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Abstract
We study generic conformally flat hypersurfaces in the Euclidean4-space. The

conformal flatness condition for the Riemannian metric is given by a set of several
differential equations of order three. In this paper, we firstdefine a certain class
of metrics for 3-manifolds which includes, as a large subset, all metrics of generic
conformally flat hypersurfaces in the Euclidean4-space. We obtain a kind of integra-
bility condition on metrics of the class. Restricting our consideration to metrics of
conformally flat hypersurfaces, we define a conformal invariant for generic confor-
mally flat hypersurfaces and obtain a differential equationof order three from the
integrability condition. The equation is equal to the simplest one in equations of
conformal flatness condition. Next, we study some particular solutions of the equa-
tion. We will determine all generic conformally flat hyersurfaces corresponding to
these particular solutions under an assumption on the first fundamental form, and
characterize these hypersurfaces geometrically. The result includes all known exam-
ples of generic conformally flat hypersurfaces in the Euclidean 4-space. All known
examples are the following: The hypersurfaces given by Lafontaine ([6]) which are
made from constant Gaussian curvature surface in the three dimentional space forms,
the hypersurfaces given by Suyama ([7]), and the flat metricsobtained by Hertrich-
Jeromin ([3]). Furthermore, we explicitly construct a series of examples of generic
conformally flat hypersurface, which have a geometrical property different from all
known examples. Then, we have the following case: There exists apair of hyper-
surfaces with the same conformal invariant, each of which is constructed from a
surface with constant Gaussian curvature in either the Euclidean3-space or the stan-
dard 3-sphere but does not belong to the known examples. Furthermore, no confor-
mal transformation maps diffeomorphically one hypersurface of the pair to the other
hypersurface.

1. Introduction

As a continuation of the paper [7], we study generic conformally flat hypersur-
faces in the Euclidean 4-spaceR4 in this paper. A hypersurface is said to be generic if
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all principal curvatures are distinct (from each other) everywhere on the hypersurface.
According to Cartan’s theorem ([1], [6], [7]) and Hertrich-Jeromin ([3]) on generic
conformally flat hypersurfaces inR4, there exists a special orthogonal curvature-line
coordinate system, called a Guichard net, at each point of the hypersurface, namely a
coordinate system 1 2 3 which would represent the first fundamental form as
follows:

(1.1) = 2 ( ) cos2 ( )( 1)2 + sin2 ( )( 2)2 + ( 3)2

or

(1.2) = 2 ( ) cosh2 ( )( 1)2 + sinh2 ( )( 2)2 + ( 3)2

where ( ) = ( 1 2 3), ( ) = ( 1 2 3). Corresponding to the metric (1.1)
or (1.2) respectively, the second fundamental form is represented as

(1.3) = 2 ( ) ( ) cos2 ( )( 1)2 + ( ) sin2 ( )( 2)2 + ( )( 3)2

or

(1.4) = 2 ( ) ( ) cosh2 ( )( 1)2 + ( ) sinh2 ( )( 2)2 + ( )( 3)2

where ( ), ( ) and ( ) are principal curvatures in the directionof 1-curve,
2-curve and 3-curve, respectively. Although the metric (1.2) is obtained from the

metric (1.1) by interchanging variables, at the end of this section we will explain
the reason to consider the two metrics. Furthermore, we notethat our definition of
the Guichard net is slightly different from that of the canonical Guichard net in [3]
(cf. Remark at the end of§3.1).

We define a class of metrics for 3-manifolds which includes, as a large subset,
all metrics for generic conformally flat hypersurfaces inR4: We say that a metric
for 3-manifolds (or open sets of the Euclidean 3-spaceR3) belongs to the class if
in a suitable coordinate system1 2 3 has the following properties (1) and (2):
(1) 1 2 3 is an orthogonal coordinate system.
(2) The Riemannian curvature of is diagonalizable, that is,the components 1323,

1232 and 2131 of the curvature identically vanish.
Then, a metric of is represented in the following form with respect to the

coordinate system 1 2 3

(1.5) = 2 ( ) 2 ( )( 1)2 + 2 ( )( 2)2 + ( 3)2

by the property (1). This metric is an extension of (1.1) (resp. (1.2)), because we
have (1.1) if take 2 = cos2 and 2 = sin2 in (1.5). Moreover, the Remannian
curvature of the metric for a generic conformally flat hypersurface is diagonalized with
respect to the Guichard net by (1.3) (resp. (1.4)) and Gauss’s equation.
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In §2.1, we obtain a kind of integrability condition on metrics of the class . Fur-
thermore, when we restrict our consideration to metrics forconformally flat hypersur-
faces, we will define a conformal invariant for generic conformally flat hypersurfaces
and obtain a differential equation (see (2.1.8) (resp. (2.1.10))) for in (1.1) (resp.
(1.2)) of order three from the integrability condition. If afunction satisfies either at
least one of the equations = 0 ( = 1 2 3) or2 1 3 = 2 2 3 = 0,
then it is a particular solution of the equation.

In §2.2, we reconsider all known conformally flat hypersurfaces(the hypersurfaces
given by Lafontaine ([6]) and Suyama ([7])). For all known examples of generic con-
formally flat hypersurface, the function ( ) satisfies at least one of the equations

= 0 ( = 1 2 3). Conversely, we can show that any generic conformally flat
hypersurface such that the first fundamental form (1.1) (resp. (1.2)) satisfies at least
one of the equations = 0 ( = 1 2 3) is conformally equivalent to the known
examples. Here, we say that two hypersurfaces are conformally equivalent if there ex-
ists a conformal transformation ofR4 (resp. 4) such that maps diffeomorphically
one hypersurface to the other hypersurface.

In §3, we explicitly construct new generic conformally flat hypersurfaces such
that the in the first fundamental form (1.1) (resp. (1.2)) satisfies the equations

2 1 3 = 2 2 3 = 0 and = 0 ( = 1 2 3). When we add these
hypersurfaces to those in Theorem 2 of the paper [7], we can classify all generic con-
formally flat hypersurfaces inR4 such that the function ( ) in (1.1) (resp. (1.2)) de-
pends only on the variable3. The condition for ( ) is not conformally invariant but
there exist many new generic conformally flat hypersurfacesunder the condition. In
particular, we note that, if the function ( ) depends only on the variable 3, then the
equations 2 1 3 = 2 2 3 = 0 naturally hold. (see the claim before§3.1.)

All known hypersurfaces are conformally equivalent to the hypersurfaces con-
structed from surfaces with constant Gaussian curvature in3-dimensional space forms
in some way (see§2.2). The new hypersurfaces mentioned above are also constructed
from surfaces in the Euclidean 3-spaceR3 and the standard 3-sphere3. Furthermore,
there exist new hypersurfaces constructed from surfaces with constant Gaussian curva-
ture in R3 and 3. Then, we have the case where there exists a pair of conformally
inequivalent hypersurfaces constructed from surfaces with constant Gaussian curvature
in both R3 and 3 such that these first fundamental forms (1.1) (resp. (1.2)) have the
same function ( ). Moreover, even if the function ( ) varies continuously, there ex-
ists the case where the hypersurfaces corresponding to these functions can not deform
continuously.

