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BP is the Brown-Peterson spectrum (for some prime p) and BP*X=
π*(BPΛX) is the Brown-Peterson homology of the CW spectrum (or com-
plex) X. BP*X is a lefc module over the coefficient ring BP*^Z(p)[vu v2, •••]
and a left comodule over the coalgebra BP*BP. A now classical result is
that the stable Hurewicz homomorphism π*X->H*(X; Z) is an isomorphism
modulo torsion. In our context, we restate this as: the Hurewicz homomor-
phism ho{X): π*(BP/\X)->H*{BP/\X\ Q) has as its kernel the jί>-torsion sub-
group of BP*X. This is a prototype of our results.

Instead of restricting our attention to BP*Xy it is convenient to study
abstract .BP^JBP-comodules (M, ψ), ψ: M->BP*BP®BP*M. A priori, M is
a left JSP^-module. As such, it has a richer potential for torsion than mere
^-torsion. For any polynomial generator vn of BP* (by convention vo=p),
we say that an element j G M i s ^w-torsion if vn

sy=0 for some exponent s.
If all elements of M are z^-torsion ones, we say that M is a ^;M-torsion module.
If no non-zero element of M is ?;n-torsion, we say that M is ?;w-torsion free.
Being a JSP^BP-comodule severely constrains the BP^-module structure of
M.

Theorem 0.1. Let M be a BP*BP-comodule. If y^M is a vn-torsion
element, then it is a vn_Γtorsion element. Consequently, if M is a υn-torsion mo-
dule, then it is a vn_Γtorsion module. Or: if Mis vn-torsion free, it is vn+1-torsion
free (Lemma 2.3 and Proposition 2.5).

The primitive elements of a BP^BP-comodule M are those elements a

for which ψ(a) = l®a under AΓs coproduct ψ : M->BP*BP®BPJM. We find

that some qualitative properties of BP^ΰP-comodules are determined by these

primitives.

Theorem 0.2 Let M be an associative BP*BP-comodule. If all the primi-

tives of M are vn-torsion, then M itself is a vn-torsίon module. Or: if none of the
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118 D.C. JOHNSON AND Z. YOSIMURA

non-zero primitives of M is vn-torsion, then Mis vn-torsion free (Proposition 2.7).

We may localize a JSP^ΰP-comodule M with respect to vn to form VnlM.

Generally, the resulting JSP^-module is not a JSP^BP-comodule we chara-

cterize when it is.

Theorem 0.3. Let M be an associative BP*BP-comodule. M is a vn_x-

torsion module if and only if v^λM is an associative BP*BP-comodule. (Propo-

sition 2.9) (The "only if" part is due to Miller and Ravenel [11].)

There is no dearth of homology theories associated to BP, but some of the
most interesting are the periodic homology theories E(n)*{ ). The coefficients
of E(n)*( ) are E(n)*^Z(p)[vly •••, vn_ly vny v'1]; the representing spectrum is
E(n). E(ϋ)*X is the familiar rational homology of X. E(1)*X is a summand of
localized (at p) complex i^-homology of X. There is a Boardman map BP->
E{n) Λ BP which induces a Hurewicz homomorphism hn(X): π*(BP Λ X) -*
E(n)*{BP/\X). When w=l, this is properly called the Hattori-Stong homo-
morphism. We prove:

Theorem 0.4. Let X be a CWspectrum. The kernel of the Hurewicz homo-

morphism hn(X): π*{BP /\X)-+E(n)*(BP /\X) is the vn-torsion subgroup of BP*X.

(Theorem 4.10)

We can localize BP*X to form vήιBP*X. We prove:

Theorem 0.5. Let X be a CW spectrum. v^BP^X^O if and only if
E(ή)*X=0. Hence vήιBP*( ) and E(n)*( ) have the same acyclic spaces.
(Corollary 4.11)

During a provocative talk at the Northwestern conference of March 1977,

Douglas Ravenel shared his insight that Theorem 0.5 should hold. Our at-

tempts to substantiate his intuition led to this paper. We thank Ravenel for

making the manuscript [12] of his Northwestern talk available to us, for his

stimulating correspondence, and for his kind hospitality.

