependences of Γq
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2.3 Staggered Susceptibility by Exact Diagonaliza-

tion Method

In the previous sections the magnetic phase transitions of pseudo-one-dimensional

S=1/2 exchange alternating chains have been investigated by a combined method in

which the intrachain and interchain couplings are treated by Pair-DCEFA and mean field

approximation (MFA), respectively. However, it is sometimes insufficient for truly quan-

titative discussion. In this section we calculate the q-dependent staggered susceptibilities

of S=1/2 exchange alternating chains by using the EDM for finite chains and estimate

interchain coupling of real pseudo-one-dimensional S=1/2 exchange alternating chains by

combining with MFA.

We express the Hamiltonian of an S=1/2 exchange alternating chain as follows:

H = −∑
i

(J1
�Si,1 · �Si,2 + J2

�Si−1,2 · �Si,1), (2.51)

where �Si,1 (�Si,2) denotes the spin 1 (spin 2) in the unit cell i. J1 and J2 are the exchange

integrals. Further we define a=J2/J1. The base of Hamiltonian is writen as

|m1,m2,m3,・・・,mi,・・・,mN〉, (2.52)

where mi represents the up spin ↑ or down spin ↓ at i site. Using the above base, new

bases indexed by K are written as follows:

ΦK =
1√
N

∞∑
n=0

eiKnTn|m1,m2,m3,・・・,mi,・・・,mN〉. (2.53)

Here Tn denotes the translation operator, K is the wave vector. This bases apparently

satisfy the Bloch theorem,

TmΦK = eiKmΦK . (2.54)

By using such bases, we obtain the Hamiltonian blocked with each index K. Further the

size of matrix being diagonalized is reduced by classifying with use of Stotal
z =

∑
i(S

z
i1+S

z
i2).

By using all the eigenvalues and eigenstates obtained by EDM we can calculate the

transverse susceptibility tensor χ+−
ij (qz), where i, j=1 or 2 specify the sublattice. We

define the generalized susceptibility as follows:

χ±(qz) = χ+−
11 (qz) ± |χ+−

12 (qz)|, (2.55)
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calculated by EDM. The solid and dotted lines represent the results for a=0.6 and –0.6,
respectively.

where χ±(qz) are in proportion to the two eigenvalues of the transverse susceptibility

tensor χ+−
ij (qz), and χ+(qz) [χ−(qz)] represents susceptibility when magnetic fields at sub-

lattices 1 and 2 are antiparallel [parallel]. From now on we call χ+(qz) the staggered

susceptibility.

As a function of temperature, χ±(qz) show characteristic behaviors. As examples we

show in Fig. 2.13 the temperature dependence of the staggered susceptibilities χ+(0) and

χ+(π) and the uniform susceptibility χ−(0) calculated by EDM for a 12 site chain with

a = ± 0.6. The uniform susceptibility χ−(0) vanishes at T=0 K reflecting the existence

of a gap between the singlet ground state and the excited states. The value of χ+(qz)
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increases with decreasing temperature for any qz, and finally becomes the maximum at

T=0 K. To be important, χ+(0) and χ+(π) takes the largest value at each temperature

for the AF and AF–F alternating chains, respectively. These behaviors can be understood

essentially by considering respective ordering vectors within a chain. Further we compare
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0

1

2

3

|J
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χ +
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z)

χ+(π) for a=–0.6 and 

χ+(0) for a=0.6 by Pair–DCEFA

χ+(π) for a=–0.6 by EDM

χ+(0) for a=0.6 by EDM

Figure 2.14: The comparison of the staggered susceptibility of EDM and that of Pair-
DCEFA, for the system of a=±0.6.

the temperature dependence of χ(q) by EDM with that by Pair-DCEFA. In Fig. 2.14,

we show the temperature dependence of χ(q) for AF–AF alternating chain a=0.6 and

AF–F alternating chain a=–0.6. Though the agreement between them is not sufficient

for a=0.6, it is fairly well for a=–0.6. This is under the influence of different magnitude

of gap between both the method.

If the interchain couplings are switched on to this system, three-dimensional mag-
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netic order may be realized at low temperatures. We treat the interchain couplings by

MFA, and then within the linear response approximation we can easily get the 2×2 sus-

ceptibility tensor χ̃(�q) for the pseudo-one-dimensional exchange alternating chain. This

tensor is certainly the same as eq. (2.29). The transition temperature of magnetic order is

usually determined from the condition that the static susceptibility diverges, that is, eq.

(2.31). As noted previously, χ+(0) and χ+(π) are the largest at each temperature for AF

and AF–F alternating chains, respectively, and hence the actual transition temperature

TN is determined from 1/|2J ′| = χ+(0) for AF alternating chain and 1/|2J ′| = χ+(π) for

AF–F alternating chain. Here we take into account only the n.n. interchain exchange

integral J ′ and the number of the n.n. chains is assumed to be four.

The method has been applied to three real pseudo-one-dimensional S=1/2 AF–F al-

ternating chains Cu(TIM)CuCl3, (4-BzpipdH)CuCl3 [1] and MeNN [2], whose magnetic
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phase transitions have been observed at about 1 K, 2 K and 1.3 K, respectively. As

shown in Fig. 2.15, we first analyzed by EDM the observed uniform static susceptibility

at temperatures higher than TN and estimated the intrachain exchange integrals J1 and

J2. Secondly, by making use of χ+(π) calculated with use of the determined J1 and J2 (see

Fig. 2.16) we have estimated the magnitude of J ′ so as to reproduce the observed Néel

temperature. The values of J1, J2 and |J ′| determined in this way are given in Table 1.

As seen from Table 1 the magnitude of J ′ determined by our present calculations is larger

than that estimated by a combined method of Pair-DCEFA and MFA. This difference

originates from that Pair-DCEFA underestimates the gap energies of AF–F alternating

chain and hence χ+(π) of Pair-DCEFA is larger than that of EDM.
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Table 2.2: The exchange integrals determined for three real pseudo-one-dimensional
S=1/2 AF–F alternating chains. The values in ( ) denote those estimated by using
the combined method of Pair-DCEFA and MFA. The unit of the exchange integrals is K.

compound J1 J2 |J ′| a(=J2/J1)
Cu(TIM)CuCl4 –2.90 4.70 0.55 1.60

(–2.92) (4.09) (0.38) (1.40)
(4-BzpipdH)CuCl3 –8.80 38.80 0.88 4.40

(–8.74) (38.46) (0.22) (4.40)
MeNN –5.00 10.00 0.65 2.00

(–5.00) (10.00) (0.34) (2.00)

2.4 Intensity of Neutron Scattering by Numerical Cal-

culation

Recently, many experimental and theoretical studies for the S=1/2 AF–AF alternat-

ing chain are performed for the purpose of investigating the excited states in detail. Among

them, the second gap and continuum states have been newly observed in the dimerized

spin Peierls system CuGeO3, and a few explanations for these excited states are reported.

For S=1/2 AF–F alternating chain K. Hida [33] has previously reported the magnon dis-

persions obtained by using EDM for finite spin chain, but there are no experimental and

theoretical reports about the intensity of neutron scattering. Since the neutron scatter-

ing experiment are planned for the AF–F alternating chain system (CH3)2CHNH3CuCl3

(J2/|J1|=2, J1: antiferromagnetic exchange, J2: ferromagnetic exchange) [3] which was

treated in the previous section, theoretical studies are desired urgently. In particular,

the second gap and the continuum states have been attracting considerable interesting.

Therefore, in order to investigate whether they are observable or not, we tried to calculate

the intensity of neutron scattering by means of the numerical calculation (NC) based on

the exact diagonalization method.

We use eq. (2.51) as the Hamiltonian H, and calculate the intensity of neutron

scattering from

S(q, ω) ∝ lim
η→+0

Im[〈GS|Sz
−q(ω − iη + EGS −H)−1Sz

q |GS〉],

where EGS and |GS〉 denote the eignvalue and the eigenvector of the ground state, respec-

tively. Further, since the system with two sublattices is now kept in mind, Sz
q is defined
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as

Sz
q = N−1/2

∑
n

eiqrn(Sz
n,1 + eiqcSz

n,2), (2.56)

where c is distance between sublattice 1 and 2.

The actual procedure of NC is as follows: The |GS〉 is first obtained by using EDM.

Once the ground state is obtained, then S(q, ω) can be calculated by using the continued

fraction expansion for the expression in the tridiagonal basis of the Hamiltonian with the

initial state Sz
q |GS〉. Here, the tridiagonal expansion of the Hamiltonian is performed with

use of the Lanczos algorithm. It is known that this method is useful for the low energy

region.

In Figs. 2.17 ∼ 2.22, we show the magnon dispersions and their intensities of neu-

tron scattering for the S=1/2 AF–F alternating chains with the alternating parameter a

= J2/||J1| = 0.5, 1.0, 2.0, respectively. The obtained dispersions give almost the same

results as Hida’s. As seen from these figures the second gap is clearly seen. Further, the

dispersions above the second gap show the characteristic behavior. In particular, the low-

est energy in the continuum region takes maximum value at q = π/2, and the magnitude

of the second gap at q=0 decrease with increasing a. The Haldane gap system, which cor-

responds to the system of a→ ∞, does not have the second gap at q=0 while the second

gap exists around q = π/2. From this fact, it is predicted that these behaviors represent

the peculiar character of S=1/2 AF–F alternating chains. The intensity at q = 0 certainly

takes zero reflecting the singlet ground state for any a. And, for each q the intensity has

the maximum value at the first excited states and decays as the energy ω becomes higher.

To be remarkable, the intensities take the maximum value at q = π/2 for the whole range

of a, and also the intensity for each q increase with increasing a.

Now, in order to understand such q dependencies of neutron scattering intensity, we

perform the consideration with use of the intensity of Pair-DCEFA. The used expression

of Pair-DCEFA is eq. (2.25) at T=0 K. In Fig. 2.23 we show the q-dependence of intensity

for the transition to the triplet excited states obtained by using NC and Pair-DCEFA. The

full curves and the points represent the intensities of Pair-DCEFA and NC, respectively.

To be noted, as regards Pair-DCEFA’s intensities we have plotted the values multiplied

by different constant values for respective cases, J2/|J1|=0.5, 1.0, 2.0. Therefore, the

absolute magnitude of Pair-DCEFA’s intensities is not in agreemen with that of EDM

intensities. It should be noted, however, that the results of Pair-DCEFA simulate well

the the q-dependence of the EDM intensities. Pair-DCEFA’s intensity is in proportion

inversely to the magnon energy which becomes maximum at q=0 and π and minimum at
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q=π/2, and hence the intensities take the maximum value at q = π/2.