Now, we state the reason to consider the two metrics (1.1) and(1.2): When we
define a function ¯ by cosh ¯ = 1 sin and sinh ¯ = cos sin for of (1.1), we
can change the metric (1.1) into (1.2). However, the function ¯ no more satisfies the
equations 2 ¯ 1 3 = 2 ¯ 2 3 = 0 even if satisfies the equations. Therefore,
when we consider functions satisfying the equations, we need to study hypersurfaces
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with the metric (1.1) or (1.2), respectively.
The author would like to express his hearty thanks to Professors Masami Okada

and Masaaki Umehara for their valuable advices. The author would like to express his
thanks to Dr. Udo Hertrich-Jeromin for many helpful discussions. He introduced in his
book [12] our new conformally flat hypersurfaces given in Example of Subsection 3.1.
Furthermore, the author would like to express his hearty thanks to Professor Shoshichi
Kobayashi. He read carefully the manuscript of this paper and gave the author many
valuable advices.

2. Several results for conformally flat hypersurfaces in Euclidean 4-space

2.1. Integrability condition on metrics of the classΞ. Let be the class of
metrics for 3-manifolds defined in the introduction. We denote by the partial deriva-
tive of a function with respect to , and by the second derivative 2 .
Since the Riemannian curvature of any metric in is diagonalized with the coordi-
nate system 1 2 3 , we have the following equations:

( + )2( + )1 12 = 2 1(2.1.1)

2( + )3 23 = 23 + 2( )3(2.1.2)

1( + )3 13 = 13 1( )3(2.1.3)

Theorem 2.1.1. There exists a function = ( 1 2 3) satisfying the follow-
ing conditions(1), (2) and (3) for any metric(1.5) of the class :

(1) 12 = ( + )2( + )1 12, (2) 13 = ( + )3 1 13, (3) 23 = ( + )3 2

23.
Moreover, the function satisfying equations(1), (2) and (3) is uniquely determined
in the following sense: When another function̄ satisfies(1), (2) and (3), ¯ is repre-
sented as¯( 1 2 3) = ( 1 2 3) + ( 1) + ( 2) + ( 3).

Proof. By a direct calculation from the equations (2.1.1), (2.1.2) and (2.1.3), we
derive the following equations:

( + )3 1 2 = ( + )3 2 1(2.1.4)

2( + )3 1 = ( + )2( + )1 3(2.1.5)

( + )1( + )2 3 = 1( + )3 2(2.1.6)

Here, we only prove (2.1.4). We have

( + )3 1 2 ( + )3 2 1 = ( + )23 1 ( + )13 2 + ( )3 12

= 1 2( )3 ( )3( 2 1 + 1 2 12)

= ( )3( 1 2 + 2 1 + 1 2 12) = 0
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The second equality above follows from (2.1.2) and (2.1.3).The last equality follows
from (2.1.1).

Next, we show that there exists a function = (1 2 3) such that 12 =
( + )2( + )1 13 = ( + )3 1 and 23 = ( + )3 2. In fact: By (2.1.4),
(2.1.5) and (2.1.6), there exist functions = (1 2 3), ¯ = ¯( 1 2 3) and
ˆ = ˆ ( 1 2 3) such that

1 = ( + )3 1 2 = ( + )3 2 ¯1 = ( + )2( + )1
¯3 = 2( + )3 ˆ 3 = 1( + )3 ˆ 2 = ( + )1( + )2

Then, by 1 = ˆ 3 2 = ¯3 ¯1 = ˆ 2 there exist functions = (1 2 3) ¯ =
¯( 1 2 3) and ˆ = ˆ ( 1 2 3) such that

1 = ˆ 3 = ¯2 = ¯ 3̄ = ˆ 1 = ˆ ˆ 2 = ¯

Therefore, we have 1 = ˆ 1 = ˆ , 3 = ¯3 = and ¯2 = ˆ 2 = ¯. Furthermore, since
ˆ = ( 2 3), ¯ = ( 1 2) and ¯ ˆ = ( 1 3), we have

( 1 3) = ¯ ˆ = ( ˆ ) ( ¯) = ( 2 3) ( 1 2)

Therefore, each variables of functions and have to separateto each other:
( 2 3) = ( 2) + ( 3), ( 1 2) = ( 1) + ( 2), ( 1 3) = ( 3) ( 1).

Hence, all functions ¯ and ˆ are equal to each other up to functions of one vari-
able, and it satifies the statement.

From the argument above, we can define by = the function satisfying
the conditions of Theorem.

From Theorem 2.1.1 and the equations (2.1.1), (2.1.2) and (2.1.3), we have the
following Corollary.

Corollary 2.1.1. Let be a metric of the class and( 1 2 3) be a func-
tion given inTheorem 2.1.1. Then we have the following equations:

(1) 12 = 2 1 (2) 13 = 13 1( )3 (3) 23 = 23 + 2( )3

We restrict the statement of Corollary 2.1.1 to metrics for conformally flat hyper-
surfaces: In the case of the metric (1.1), we have

(2.1.7) 12 = 1 2 13 = 13 cot 23 = 23 tan

Then, the integrability condition for is given by

(2.1.8) 123 = 1 23 tan + 2 13cot
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In the case of the metric (1.2), we have

(2.1.9) 12 = 1 2 13 = 13 coth 23 = 23 tanh

where coth =(tanh )1. The integrability condition for is given by

(2.1.10) 123 = 1 23 tanh + 2 13coth

When a conformal transformation ofR4 (resp. 4) is restricted to a hypersurface,
the function ( ) in the metric (1.1) (resp. (1.2)) changes into another function¯( ).
However, since the function does not change, the function also does not change
by (2.1.7) (resp. (2.1.9)). Therefore, when we fix the first fundamental form on ei-
ther (1.1) or (1.2), the pair of functions is a conformal invariant for conformally
flat hypersurfaces.

Furthermore, the invariant for hypersurfaces (or metrics)is extended to an
invariant for flat Riemannian manifolds conformally equivalent to conformally flat hy-
persurfaces, because the Riemannian curvature of a flat metric is trivially diagonalized.
Hertrich-Jeromin [3] gave the examples of the Guichard net of R3 such that the canon-
ical flat metric forR3 is represented as (1.1) (resp. (1.2)).

The equation (2.1.8) (resp. (2.1.10) ) is one of the equations in the conformal flat-
ness condition of the metric (1.1) (resp. (1.2)). Other equations in the conformal flat-
ness condition of the metric (1.1) (resp. (1.2)) are given by(3.1.2), (3.1.3) and (3.1.4)
(resp. (3.2.2), (3.2.3) and (3.2.4)) in§3. The equation (2.1.8) (resp. (2.1.10)) is the
simplest equation in these conformal flatness conditions.

If a function satisfies either at least one of the equations = 0( = 1 2 3) or

13 = 23 = 0, then it is a particular solution of (2.1.8) (resp. (2.1.10)). In the following
Subsection 2.2, we study the hypersurfaces with the first fundamental form satisfying
at least one of the equations = 0 ( = 1 2 3).

In §3, we will use Theorem 2.1.1 and the equations (2.1.7), (2.1.9). We note: Al-
though the function of the conformal invariant is derived from the function when

is given, we expect that other solutions of (2.1.8) (resp. (2.1.10)) could be found
from the equation (2.1.7) (resp. (2.1.9)). Furthermore, itis interesting that there exists
the class of the Riemannnian metrics including all metrics for conformally flat hy-
persurfaces.