An obvious generalization presents itself. Let J= {q0, qly •••, qn_ι} be an

invariant regular sequence of elements of BP*. There is a left i?P-module

spectrum BP] whose homotopy is BP]* ^ BP*l(qo> •••, qn-i). When J is

empty, BP] is just BP. As we do prove our results for #P/ίfίi?P/-comodules,

we must list properties of such comodules (§1), prove some simple change-of-

ring {BP]* to BP*) lemmas in §3, and sketch some proofs of the properties

of BP] (§5). A reader who is interested only in .BP^-BP-comodules may

neglect the "J" in the BP] notation and read only the even-numbered sec-

tions: §2, "^-Torsion Properties," and §4, "Hurewicz Homomorphisms."
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1. BPJ*BPJ-comodules

Let J={qo, •••, qn-ι} be an invariant regular sequence of elements of
BP*=π*BP. /(and n) will remain fixed throughout this section. There is an
associative left i?P-module specίrum BPJ which has homoίopy π*BPJ=
BPJ*^BP*l(q0, ~,qn-i). A map oi spectra j : BP-+BPJ induces an epimor-
phism in homotopy. Let <p0: BP A BP-+BP give BP its ring spectrum
structure and let φ=φn: BP /\BPJ->BPJ give BPJ its ΰP-module structure.
Then φ(lΛJ)=j°φ0 and φ(φ0Λl)=φ(lΛφ).

When J is empty, BPJ is just BP. For J= {p, vu •••, vn_^, BPJ is known
as P{ri) [6; 16; 17]. The following properties have become classical for BP*BP-
comodules [7; 8; 9]. Wϋrgler has established these properties for P(ή)*P(n)-
comodules (p odd) [16]. We defer some of our exposition and our proof
sketches until §5.

Let i: S°->BP be the unit map for the Brown-Peterson spectrum. There
are pairings μ: BPJ/\BPJ->BPJ which make BPJ into a quasi-associative
ring spectrum with unit ιn=joι: S°-*BPJ. Here μ(j/\l)=φ and μ(jΛj)=
joφ0. (See Proposition 5.5.) These pairings are not generally unique; the (co)
multiplicative structures which follow can depend on the particular (fixed)
choice of μ.

Let c: BPJ*BPJ->BPJ*BPJ be the conjugation. BPJ*BPJ is a free
left BP/Vmodule with basis given by symbols zEtΛ of dimension 2» ei{^pi~^)~\~
2jffl/dim (<?.,•)+1). Here E=(eue2, •••) is a finite sequence of non-negative
integers and A=(a0, •••, an_y) is an rc-tuple of zeros and ones. BPJ^BPJ is
an associative left BP*BP<^BP*[tly t2) •••J-module with structure given by the
formula:

(1.1) tEzF'Λ = zE+F>Λ for tE = ΦΦ-ΪΞBP*BP .

In particular, (]/\j)*(tE)=zE-«. The c(zE-A) give a basis for BPJ*BPJ as a
free right jBP/^-module. Because of this right freeness, there is a natural
isomorphism BPJ*(BPJ/\X)^BPJ*BPJ®BPUBPJ*X for any CW spectrum
X. The map 1 Λ**Λ 1: BPJΛSOΛX-+BPJΛBPJΛX induces a coproduct:

ψ z : BPJ*X -> BPJ*{BPJf\X)^BPJ*BPJ®BPUBPJ*X .

We define natural homomorphisms sE A: BPJ*X-+BPJ*X by the following
recipe

(1.2) ψx(x) Έ

We call these sEA elementary BPJ operations. When / is empty and BPJ is
BP> the sE 0 coincide with JSP operations rE [2]. The elementary BPJ opera-
tions satisfy the following properties.
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(1.3) Under the natural map j#: BP*X->BPJ*X, sEtOj*{x) = j*rE(x).

(1.4) The elementary BPJ operations generate all the BPJ operations in that any
BPJ operation θ can be written uniquely as a (possibly infinite) sum

(See 5.12).