Finally, it should be also noted that for the whole range of q the intensities of transi-

tion to the excited states above the second gap are weaker than those to the excited states

above first gap. However, the intensities at larger q are relatively strong in comparison

with those at other q, and therefore the spectra at large q may be observable.
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Figure 2.17: The magnon dispersion for the system of J2/|J1|=0.5 obtained by using EDM
for 16 sites chain.
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Figure 2.18: The intensity of neutron scattering for the system of J2/|J1|=0.5 obtained by
using Lanczos algorithm. The upper and lower figures show the intensity in the region of
0 < q ≤ 0.5 and 0.5 < q ≤ 1, respectively. The intensities for respective q are designated
by points as shown in figures.
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Figure 2.19: The magnon dispersion for the system of J2/|J1|=1.0 obtained by using EDM
for 16 sites chain.
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Figure 2.20: The intensity of neutron scattering for the system of J2/|J1|=1.0 obtained by
using Lanczos algorithm. The upper and lower figures show the intensity in the region of
0 < q ≤ 0.5 and 0.5 < q ≤ 1, respectively. The intensities for respective q are designated
by points as shown in figures.
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Figure 2.21: The magnon dispersion for the system of J2/|J1|=2.0 obtained by using EDM
for 16 sites chain.
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Figure 2.22: The intensity of neutron scattering for the system of J2/|J1|=2.0 obtained by
using Lanczos algorithm. The upper and lower figures show the intensity in the region of
0 < q ≤ 0.5 and 0.5 < q ≤ 1, respectively. The intensities for respective q are designated
by points as shown in figures.
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Figure 2.23: The q-dependencies of intensity for transition to the triplet excited states.
The circles, triangles and squares denote the intensity obtained by using NC for systems
with J2/|J1|=0.5, 1.0, 2.0, respectively. The full curves represent the Pair-DCEFA’s
intensity.
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Chapter 3

Magnetic Resonance in Spin Peierls
System CuGeO3

The spin-Peierls system CuGeO3 has recently attracted much attention. This com-

poud is found to form pseudo-one-dimensional S=1/2 antiferromagnetic chain along the

c-aaxis, and turn into the spin-Peierls state below Tsp=14 K. Many studies on this com-

pound have been performed so far. Among them, as the remarkable point it is reported

that the magnitude of interchain coupling is much larger than that of other spin Peierls

systems. In this thesis we have performed a couple of theoretical studies with paying par-

ticular attention to the left problems such as the role of interchain coupling in CuGeO3.

In the first subsection, the fundamental data inclusive of the crystal structure are

shown. In the next subsection, we investigate the role of interchain coupling in the ex-

change splitting of EPR spectra observed under high magnetic fields in the uniform phase

of CuGeO3. In particular, the intensity, the peak positions and the nature of the re-

spective resonance mode in the EPR spectra are discussed within the mean field random

phase approximation. In the third subsection, we focus on the transitions from the sin-

glet ground state to the triplet excited state in the spin Peierls phase observed by ESR

measurements, and then mechanisms of the transitions are discussed in detail by using

two proposed models.

3.1 Experimental Background of CuGeO3

Since Hase, Terasaki and Uchinokura [4] reported the first example of spin-Peierls

system (Tsp=14 K) in an inorganic linear Cu2+ (S=1/2) chain compound, CuGeO3, a large

number of experimental studies of various types have been carried out. As regards the

arrangement of Cu ions in the bc-plane, a schematic representation as shown in Fig. 3.1
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Figure 3.1: The arrangement of Cu ions in the bc-plane of CuGeO3 in the SP phase. Here
c and c′ denote the distance between two Cu ions of intra-dimer and inter-dimer along
the c-axis, respectively, and b is the lattice constant along the b-axis.

is obtained for the spin Peierls phase by analyzing the neutron diffraction experimental

results [34]. In the ab-plane, on the other hand, CuO6 octahedron form the zigzag chain

along the b-axis as shown schematically in Fig. 3.2 in both the SP and the uniform phases.

From the analysis of x-ray diffraction experiments at room temperature it is suggested

that the zigzag chains of CuO6 octahedron take a slightly different structure in adjacent

ab-planes [35]. Figure 3 illustrates one of the possible arrangements of CuO6 octahedron

in adjacent ab-planes. These characteristic features of the crystal structure can gives rise

to Dzyaloshinsky-Moriya interaction and different g-values for intra-dimer Cu pairs along

the c-axis.

As for the low lying magnetic excitations, the existence of a finite gap of 2.1 meV

between the singlet ground state and the triplet excited states has been confirmed by the

neutron scattering experiment [12, 36]. Further the dispersions of triplet excited states

along the a, b and c directions have been observed as shown in left figure of Fig. 3.3
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Figure 3.2: The upper figure shows the zigzag structure of CuGeO3 in the ab-plane. The
two adjacent Cu ions along the b-axis belong to the sublattices #1 and #2, respectively.
In lower figure, the possible model for the structure of CuGeO3 in adjacent ab-planes
suggested by M. Hidaka et al. [35]. It is shown that there is a slight differences between
two adjacent CuO6 octahedron along the c-axis.

[12]. We have previously analyzed these dispersions on the basis of the Pair-DCEFA

and estimated the value of Jb/Jc to be Jb/Jc=0.08, where Jc and Jb represent the ex-

change integral of intrachain coupling along the c-axis and interchain coupling along the

b-axis, respectively. Thus, the experimental results of magnetic excitations informs us

that the magnitude of interchain coupling in the b direction is not quite small, namely

one-dimensionality is not so good compared with the other spin-Peierls systems.

Another interesting point in the magnetic excitations in the SP phase of CuGeO3 is

the existence of the second gap [14]. In a uniform AF chain continuum of excited states

exist continuously above the lowest triplet excited states. On the other hand, in the SP
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Figure 3.3: The left figure shows the dispersion curves of magnetic excitations in the SP
phase of CuGeO3 observed by inelastic neutron scattering measurements [12]. Schematic
illustration of the second gap in the SP phase is shown in the right figure.

phase of CuGeO3 there exists a gap above the lowest triplet excited states (the so-called

”second gap”) and continuum of excited states starts above the second gap. The right

figure of Fig. 3.3 illustrates schematically the second gap.

3.2 Exchange Splitting of EPR Spectra in CuGeO3

under Ultra-High Magnetic Fields – Theoretical

Analysis

Recently EPR measurements have been performed under high magnetic fields up to

100 T in uniform phase of CuGeO3, and the exchange splitting has been observed reflecting

the different principal axes of the g-values of two adjacent Cu2+ ions [13]. We have

analyzed the observed EPR spectra (peak position and intensity) by using the mean-field

random-phase-approximation (MF–RPA), and evaluated the value of interchain exchange

coupling J ′. Further, to elucidate the nature of the respective EPR peak we solve the

equation of motion for the spins with use of the MF–RPA Hamiltonian.
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3.2.1 What Is Exchange Splitting of EPR Spectra

The CuGeO3 is regarded as a pseudo-one dimensional system with non-negligible in-

terchain coupling, judging from a couple of experimental results, and has received interest

as it challenges the view that one-dimensional nature is very important for spin-Peierls

system. In such a sense, it is significant to investigate in detail the interchain interaction

of CuGeO3. In the past, from the results of inelastic neutron scattering measurements,

the interchain exchange coupling J ′ along the b-axis has been estimated to be −0.52 meV

(antiferromagnetic), which is about one tenth of the intrachain exchange coupling J along

the c-axis [12]. It is noted, however, that the estimation is rather crude since the usual

spin-wave theory has been used to analyze the observations because of no available theory

for the magnetic excitation in spin-Peierls systems with interchain coupling. Further, the

neutron scattering results have been analyzed also by Pair-DCEFA (dynamical correlated-

effective-field approximation) and the value of J ′ has been evaluated to be −0.37 meV.

However the estimation on the basis of Pair-DCEFA is also insufficient from the quan-

titative view point because it cannot treat precisely the magnetic excitation of purely

one-dimensional exchange alternating spin systems. Therefore, it is desired to make other

experimental measurements which can give important information for the interchain ex-

change coupling.

In CuGeO3 the CuO6 octahedrons form zigzag chains along the b-axis and they lean

a

b

1 2

Magnetic Field
θ

Figure 3.4: The crystal structure of CuGeO3 in the ab-plane at T=300 K. The closed and
the open circles represent copper and oxygen atoms, respectively. There are two types of
CuO6 octahedron: one leans by −56 deg from the a-axis and the other by +56 deg [37].
The open arrow denotes the direction of the applied magnetic field.
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alternatively by −56 deg and +56 deg from the a-axis in the ab-plane, as shown in Fig.

3.4 [37]. This apparently indicates that the principal axes of the g-values of two adjacent

Cu2+ ions along the b-axis, named as sublattice 1 and 2, respectively, are different. Then,

interchain exchange coupling can be investigated by using the exchange splitting of the

electron paramagnetic resonance (EPR) spectra. In fact, high-field EPR measurements

have been done recently, and Fig. 3.5 shows the magnetic field dependence, up to 100 T,

of EPR spectra [13] observed at T=300 K on condition that the wave length λ of photon is

fixed at 119 μm. The spectra obtained at about 83 T show a single peak for θ=0 deg and
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Figure 3.5: The observed EPR spectra observed at T=300 K and for λ = 119 μm: (a)
θ=0 deg, (b) θ=30 deg and (c) θ=45 deg, where θ denotes the angle between the a-axis
and the applied magnetic field. The overlapping jagged curves denote the experimental
data observed for both the up and down magnetic fields.

two non-symmetrical peaks for θ=30 and 45 deg reflecting the different principal axes of

g-values of two adjacent Cu2+ ions. Here, θ represents the direction of the magnetic fields

applied in the ab-plane measured from the a-axis as shown in Fig. 3.4. This results appar-

ently mean that the splitting of EPR spectra has been observed successfully by changing

the direction of the magnetic fields. In this section, the interchain exchange integral J ′

along the b-axis has been estimated by analyzing the observed exchange splitting of EPR

spectra.
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3.2.2 Generalized Theory

Now, x, y, z are principal axis of g tensor, and X, Y , Z are axes associated with

quantisation axis, in which the Zeeman interaction is diagonalised. The components of

a spin in the (X, Y , Z) coordinate system are connected with those in the (x, y, z)

coordinate system by the following transformation:⎛
⎜⎝ SX

SY

SZ

⎞
⎟⎠ =

⎛
⎜⎝ cosψ cosφ cosψ sinφ − sinψ

− sinφ cosφ 0
sinψ cosφ sinψ sinφ cosψ

⎞
⎟⎠
⎛
⎜⎝ Sx

Sy

Sz

⎞
⎟⎠ , (3.1)

where ψ is the angle between the z and Z axis and φ denotes the azimuthal angle of Z

measured from the x axis.

For simplicity, we treat two spins system, in which two spins exist at respective site 1

and 2, and the principal axis of each spin are not coincident. As shown in Fig. 3.6, when

H
a

b

x1

y1

x2

y2

δ

δ

θ

Figure 3.6: The magnetic field �H is applied in the ab-plane of two spins system with
different coordinate system which are shown by respective x1y1 and x2y2-axes. Here, we
have assumed that two z-axes coincide with each other. The direction of magnetic fields
are designated by azimuthal angle θ, and the angle between x1 and x2 axes is denoted by
2δ.

the magnetic fields �H are applied in the ab-plane with an azimuthal angle θ measured

from the a-axis, the Zeeman interaction at site 1 is written as,

HZeeman = gxμBHxS
x
1 + gyμBHyS

y
1 , (3.2)

with Hx = H0 cos(θ + δ), Hy = H0 sin(θ + δ). By using the relation (3.1) with ψ = π/2,

the expression is transformed as follows:

HZeeman = (−gxμBHx sinφ+ gyμBHy cosφ)SY
1 + (gxμBHx cosφ+ gyμBHy sinφ)SZ

1 .