2.2. Known examples of conformally flat hypersurfaces in Euclidean 4-space
and in 4-sphere. The generic conformally flat hypersurfaces given by Lafontaine ([6])
are made from constant curvature surfaces in the 3-dimentional space forms. However,
when we study a classification of conformally flat hypersurfaces, we need to charac-
terize all images of these hypersurfaces under the action ofconformal transformations
of R4 (or 4). In this subsection, we regard these hypersurfaces inR4 as ones in the
standard 4-sphere4. Then we will find a common structure on4 for all such hyper-
surfaces.
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In the Euclidean 5-spaceR5, we consider a rotation of a hyperplane0 preserving
an affine 3-space of 0. We denote by the rotation parameter and by a hyper-
plane obtained by the rotation of0. When the intersection 4 is a 3-sphere, we
denote it by 3. The 1-parameter family 3 of 3-spheres in 4 is determined by the
hyperplane 0 and the rotation. We say that two 1-parameter families of 3-spheres are
equivalent if there exists a conformal transformation of4 such that maps each
3-sphere of one family to that of the other family. We donote by the affine 2-space
such that is orthogonal to the space and 4 is a great circle of 4. Then, the
rotation above is determined by a rotation of a line in preserving a point of .
According to each of the three cases where the point is outside of 4, included
in 4 and inside of 4, these 1-parameter families 3 are divided into three
classes.

Let be a generic conformally flat hypersurface in4 and let it be conformally
equivalent to one of the hypersurfaces given by Lafontaine.Then, we can take a rota-
tion of a hyperplane 0 such that, for some0, is made from the surface = 3

0

and the rotation. For the Guichard net of , the coordinate functions 1 and 2 are
given by a principal curvature-line coordinate system of in3

0
and the coordinate

function 3 is obtained by a parameter change of . When we represent the first fun-
damental form (1.1) or (1.2) for in the form2 ( 2 ( 1)2 + 2 ( 2)2 + ( 3)2)
with respect to the Guichard net, the metric2 ( 1)2 + 2 ( 2)2 for has a constant
Gaussian curvature.

For a hypersurface given by Lafontaine, we say that belongs to the hyper-
bolic class (resp. the parabolic class, the elliptic class)if the point is outside of 4

(resp. included in 4, inside of 4).
We recognize the above conformally flat hypesurfaces in4 as hypersurfaces

immersed inR4 through the stereographic projection. Then, we have three classes of
the hypersurfaces inR4: The normal form of a hypersurface inR4 which belongs to
the hyperbolic class is a cone hypersurface made from a constant Gaussian curvature
surface in 3. The normal form of a hypersurface which belongs to the parabolic class
is made by the direct product of a constant Gaussian curvature surface inR3 and R.
The normal form of a hypersurface which belongs to the elliptic class is made from
the revolution of a constant Gaussian curvature surface in the hyperbolic 3-space 3.
Here, 3 is the upper half-space inR3 (of R4) with the Poincaŕe metric. These normal
forms are the hypersurfaces given in [6].

When we fix any 3 for the Guichard net above, each level surface is totally um-
bilic in the hypersurface. Furthermore, the function in themetric satisfies the equa-
tion 3 = 0.

Next, we reconsider the result of the paper [7] under the above consideration. In
the paper [7], we gave an explicit representation of metricsfor conformally flat hyper-
surfaces inR4 belonging to (T.1)-type and (T.2)-type. We note that all metrics obtained
there satisfy at least one of the equations1 = 0, 2 = 0 and 3 = 0.
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In particular, when we regard hypersurfaces inR4 as ones in 4, we can recog-
nize that all hypersurfaces in Theorem 1 in [7] belong to the hyperbolic class, and
further their normal forms are made from the Clifford tori in3. The hypersurfaces
in Theorem 2-(3b) in [7] were constructed by two kind of revolutions of plane curves
in R4: When the curve is in the 1 3 -plane of R4 with the canonical coordinate
system 1 2 3 4 , one revolution preserves the 3 4 -plane and the other pre-
serves the 1 2 -plane. We verify that the surfaces inR3 made by each revolution
of the plane curves are constant curvarure surfaces when we regard them as the sur-
faces in the half-space 3 with the Poincaŕe metric.

We can prove the converse of the above statements.

Theorem 2.2.1. Let be a generic conformally flat hypersurface in the Eu-
clidean 4-space with the first fundamental form of(1.1) (resp. (1.2)). Then the fol-
lowing three statements(1), (2) and (3) are equivalent:
(1) The metric satisfies at least one of the three equations1 = 0, 2 = 0 and 3 = 0.
(2) Any level surface determined by = constant with some coordinate function is
totally umbilic in .
(3) is a hypersurface belonging to one of the class of hyperbolic, parabolic and
elliptic.

It is interesting that all known examples of generic conformally flat hypersurface
are characterized by only the metric condition (1). The factthat the statement (1) im-
plies (3) is proved by constructing generic conformally flathypersurfaces inR4 from
the metric condition (1).

For the reconsideration of paper [7] and Theorem 2.2.1 mentioned above, see the
paper [9].

3. New examples of conformally flat hypersurface

In the classification of generic conformally flat fypersurfaces of (T.2)-type (Theo-
rem 2 in [7]), we missed the case where the metric (1.1) (resp.(1.2)) has the proper-
ties 1 = 2 = 13 = 23 = 0, 3 = 0 and further satisfies at least one of inequalities

1 = 0 or 2 = 0.
We first explain how this case occurs in the classification of (T.2)-type hypersur-

faces. Next, we explicitely construct all generic conformally flat hypersurfaces satisfy-
ing these conditions. In particular, when the metrics satisfy both inequalities 1 = 0
and 2 = 0, the hypersurfaces obtained here are new examples which are conformally
inequivalent to the known examples.

In the equation (4.12) of the paper [7], we represented hypersurfaces of (T.2)-
type as follows: We took a curve ( ) in a plane0 of R4, a mapping (1 2)
into the group (4) of orthogonal matrices and a mappinga( 1 2) into R4 for any
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( 1 2). If ( ) is not a line, then was given by

: ( 1 2 3) = ( 1 2) ( 3) + a( 1 2)(4.12)

Then, we claimed in Proposition 4.3 thata( 1 2) does not depend on the variable
1 in the domain with 1( 1 2) 0 = 0. However, in addition to it we have one more

case to consider. Namely, the mappinga( 1 2) defines a surface inR4 and further the
surfacea( 1 2) has an orthonormal frame fieldn( 1 2) n̄( 1 2) of the normal
bundle satisfying the conditions

n1( 1 2) = 1( 1 2)a1( 1 2) n̄1( 1 2) = 1̄( 1 2)a1( 1 2)

where 1 and 1̄ are the principal curvatures. Indeed, this case follows from Lem-
mas 4.2 and 4.4 (in [7]). In the same way, in the domain with2( 1 2) 0 = 0, we
also have the case where the frame field of the surfacea( 1 2) satisfies the following
conditions:

n2( 1 2) = 2( 1 2)a2( 1 2) n̄2( 1 2) = 2̄( 1 2)a2( 1 2)

Therefore, we have to add, in the statement of Theorem 2 in thepaper [7], the
case where the representation (4.12) is written in the following form (4.12) : Let a
surfacea( 1 2) in R4 have an orthonormal frame fieldn( 1 2) n̄( 1 2) of the
normal bundle satisfying above four conditions. Given functions ( 3), ( 3) and such
a surfacea( 1 2) in R4, is defined by

: ( 1 2 3) = a( 1 2) + ( 3)n( 1 2) + ( 3)n̄( 1 2)(4.12)

under the condition that the curve ( (3) ( 3)) in R2 is not a line.
We will replace the above geometrical conditions by a metriccondition. Since we

need to change the parameter3 in the representation of the metric (T.2) of the pa-
per [7], the metric condition for a (T.2)-type hypersurfaceis equivalent to the condi-
tion that the function ( ) in (1.1) and (1.2) depends only on one variable 3. Then,
we have 13 = 23 = 0 by Theorem 2.1.1 and 1 = 2 = 0. The condition that
the curve ( ( 3) ( 3)) is not a line is equivalent to the inequality3 = 0 (cf. The-
orem 2-(2) in [7]). Furthermore, we must have at least one of the inequalities 1 = 0
and 2 = 0 in this case (Compare this condition with Theorem 2-(3) of[7]). There-
fore, if hypersurfaces (4.12) exist, then the first fundamental forms have to satisfy the
conditions 1 = 2 = 13 = 23 = 0, 3 = 0 and further satisfy at least one of the
inequalities 1 = 0 and 2 = 0. Here, the equalities13 = 23 = 0 follow from (2.1.7)
and (2.1.9).