(1.5) The dimension of sEtA is d=^iei(2pi—2) + ^ j a^dimζq/j+l) where
E={eue2y •••) and A=(aOy •••, an_λ). That is: if x(=BPsXy then sEfA(x)(=BPs_dX.
(This follows from (1.2).)

(1.6) For any element x^BPJ*Xy sEA(x) is zero except for finitely many indices
E and A. (The proof is trivial.)

(1.7) There is a Cartan formula. If y(=BP* and x<=BPJ*Xy then

(This follows from (1.1).)

(1.8) There are coefficients qA^BPJ* such that

sOtO(x) = x+ Σ qAsOtA(x)

for any x^BPJ*X and for any X. (See Remark 5.13.)

(1.9) For the elementary BPJ operations sEtA and sFBy there are coefficients

qG,c=qG,c(E>A> F> B)^BPJ^ such that

for any x^BPJ*X and for any X. Furthermore, the dimension of sGfC is not
less than the sum of the dimensions of sEA and sFB. (See Remark 5.14.)

Let M be a left BPJ*-module. M is defined to be a
if the elementary BPJ operations act on M satisfying (1.5) through (1.8).
The BPJ*BPJ coacίion of M is given by ψM: M->BPJ*BPJ®BPU M with

If (1.9) is also satisfied, we call (M, ψM) an associative BPJ*BPJ-comodule.
The following remark follows from (1.2).

REMARK 1.10. Let M be a J5F/^BP/-comodule and let x e M. The follow-
ing are equivalent statements.
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(i) ψ j , (*)=l®*
(ϋ) sEtA(x)=0 if (£,,4)Φ(0,0) and sOtO(x)=x.
If x satisfies these equivalent statements, we call x primitive. Let PM be the
subgroup of primitive elements of M.

Define the primitive degree d(x) of an element x of a BPJ%BPJ-comodule
M as follows. If there is an elementary operation sEA of dimension m such
that sE>A(x)Φ0, then d(x)>m. Define </(0)=0. By (1.6), φ ) > 0 is always
finite. We record two observations.

(1.11) If x<=M, d(x)=0 if and only if x is primitive. (See Remark 1.10.)

(1.12) Let M be an associative BP/^SPJ-comodule and let sEA be an elementary
BPJ operation of dimension m. For x^M9 d(sE A(x)) < maximum {d(x)—m, 0}.
(See (1.9).)

Lemma 1.13. Let M be an associative or a connective BPJ *BPJ-comodule.
Then M coincides with the union of all of its finitely-generated subcomodules.

Proof. This follows routinely using (1.6) and (1.9) or (1.5).

Lemma 1.14. Let M be an associative BPJ ^BPJ-comodule. There is an
epimorphism of associative BPJ^BPJ-comodules f: F->M with F BPJ*-free. F
may be chosen to be finitely-generated in the case that M is finitely-generated.

Proof. Follow the proof of Proposition 2.4 of [9].

Lemma 1.15. Every associative BPJ\BPJ-comodule M is a direct limit of
finitely-presented associative comodules.

Proof. See the proof of Lemma 2.11 of [11] or see [17].

Recall t h a t I0=(p), Im=(p, vly •••, vm_1)y a n d Ioo=(p, vly v2y •••) are t h e n o n -
trivial prime ideals of BP* invariant under the BP*BP-coacύon [7;5]. By
Landweber [10], the ideal-theoretic radical of (#0, •••, qn_^) is In.

Theorem 1.16 (Filtration Theorem). Let J={q0J •••, qn_^\ be an invariant
regular sequence in BP* of length n. Let M be a finitely-presented, associative
BPJ^BPJ-comodule. Then M has a finite filtration

M=M t =)M β . 1 D .DAf1=)M0= {0}

by finitely-presented, associative BPJ*BPJ-subcomodules. As a BPJ^BPJ-
comodule, each quotient MjM^x, 1 < Z Ό , is isomorphίc to some suspension of
some BP*jIky n^k.

Proof. Follow the patterns of the proofs of Theorem 3.3 of [8] and
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Theorem 3.4 of [17].