(3.3)
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Here, we select the condition so that the coefficient of SY
1 vanishes. Its condition is as

follows:

tan(θ + δ) =
gx

gy

tanφ. (3.4)

By making use of cosφ = gx cos(θ + δ)/[g2
x cos2(θ + δ) + g2

y sin2(θ + δ)]1/2 from eq. (3.4),

the resultant Zeeman interaction is given as,

HZeeman = g1μBH0S
Z
1 , (3.5)

with

g1 = [g2
x cos2(θ + δ) + g2

y sin2(θ + δ)]1/2,

where gx, gy, gz are the principal value of g-tensor. By adopting the condition eq. (3.4),

the relation between (SX
1 , S

Y
1 , S

Z
1 ) and (Sx

1 , S
y
1 , S

z
1) is given newly as

⎛
⎜⎝ SX

1

SY
1

SZ
1

⎞
⎟⎠ =

1

g1

⎛
⎜⎝ 0 0 −g1

−gy sin(θ + δ) gx cos(θ + δ) 0
gx cos(θ + δ) gy sin(θ + δ) 0

⎞
⎟⎠
⎛
⎜⎝ Sx

1

Sy
1

Sz
1

⎞
⎟⎠ . (3.6)

Since the x, y, z are the principal axis of g-tensor for �S1, the following expression is

obtained: ⎛
⎜⎝ Mx

1

M y
1

M z
1

⎞
⎟⎠ = −μB

⎛
⎜⎝ gx 0 0

0 gy 0
0 0 gz

⎞
⎟⎠
⎛
⎜⎝ Sx

1

Sy
1

Sz
1

⎞
⎟⎠ . (3.7)

By considering eq. (3.1) and (3.6), the relation between (MX
1 , MY

1 , MZ
1 )and (SX

1 , SY
1 ,

SZ
1 ) are expressed as,

⎛
⎜⎝ MX

1

MY
1

MZ
1

⎞
⎟⎠ = −μB

⎛
⎜⎝ gX

1 0 0
0 gY

1 gY Z
1

0 gZY
1 gZ

1

⎞
⎟⎠
⎛
⎜⎝ SX

1

SY
1

SZ
1

⎞
⎟⎠ , (3.8)

where the g-tensor in the (X, Y, Z) coordinate system is introduced by

gX
1 = gz,

gY
1 = (gxgy/g

2
1)[gx cos2(θ + δ) + gy sin2(θ + δ)],

gZ
1 = (1/g2

1)[g
3
x cos2(θ + δ) + g3

y sin2(θ + δ)],

gY Z
1 = gZY

1 = −(gxgy/g
2
1)(gx − gy) cos(θ + δ) sin(θ + δ).
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And now we have put gY Z
1 = gZY

1 ∼ 0 by assuming gx ∼ gy. Further the relation between

MX
2 , MY

2 , MZ
2 and SX

2 , SY
2 , SZ

2 is obtained by replacing δ with −δ.
For the purpose of investigating the intensity, we must find the expression of response

function in this system. The interaction under the time dependent magnetic fields H(t)

is given by,

H′(t) = − �H1(t) · ( �M1 + �M2), (3.9)

with

M±
i = MX

i ± iMY
i = −1

2
μB(gX

i + gY
i )S±

i − 1

2
μB(gX

i − gY
i )S∓

i , (3.10)

MZ
i = gZ

i μBS
Z
i , (3.11)

for i=1, 2. With use of gx
i ∼ gy

i which is reasonable assumption for the present system,

we have M±
i ∼ −1

2
μB(gX

i + gY
i )S±

i .

The response function χ(ω) can be calculated immediately. When χ(ω) is defined as,

χ(ω) =
i

h̄

∫ ∞

0
dteiωt〈[M+

1 (t) +M+
2 (t),M−

1 (0) +M−
2 (0)]−〉, (3.12)

we obtain the following expression,

χ(ω) = (gX
1 + gY

1 )2χ+−
11 (ω) + (gX

2 + gY
2 )2χ+−

22 (ω)

+(gX
1 + gY

1 )(gX
2 + gY

2 ){χ+−
21 (ω) + χ+−

12 (ω)}, (3.13)

where χ+−
ij (ω) =

i

h̄

∫ ∞

0
dteiωt〈[S+

i (t), S−
i (0)]−〉 (i, j=1 or 2). Further, the imaginary part

of χ(ω) corresponds to the intensity.

3.2.3 Investigation by Hamano-Shibata Theory

First we have used the theory of exchange splitting under high magnetic fields pro-

posed by Hamano and Shibata [16]. Here the only outline of this theory is briefly de-

scribed, because the calculational method itself are not so effective for the present system.

This theory uses the exchange-coupled two spins model and is effective even at low

temperatures and also for ultra-high magnetic fields in comparison with the theory of

Anderson [38] based on the high temperature approximation. The relevant Hamiltonian

for our present analysis is expressed simply as follows:

H = −2J ′�S1 · �S2 + μBH(g1S
Z
1 + g2S

Z
2 ). (3.14)
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Here the direction of the applied magnetic field H is taken as the Z-axis, �S1 and �S2 denote

S=1/2 spins in the sublattices 1 and 2, respectively, and g1 and g2 represent the respec-

tive effective g-value along the Z-axis which can be calculated by use of the g-tensors

determined by Yamamoto et al [37]. The EPR spectra is determined by the imaginary

part of the dynamical susceptibility, Imχ(ω), and we use the expression of χ(ω) obtained

by Hamano and Shibata [16] in which the effect of damping is taken account through the

relaxation times T1 and T2. By assuming T2 = 2T1 we have determined the values of J ′

and T1 so as to reproduce as well as possible the EPR spectra for θ = 0, 30 and 45 deg

observed at T=300 K with λ = 119 μm light. The determined values of J ′ and T1 are

−0.42 meV and 1.6 × 10−12 s. Further, the results of fitting are shown by the solid curve

in Fig. 3.7.

It should be mentioned here that there is usually large inhomogeneity of H in case of

ultra-high magnetic fields higher than 60 T. Therefore, the value of T1 estimated above

may not represent the intrinsic damping effect of the spin system. To obtain a more

reliable value of T1 we have performed fitting for an another experimental data of θ=0

deg at T=300 K with λ =513 μm light. As the result we have evaluated T1 to be 1.0 ×
10−11 s which is much longer than that evaluated previously. By using these parameters

J ′ and T1, the results become as shown by the dotted curves in Fig. 3.7. For θ=30 and

45 deg, the calculated spectra evidently consist of four peaks which corresponding to the

transition of |1) ↔ |4), |1) ↔ |2), |2) ↔ |3) and |3) ↔ |4), in the order of increasing field.

Here |i) (i=1 ∼ 4) denote the four eigenstates of the spin pair Hamiltonian and explicitly

written as |1) = |1, 1〉, |2) = a|1, 0〉+ b|0, 0〉 (|a| > |b|), |3) = |1,−1〉, |4) = c|0, 0〉+ d|1, 0〉
(|c| > |d|) where |S,MZ〉 (S=1 or 0) are the eigenstates of the total spin �S1 + �S2.
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Figure 3.7: The EPR spectra calculated by using Hamano-Shibata theory at T=300 K
and for λ = 119 μm: (a) θ=0 deg, (b) θ=30 deg and (c) θ=45 deg, where θ denotes the
angle between the a-axis and the applied magnetic field. The full and the dotted curves
represent the theoretical results calculated with use of T1=1.6×10−12 s and 1.0×10−11 s,
respectively. The overlapping jagged curves denote the experimental data observed for
both the up and down magnetic fields.

3.2.4 Investigation by Molecular-Field Random-Phase Approx-
imation

In the above theoretical analysis on the basis of Hamada-Shibata theory there are

two problems. First, we have obtained four peaks in the case of θ=30 and 45 deg, which

contradicts with the experimental data showing only two peaks. Secondly, in the analysis

the intrachain exchange coupling J is completely neglected in spite of J/J ′ ∼ 10.0 [12].

Therefore we have tried to analyze the observed EPR spectra by applying molecular-

field random-phase approximation (MF–RPA) to the two-dimensional spin system (in the

bc-plane) with the intrachain exchange coupling J along the c-axis and the interchain
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exchange coupling J ′ along the b-axis. At high temperatures such as T=300 K, which

is much larger than the magnitude of J , it is expected that MF–RPA gives reasonable

results.

The Hamiltonian for the bc-plane in the uniform phase is written as,

H =
∑
i,j

[
∑

k=1,2

− 2J �Si,j,k · �Si,j+1,k − 2J ′(�Si,j,1 · �Si,j,2 + �Si,j,2 · �Si+1,j,1)

+μBH(g1S
Z
i,j,1 + g2S

Z
i,j,2)]. (3.15)

By using the mean field approximation (MFA), the effective Hamiltonian is obtained as

follows:

HMFA

i,j = A12S
Z
i,j,1 + A21S

Z
i,j,2 ≡ H1 + H2. (3.16)

Here the effective fields are introduced by

Aij = −4(J〈SZ
i 〉 + J ′〈SZ

j 〉) + giμBH. (3.17)

The field-induced spin moments 〈SZ
1 〉 and 〈SZ

2 〉 are determined from the usual self-

consistency eq.,

〈SZ
1 〉 = Tr[SZ

1 e−βH1 ]/Tr[e−βH1 ], (3.18)

〈SZ
2 〉 = Tr[SZ

2 e−βH2 ]/Tr[e−βH2 ]. (3.19)

The single-ion spin susceptibility φ(ω) is obtained by using eq. (2.11), that is, φ+−
11 (ω) =

−〈SZ
1 〉/2(ω − A12) and φ+−

22 (ω) = −〈SZ
2 〉/2(ω − A21).

From now on we think of the two-dimensional spin system in the bc-plane. When

the fictitious rotating magnetic fields h+
�q,nei(�q·�Rin−ωt) (n=1 or 2) are applied to respective

sublattice, within the random-Phase Approximation we obtain the following relation:(
h k
l m

)( 〈S+
�q1〉

〈S+
�q2〉

)
=

(
φ+−

11 (ω) 0
0 φ+−

22 (ω)

)(
h+

�q1e
−iωt

h+
�q2e

−iωt

)
, (3.20)

with

h = 1 − 2Jφ+−
11 cos(gcc), k = −2J ′φ+−

11 cos(gbb),

l = −2J ′φ+−
22 cos(gbb), m = 1 − 2Jφ+−

22 cos(gcc).