We study the existence problem of such hypersurfaces in the case of the met-
ric (1.1) (resp. (1.2)) in the following Subsection 3.1 (resp. 3.2).
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3.1. In this subsection, we study generic conformally flat hyperurfaces with the
first fundamental form

(3.1.1) = 2 ( 3) cos2 ( )( 1)2 + sin2 ( )( 2)2 + ( 3)2

under the assumption3 = 0 and further assumption that satisfies at least one of
inequalities 1 = 0 and 2 = 0. Since the metric̄ = cos2 ( )( 1)2 + sin2 ( )( 2)2 +
( 3)2 is conformally flat, we have

2 cos 2 2( 22 11) + sin 2 ( 112 222) sin 2 233(3.1.2)

+ 2 cos 2 3 23 = 2 3 23 2 2 33

2 cos 2 1( 22 11) + sin 2 ( 111 122) + sin 2 133(3.1.3)

2 cos 2 3 13 = 2 3 13 2 1 33

sin 2 ( 113 + 223 + 333) 2 cos 2 ( 3 33 + 1 13 + 2 23)(3.1.4)

= 2 1 13 2 2 23 2 3( 11 22)

by (4.6), (4.7) and (4.8) in the paper [7].
Since the function in (3.1.1) depends only on one variable3, we have the

equations 13 = 23 = 0. The condition 13 = 23 = 0 is equivalent to the condition
that the function is represented as (1 2 3) = ( 1 2) + ( 3).

Proposition 3.1.1. Let a metric (3.1.1) be conformally flat. We assume that the
function is represented as

(3.1.5) ( 1 2 3) = ( 1 2) + ( 3)

where functions ( 1 2) and ( 3) satisfy 3 = 0 and at least one of the two in-
eqalities 1 = 0 and 2 = 0.

Then, we have the following facts(1) and (2): We denote by and positive
constants.

(1) The function ( 1 2) satisfies the Sine-Gordon equation:

11 22 =
2

2
sin(2 )

(2) The function ( 3) is a Jacobi’s amplitude function(an elliptic function):

3( 3) = 2 2 sin2 ( 3)
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Proof. We first prove the statements (A) and (B) below.
(A) The function ( 1 2) satisfies the Sine-Gordon equation:

(3.1.6) 11 22 =
2

2
sin(2 2 )

where and are constant.

Proof of (A). By (3.1.5) and the conformal flatness conditions (3.1.2) and
(3.1.3), we have

2 cos 2 2( 22 11) + sin 2 ( 112 222) = 2 2 33(3.1.7)

2 cos 2 1( 22 11) + sin 2 ( 111 122) = 2 1 33(3.1.8)

Therefore, the following function (1 2) is independent of = 1 and 2:

2 ( 1 2) =
( 11 22) ( = 1 2)

Here, we assumed both inequalities1 = 0 and 2 = 0 for the sake of simplicity. We
define functions (1 2) and ( 1 2) by

( 1 2) = 11 22
2 + 2 ( 1 2) cos ( 1 2) = ( 1 2)

and 2 + 2 ( 1 2) sin ( 1 2) = ( 1 2)

Then, we have

33 = sin 2 + cos 2 = 2 + 2 sin(2 + )(3.1.9)

= 2 + 2 sin(2 + ) cos 2 + 2 + 2 cos(2 + ) sin 2

by (3.1.7) and (3.1.8). Further, since the function dependsonly on 3, we have that

¯ = 2 + 2 sin(2 + ) ( 1 2) and ¯ = 2 + 2 cos(2 + ) ( 1 2)

are constant functions. Therefore, (2 + 2)( 1 2) and (2 + )( 1 2) are also con-
stants. Then, we have

(3.1.10) 33 = ¯ cos 2 + ¯ sin 2

On the other hand, by the conformal flatness condition (3.1.4) we have

(3.1.11) sin 2 333 = 2 3(cos 2 33 11+ 22)

When we insert (3.1.10) into (3.1.11), we have the Sine-Gordon equation

11 22 = ¯ cos 2 ¯ sin 2
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We take a constant such that ¯2 + ¯2 sin 2 = ¯ and ¯2 + ¯2 cos 2 =
¯, and define a constant 2 by 2 = 2 ¯2 + ¯2. Then we have 11 22 =

( 2 2) sin(2 2 ). Thus, this competes the proof of (A).

(B) The function ( 3) is given by the following equation:

(3.1.12) 3( 3) = 2 2(sin( ( 3) + ))2

where , are the same constants as in (1) and is another constant.

Proof of (B). Since the function (3) satisfies the equation (3.1.10), we have
( 3)2

3 = 2 3 ¯2 + ¯2 sin(2 + 2 ) . Since 2 = 2 ¯2 + ¯2 , we have

( 3)2 = +
2

2
cos(2 + 2 ) with a constant

Therefore, putting 2 = + ¯2 + ¯2 , we have the statement (B).

Consequently, the statements (1) and (2) in Theorem follow from = + =
( ) + ( + ), when we replace and + in the statements (A) and (B)
by and respectively.

On the right hand side of the Sine-Gordon equation in Proposition 3.1.1-(1), we
gave a positive constant (2 2) as the coefficient of sin(2 ). In general, we can also
give any negative constant as the coefficient (when we take 2 =in (A) of the proof
above). However, when we interchange1 and 2 in the case of negative constant, we
may consider it as a positive constant.

If we take 2 = 2 in Proposition 3.1.1-(2), then 3 = cos ( 3). Hertrich-
Jeromin ([3]) gave this case as a new example of the Guichard net in R3. After this
work has been completed, Dr. Udo Hertrich-Jeromin informedthe author that he also
obtained a result similar to Proposition 3.1.1 ([5]).

Next, we construct a typical example of our generic conformally flat hypersurface
in R4 whose metric is conformal to the metric in Proposition 3.1.1. This example is
made from Dini’s helix inR3 and a function (3) satisfying 2 1 (= 2). The
parametrization of Dini’s helix inR3 used here was given by Hertrich-Jeromin ([3]).

EXAMPLE. For a constant ( 2 2) and a function (1 2) = ( 2

1 sin ) cos , a Dini’s helix with curvature 1 (2 = 1) in R3 is defined by the
mapping

f( 1 2) = (cosh ) 1( cos sin 1 cos cos 1 2 cosh cos sinh )

The unit normal vector fieldn( 1 2) is given by

n = (cosh ) 1( cos sin 1 sinh + sin cos 1 cosh

cos cos 1 sinh + sin sin 1 cosh cos )
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We define functions (3) and ( 3) by

( 3) = tan ( 3) 3( 3) =
1 2

(cos ( 3))2

with a function ( 3) in Proposition 3.1.1 satisfying 2 1 (= 2) and (0) = 0.
Then, the mappingp( 1 2 3) into R4 given by

(3.1.13) p( 1 2 3) = f( 1 2) 0 + ( 3)n( 1 2) ( 3)

defines a generic conformally flat hypersurface.