2. z;n-torsion properties

Again, / will be a fixed invariant regular sequence and BPJ will be the
resulting spectrum. i?P/ίf:l?P/-comodules are -BP^-modules through the epi-
morphism BP*->BPJ*. This section studies certain .BP^-module properties
of BPJ*jBP/-comodules which are independent of the particular sequence /.
(Here, we use the letter ' V as a variable and not as the length of the fixed
sequence /.)

Our study begins with a lemma which descends directly from the "Ballen-
tine Lemma" of Smith (and Stong) [14]. For the exponent sequence E=
{eu e2y .")> let \E\ = Σ , e&p-l). Let Δ*=(0, , 0, 1, 0, - ) with the single
" 1 " in the k-th position. Exponent sequences are added (or multiplied by
positive integers) term-wise.

Lemma 2.1. Let E be an exponent sequence with \E\^2kps(pn—pm),

yandk>l. Then

υjps modulo Im

sJrl if E = kps+mAn.m

0 modulo Im

s+1 otherwise.

Proof. The s=0 case is Corollary 1.8 of [5]. The general case follows
by induction on s using the Cartan formula and the fact that

Lemma 2.2. Let M be a BPJ^BPJ-comodule and let sEfA be any elementary
BPJ operation. If an element x^M is vm-torsion for all m satisfying
then sE A(x) is also vm-torsion for such m,

Proof. Assume inductively that sFB(x) is ^-torsion for every elementary
BPJ operation sFB and for all k satisfying 0< k<m. (The initial m—0 case is
the same as the inductive step.) Recalling (1.6), there is a non-negative integer
s=s(xym) such that υm

psχ=0 and Im

s+1sFtB(x)=0 for all elementary BPJ opera-
tions sFB. By (1.7) and Lemma 2.1,

0 = sEtA(v/x) = v/sEtA(x)

and so sEA{x) is ^-torsion.

Lemma 2.3. Let M be a BPJ^BPJ-comodule. If an element x^M is
vn-torsion, then it is vm-torsion for each m satisfying 0*ζm*ζn.

Proof. Our proof is by double induction. The first induction (on m)
assumes that if x is z;n-torsion, then x is ^-torsion for k<m. For such an x and
for any elementary BPJ operation sEAy sEA(x) is ^-torsion for all k<m by Lemma
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2.2. We may choose an s>0 such that ΌU

P'X = 0 and Im

s+1sE A(x) = 0 for all
SE,A- Suppose sHA is an elementary i?P/-operation of dimension d(x). (See
(1.11) and (1.12).) Lei: G=pm+sAn.m. By (1.7) and Lemma 2.1,

0 =sG+EβA(v/x) = Σ rF(v/)sEtA(x) = rG(υ/)sSβA(x)

If C/(Λ;)=O, this computation shows that x is £>m-torsion. If d(#)>0, it shows
that rf(^w

/>SΛi)<ί/(Λ;). By a second induction on the primitive degree d( ), vm

p*x
is assumed to be z ̂ -torsion. Hence x is ϋw-torsion as desired.

Corollary 2.4. Lέtf M be a BPJ*BPJ-comodule. If x^M is vn-torsion3

then sEA(x) is vm-torsion for all m satisfying 0<#z<τz and for all elementary BPJ
operations sE A.

Proof. Lemmas 2.2 and 2.3.

Recall that a iίP^-module M (e.g. a βP/^BPy-comodule) is £>Λ-torsion ΐf
every element ίcGMis «;„-torsion. M is z;w-ΐorsion free if no non-zero element
is ^-torsion. The following proposition follows immediately from Lemma 2.3.

Proposition 2.5. Let M be a BPJ*BPJ-comodule. If M is vn-torsion,
then it is vn_1-torsion. At the other extreme: if M is vn-torsion free, then it is
vn+1-torsionfree.