And the susceptibility is obtained as follows:( 〈S+
�q1〉

〈S+
�q2〉

)
=

1

hm− kl

(
mφ+−

11 −kφ+−
22

−lφ+−
11 hφ+−

22

)(
h+

�q1e
−iωt

h+
�q2e

−iωt

)

≡
(
χ+−

11 (�q, ω) χ+−
12 (�q, ω)

χ+−
21 (�q, ω) χ+−

22 (�q, ω)

)(
h+

�q1e
−iωt

h+
�q2e

−iωt

)
. (3.21)
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The EPR spectra are determined by the imaginary part of the �q=0 component of the

dynamical susceptibility χ(�q = 0, ω) which are given as eq. (3.13). Then we simply give

the final expression of Im χ(�q = 0, ω):

Imχ(�q = 0, ω) ∝ 1

ω+ − ω−
×

[{U12(ω+ − A21) + U21G
2(ω+ − A12) + V }δ(ω − ω+)

+{U12(A21 − ω−) + U21G
2(A12 − ω−) − V }δ(ω − ω−)], (3.22)

with

ω± =
1

2

[
X+ ±

√
X2− + 16U12U21J ′2

]
,

X± = A12 ± A21 − 2J(U12 ± U21),

V = 2U12U21(J + JG2 − 2J ′G),

Uij = tanh

(
βAij

2

)
, Aij = −4(J〈SZ

i 〉 + J ′〈SZ
j 〉) + giμBH,

G =
gz + (gxgy/g2

2)[gx cos2(θ − δ) + gy sin2(θ − δ)]

gz + (gxgy/g1
2)[gx cos2(θ + δ) + gy sin2(θ + δ)]

,

where ω± are the quasi-particle energies with �q=0, and 〈SZ
1 〉 and 〈SZ

2 〉 represent the field-

induced spin moments of the sublattices 1 and 2, respectively, which can be determined

self-consistently, and β = 1/kBT . It is noted that the damping effect cannot be taken into

account by MF–RPA and the EPR spectra are given by line spectra.

We have determined the values of J and J ′ so as to reproduce as well as possible the

observed peak positions and the relative intensities. The evaluated values are J=−5.0

meV and J ′=−0.41 meV. This value of J corresponds well to that estimated from the

inelastic neutron scattering measurement [12]. The EPR spectra calculated by using these

exchange parameters are shown by the vertical bars in Fig. 3.8. As seen from the figures

agreement between the MF–RPA results and the observations is quite well. In particular

MF–RPA predicts certainly two peaks for θ=30 and 45 deg. In a similar way, we have

investigated by using the same exchange parameter also the case of further high fields,

that is, the spectra for θ = 0, 30 and 45 deg observed at T=300 K with λ = 96.5 μm

light. vertical bars. It is found that MF–RPA’s EPR spectra explain fairly well also such

a experimental result. Therefore, judging from the total view point MF–RPA method is

more appropriate than the Hamano-Shibata theory to analyze the high-field EPR spectra

at high temperatures, although both the methods have given almost the same value for

the interchain exchange coupling of CuGeO3.
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Figure 3.8: The EPR spectra calculated by MF–RPA (the vertical bars) at T=300 K and
for λ = 119 μm: (a) θ=0 deg, (b) θ=30 deg and (c) θ=45 deg, where θ denotes the angle
between the a-axis and the applied magnetic field. The overlapping jagged curves denote
the experimental data observed for both the up and down magnetic fields.
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Figure 3.9: The EPR spectra calculated by MF–RPA (the vertical bars) at T=300 K and
for λ = 96.5 μm: (a) θ=0 deg, (b) θ=30 deg and (c) θ=45 deg. The jagged curves denote
the observed experimental data.

3.2.5 Analysis of Resonance Mode

Now the origin of two peaks is investigated by solving the equation of motions for

spins of the sublattice i=1 and 2. Here, we think of the case that the uniform magnetic

fields and the rotation magnetic fields in electromagnetic wave are applied to Z and XY

direction, respectively. Then the motion of spin rotation is done on condition that Z-axis

become the axis of rotation.

The equation of motion for spins are given by

dS+
i,j,k

dt
=

1

ih̄
[S+

i,j,k,H]. (3.23)
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The equations obtained by substituting the Hamiltonian (3.15) for eq. (3.23) are as

follows:

d

dt
S+

i,j,1 =
1

ih̄
[−2J(SZ

i,j,1S
+
i,j+1,1 − S+

i,j,1S
Z
i,j+1,1 + S+

i,j−1,1S
Z
i,j,1 − SZ

i,j−1,1S
+
i,j,1)

−2J ′(SZ
i,j,1S

+
i,j,2 − S+

i,j,1S
Z
i,j,2 + S+

i−1,j,2S
Z
i,j,1 − SZ

i−1,j,2S
+
i,j,1)

−g1μBHS
+
i,j,1], (3.24)

d

dt
S+

i,j,2 =
1

ih̄
[−2J(SZ

i,j,2S
+
i,j+1,2 − S+

i,j,2S
Z
i,j+1,2 + S+

i,j−1,2S
Z
i,j,2 − SZ

i,j−1,2S
+
i,j,2)

−2J ′(S+
i,j,1S

Z
i,j,2 − SZ

i,j,1S
+
i,j,2 + SZ

i,j,2S
+
i+,j,1 − S+

i,j,2S
Z
i+1,j,1)

−g2μBHS
+
i,j,2]. (3.25)

We now adopt the following approximation: the Z-components of spin moments is fixed

and only its XY -components are fluctuating. As further calculational procedure, we first

replace SZ
i,j,k with thermal average 〈SZ

n 〉 (n=1 or 2) on the assumption that Z components

of spin moment are constant for the arbitrary lm. Secondly, the Fourier transform is

performed only for the transverse component S±
i,j,1, S

±
i,j,2. In short, the terms inclusive of

Z component are those being obtained by MFA, while all the other represent the terms

being treated by RPA. This procedure conforms just to the treatment of MF–RPA. The

resultant equation is as follows:

d

dt
S+

�q1 =
1

ih̄

[
(4J〈SZ

1 〉 + 4J ′〈SZ
2 〉 − g1μBH − 4J〈SZ

1 〉 cos(qcc))S
+
�q1 − 4J ′〈SZ

1 〉 cos(qbb)S
+
�q2

]
,

(3.26)

d

dt
S+

�q2 =
1

ih̄

[
(4J〈SZ

2 〉 + 4J ′〈SZ
1 〉 − g2μBH − 4J〈SZ

2 〉 cos(qcc))S
+
�q2 − 4J ′〈SZ

2 〉 cos(qbb)S
+
�q1

]
.

(3.27)

For the above equation, we think of the solutions of c1S
+
�q1 + c2S

+
�q2, where S+

�q1, S
+
�q2 are

generally known to have time dependence eiωt. Then the obtained determinant is given

as,

∣∣∣∣∣ u− ω w1

w2 v − ω

∣∣∣∣∣ = 0, (3.28)

with

u = 4[J〈SZ
1 〉(cos(qcc) − 1) − J ′〈SZ

2 〉] + g1μBH,

v = 4[J〈SZ
2 〉(cos(qcc) − 1) − J ′〈SZ

1 〉] + g2μBH,

w1 = 4J ′〈SZ
1 〉 cos(qbb), w2 = 4J ′〈SZ

2 〉 cos(qbb).
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Here, it should be noted that this equation corresponds clearly to the secular equation of

matrix obtained by putting h�q1, h�q2=0 in eq. (3.20), that is, its right hand side is zero.

The energy of quasi-particle are as follows:

ω± =
1

2

[
u+ v ±

√
(u+ v)2 − 4(uv − w1w2)

]
. (3.29)

Putting �q=0 in the above expression, we obtain the peak position of EPR spectra,

ω± =
1

2
[−4J ′〈SZ

2 〉 − 4J ′〈SZ
1 〉 + g1μBH + g2μBH

±{(4J ′〈SZ
2 〉 + 4J ′〈SZ

1 〉 − g1μBH − g2μBH)2

+16J ′〈SZ
2 〉g2μBH + 16J ′〈SZ

1 〉μBH − 4g1g2(μBH)2}1/2]. (3.30)

This is certainly equal to that of eq. (3.22). Also, the mode at �q=0 is writen as c1S
+
ij1 +

c2S
+
ij1 and then the relations between the coefficients c1 and c2 are given for ω = ω± as

follows:

c1/c2 = 4J ′〈SZ
1 〉/[4J ′〈SZ

2 〉 − g1μBH + ω±]. (3.31)

We consider about the motion of spin for respective ω±. In short, the values of c1/c2

for respective ω± are discussed. At the present case, since the numerator of eq. (3.31),

4J ′〈SZ
1 〉, has a plus values, we have investigated about its denominator,

2J ′(〈SZ
2 〉 − 〈SZ

1 〉) −
μBH

2
(g2 − g1) ± 1

2
[{4J ′(〈SZ

1 〉 + 〈SZ
2 〉) − μBH(g1 + g2)}2

+16μBHJ
′(g1〈SZ

1 〉 + g2〈SZ
2 〉) − 4g1g2(μBH)2]1/2. (3.32)

Now, we have J ′/J � 1, −0.5 < 〈SZ
1 〉, 〈SZ

2 〉 < 0, and |J | < ΔgμBH is realized under the

high magnetic fields. Then the follwing transformation is performed, that is,

(3.32) ≈ μBH

2
(g2 − g1) ±

[
μBH

2
|g1 − g2| + 4J ′(〈SZ

1 〉g1 + 〈SZ
2 〉g2)

|g1 − g2|μBH

]
. (3.33)

For g1 > g2, eq. (3.33) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4J ′(〈SZ
1 〉g1 + 〈SZ

2 〉g2)

|g1 − g2|μBH
> 0, for ω+,

(g2 − g1)μBH − 4J ′(〈SZ
1 〉g1 + 〈SZ

2 〉g2)

|g1 − g2|μBH
< 0, for ω−.

For g1 < g2, eq. (3.33) is,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(g2 − g1)μBH +
4J ′(〈SZ

1 〉g1 + 〈SZ
2 〉g2)

|g1 − g2|μBH
> 0, for ω+,

−4J ′(〈SZ
1 〉g1 + 〈SZ

2 〉g2)

|g1 − g2|μBH
< 0, for ω−.
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Here the relation of
4J ′(〈SZ

1 〉g1+〈SZ
2 〉g2)

|g1−g2|μBH
> 0 have been taken into account. Anyway, it is found

that the spin at sublattice 1 and 2 perform the motion with coupling each other and the

obtained modes correspond to the motion of the respective in phase and out of phase.

These are often understood as the mode such as ferromagnetic and antiferromagnetic

resonance. Now the relation of g1 > g2 is found in the case of θ=30, 45 degree by using

g [37] values of CuGeO3. In Fig. 3.10(a) we show the magnetic fields dependencies of ω±
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Figure 3.10: (a) The magnetic fields dependence of quasi-particle energy ω+ and ω− at
T=300 K are shown by the circle and triangle, respectively. Further the solid and dotted
lines represent the case of magnetic fields with θ=0 and 45 degree, respectively. (b) The
magnetic fields dependence of c1/c2 for ω+ and ω− at T=300 K are shown by the circle and
triangle, respectively. Further the solid and dotted lines represent the case of magnetic
fields with θ=0 and 45 degree, respectively.

for θ=0, 45 degree at T=300 K. The solid and dotted lines represent the quasi-particle

energy for θ=0 and 45 degree, respectively. And the circle and triangle on lines denote

ω+ and ω−, respectively. As seen from figure, the magnitude of ω− associated with the
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Table 3.1: The estimated exchange integral J ′ (interchain) and J (intrachain) are sum-
marized, respectively.

