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On the Composition of Some Representations of
Lattices of Law Relations

By H. F. J. LOWIG

By (IV) (see the bibliography at the end of the paper) Theorems
1. 4 and 3. 9,

(n^Vmn^VAW^r for r e K E l f

and

(Ψ{(E2, ejXOW, £2})r) = r for r G US,,

if and only if G^dO^. In the present paper, I wish to prove that,
more generally,

(ψ{<£a, βyxew, ejwiDOW, βyy for r
and that

if and only if K1czK2 or K3cz:(£2. Besides I am going to prove some
further theorems of this sort. It is understood that all conventions on
terminology and notation introduced in (IV) hold in this paper.

Theorem 1. Let reM^. Then

(ψ{&2, ejxene:,, ea> WIDOW, ejy.
Proof. By (IV), Definition 1. 1 and Theorem 1. 3,

2, (5,}X(Φ(E2)(eι/r))iD(Φ(?.χ(E1/r)

Theorem 2. Lei reLK l β

(t{^2, 6;}X(
Proof. By (IV), Theorem 1. 5,

r

By Theorem 1,
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Hence

r c=

By (IV), Theorem 1.8,

( i ) we,, oyy c=

and

(f {£2,
If, in (1), we interchange <£2 and K3, we obtain the following theorem :

Theorem 3.

(Ψ{(Ei,(£,}X( ψ {(ει,eϊ})r)=3(ψ{eι,eί})r /or reLe,.

Theorem 4. Lei r£L&λ. Then

Proof. By Theorem 1,

(Ψ{<£3,

By (IV), Theorem 1. 8,

Theorem 5.

(2 )
if and only if

(3) (£,1=6;, or (£3c=:e2.

Proof, (i) Let reLS^. Then, by Theorem 1 and by (IV), Theorem
1.2,

( 4 )

and

( 5 )

If (3) holds then, by (IV), Theorem 3.3, Ψ{<£2, <£J •¥{£,, K2} or

2, ®3} Ψ{e3, KJ is the identical representation of L®x or L(£3,
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respectively, (4) or (5) implies that

Theorem 1 implies that

and (2) holds.
(ii) Let (2) hold, and let S^S, not hold. Then, by (IV), Theorem

3.9, ¥{(£„ &2} is not simple. By (2), Ψ^, &3} is not simple. By (IV),
Theorem 3.9, S^mβ, does not hold. Hence (£3!=®!. By the result
obtained under (i),

(6) Ψ{C l f £2} Ψ{e3, (EJ =

Let reL(£3. Then, by (2) and (6),

By (IV), Theorem 3. 9,

K3d(£2, and (3) holds, completing the proof.

Theorem 6.

(20
// αwrf ow/j // (3)

A proof of Theorem 6 is obtained from the proof of Theorem 5 by
replacing Ψ, d, (2), Theorem 1, and Theorem 1. 2 by ι|r, ID, (27), Theorem
2, and Theorem 1. 12, respectively.

Theorem 7. Let B be a relation on Q, let cί and c" fe elements of
C2 with

foί |D|^2wσ.. (See (III), Definition 2.2, and (II), Definition 3.4.)
Then there exist elements, cf and c", of C such that

and
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(See (III), Definition 1. 1.)

Proof. By (IV), Definition 2.2, (£,[=:(£. By (IV), Theorem 1.20, and
by Theorem 6,

The assertion is now obvious from (IV), Definition 1. 3.
Let B be a relation on Q, let (£ be fixed, and let

Theorem 7 shows that then our (^{O^, K})((ΘK1)^) maY be regarded as
an analogue of Birkhoffs Φ(B). (See (I), p. 440, Definition 5.)

Theorem 8. Let B be a relation on Q. Let c' and c" be elements
of C such that

( he? = he?' for every homomorphism h of & into

and such that

Proof. By (III), Definition 3. 1, (7) is a <£-law of
)̂, and

By (IV), Definition 1. 1,

C'((ψ{s2,
By (IV), Theorems 1. 17 and 1. 18,

By Theorem 2,

Compare Theorem 8 with the following statement occurring in (I),
p. 441, lines 4 and 5: "Every law of F(Bym) involving m primitive
symbols is an equation of Φ(β)."