Proof of Example. The first derivativesf1 and f2 are given by the following:

f1 = (cosh ) 2( cos cos 1 cosh sin sin 1 sinh

cos sin 1 cosh + sin cos1 sinh sin )

f2 = sinh (cosh )2(sin 1 cos 1 sinh )

Thus, we have f1
2 = 1 (cosh )2 and f2

2 = (sinh cosh )2. (We assume 0.)
Therefore, as for the function (1 2) which defines Dini’s helix, we havef1 =
cos = 1 cosh and f2 = sin = sinh cosh .

Since n1 = sinh f1 and n2 = (sinh ) 1f2, we have the following equations for
the mappingp( 1 2 3) of (3.1.13):

p1 = (1 + sinh )(f1 0) p2 = (1 (sinh ) 1)(f2 0) p3 = ( 3n 3)

p1
2 =

(1 + sinh )2

(cosh )2
p2

2 =
(sinh )2

(cosh )2
p3

2 = ( 3)2 + ( 3)2

(If we take ( 3) with (0) = 0, then the functions (1 + sinh ) and (sinh ) are
positive around 3 = 0.)

Now, we have only to find functions ( (3) ( 3)) such that

(3.1.14) cos( + ) =
p1

2
3 + 2

3

sin( + ) =
p2

2
3 + 2

3

Indeed, if there exist such functions, then the metric induced from p becomes

(3.1.15) = (1 + 2) (cos( + ))2( 1)2 + (sin( + ))2( 2)2 + ( 3)2

Then, the function (1 +2) depends only on 3 and the metric is conformally flat.
We assume that the functions (3) and ( 3) satisfy the equations (3.1.14). Then,

we have

cos =
1

2
3 + 2

3

and sin =
2
3 + 2

3
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Therefore, we first have = tan .
Next, by differentiating = tan , we have3 = 3 (cos )2. Thus, we have

( 3)2 = ( 2 (sin )2) (cos )4 by ( 3)2 = 2 (sin )2. Furthermore, from (1 +2) =
( 2

3 + 2
3) we can derive

( 3)2 = 1 + 2 ( 3)2 =
1 2

(cos )4

Therefore, we have 2 1 and 3 = 1 2 (cos )2. (By a suitable parallel trans-
lation of 4-axis, we can assume (0) = 0.) Conversely, when we take = tan and

3 = 1 2 (cos )2, the equation (3.1.14) holds.
Finally, we prove that each -curve ofp is a principal curvature line. The unit

normal vecter field (1 2 3) of p is = 1 1 + 2 ( 3n 3). Therefore, we have

1 =
1 2 sinh

cos sin sinh
p1 2 =

1 2

sin + cos sinh
p2

3 = sin 1 2 p3

The proof of the example is now completed.
We add some remarks: (1) The hypersurfaces obtained here deform continuously

with the parameter 2 ( 1 = 2). Then, at 2 = 1 (= 2) the hypersurface degener-
ates to a domain in a hyperplaneR3. (2) A Dini’s helix for = 0 is a pseudosphere,
which is a surface of revolution. Therefore, the obtained hypersurfacep( 1 2 3) be-
longs to the elliptic class. (We have1 = 0 in this case.) Then, the surfacep(0 2 3)
in the hyperbolic 3-space 3 has a constant curvature 2.

We extend the above result for Dini’s helix to all constant negative curvature sur-
faces inR3 and 3. In particular, the following Theorem 3.1.1 implies that, if there
exist new conformally flat hypersurfaces with the metric (3.1.1), then they must be
constructed from surfaces inR3 or 3 with the metric cos2 ( 1)2 + sin2 ( 2)2.

Theorem 3.1.1. Let : ( 1 2) f( 1 2) R4 be an immersed surface inR4.
We assume that there exists an orthonormal frame fieldn n̄ of the normal bundle of

satisfying the following conditions:

n1 = 1( 1 2)f1 n2 = 2( 1 2)f2

n̄1 = 1̄( 1 2)f1 n̄2 = 2̄( 1 2)f2
(3.1.16)

where ( 1 2) and ¯ ( 1 2) denote the principal curvatures of . Furthermore, we
assume that, from the surface and two functions( 3) and ( 3) with (0) = (0) =
0, a hypersurfacep : ( 1 2 3) p( 1 2 3) R4 is defined in the following form:

(3.1.17) p( 1 2 3) = f( 1 2) + ( 3)n( 1 2) + ( 3)n̄( 1 2)



CONFORMALLY FLAT HYPERSURFACES 587

Then, we have the following fact: If ( ( 3) ( 3)) is not a line inR2 and the first
fundamental form forp is represented in terms of the functions( 1 2) and ( 3)
( (0) = 0) in Proposition 3.1.1as follows:

(3.1.18) 2 ( 3) cos2( + )( 1)2 + sin2( + )( 2)2 + ( 3)2

then the surface mentioned as above has to be included in either a hyperplaneR3

or a standard3-sphere 3 in R4.

Proof. First, we consider the mapp( 1 2 0). Then, sincep1 = f1 and p2 = f2,
the first fundamental form for the mapf is 2 (0) cos2 ( 1)2 + sin2 ( 2)2 . Replac-
ing (0)f( 1 2) by f( 1 2), we can assume (0) = 1 and (2

3 + 2
3)(0) = 1.

Next, by the definition ofp( 1 2 3), we have

p1
2 = (1 + 1 + 1̄)2 cos2

p2
2 = (1 + 2 + 2̄)2 sin2 p3

2 = 2
3 + 2

3

(3.1.19)

For the sake of simplicity, we assume cos 0, sin 0, (1 +1 + 1̄) 0 and
(1 + 2 + 2̄) 0. By (3.1.18) and (3.1.19), we have

(3.1.20) cos( + ) =
1 + 1 + 1̄

2
3 + 2

3

cos sin( + ) =
1 + 2 + 2̄

2
3 + 2

3

sin

By (3.1.20), we also have

cos
1

2
3 + 2

3

=
2
3 + 2

3

( 1 cos2 + 2 sin2 )(3.1.21)

+
2
3 + 2

3

( 1̄ cos2 + 2̄ sin2 )

and

(3.1.22) sin = sin cos
2
3 + 2

3

( 2 1) +
2
3 + 2

3

( 2̄ 1̄)

Since, in the equations (3.1.21) and (3.1.22), the functions of the left hand side and
2
3 + 2

3
2
3 + 2

3 depend only on 3 and further ( ( 3) ( 3)) is not a line,

there exist constants1 2 3 and 4 such that

( 1 cos2 + 2 sin2 ) = 1 ( 1̄ cos2 + 2̄ sin2 ) = 2(3.1.23)

sin cos ( 2 1) = 3 sin cos ( 2̄ 1̄) = 4(3.1.24)
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By (3.1.23) and (3.1.24), we have more explicit forms for theconditions (3.1.16);

n1 = ( 1 3 tan )f1 n2 = ( 1 + 3 cot )f2(3.1.25)

n̄1 = ( 2 4 tan )f1 n̄2 = ( 2 + 4 cot )f2(3.1.26)

We assume 3 = 0 and 4 = 0 for the sake of simplicity.
By (3.1.25) and (3.1.26), we have, for = 1 2,

(3.1.27) ( 4n 3n̄) = ( 1 4 2 3)f

In the equation (3.1.27), if (1 4 2 3) = 0, then the surface is included in a
hyperplaneR3 orthogonal to the constant vector (4n 3n̄).