Hamano-Shibata theory MF–RPA
J ′ (interchain ) –0.42 meV –0.41 meV
J (intrachain ) —— –5.00 meV

antiferromagnetic resonance is obviously smaller than that of ω+ of the ferromagnetic

resonance at each magnetic fields. It is thought to be a reasonable results by considering

that the interchain coupling is now antiferromagnetic interaction. For the same case, the

magnetic fields dependencies of c1/c2 in CuGeO3 are shown in Fig. 3.10(b). The solid and

dotted lines represent c2/c1 for θ=0 and 45 degree, respectively. The circle and triangle

on lines are c2/c1 for ω+ and ω−, respectively. The characteristic behavior on c1/c2, in

which the c1/c2 for ω+ have the magnitude larger than that for ω−, is originated from the

relation g1 > g2 in CuGeO3.

3.2.6 Conclusion

In conclusion the interchain exchange integral J ′ along the b-axis of CuGeO3 has been

evaluated to be about −0.4 meV by analyzing the exchange splitting of EPR spectra ob-

served at T=300 K under ultra-high magnetic fields on the basis of the two methods,

Hamada-Shibata theory and MF–RPA. This value of J ′ is smaller than that estimated

from the inelastic neutron scattering measurement [12]. Here, to be remarkable, the MF–

RPA method is quite effective to treat high-field EPR spectra at high temperatures. In

order to elucidate the nature of the respective EPR peak we have solved the equation of

motion for the spins with use of the MF–RPA Hamiltonian. It has been clarified that the

spins at sublattices 1 and 2 make correlated motion and the observed two peaks corre-

spond to the respective ferromagnetic and antiferromagnetic resonance.

3.3 ESR spectra in SP phase

In the spin-Peierls phase (SP phase) of CuGeO3 the transitions [13, 41, 15] from the

singlet ground state to two kinds of triplet excited states, which lie respectively at 2 meV

and 5 meV above the ground state, have been observed by ESR measurements. To be

more precise, the observed transitions correspond to those from the ground state to the
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M = ±1 states in respective triplet excited states. From now on these observed two

transitions are named respectively as the transition 1 (2 meV) and the transition 2 (5

meV). It should be emphasized here that these transitions between the singlet and triplet

states are usually forbidden because the total spin is conserved in the isotropic Heisenberg

systems. Therefore, in order to understand the observed ESR spectra we have to seek for

mechanisms which destroy the conservation of the total spin.

3.3.1 Outline about Mechanism of Transition

Judging from the magnitude of the transition energy, it is most probable that the

transition 1 corresponds to transition from the ground state to the lowest triplet state

with q=0 (see Fig. 3.11). As a mechanism which makes this transition allowed, we may

think of the Dzyaloshinsky-Moriya (D–M) interaction. In fact, from EPR measurements

at room temperature it is suggested the D–M interaction certainly exists for the nearest-

neighboring (n.n.) Cu pair along the c-axis and the so-called �d vector is perpendicular

to the c-axis, i.e. �d ⊥ c [39]. According to the Moriya rule [40], the condition �d ⊥ c

restricts the crystal symmetry, namely the crystal symmetry should satisfy at least one

of the following rules for the Cu pair along the c-axis.

(i) There should be mirror plane which is perpendicular to the Cu-Cu bonding line and

which bisects this bonding line.

(ii) There should be a mirror plane including the Cu-Cu bonding line.

(iii) There should be a twofold rotation axis which is perpendicular to the Cu-Cu bonding

line and which passes through the midpoint of the bonding line.

As to the crystal structure in the SP phase at low temperatures there is no definite conclu-

sion at present, but there are a couple of proposals. One is the model structure proposed

by Hidaka et al (see Fig. 3.2), and the symmetry of this structure satisfies the above

condition (iii). If we adopt this crystal structure, the D–M interaction exists between the

two Cu ions in the dimer along the c-axis. Furthermore, the two Cu ions in the dimer

may have the different effective g-values. In the following we assume the D–M interaction

and the different g-values for the Cu dimer along the c-axis, and it will be shown later

that the transition 1 is successfully explained by this assumption.

Now we turn to the origin for the transition 2. Judging from the magnitude of the

transition energy one possibility is that the transition 2 corresponds to the transition from
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the ground state to the triplet excited state with q = π (see Fig. 3.11). In this case we

must find out a mechanism of the zone folding of the q = π triplet state because the

ground state has the crystal momentum q = 0 and in the ESR measurements the crystal

momentum have to be conserved. As an origin of the zone folding we may consider the

staggered field induced along the b-direction which is caused by the zigzag chain struc-

ture of CuO6 octahedron along the b-axis as described in the previous section. Another

possibility we propose here is that the transition 2 may correspond to the transition from

the ground state to the continuum state above the second gap (see Fig. 3.11).

In the following subsections we carry out analysis of the ESR spectra (both the tran-

sitions 1 and 2) on the basis of two kinds of models. One is the zone folding model which

takes account of the zigzag chain structure of CuO6 octahedron along the b-axis. Another

takes into account the transition to the continuum state with q = 0 above the second gap.

Since there is no simple theory for the continuum state, we adopt a quite simple model

in which triplet states with q = 0 above the second gap is approximated by the product

of two triplet states of n.n. dimers. This model will be called the 2 triplet model. In

both the models the D–M interaction and the different g-values for the Cu dimer along

the c-axis are assumed, and we carry out the detailed analysis of ESR spectra such as the

dependence on the light polarization and the magnitude and direction of the magnetic

fields.
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Figure 3.11: Schematic illustration of magnon dispersion in the SP phase. The arrows
named as 1 and 2 mean the transition 1 and 2.

3.3.2 Zone Folding Model

Crystal structure and effective Hamiltonian

The structures of the bc-plane and the ab plane in the SP phase are shown in Figs. 3.1

and 3.2, respectively. Here it should be noted that the structure of the bc-plane is that

suggested from the analysis of EPR spectra. If the structure as shown in Fig. 3.2 is

adopted, the effective g-values, g1 and g2, of Cu ions at site 1 and 2 in the dimer, can

have different values according to the distortion of crystal structure.

The principal axis vectors, �β and �γ, of the primitive cell and the reciprocal lattice

vectors, �β∗ and �γ∗, are given as,

�β =
b

2
�eb +

c+ c′

2
�ec, �γ = (c+ c′)�ec,

�β∗ =
4π

b
�eb, �γ∗ = 2π

(−1

b
�eb +

1

c+ c′
�ec

)
,

respectively. Here �eb and �ec denote the unit vector of the b-axis and the c-axis, respectively.

Fig. 3.12(a) represents the qbqc-plane in the q-space, and the circles represent the reciprocal
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Figure 3.12: The q-space of CuGeO3: (a) qbqc-plane, (b) one folded by making �β twice.
The circles and triangles represent the respective equivalent reciprocal lattice points, and
the arrows are the reciprocal lattice vectors. The unit of qb/π and qc/π are 2/(c+ c′) and
2/b, respectively.

lattice points and the triangles the points equivalent to (qb, qc) = (0, π). Since the

observable mode in the ESR measurement is only the �q = 0 mode, the zone folding as

shown in Fig. 3.13 is necessary to observe the excitation at (qb, qc) = (0, π), and it can

be accomplished if the period along the b-direction becomes the double. Now, we think

of the case of making �β twice. Then the reciprocal lattice vectors are obtained as follows:

�β∗ =
2π

b
�eb, �γ∗ = 2π

(−1

b
�eb +

1

c+ c′
�ec

)
.

In this case, it is found that the circles are coincident with the triangles as shown in

Fig. 3.12(b), that is, the necessary zone folding is certainly realized.

As shown in Fig. 3.2(b), the CuO6 octahedrons form zigzag chains along the b-axis

and they lean alternatively by −56 deg and +56 deg from the a-axis in the ab-plane.

This apparently indicates that the principal axes of the g-tensor of two adjacent Cu ions

along the b-axis, named respectively as sublattice #1 and #2, are different. When the

magnetic fields are applied in the direction of the a-axis, the slight magnetic fields are

induced perpendicular to the direction of the applied magnetic fields and alternative along

the b-axis, namely the staggered field is induced. As shown in Fig. 3.2(b), abc (or xyz)

are the coordinate system of the crystal, respectively, and also XY Z is defined as the
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Figure 3.13: The magnon dispersion ω(qb = 0, qc) for bc-plane in CuGeO3: (a) the zero
field and (b) the non-zero field. The arrows named as 1 and 2 mean the transition 1 and
2, respectively. Under the magnetic field, the zone folded dispersion is obtained. Since
the observable mode in the ESR measurement is �q = 0 mode, we regard the transition 2
as that from zone folded mode. The unit of qc/π is 2/(c+ c′), where c and c′ denote the
distance between two Cu ions of intra-dimer and inter-dimer along c-axis, respectively, as
shown in Fig. 3.1(a).

principal axis of the g-tensor for CuO6. The g-tensor at site 1 is expressed in the xyz

coordinate system as follows:

⎛
⎜⎝ gX cos2 θ + gZ sin2 θ 0 (gZ − gX) sin θ cos θ

0 gY 0
(gZ − gX) sin θ cos θ 0 gX sin2 θ + gZ cos2 θ

⎞
⎟⎠ , (3.34)

where gX , gY , gZ are the principal values of the g-tensor, and θ shows the angle between

the a-axis and one of the principal axis. For site 2 we need to put θ → −θ. By using

these g-tensors, the total Zeeman interactions at site 1 and 2 under the magnetic fields

along the a-axis is written down as,

HZeeman = μBH[(gX sin2 θ + gZ cos2 θ)Sz
1 + (gZ − gY ) sin θ cos θ)Sx

1

+(gX sin2 θ + gZ cos2 θ)Sz
2 − (gZ − gX) sin θ cos θ)Sx

2 ], (3.35)

66



where H is the magnetic field and Sx
1 , Sz

1 (Sx
2 , Sz

2) denote the x and z components of the

spin at site1 (site2), respectively. The second and forth terms turn out to be the Zeeman

interactions due to the staggered field. By using gY =2.049, gZ=2.336, θ =56 deg [19] we

obtain

(gZ − gY ) sin θ cos θ ∼ 0.13. (3.36)

And, if this is divided by (gX cos2 θ+gZ sin2 θ), the effective staggered field Hx
st is obtained

finally as,

Hx
st ∼ 0.06H. (3.37)

This staggered field makes �β twice and it causes the zone folding.