Theorem 9. The following propositions (3), (2), (27), and (8) to (14)
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are equivalent :

(3) <£, me, or £,[=<£,.

(2)
(20

(8) (W.^Xi^.SiW^iW,,^})' /or rez,®,.
(9) (Ψ^.^IX^ίe^ej^crίΨ^.^iy /or reL^.

(10) (^{^.^KCΨ^.ejMc:^^,®,}^ /or reL<£ 2.

(ii) (ψ{eϊ,e,})((ψ{e1,«I})r)=)(ψ{(s:1,e,})r /or re is,.
(12)
(is)
(14) (Yi^.e,})^^,^})^^^^,®,})^^,^}^) /or reLS2.

Corollary. Each of the propositions (2), (2'), and (8) to (14) is
equivalent to the proposition arising from it by interchanging the sub-
scripts 1 and 3.

Proof. That (3), (2) and (2') are equivalent follows from Theorems
5 and 6. If (2) holds, then

for r6L® 2,

and (8) holds by (IV), Theorems 1. 2 and 1. 5. If (8) holds, then

for r 6 Z.®! ,

and (9) holds by (IV), Theorems 1.2, 1.9 and 3.4. If (9) holds, and
e,ι=®2, then (3) holds, hence (2) holds. If (9) holds, and £„[=(£„ then

by (IV), Theorem 2. 5,

for
and (2) holds by Theorem 1. Hence (2), (8) and (9) are equivalent.

By a similar argument it can be shown that (2'), (10) and (11) are
equivalent.

By (IV), Theorem 3. 4,



222 H. F. J. LOWIG

Hence (2) implies (12). Let (12) hold. Then

for r 6 L®! .

By (IV), Theorems 1. 2, 1. 4 and 1. 9,

(ψί®,, <£3})(W®2, ejXCW, ejy)) = (ψ^, ejy for r e L®, .
If (£^^2, (2) holds. If fe^^ then, for the same reason,

e,»r for T&L&, ,
and (2) holds again. Hence (2) is equivalent to (12).

In a similar way, it can be shown that (2') is equivalent to (13).
If (8) and (10) hold then (14) holds by (IV), Theorem 1. 13. Let (14)

hold. If £,!=£, then, by (IV), Theorems 1.2, 1.13 and 3.9,

, <£,}>- for r6Le t,

e,} = ψ{£2, ej ,
and (3) holds. If (^d^ then

,̂ e3} ,
for

(ψ {(£„ &J )r =) (Ψ {(£2 , e,} )r for

by Theorems 1 and 2,

K3cnK2, and (3) holds. Thus (3) holds in both cases.
This completes the proof that the propositions (3), (2), (2X), and (8)

to (14) are equivalent.

Theorem 10. The following three propositions are equivalent :

(15) ^o^, or ^3!=^ as well as &3t=:&2. (See (IV), Definition 2.3.)

(16)

(17)
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Corollary. (16) as well as (17) is equivalent to the equation arising
from it by interchanging the subscripts 1 and 2.

Proof. By Theorem 9, the following three propositions are equivalent:

(18) G^ci^ or <£8 [=<£!•

(19) (Ψ{£2, &3})((γ{&19 £2})r) ZD (¥{<£,, (£3})r for r G HE, .

(20) (ψ{e,, <£,})((¥{<£„ £2})r) d (ψ ίlE,, ej)r for r e LIE, .

By the same theorem, (3), (9) and (11) are equivalent. Hence the
statement that both (3) and (18) hold is equivalent to the statement that
both (9) and (19) hold and also to the statement that both (11) and (20)
hold. This implies that (15), (16) and (17) are equivalent.

Theorem 11. The following propositions (21) to (32) are equivalent :

(21) (EaCnE! and <£8 !=<£,.

(22) Ψ{£2, £3} -W, <£2} = ψ

(23)

(24) Ψ{<£2,

(25)
(26) Ψ{K2, KJ ψ{g:3, KJ is simple.

(27) ψ {S2 , KJ Ψ {6:3 , £2} i5 «wi fe.

(28) ^{K2, KJ -^{K3, K2} w simple.