Finally, we study the case (1 4 2 3) = 0. For the sake of simplicity, we
assume ( 1 4 2 3) = 1. By (3.1.27), there exists a constant vectora such that

4n 3n̄ = a + f. When we differenciate both sides of 4n 3n̄ f = a f + f f
with respect to ( = 1, 2), we havef f + 4n 3n̄ f = a f +2 f f . Sincen
and n̄ are normal vectors of , we havea + f f = 0; Namely, a + f a + f = constant.
Therefore, the surface is included in a sphere3 with center ( a).

Next, we study the existence problem of surfaces inR3 and 3 (of R4) satisfying
the following conditions (1) and (2): (1) The surface has a metric ˆ = cos2 ( 1)2 +
sin2 ( 2)2. (2) There exists an orthonormal frame field of the normal bundle satis-
fying the conditions (3.1.25) and (3.1.26). However, when asurface inR4 is included
in R3 (resp. 3), we can take, as one of the normal vecter fieldsn and n̄, a constant
vector orthogonal to theR3 (resp. the position vector of each point in the surface). Let
us denote by 3(1) the standard sphere with radius 1.

Lemma 3.1.1. For any function ( 1 2) in Proposition 3.1.1-(1),there exist
surfaces in bothR3 and 3(1) such that the surface has the first fundamental
form ˆ = cos2 ( 1)2 + sin2 ( 2)2 and that satisfies the following conditions(1)
and (2): (1) Each -curve( = 1 2) is a principal curvature line of .(2) A unit
vector fieldn normal to satisfies the condition(3.1.25).
Then, the second fundamental formsˆ for the surfaces are respectively given as fol-
lows: Let be the positive constant at the definition of( 1 2) in Proposition 3.1.1-
(1).
(1) The case of the surface inR3: ˆ = sin cos ( 1)2 ( 2)2 .
(2) The case of the surface in3: ˆ = 2 + 1 sin cos ( 1)2 ( 2)2 .

Proof. The Gaussian curvature of the metricˆ is given by

(3.1.28) = 11 22

sin cos
= 2
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We have only to find surfaces inR3 and 3(1) such that they satisfy the condition (2)
and that these second fundamental forms are represented asˆ = 11( 1)2 + 22( 2)2.
We define functions (1 2) and ( 1 2) by

(3.1.29) 11 = cos2 22 = sin2

By (3.1.28), we have respectively the following equations depending on whether the
surface is inR3 or 3(1):

(3.1.30) = 1 or = 1 2

From Codazzi’s equation (11) 2 = 1
12 11

2
11 22 and ( 22) 1 = 1

22 11 +
2
12 22, we have

(3.1.31) 2 cos = ( ) 2 sin 1 sin = ( ) 1 cos

Then, functions and depend only on (1 2) by (3.1.25). By abuse of notation,
we write ( 1 2) = ( ( 1 2)) and ( 1 2) = ( ( 1 2)). Thus, we can denote

= , = . Then, we have ( ) = ( )(sin cos cos sin )
by (3.1.31). Therefore, we have the following equation:

(3.1.32) ( ) =
sin cos

with a constant

We only consider the case where is a surface in3(1). By (3.1.30) and (3.1.32),
and are the solutions of the following quadratic equation for :

2

sin cos
+ (1 + 2) = 0

The discriminant of the quadratic equation is given by

=
2 (1 + 2) sin2(2 )

sin2 cos2

Since and are rational functions in sin and cos by (3.1.25), we have 2 =
(1 + 2). (In the case where is a surface inR3, we have 2 = 1.) Therefore, =
( 2 + 1 ) tan and = ( 2 + 1 ) cot by (3.1.31). By the above argument,
the second fundamental form̂ is given by ˆ = 2 + 1 sin cos ( 1)2 ( 2)2 .

Theorem 3.1.2. Let ( 1 2) and ( 3) be the functions inProposition 3.1.1.
Let be a negative constant curvature surface inR3 determined from the function

( 1 2). The first fundamental form̂ and the second fundamental form̂for are
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respectively given as follows:

ˆ = cos2 ( 1)2 + sin2 ( 2)2 ˆ = sin cos ( 1)2 ( 2)2

Then, the mapp( 1 2 3) into R4, made from the surface and function( 3)
in the same way as in(3.1.17),defines a generic conformally flat hypersurface if and
only if the constant 2 in the definition of ( 3) satisfies the inequality 2 2.

Furthermore, each -curve of the hypersurfacep is a principal curvature line.

Proof. The surface is inR3 by the assumption. Let : (1 2) f( 1 2)
R3 denote the immersion andn( 1 2) a unit vector field normal to inR3.
Then, the mapp( 1 2 3) of (3.1.17) is given byp( 1 2 3) = (f( 1 2) +
( 3)n( 1 2) ( 3)).

From the second fundamental form, it follows thatn1 = tan f1, and n2 =
cot f2. The rest of the proof is same as in the proof of Example. Here,the func-

tions and are respectively determined by

(3.1.33) ( 3) =
tan ( 3)

3 =
2 2

cos2 ( 3)

Finally, we can directly show that each -curve of the hypersurface p is a prin-
cipal curvature line.

Theorem 3.1.3. Let ( 1 2) and ( 3) be the functions inProposition 3.1.1.
Let be a negative constant curvature surface in3(1) determined from ( 1 2).
The first fundamental form̂ and the second fundamental form̂for are respectively
given as follows:

ˆ = cos2 ( 1)2 + sin2 ( 2)2 ˆ = 2 + 1 sin cos ( 1)2 ( 2)2

Then, the mapp( 1 2 3) into R4, made from and ( 3) in the same way as
in (3.1.17),defines a generic conformally flat hypersurface if and only ifthe constant

2 in the definition of ( 3) satisfies the inequality 2 + 1 2.
Furthermore, each -curve of the hypersurfacep is a principal curvature line.

Proof. Since the surface is in3(1), we denote the immersion by : (1 2)
f( 1 2) 3(1). Let n( 1 2) be a unit vector field normal to in 3(1). Since
f( 1 2) is another unit vector field normal to inR4, the map p( 1 2 3)
of (3.1.17) is given by

p( 1 2 3) = 1 + ( 3) f( 1 2) + ( 3)n( 1 2)

Furthermore, from the second fundamental form it follows that n1 = 2 + 1 tan f1
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and n2 = 2 + 1 cot f2. Then, the equations (3.1.20) become as follows:

cos( + ) =
(1 + ) cos 2 + 1 sin

2
3 + 2

3

sin( + ) =
(1 + ) sin + 2 + 1 cos

2
3 + 2

3

Therefore, we have

(3.1.34) cos =
1 +

2
3 + 2

3

sin =
2 + 1

2
3 + 2

3

Conversely, if there exist functions (3) and ( 3) satisfying the equations (3.1.34),
then the mapp defines a conformally flat hypersurface.