On the basis of the above discussion, we propose the following model Hamiltonian

under the magnetic field parallel to the a-axis (z-axis), for the Cu2+ spins in the bc-plane

of CuGeO3:

H =
∑
i,j

[−2J1
�Si,j,1 · �Si,j,2 − 2J2

�Si,j,2 · �Si,j+1,1 − 2J3(�Si,j,1 · �Si+1,j−1,2 + �Si,j,2 · �Si+1,j,1)

+μBH(g1zS
z
i,j,1 + g2zS

z
i,j,2) + �d · (�Si,1 × �Si,2) + ei

�Q·�ri,jμBH
x
st(g1xS

x
i,j,1 + g2xS

x
i,j,2)],

(3.38)

with �rij = [i(b/2), j(c+ c′)/2], �Q = (2π/b, 0). J1, J2 and J3 denote the antiferromagnetic

exchange integral of the intra-dimer, inter-dimer and interchain, respectively, and the last

term represents the Zeeman interaction due to the induced staggered field. It is noted

that we have assumed that the g-values of site 1 and 2 are generally different. Further, in

this subsection we assume that the �d lies in the ab-plane (xz-plane), i.e. �d = (dx, 0, dz),

which is suggested from the EPR measurements at room temperature [39].

Singlet-triplet dimer model

Now, to discuss qualitatively the intensity of ESR spectra at T=0 K we use the

singlet-triplet dimer model, whose framework is described as follows. First, as the picture

of triplet excited states in the SP phase, we simply think that a triplet pair formed within

a dimer is traveling in the singlet sea, that is, the direct products of singlet pairs. Then,

the triplet excited states propagating with wave vector �k is described explicitly as

|es, �k,Mz〉 =
1√
N

∑
l,m

ei
�k·�rl,m|triplet,MZ〉l,m

∏
u,v( �=l,m)

|singlet〉u,v, (3.39)

67



with

|singlet〉u,v =
1√
2
(α1β2 − β1α2)u,v,

|triplet,Mz〉l,m =

⎧⎪⎨
⎪⎩

(α1α2)l,m for Mz = 1,
1√
2
(α1β2 + β1α2)l,m for Mz = 0,

(β1β2)l,m for Mz = −1,

where αi, βj (i, j=1 or 2) show the up spin at site i and the down spin at site j in the

dimer, respectively, Mz denote the magnetic quantum number, and l, m (or u, v) are the

coordinate for the dimers in the bc-plane. As the singlet ground state we may choose the

following wave function

|gs〉 =
∏
l,m

|singlet〉l,m. (3.40)

In the present study we treat, as the excited states, only the lowest triplet excited states.

Therefore, the other excited states such as plural triplet pairs traveling in the singlet sea

are completely excluded.

By using the above bases, the diagonal elements are easily calculated, and the magnon

dispersion of the triplet exited states under the zero field and without the D–M interaction

is given by

ω(qb, qc) = 2|J1| − |J2| cos qc(c+ c′) − 2|J3| cos
qbb

2
cos

qc(c+ c′)
2

. (3.41)

This dispersion is shown in Fig. 3.13(a). If this singlet-triplet model is applied to purely

one-dimensional case, the results do not show a good agreement with the magnon disper-

sion obtained by the exact diagonalization method. However, we believe that this model

will make a sense for qualitative discussion. If we take into account the D–M interac-

tion and the magnetic field along the a-axis, the singlet ground state |gs〉 hybridizes with

the triplet states |es, 0,Mz〉 and |es, π,Mz〉 where 0 denotes �k = (0, 0) and π represents

�k = (0, π). The Hamiltonian matrix in the subspace of |gs〉, |es, 0,−1〉, |es, 0, 0〉, |es, 0, 1〉,
|es, π,−1〉, |es, π, 0〉, |es, π, 1〉 is expressed explicitly as follows:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 idx

2
√

2

ΔgzH−idz

2
−idx

2
√

2

Δgxhx
st

2
√

2
0

−Δgxhx
st

2
√
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with Δgz = g1z − g2z, Δgx = g1x − g2x, gx = g1x + g2x, gz = g1z + g2z, μBH → h,

μBH
x
st → hx

st, and ω(0) and ω(π) denote magnon energy for �k = (0, 0) and �k = (0, π),

respectively. The eigenstates |n) are given by,

|n) = Cn
1 |gs〉 + Cn

2 |es, 0,−1〉 + Cn
3 |es, 0, 0〉 + Cn

4 |es, 0, 1〉
+Cn

5 |es, π,−1〉 + Cn
6 |es, π, 0〉 + Cn

7 |es, π, 1〉. (3.43)

Calculation of ESR spectra

In investigating the intensity of ESR spectra, it is noted first that the selection rules

based on the relations between the direction of propagating vector of light and that of

the magnetic field are associated with Sz
total and S±

total(=
∑

i,j(S
±
ij1 +S±

ij2)). The respective

intensity of ESR spectra, Iz for Sz
total and I± for S±

total at T=0 K, are given explicitly as,

Iz = |(n′ |∑
i,j

(Sz
ij1 + Sz

ij2) | gs)|2

= |C4
n′

∗
Cgs

4 − Cn′
2

∗
Cgs

2 + Cn′
7

∗
Cgs

7 − Cn′
5

∗
Cgs

5 |2, (3.44)

I⊥,+ = |(n′ |∑
i,j

(S+
ij1 + S+

ij2) | gs)|2

= | 1√
2
(Cn′

3

∗
Cgs

2 + 2Cn′
4

∗
Cgs

3 + Cn′
6

∗
Cgs

5 + 2Cn′
7

∗
Cgs

6 )|2, (3.45)

I⊥,− = |(n′ |∑
i,j

(S−
ij1 + S−

ij2) | gs)|2

= | 1√
2
(Cn′

3

∗
Cgs

4 + 2Cn′
2

∗
Cgs

3 + Cn′
6

∗
Cgs

7 + 2Cn′
5

∗
Cgs

6 )|2. (3.46)

It is noted here that I± represents the intensity in the Faraday configuration.

In the following we use the notations |es1,MZ) and |es2,MZ). Here es1 (es2) denotes

the triplet excited state with q=(0,0) (q=(0,π)), andMZ represents the main component of

the triplet in the hybridized states. Further we use the abbreviation Iz(|gs) → |es1,±1))

for |(es1,±1 | ∑i,j(S
z
ij1 + Sz

ij2) | gs)|2. As an example we show in Fug. 4 the cal-

culational results which are obtained by using the following parameters: |J1| = 50.0

K, |J2/J1| = 0.9, J3/J1 = 0.08, g1z = 2.0, g2z = 2.0, g1x = 2.2, g2x = 2.0 and

dx = dz(∼ Δg|J1|/g)=0.1|J1| K. It is noted that Iz(|gs) → |es1, 0)), Iz(|gs) → |es2,±1)),

I−(|gs) → |es1,−1)), I±(|gs) → |es1, 1)), I±(|gs) → |es2, 0)) have finite values and the

other combinations become almost zero.

In Fig. 3.14(a) we show the magnetic field dependence of the intensity I±(|gs) → |n))

which does not take zero. The circle and triangles denote the I−(|gs) → |es1,−1)) and

I+(|gs) → |es2, 0)), respectively, and the square represents the other intensities. It is
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Figure 3.14: The magnetic field dependencies of intensity obtained by considering the
zone-folding model are shown. In (a), the circle and triangle denote the respective
I−(|gs) → |es1,−1)) and I+(|gs) → |es2, 0)), and the square represents the other in-
tensities. In (b), the circle, triangle and square denote Iz(|gs) → |es2, 1)), Iz(|gs) → |es2,
−1)) and Iz(|gs) → |es1, 0)).

found that I−(|gs) → |es1,−1)) and I+(|gs) → |es2, 0)) increase with increasing the mag-

netic fields. In particular, I−(|gs) → |es1,−1)) has a finite value under zero magnetic

fields, which is due to the D–M interaction. Further the magnitude of I−(|gs) → |es1,

−1)) are larger than that of I+(|gs) → |es2, 0)) for the whole ranges. In Fig. 3.14(b)

the magnetic field dependencies of Iz(|gs) → |n)) are shown. The circles, triangles and

squares denote Iz(|gs) → | es 2, 1 )), Iz(|gs) → |es 2, −1 )) and Iz(|gs) → |es 1, 0 )),

respectively. The Iz(|gs) → | es2, 1)) and Iz(|gs) → |es2, −1)) exhibit the monotonous in-

crease with increasing H, reflecting the increase of the staggered field when the magnetic

field increases. The Iz(|gs) → |es1, 0)) also show the same dependence on the magnetic
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fields. It originates from the Zeeman interaction with the different g values in the dimer.

Quite recently the transition 2 has been observed by the far-infrared-absorption spec-

troscopy under zero magnetic field. Also it was shown by the new ESR measurements

that the intensities of the transition 2 are little dependent on the magnetic fields. Further,

a series of transitions have been observed under the magnetic fields parallel to the b- and

c-axis as well as along the a-axis. Then, judging from the above results it is difficult to

explain the observed ESR spectra by means of using the zone folding which is brought

about by the staggered field when the magnetic field is applied parallel to the a-axis.

3.3.3 Two Triplet Model

Recently, the complete structure of the double gap in the spin Peierls system CuGeO3

has been observed by the neutron scattering experiment [14]. Namely, there are the

usual first gap between the singlet ground state and the triplet excited states and also

the second gap between the triplet excited states and the continuum regions. These

phenomenon represents the characteristic nature in the S=1/2 AF–AF alternating chain.

In this subsection, we assume that the triplet excited states and the excited states in the

continuum regions, both of which have the crystal momentum q=0, exist respectively at

2 meV and 5 meV above the ground state. Namely, the transition 1 and 2 are interpreted

as those from the ground state to the usual triplet excited states and the excited states

in the continuum regions, respectively. The subspace of only k=0 in Hamiltonian of the

pure one-dimensional system is now just used.

The Hamiltonian of pure one-dimensional system is written as,

H =
∑

i

[−2J1
�Si,1 · �Si,2 − 2J2

�Si,2 · �Si+1,1 + μBH(g1S
Z
i,1 + g2S

Z
i,2) + �d · (�Si,1 × �Si,2)],

(3.47)

with �ri = [i(c+c′)]. And �d is now given as (da, db, dc), where a, b, c represent the principal

axes of crystal. In this subsection we consider a general �d vector and do not confine �d in

the ab-plane. As will be shown later, da, db and dc play an important role in discussing

the configuration dependence of intensity.