(29)

(30)

(31) ^{(£2, (£3} •¥{&!, K2} tefeg5 α// values of L(£3 .

(32) ^H&2, S3} -^{K!, K2} tefee5 all values of L(£3 .

Corollary. Each of the propositions (22) to (32) is equivalent to the
proposition arising from it by interchanging the subscripts 1 and 2.

Proof. If (21) holds, (22) holds by Theorem 5 and by (IV), Theorem
2.5. If (22) holds, then

for

by Theorem 1,

(33)
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by (IV), Theorem 1. 13,

& 3C=<£i

by (IV), Theorem 2. 5,

(3) holds by Theorem 5, and (21) holds. Hence (21) is equivalent to (22).
By a similar argument it can be shown that (21) is equivalent to (23).
As (21) implies (22), (23) and (33), (21) implies (24). Conversely,

if (24) holds, then

(ψίe,, £jy e=(ψ{e2, sjxw^, ejy) czctίs,, ejy for reLG^

by Theorems 1 and 2, and (22) holds by (IV), Theorem 1. 13.
We may now assert that (21), (22), (23) and (24) are equivalent.
If (21) holds, Ψ{(£3, &J is simple by (IV), Theorem 3.9,

(34) ψ{£2, ej ψ{£3, <£,}• = W3, ej
by Theorem 5, and (25) holds. If (25) holds, then Ψ{(£3, &J is simple,
(£3[=(£2, (34) holds, Ψ{&3, KJ is simple, S^ ,̂ and (21) holds. Hence
(21) is equivalent to (25). For a similar reason, (21) is equivalent
to (28).

Also, if (^[=(£2, then

by (IV), Theorem 2. 5, (25) is equivalent to (27), and (26) is equivalent
to (28). If, on the other hand, G^^, and one of (25) to (28) holds,
then Ψ{(£3, (£2| or f>{&3, <£2} is simple by (IV), Theorem 3.9, Ψ{£3, (£2},

ιH(£3,(£2}, ^{^2,^1}, and ψ {(£2, &J are all simple, and (25) to (28) all
hold. In both cases, the propositions (25) to (28) are equivalent.

If (21) holds, ¥{(£,, £3} takes all values of L(E3 by (IV), Theorem 3. 9,

(2) Ψie^e.y Ψίe^e,} =ψ{e l f6,}
by Theorem 5, and (29) holds. If (29) holds, then Ψ{(£2, K3} takes all
values of L(£3, (£3π=(£2, (2) holds, Ψ^, K3} takes all values of L(£3,
&3 [=(£!, and (21) holds. Thus (21) is equivalent to (29). For a similar
reason, (21) is equivalent to (32).

Finally, if one of (29) to (32) holds, Ψ{(£2, (£J or ψ{(£2, S3} takes all
values of L(£3, K3czK2, and
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by (IV), Theorem 2.5; hence (29) is equivalent to (31), and (30) is
equivalent to (32).

This completes the proof that the propositions (21) to (32) are
equivalent.

For the rest of this paper, n is a non-zero finite cardinal, (£v (v€b{l, n})
are freely generated algebras (even if

(35) each of S19 Δx , \ and Λx is the identical representation of LC^ ,

(36) δv and Δv are representations of LKX into LKV for vGb{2, n} ,

(37) λv and Λv are representations of LKV into L(£j for v G b {2, n} ,

(38) δv+1 = ψ{ev, Kv+1} δv for v e α{l, «} ,

(39) Δ,+1 = Ψ{K,,£V+1} A V for v e α { l , n } ,

(40) λv+1 = λv ψ>{Sv+ι, £v} for V G α{l, n] ,

and

(41) Λv + 1 = Λv ψ{ev+1, Sv} for v 6 α{l, «} .

It is obvious that the functions δv , Δv , λv and Λv (v e b{l, w}) are uniquely
determined by (35) to (41) if the algebras (£v (veb{l, w}) are given.

Theorem 12. 77z0 following propositions (42) to (46) #r£ equivalent :

(42) ^ c= (£v or Kv+1 d Kv for v e α {1, rc} .

(43) δv = ψ{eif £v} /or v 6 b{l, n} .

(44) Δ v = ψ {S; , Kv} for v e b {1, n} .