For the sake of simplicity, we denotē= (1+ ), ( 3) = ( 2
3 + 2

3)( 3). Then, we
have

(3.1.35) =
t̄an

2 + 1
2̄ + ( 2 + 1) 2 = 2

When we substitute =̄tan 2 + 1 and

3 = 3̄ sin cos +̄ 3

2 + 1 cos2

into the second equation of (3.1.35), we have

cos2 ( 2 cos2 + 1) 3̄

¯

2

+ 2 3 sin cos 3̄

¯ + 2
3 ( 2 + 1) cos2 = 0

Since ( 3)2 = 2 2 sin2 and the discriminant of the quadratic equation for
( 3̄ )̄ is 4 = ( 2 + 1)( 2 + 1 2) cos4 , ( 3̄ )̄ is a real function if and only if

2 + 1 2. Thus, in the case 2 + 1 2 we have two functions (3) under an
initial condition (0) = (0) = 0. (Here, we assumed (0) = 0.) This fact corresponds
to the existence of an inversion which fixes the surface . Furthermore, if ( 3) is de-
termined, then (3) is also determined.

If 2+1 = 2, then all principal curvatures are the same constant; = = = 1.
Furthermore, the hypersurface is a domain of the 3-sphere3(1).

Finally, we can directly show that each -curve of the hypersurface p is a prin-
cipal curvature line.

By Theorems 3.1.2 and 3.1.3, when the functions (1 2) and ( 3) are defined
from the constants 2 and 2 satisfying 2 2, we have two generic comformally
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flat hypersurfaces corresponding to these functions. We note that these hypersurfaces
have the same conformal invariant . Furthermore, each -curve in both hyper-
surfaces is a principal curvature line. In Corollary 3.1.1 below, we show that these two
hypersurfaces are not conformally equivalent to each other. First, we prepare the fol-
lowing Proposition for Corollary 3.1.1.

Proposition 3.1.2. Let be an injective conformal map from(R3 ) to
( 3(1) ), where and are respectively the canonical metrics forR3 and 3(1).
Then, the subset inR3 where is isometric(or homothetic) is included in a2-sphere

2.

Proof. We consider the metric forR3 induced by the map . Let

1 : R3 3(1) be a stereographic projection, and2 : 3(1) 3(1) a suitable con-
formal transformation of 3(1). Then, we have = 2 1. When we consider that
the map 1 gives a coordinate system on3(1), the metric forR3 (as the metric for

3(1)) is given by 1 :

1 =
4

(1 + 2)2
( 1)2 + ( 2)2 + ( 3)2 =

4

(1 + 2)2

Since we consider a transformation ofR3, the group of conformal transformations con-
sists of Euclidean motions, homotheties and inversions acting on R3. In both cases
of Euclidean motions and homotheties, the metric is determined homothetically
by 1 . Thus, as a conformal transformation2 of 3(1) we consider an inversion
( 1

1 2 1)( ) = ( 0) 0
2 ((0 ) R) acting on R3, where

= 1 2 3 is the canonical coordinate system ofR3 and 0 = 1
0

2
0

3
0 is a

point. Then, we have

( 1
1 2 1) =

2

0
4

( 1)2 + ( 2)2 + ( 3)2

Therefore, when we denote = 42 (1 + 2
0

2)2
0

4 1 = 2 ( ) ,
the set R3 ( ) = 0 (or ( ) = ) is included in a 2-sphere2.

Corollary 3.1.1. Let 2 2. Then, two conformally flat hypersurfaces inThe-
orems 3.1.2and 3.1.3 determined from a pair ( 1 2) ( 3) are not conformally
equivalent to each other.

Proof. We denote byp( 1 2 3) the hypersurface in Theorem 3.1.2, and by
p̃( 1 2 3) the hypersurface in Theorem 3.1.3. Then, we have

p = f( 1 2) + ( 3)n( 1 2) ( 3) p̃ = 1 +˜( 3) f̃( 1 2) + ˜ ( 3)ñ( 1 2)
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From the definitions ofn, and for the mapsp and p̃, it follows that

p1 = (1 tan tan )f1 p2 = (1 + cot tan )f2

p̃1 = 1 +˜( 3) (1 tan tan )̃f1 p̃2 = 1 +˜( 3) (1 + cot tan )̃f2

When we fix any 3, the surface determined by the mapf( 1 2) + ( 3)n( 1 2),
which appears in the definition ofp, is included in a linear 3-spaceR3

3 and the sur-
face determined by the map̃p is included in a 3-sphere 3

3. Furthermore, in both
cases, these surfaces are full in eitherR3

3 or 3
3, respectively.

Now, we assume that there exists a conformal transformationof R4 (or 4)
such that (p( 1 2 3)) = p̃( 1 2 3). Then, mapsR3

3 to 3
3 for a fixed 3,

and it satisfies ˆ p̃ = (1 + ˜( 3))2 ˆp on the surface inR3
3. This is a contradiction to

Proposition 3.1.2. Therefore, there does not exist any conformal transformation satis-
fying the assumption.

REMARK. We assume that the first fundamental form for a generic conformally
flat hypersurface is represented as (1.1) with respect to a Guichard net 1 2 3 .
Then, there exists a positive constant such that

(3.1.36)
1

( )( )
( 1 2 3) = 2 ( 1 2 3)

by [3]. Two hypersurfaces are said to belong to the same associated family if the met-
rics (1.1) for two hypersurfaces are defined from the same function ([2], [4]). Thus,
we have constructed two hypersurfaces in Theorems 3.1.2 and3.1.3 belonging to the
same associated family; Namely, we have = 1 (2 2) or = 1 ( 2 + 1 2)
for each hypersurface, respectively. Furthermore, in the same way as the proof of The-
orem 3.1.3 we can construct from surfaces in3( ) a 1-parameter family of hypersur-
faces belonging to the same associated family.

The definition of the canonical Guichard net on a conformallyflat hypersurface
in Hertrich-Jeromin ([3]) includes the condition = 1 in the equation (3.1.36) besides
our condition mentioned in the introduction. When we changethe coordinate functions

to ¯ = with a constant , 1̄ 2̄ 3̄ is also a Guichard net and then the right
hand side of (3.1.36) changes to ( 2) 2 with respect to the net. According to his
definition, we can also consider that the metric for a hypersurface belonging to the
same associated family is determined from a function ¯ obtained by such a parameter
change of the same .

3.2. In this subsection, we list the results on generic conformally flat hyper-
surfaces inR4 with the first fundamental form

(3.2.1) = 2 ( 3) cosh2 ( )( 1)2 + sinh2 ( )( 1)2 + ( 3)2
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under the assumption3 = 0 and further assumption that satisfies at least one of in-
equalities 1 = 0 and 2 = 0. We note: In the metric (1.1), we replace2 ( ) sin2 ( )
by 2 ( ). Then, we have the metric (1.2) if we exchange coordinates1, 2 and 3

for 2, 3 and 1, respectively. We can prove each theorem (resp. equation) mentioned
here in the same way as the proof of the theorem (resp. equation) in §3.1 correspond-
ing to it.

The condition for the metric̄ = cosh2 ( )( 1)2 + sinh2 ( )( 1)2 + ( 3)2 to be
conformally flat is given by the following three equations together with (2.1.10):

2 33 + 2 3 23sinh2
233sinh cosh(3.2.2)

= 2( 11 + 22)(sinh2 + cosh2 ) ( 11 + 22)2 sinh cosh

1 33 2 3 13cosh2 + 133sinh cosh(3.2.3)

= 1( 11 + 22)(sinh2 + cosh2 ) ( 11 + 22)1 sinh cosh

2 1 13cosh2 2 2 23sinh2 + 223sinh cosh 3( 11 + 22)(3.2.4)

= 3 33(sinh2 + cosh2 ) + ( 113 223+ 333) sinh cosh

Proposition 3.2.1. Let a metric of(3.2.1) be conformally flat. We assume that
the function is represented as( 1 2 3) = ( 1 2) + ( 3), where the function

( 1 2) and ( 3) satisfy 3 = 0 and at least one of the inequality1 = 0 and

2 = 0. Then, the functions ( 1 2) and ( 3) are respectively determined by the
equations in the following three cases(a), (b) and (c):

We denote by and constant numbers.