Now, we think about the excited states in the continuum regions. A couple of the inter-

pretation such as two unbound spin have been previously suggested to understand the

nature of this excited states. However, there is no definite model at present. We assume

that two triplet excited states traveling in the direct product of singlet pair are considered

to be one of the states above the second gap. For two triplet states, the value of total spin
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S allows 0, 1, 2 from the composition of two spins with S=1. Here, for S=1, by using the

bases being mentioned below it is shown that the off diagonal elements and intensity be-

come zero. This explanations is described in Appendix A. After all, as regards two triplet

states, the subspaces of S=0 and 2 are adopted. Since the observed transition 2 are the

transitions to M = ±1 states, at the present model M = ±1 states of S=2 is thought be

the transitional states. Further, in order to make the smallest subspace enough to explain

the phenomena, the adjacent triplet pairs are used. Its states are written explicitly as

follows by making use of the notation |S,Mz〉i on the i-dimer,

|0, 0〉i,i+1 =
1√
3
(−|1,−1〉i|1, 1〉i+1 + |1, 0〉i|1, 0〉i+1 − |1, 1〉i|1,−1〉i+1) (3.48)

|2, 2〉i,i+1 = |1, 1〉i|1, 1〉i+1, (3.49)

|2, 1〉i,i+1 =
1√
2
(|1, 1〉i|1, 0〉i+1 + |1, 0〉i|1, 1〉i+1), (3.50)

|2, 0〉i,i+1 =
1√
6
(|1,−1〉i|1, 1〉i+1 + 2|1, 0〉i|1, 0〉i+1 + |1, 1〉i|1,−1〉i+1), (3.51)

|2,−1〉i,i+1 =
1√
2
(|1,−1〉i|1, 0〉i+1 + |1, 0〉i|1,−1〉i+1), (3.52)

|2, 2〉i,i+1 = |1,−1〉i|1,−1〉i+1. (3.53)

From now on the triplet excited states of eq. (3.39) and this two triplet excited states are

named as 1 triplet and 2 triplet states, respectively. By using these states |S,Mz〉i,i+1, we

define the bases of 2 triplet states at k=0 as,

|2tr, S,Mz〉 =
1√
N

∑
i

|S,Mz〉i,i+1

∏
j( �=i,i+1)

|singlet〉j. (3.54)

The diagonal elements of 2 triplet states under the zero magnetic fields are obtained as

2|J1| from the ground state. Also it is found that a few off-diagonal elements between 2

triplet states and the other states become non-zero due to the D–M interaction and the

Zeeman interaction with different g values.

We now discuss the subspace of S=0, 1, 2, 0, where the first 0 is the singlet ground

state and the last 0 corresponds to the state obtained from 2 triplet states. By making

use of these bases the 10×10 Hamiltonian matrix under the magnetic fields parallel to

the a-, b- and c-axes are easily obtained. To be important, the D–M interaction and the

Zeeman interaction with the different g-values contribute to the hybridization between

the states with different total S.

For various configurations, the intensities of ESR spectra at T=0 K in this system
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are given as,

Ix = |(n |∑
i

(Sx
i + aSx

i2) | gs)|2, (3.55)

Iy = |(n |∑
i

(Sy
i + aSy

i2) | gs)|2, (3.56)

Iz = |(n |∑
i

(Sz
i + aSz

i2) | gs)|2, (3.57)

where |gs) and |n) represents the resultant ground state and excited states of H and

Sα
i ≡ Sα

i1 + Sα
i2 (α=x, y, z). Further a is (g2 − g1)/g1, and its introduction represents that

the differences of g value have been taken in account also for the selection rules. Here

we find that the transition 2 become possible by its introduction as well as the resultant

ground state with 2 triplet states under the hybridization. Further, in the selection rules

there are non-zero elements between 2 triplet states and 1 triplet states whose components

exist in the ground state.

Now the intensity of ESR spectra under the magnetic fields along the a-, b- and c-axis

have been calculated by using the parameter values as |J1|=50.0 K, |J2/J1|=0.9, g1=2.2,

g2=2.0, da=0.1 |J |, db=0.05 |J | and dc=0.2 |J |, as an example. Here the values of da,

db and dc are selected so as to reproduce the experimental results which will be touched

upon later. We show in Figs. 3.15∼3.17 the magnetic fields dependence of intensities

of transition 1 in the respective configuration. The Figs. 3.15, 3.16 and 3.17 show the

intensities under the magnetic fields H parallel to a, b and c-axis, respectively. And (a),

(b) and (c) in these figures represent the intensity of transition from the |gs) to |1tr, −1),

|1tr, 0) and |1tr, 1), respectively. Here the used notation |1tr, Mz) means 1 triplet states

with Mz as a main component in the hybridized states. Further, the circles, triangles and

squares in these figures denote the intensity on the basis of Ix, Iy and Iz, respectively.

In a similar way, |2tr, Mz) is the state with the main component Mz in 2 triplet states.

As seen from these figures, the intensities are not so greatly dependent on the magnetic

fields. However, among them the intensity of transitions from |gs) to |1tr, -1) and |1tr,

1) show a slight magnetic fields dependence in comparison with that from |gs) to |1tr, 0).

This difference is thought to be originated from degree of magnetic fields dependence in

transitional states.

We show in Figs. 3.18 and 3.19 the magnetic fields dependence of intensity for

transition 2 in the respective configuration. Here we show only the transitions to the

M = ±1 states which have been practically observed, and the relatively strong intensities

among them are picked up. Figures 3.18(a), (b) and (c) show the intensities in low

intensity region under the magnetic fields H parallel to the a-, b- and c-axis, respectively.
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Table 3.2: The degree of intensities for transition 2 is shown in the various configuration.
These are investigated by considering 2 triplet states. Further hrf is the rotational mag-
netic fields in electromagnetic wave. The S, M and W mean strong, medium and weak,
respectively.

H//a H//b H//c
hrf//a S W S
hrf//b M S S
hrf//c W W S

Table 3.3: The degree of intensities for transition 2 is investigated experimentally in the
various configuration [17]. The notation is the same as that of Table. 3.2.

H//a H//b H//c
hrf//a S W S
hrf//b S M S
hrf//c M M S

In a similar way, the intensities in high intensity region, that is, the intensity of transition

from |gs) to |2tr, 2, 1), is shown in Fig. 3.19. As seen from these figures, in regard to

the number of observable spectra, the case of H//c becomes maximum. These are merely

due to the condition dc > da, db. Also, as seen from these figures, a couple of intensities

depend on the magnetic fields in low fields regions, but they show little dependence in high

fields regions. In particular, Figs. 3.18(c) and 3.19 obviously shows such behaviors. It is

associated with the Zeeman splitting, namely in the low fields a few states hybridize with

respective large probability, while the high fields lead to a slight hybridization between

our focusing state and the other states. The behaviors in low field regions can be changed

considerably by the selection of parameter values. Therefore we do not pay much attention

to this regions, and assert that the behaviors in the high field regions are essential.

In order to see the differences clearly, the degree of intensities calculated in each

configuration are shown in Table. 3.2. By comparing these results with the experimental

data in Table. 3.3 [17], we find that the agreements between the calculated results and

observations are quite well. It should be emphasized that the direction of �d plays an

important role in the configuration dependence of intensity and the relation of dc > da, db

is necessary to explain the observations.
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Indeed, the magnitude of intensity for transition 2 is much smaller than that for 1

triplet states. However, we consider that the magnitude itself does not have significant

meaning at present because the present model takes into account only the restricted 2

triplet states of eq. (3.54). As the additional remarks, the transitions to Mz = ±2

are possible under both zero and finite magnetic fields, at present model, though the

magnitude of intensity is very small.

In summary, we recognize that the magnitude of intensity for the transition 1 is lager

than that for the transition 2, and most of the intensities are not so greatly dependent on

the magnetic fields. Also, by considering 2 triplet states, it can be obviously shown that

transition 1 and 2 under zero magnetic fields are possible for the whole configurations.

As a matter of fact, the experimental results show that the intensities for its transitions

are little dependent on the magnetic fields [17]. And a couple of experiments under zero

magnetic fields have been performed and transition 2 have been observed [18, 42, 43].

Thus, the model with use of 2 triplet states is thought to be suitable for explaining

the observed phenomena. However, there are a couple of problems left for the study in

future. In this model the 2 triplet states are treated as S=2 states with five degeneracy,

nevertheless the experimental suggestion for S=2 states are not reported so far. We hope

that the transition to M = ±2 will be observed by ESR measurement in future, The

further detailed experiments are desired also in order to confirm the effectiveness of the

model with use of 2 triplet states. Theoretically it will be useful to calculate the ESR

intensities by using the exact diagonalization method for finite spin chains to obtain more

quantitative understanding.
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Figure 3.15: The magnetic fields dependencies of intensity of transition to the 1 triplet
states are shown, in which the magnetic fields are applied parallel to a. Then (a), (b) and
(c) represent the intensity of transition from the |gs) to |1tr, −1), |1tr, 0) and |1tr, 1),
respectively. The circle, triangle and square in these figures denote the intensity on the
basis of Ix, Iy and Iz, respectively.
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Figure 3.16: The magnetic fields dependencies of intensity of transition to the 1 triplet
states are shown, in which the magnetic fields are applied parallel to b. The notation of
line and point is the same as that of Fig. 3.15.
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Figure 3.17: The magnetic fields dependencies of intensity of transition to the 1 triplet
states are shown, in which the magnetic fields are applied parallel to c. The notation of
line and point is the same as that of Fig. 3.15.
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Figure 3.18: The magnetic fields dependence of intensity in low intensity region for the
2 triplet states. We focus on the only transitions to M = ±1 states. And among them,
the relative strong intensities are shown. The (a), (b) and (c) show the intensity under
the magnetic fields H parallel to a, b and c-axis, respectively. For the whole figures,
the circle, triangle and square represent the intensity of transition from the Ix(|gs) →
|2tr,−1)), Iz(|gs) → |2tr,−1) and Ix(|gs) → |2tr, 1), respectively. Here, as example
Ix(|gs) → |2tr,−1)) denote the intensity Ix for the transition from |gs) to |2tr, -1). In (c)
Iy(|gs) → |2tr, 1) and Iy(|gs) → |2tr,−1) are shown by the inverse triangle and double
circle, respectively.
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Figure 3.19: The magnetic fields dependence of intensity in high intensity region for the
2 triplet states. Figure shows the intensity Iz(|gs) → |2tr, 1)) under the magnetic fields
H parallel to a, b and c-axis, respectively.
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Chapter 4

Summary

In this thesis we have performed theoretical studies on the magnetic properties of

pseudo-one-dimensional quantum spin systems. In particular, by paying particular atten-

tion to role of interchain coupling we have developed the useful theoretical methods and

analyzed a couple of magnetic phenomena in which interchain coupling plays an impor-

tant role. The main results are summarized as follows:

Magnetic Properties in Pseudo-One-Dimensional Exchange-Alternating Systems

We first have developed a new method called Pair-DCEFA by extending DCEFA orig-

inally proposed by Suzuki to the pair-approximation. By applying Pair-DCEFA to S=1/2

chains with alternating exchange coupling J1 and J2 it has been shown that Pair-DCEFA

is practically useful for a fairly wide range of a = J2/J1, particularly for a < 0 with

J1 < 0. Then, the effect of interchain coupling in pseudo-1D S=1/2 exchange-alternating

systems has been investigated by using the combined method in which the intrachain and

interchain couplings are treated by Pair-DCEFA and MFA, respectively. In practice we

have estimated the intrachain and the interchain exchange integrals of real pseudo-1D

AF–F alternating systems, Cu(TIM)CuCl4, (4-BzpipdH)CuCl3 and MeNN.

We have extended the combined method of Pair-DCEFA and MFA to the case under

magnetic fields in order to investigate the magnetic phase transition under magnetic fields

in pseudo-1D exchange-alternating systems. By applying the method to real pseudo-1D

S=1/2 AF–F alternating system (CH3)2CHNH3CuCl3 whose magnetic phase transition

is observed only under magnetic fields, the interchain exchange coupling as well as intra-

chain exchange coupling have been evaluated, and magnetic field dependence of TN has

been determined. Further, the temperature dependence of nuclear spin-lattice relaxation

rate of this system has been also analyzed by Pair-DCEFA.
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The q-dependent staggered susceptibilities at finite temperature of S=1/2 exchange

alternating chains have been calculated for the first time by using the EDM for finite

chains. Then, we have shown that interchain coupling can be evaluated more quantita-

tively with use of the staggered susceptibilities obtained by the EDM and by applying the

MFA to interchain interaction.