(45) λv = ψ {<£,,<£,} for

(46) Av

Proof. If α = l, it is obvious that the following five propositions
are equivalent :

(42X) &! c= ev or Kv+1 1= ev f or v G α {1, α:} .

(430 δv = -ψ {E! , Kv} for v 6 b {1, a} .

(440 Δv - Ψ {̂  , Kv} for v G b {1, a} .

(450 λv = ψ {(£, , KJ for v G b {1, α} .

(460 A v = ψ {Kv , ej for v G b {1, a} .

Let m be an element of α{l, n} such that the propositions (420 to (460
are equivalent if <x = m. Let one of (420 to (460 hold for oc =
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Then one of (420 to (46') holds for a = m, and one of the following
propositions (47) to (51) holds :

(47) K! cze:., or βw^e...
(48) sm+1

(49) Δ^

(so) χw+1

(51) Λ^

Hence all of (420 to (460 hold for a = m, and all of (420 to (460 hold
for a=m+\ if and only if the propositions (47) to (51) all hold. Because
of (38) to (41), and because (42') to (46') hold for a=m, the propositions
(47) to (51) are, respectively, equivalent to the following propositions
(47) to (51X) :

(470 6,1= em or ®m+1[=em.

(480 t{em, QW,} -tie,, ej = ψ {<εlf e }̂ .
(490
(500
(5io
But these five propositions are equivalent by Theorems 5 and 6. Hence
the propositions (47) to (51) are equivalent. Hence these propositions
all hold. Hence all of (420 to (460 hold for a = m + l. Dropping the
hypothesis that one of (420 to (460 holds for α = w + l, we have the
result that the propositions (420 to (460 are equivalent if a = m+\. By
induction, these propositions are equivalent if a = ny or the propositions
(42) to (46) are equivalent as asserted.

Theorem 13. The following propositions (52) to (56) are equivalent :

(52) ^nzSv for v € b { l , Λ } .

(53) Sn is simple.

(54) Δn is simple.

(55) λM takes all values of L^ .

(56) ΛM takes all values of LG^ .

Proof. If <2 = 1, it is obvious that the following five propositions
are equivalent :
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(520 C^cze* for *

(530 δ* is simple.

(540 Δa is simple.

(550 λ * takes all values of L^ .

(560 AΛ takes all values of L^ .

Let m be an element of α{l, n} such that the propositions (520 to (560
are equivalent if a = m. If one of (530 to (560 holds for a = m+l then,
by (38) or (39) or (40) or (41), this proposition holds for a = m. Let one
of (520 to (560 hold for a = m+l. Then one of (520 to (560 holds for
a = m. Hence all of (520 to (560 hold for a = m. Because (520 holds
for a=m,

Q^dEv or K v + 1c=K v for v

By Theorem 12, with n replaced by w + 1,

and

Therefore and because of (IV), Theorem 3. 9, the following five proposi-
tions are equivalent :

(58) δm+1 is simple.

(59) Δw+1 is simple.

(60) λm+1 takes all values of L^ .

(61) Λw+1 takes all values of LOt^ .

Because one of (520 to (560 holds for a = mjrly one of (57) to (61) holds.
Hence all of (57) to (61) hold. Hence all of (520 to (560 hold for
a = m+ί. Dropping the hypothesis that one of (520 to (560 holds for
α = w+l, we have the result that the propositions (520 to (560 are
equivalent if a — m-\-\. By induction, these propositions are equivalent
if #=#,
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Theorem 14. Let &n=^. Then each of the propositions (52) to (56)
(see Theorem 13) is equivalent to each of the following propositions (62)
to (65) :

(62) δn is the identical representation of L^ .

(63) Δn is the identical representation of

(64) \n is the identical representation of

(65) An is the identical representation of

Proof. If (52) holds then, by Theorem 12,

SH = ψ ίe,, <£„} ,
Δw = ¥{<£,, :<£„} ,

and (62) to (65) hold by (IV), Theorems 1. 1 and 1. 11. Conversely, if
(62), (63), (64) or (65) holds then (53), (54), (55) or (56) holds, respectively.

Department of Mathematics,
University of Alberta.

(Received December 15, 1960)
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