11 + 22 =
1

2
sinh(2 ) ( 3)2 =

1

2
( cosh(2 ) + )(a)

11 + 22 = cosh(2 ) ( 3)2 = sinh(2 ) +(b)

11 + 22 = 2 ( 3)2 = 2 +(c)

We replace the metric (3.1.18) in Theorem 3.1.1 by the metric

(3.2.5) 2 ( 3) cosh2( + )( 1)2 + sinh2( + )( 2)2 + ( 3)2

where ( 1 2) and = ( 3) are functions given in Proposition 3.2.1. Then,
the statement of Theorem 3.1.1 is also true in this case. The equations (3.1.25)
and (3.1.26) for the orthonormal frame fieldn n̄ in the proof of Theorem 3.1.1 are
replaced by the following equations: We denote by1, 2, 3 and 4 constant num-
bers.

n1 = ( 1 + 3 tanh )f1 n2 = ( 1 + 3 coth )f2(3.2.6)

n̄1 = ( 2 + 4 tanh )f1 n̄2 = ( 2 + 4 coth )f2(3.2.7)
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Lemma 3.2.1. Let a function ( 1 2) be given inProposition 3.2.1. We assume
that there exists a surface in eitherR3 or 3(1) such that has the first fundamental
form ˆ = cosh2 ( 1)2 + sinh2 ( 2)2 and that satisfies the following conditions
(1) and (2): (1) Each -curve( = 1 2) is a principal curvature line of .(2) A unit
vector fieldn normal to satisfies the condition(3.2.6).

Then, we have only the following two cases(1) and (2):
(1) The case ofProposition 3.2.1-(a). There exists such a surface inR3 if and only
if 0. Its second fundamental form is given byˆ = sinh cosh ( 1)2 +
( 2)2 .

There also exists such a surface in3(1) if and only if 1. Its second funda-
mental form is given bŷ = 1 sinh cosh ( 1)2 + ( 2)2 .
(2) The case ofProposition 3.2.1-(c). There exists such a surface inR3 if and only
if 0. Its second fundamental form is given byˆ = cosh ( 1)2

sinh ( 2)2 .

We will write down the important equations used in the proof of Lemma 3.2.1:
For the sake of simplicity, we assume that the constant in thedefinition of the
function ( 1 2) is a positive number =¯2. The Gaussian curvature of̂ is
given by = ( 11 + 22) (sinh cosh ) We have only to find surfaces inR3

and 3(1) such that they satisfy the condition (2) and that these second fundamental
forms are represented asˆ = 11( 1)2 + 22( 2)2 We define functions (1 2) and
( 1 2) by 11 = ¯ cosh2 22 = ¯ sinh2 . If is a surface inR3, then we

have ¯2 = ( 11 + 22) (sinh cosh ) If is a surface in 3(1), then we have
¯2 1 = ( 11 + 22) (sinh cosh )

From Codazzi’s equation, we can derive the following equations:

2 cosh = ( + ) 2 sinh 1 sinh = ( + ) 1 cosh

We can assume (1 2) = ( ( 1 2)) and ( 1 2) = ( ( 1 2)) from (3.2.6).
Therefore, when we denote = and = , we have ( + ) =

( + )(cosh2 + sinh2 ) (sinh cosh ). Thus, we have the following equation:

( + ) =
sinh cosh

with a constant

Here, by using the equations above, we will only show the non-existence of sur-
faces inR3 corresponding to functions in Proposition 3.2.1-(b). The functions and

are the solutions of the following quadratic equation for :

2

sinh cosh
+

cosh(2 )

sinh cosh
= 0
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The discriminant of the equation is

= 4 ( 4 + 2)2 1 4

2 sinh2 cosh2

Furthermore, and are rational functions in sinh and cosh by (3.2.6). Therefore,
the solutions of the equation can not be the functions and forany .

Theorem 3.2.1. Let ( 1 2) and ( 3) be the functions inProposition 3.2.1-
(a), and 0 in the definitions of ( 1 2) and ( 3). Let be a positive constant
curvature surface inR3 determined from . The first fundamental form̂and the sec-
ond fundamental form̂ for are respectively given as follows:

ˆ = cosh2 ( 1)2 + sinh2 ( 2)2 ˆ = sinh cosh ( 1)2 + ( 2)2

Then, the mapp( 1 2 3) into R4, made from and ( 3) in the same way as
in (3.1.17),defines a generic conformally flat hypersurface if and only ifthe constant

in the definition of ( 3) satisfies the inequality .
Furthermore, each -curve of the hypersurfacep is a principal curvature line.

In Theorem 3.2.1, the functions (3) and ( 3) in the definition of the map
p( 1 2 3) are respectively detemined as follows: = tanh , 2

3 = ( )
(2 cosh4 ).

Theorem 3.2.2. Let ( 1 2) and ( 3) be the functions inProposition 3.2.1-
(a), and 1 in the definitions of ( 1 2) and ( 3). Let be a positive constant
curvature surface in 3(1) determined from . The first fundamental form̂and the
second fundamental form̂ for are respectively given as follows:

ˆ = cosh2 ( 1)2 + sinh2 ( 2)2 ˆ = 1 sinh cosh ( 1)2 + ( 2)2

Then, the mapp( 1 2 3) into R4, made from and ( 3) in the same way as
in (3.1.17),defines a generic conformally flat hypersurface if and only ifthe constant

in the definition of ( 3) satisfies the inequality + 2.
Furthermore, each -curve of the hypersurfacep is a principal curvature line.

In Theorem 3.2.2, the function (3) is given by = (1 + ) tanh 1. The
function ( 3) is determined from the solutions of the following quadratic equation: We
denote (̄ 3) = 1 + ( 3).

cosh2 ( cosh2 1) 3̄

¯

2

+ 2 3 sinh cosh 3̄

¯ + 2
3 ( 1) cosh2 = 0

Then, the inequality + 2 is the condition under which the equation has a real
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solution.

Corollary 3.2.1. Let 1 and +2. Then, two conformally flat hypersur-
faces inTheorems 3.2.1and 3.2.2 determined from a pair ( 1 2) ( 3) are not
conformally equivalent to each other.

We note that the hypersurfaces given in the following Theorem are not hypersur-
faces obtained from constant curvature surfaces inR3. We can also prove this theorem
in the same way as the proof of Theorem 3.1.2.

Theorem 3.2.3. Let ( 1 2) and ( 3) be the functions inProposition 3.2.1-
(c), and 0 in the definitions of ( 1 2) and ( 3). Let be a surface inR3

determined from ( 1 2). The first fundamental form̂ and the second fundamental
form ˆ for are respectively given as follows:

ˆ = cosh2 ( 1)2 + sinh2 ( 2)2 ˆ = cosh ( 1)2 sinh ( 2)2

Then, the mapp( 1 2 3) into R4, made from and ( 3) in the same way as
in (3.1.17),defines a generic conformally flat hypersurface if and only ifthe constant

in the definition of ( 3) satisfies the inequalities 0 and 2 + 0.
Furthermore, each -curve of the hypersurfacep is a principal curvature line.

In Theorem 3.2.3, the functions (3) and ( 3) in the definition of the map
p( 1 2 3) are respectively detemined as follows: 2 = 1 2 , 2

3 = 4 .
Furthermore, we have 2

3 = 2 + .
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