Finally, we have calculated intensities of inelastic neutron scattering of pure-1D

S=1/2 AF–F alternating chains by numerical calculations based on the exact diagonal-

ization method. We have found that the so-called second gap exists always and the lowest

energy in the continuum region above the second gap takes maximum value at q = π/2.

Further, the magnitude of the second gap at q=0 decreases with increasing the magni-

tude of the ferromagnetic coupling. The intensities due to the continuum state above the

second gap are weak in general, but it was pointed out that the continuum states may

be observable at large q. Finally the intensities due to the lowest triplet states take the

maximum value at q = π/2 for the whole range of exchange ratio.

Magnetic Resonance in spin Peierls System CuGeO3

The interchain exchange integral J ′ along the b-axis of CuGeO3 has been evaluated by

analyzing the exchange splitting of EPR spectra observed at T=300 K under ultra-high

magnetic fields on the basis of the two methods, Hamada-Shibata theory and MF–RPA.

In particular, the two peak structure of the observed ESR spectra and its dependence on

the field direction are well explained by the MF–RPA method. By solving the equation

of motion for the spins with use of the MF–RPA Hamiltonian, it was clarified that the

observed two peaks correspond to the ferromagnetic and antiferromagnetic resonance, re-

spectively.

We have investigated also the direct transitions from the singlet ground state to two

kinds of triplet excited states lying respectively at 2 meV and 5 meV above the ground

state, which have been observed by ESR measurements. By assuming the Dzyaloshinsky-

Moriya interaction and the different g values for spin pairs of the Cu dimer, which can

be expected reasonably from the supposed crystal structure, we have shown first that the

2 meV line is ascribed to the transition to the lowest triplet state at q=0. Since the 5

meV line cannot be understood simply by taking into account the Dzyaloshinsky-Moriya

interaction and the different g values, as possible mechanisms of the transition to 5 meV

states we considered the following two cases: the 5 meV state is regarded as, (1) the zone

folded triplet states brought about by the staggered field induced along the direction of

82



interchain, or (2) the two triplet excited states above the so-called second gap. We have

shown that the model (2) is a promising mechanism for the 5 meV line, because it can

explain well the configuration dependence of the observed ESR spectra and also the recent

experimental findings such as the observation under zero magnetic field.
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Appendix A

S=1 States in Two Triplet Model

For the two triplet states, the allowed values of the total spin S are 0, 1 and 2.

Among these three total S states, the state of S=1 has not been considered in §3-3. In

this Appendix we explain why we could neglect safely the S=1 state, namely we show

here that the off diagonal elements of the Hamiltonian or the ESR transition, which are

associated with this S=1 state, are vanishing in our present model.

The eigenvectors of S=1 formed from two triplet states are expressed as follows:

|1, 1〉i,i+1 =
1√
2
(|1, 1〉i|1, 0〉i+1 − |1, 0〉i|1, 1〉i+1), (A.1)

|1, 0〉i,i+1 =
1√
2
(|1, 1〉i|1,−1〉i+1 − |1,−1〉i|1, 1〉i+1), (A.2)

|1,−1〉i,i+1 =
1√
2
(|1, 0〉i|1,−1〉i+1 − |1,−1〉i|1, 0〉i+1), (A.3)

with

|1,Mz〉i =

⎧⎪⎨
⎪⎩

(α1α2)i for Mz = 1,
1√
2
(α1β2 + β1α2)i for Mz = 0,

(β1β2)i for Mz = −1.

By using the above states, two triplet states |2tr, S,Mz〉 with S=1 are defined as,

|2tr, 1,Mz〉 =
1√
N

∑
i

|1,Mz〉i,i+1

∏
j( �=i,i+1)

|singlet〉j, (A.4)

with

|singlet〉j =
1√
2
(α1β2 − β1α2)j,

for Mz = −1, 0, 1. Now, by making use of these states as the bases we calculate the matrix

elements of the Hamiltonian or the ESR transition. Here it is noted that in our present
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model only the subspace of wave vector k=0 is considered and further the other excited

states such as three or more triplet pairs and also two triplet pairs separated from nearest

neighbors are completely excluded.

For example, suppose to operate the D–M interaction
∑

i
�d · [�Si,1 × �Si,2] and the

Zeeman interaction with different g-values
∑

iH(g1zS
z
i,1 + g2zS

z
i,2) on the S=1 states, It

is easily understood that the resultant states turn into those obtained by changing one

of the two triplet states into the singlet state in eq.(A.4). On the basis of this fact and

the anti-bonding nature of |1,Mz〉i,i+1, we can show that there are no off-diagonal matrix

elements. For example,

〈1tr,Mz|
∑

i

�d · [�Si,1 × �Si,2]|2tr, 1, 1〉

= 〈1tr,Mz|dy − idx

2
√

2

1√
N

∑
i

(|singlet〉i|1, 0〉i+1 − |1, 0〉i|singlet〉i+1)
∏

j( �=i,i+1)

|singlet〉j

−〈1tr,Mz| idz

2

1√
N

∑
i

(|1, 1〉i|singlet〉i+1 − |singlet〉i|1, 1〉i+1)
∏

j( �=i,i+1)

|singlet〉j

= 0, (A.5)

where

|1tr,Mz〉 =
1√
N

∑
i

|1,Mz〉i
∏

j( �=i)

|singlet〉j,　　 (Mz = −1, 0, 1)

represents the 1 triplet state with k=0. Proofs for other cases are given in the similar

way.
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[14] M. AÏn, J. E. Lorenzo, L. P. Regnault, G. Dhalenne, A. Revcolevschi, B. Hennion

and Th. Jolicoeur: Phys. Rev. Lett. 78 (1997) 1560.

86



[15] T. M. Brill, J. P. Boucher, J. Voiron, A. Revcolevschi and J. P. Renard: Phys. Rev.

Lett. 73 (1994) 1545.

[16] Y. Hamano and F. Shibata: J. Phys. C: Solid State Phys. 17 (1984) 4843.

[17] H. Nojiri: private communications.

[18] K. Takehana: private communications.

[19] N. Suzuki: J. Phys. Soc. Jpn., 45 (1978) 1791.

[20] H. Takeuchi, N. Suzuki and K. Motizuki: J. Phys. Soc. Jpn. 49 (1980) 1283.

[21] N. Suzuki: J. Phys. Soc. Jpn. 50 (1981) 2931.

[22] N. Suzuki: J. Phys. Soc. Jpn. 52 (1983) 1002.

[23] N. Suzuki: J. Phys. Soc. Jpn. 52 (1983) 1009.

[24] N. Suzuki and K. Motizuki: J. Phys. C 16 (1983) 2133.

[25] Y. Matsumoto, M. Otani, H. Miyagi and N. Suzuki: Mol. Cryst. Liq. Cryst. 306

(1997) 339.

[26] J. des Cloizeaux and J. J. Pearson: Phys. Rev. 128 (1962) 2131.

[27] S. Eggert, I. Affleck and M. Takahashi: Phys. Rev. Lett. 73 (1994) 332.

[28] T. Moriya: Prog. Theor. Phys. 28 (1962) 371.

[29] D. Hone, C. Scherer and F. Borsa: Phys. Rev. B 9 (1974) 965.

[30] T. Goto, S. Maegawa and T. Kawai: J. Phys. Soc. Jpn. 55 (1986) 1066.

[31] T. Moriya: Spin Fluctuations in Itinerant Electron Magnetism, Springer Series in

Solid State Sciences 56 (Springer, Berlin, 1985).

[32] S. A. Roberts, D. R. Bloomquist, R. D. Willett and H. W. Dodgen: J. Am. Chem.

Soc. 103 (1981) 2603.

[33] K. Hida: J. Phys. Soc. Jpn. 63 (1994) 2514.

[34] K. Hirota, D. E. Cox, J. E. Lorenzo, G. Shirane, J. M. Tranquada, M. Hase, K.

Uchinokura, H. Kojima, Y. Shibuya and I. Tanaka: Phys. Rev. Lett. 73 (1994) 736.

87



[35] M. Hidaka, M. Hatae, I. Yamada, M. Nishi and J. Akimitsu: J. Phys. Condense.

Matter 9 (1997) 809.

[36] M. Arai, M. Fujita, M. Motokawa, J. Akimitsu and S. M. Bennington: Phys. Rev.

Lett. 77 (1996) 3649.

[37] Y. Yamamoto, H. Ohta, M. Motokawa, O. Fujita and J. Akimitsu: J. Phys. Soc. Jpn.

66 (1997) 1115.

[38] P. W. Anderson, J. Phys. Soc. Jpn. 9 (1954) 316.

[39] I. Yamada, M. Nishi and J. Akimitsu: J. Phys. Condense. Matter 8 (1996) 2625.

[40] T. Moriya: Phys. Rev. 120 (1960) 91.

[41] H. Nojiri, N. Miura, M. Hase, K. Uchinokura, H. Kojima, I. Tanaka, Y. Shibuya, S.

Luther and M. von Ortenberg : preprint.

[42] P. H. M. van Loosdrecht, S. Huant and G. Martinez: Phys. Rev. B 54 (1996) 3730.

[43] G. Li, J. L. Musfeldt, W. J. Wang, S. Jandl, M. Poirier, A. Revcolevshi and G.

Dhalenne: Phys. Rev. B 54 (1996) 15633.

88



List of Publications

• S. Kokado and N. Suzuki:

Magnetic Properties of Organic AF–F Alternating Chains.

Mol. Cryst. Liq. Cryst. 306 (1997, Oct.) 487-493.

• S. Kokado and N. Suzuki:

Pair Dynamical Correlated-Effective-Field Approximation.

J. Phys. Soc. Jpn. 66, No.11 (1997, Nov.) 3605-3610.

• S. Kokado and N. Suzuki:

Magnetic Properties of S=1/2 AF–F Alternating Chains —Effect of Interchain Cou-

pling.

J. Magn. & Magn. Mater. 177-181 (1998, Feb.) 677-678.

• S. Kokado, H. Nojiri, N. Miura and N. Suzuki:

Exchange Splitting of EPR Spectra in CuGeO3 under Ultra-High Magnetic Fields

—Theoretical Analysis.

Physica B 246-247 (1998, Jul.) 238-241.

• S. Kokado and N. Suzuki:

Staggered Susceptibility of S=1/2 Exchange-Alternating Chains Studied by Exact

Diagonalization Method.

J. Magn. & Magn. Mater. (1999) in press.

• S. Kokado and N. Suzuki:

Magnetic Properties of Pseudo-1D S=1/2 AF–F Alternating Chains under Magnetic

Fields.

Mol. Cryst. Liq. Cryst. (1999) in press.

• S. Kokado and N. Suzuki:

Theoretical Study on EPR and ESR Spectra in CuGeO3.

Proceeding of the 4th International Symposium on Advanced Physical Fields (1999,

Mar.) in press.

89


	title
	Main