Let Y be an associative i?P-module spectrum. We can form a new spec-
trum VnlY which is defined to be the mapping telescope Ym\S~2t{pn~λ)Y of
the map

Note that v^ιY is a BP-module spectrum which is possibly non-associative. We
have a canonical isomorphism Vnl{

Corollary 2.6. Let X be a CW spectrum. If (vή'BPJ^X^O, then

Proposition 2.7. Let M be a BPJ\BPJ-comodule which is either associative
or connective.
(i) If all the primitive elements of M are vn-torsion, then M is a vn-torsion module.
(ii) If none of the non-zero primitive elements of M is vn-torsίon, then M is a
vn-torsion free module.

Proof. To prove (i), assume M is an associative comodule with £>w-ΐorsion
primitives. Assume inductively that M is a ^-torsion module for k<Cm^n.
If y^M with d(y)=0 (see (1.11)), y is ^-torsion for 1̂1 k^n by our hypochesis
and by Lemma 2.3. Let x^Mwith d(x)>0. Let sEfA be any positive dimen-
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sional elementary BPJ operation. Since M is associative, d(sEA(x))<,d(x) by
(1.12). By a subsidiary induction on d(y)y we may assume that such sEA(x) are
^-torsion. Hence there is an ί > 0 such that Im

s+1x=0 and Im+1

s+1sEA(x)=0.
Note that (1.8) implies that soo(x)=x-\-z with Im+1

s+1z=0. For any positive

= Σ rF(v/)sGtA(x) = 0 .

dimensional sEAy

So vm

psχ is primitive and hence #OT-torsion. Thus x itself is z ̂ -torsion. This
completes both the auxiliary and the original inductions.

We turn to (ii). Let M be an associative comodule with no non-zero vn-
torsion primitives. We assume inductively that all non-zero elements y^M with
d(y)<l are not z;n-torsion. If non-primitive Λ G M has d(x)=l> there is an
elementary BPJ operation sEA with sEA(x)Φθ and d(sEA(x))<d(x) (1.12). So
sEA(x) is not z;M-torsion. By Corollary 2.4, x fails to be z;w-torsion also. Thus
M is ^n-torsion free.

Finally, assume M is connective. With a few minor modifications, the
above proofs of (i) and (ii) work if we replace the primitive degree d(x) of the
element x by x's dimension \x\.

A BPϊic-module (e.g. a BP/^BPZ-comodule) M is said to be vn-dίvisible
if multiplication by vn on M is epic.

Proposition 2.8. If an associative BPJ*BPJ-comodule M is v^divisible, then
it is vn_Γtorsion. (Cf. [11, Proposition 3.5].)

Proof. Assume inductively that M is ^-torsion for k<m<n. Let OΦ
ΛGMbe a primitive element. By Proposition 2.7, it will suffice to show that
x is z>OT-torsion. There is an integer t^O such that Im

t+1x=0. Note that this
implies that Im

t+\A{
χ)=0 (1.7). By the divisibility of M, there is an element

yξ=M with vn

pty=x. In preparation for a second induction, we do a curious
computation. For any integer &>0, our (primary) inductive hypothesis gives
us an integer s^t such Im

s+1sEA{vm

upty)=Q for all elementary BPJ operations
sEA. Suppose d(vm

upty)—l and let sHA be any elementary BPJ operation of
that maximal dimension /. Let G=pm+sAn_rn. Using (1.7) and Lemma 2.1
repeatedly, we compute:

0 = rG+H(v/->')vm«P\A(x) = rG+H(v/-ηso,A(vm ">'x) =

If d(vm

upty)=0, this shows that vm

upty -and hence y and x— are z>m-torsion. If

d(vm

upty)>0, the computation shows that d(υm

pt(ps~t+u)y)<d(υm

upty). This

indicates a proof that x is z ̂ -torsion by induction on the primitive degrees of
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the vm^y.

The "only if" part of the following proposition is due to Miller and Ravenel
[11, Lemma 3.2].

Proposition 2.9. Let M be an associative BP] ^BP]-comodule. Then M is
vn_Γtorsion if and only if the localization vήιM is an associative BPJ*BPJ-
comodule.

Proof. By Lemma 1.13, we may assume M is finitely-generated.
Assuming M is ^Λ_rtorsion, there is an s>0 such that In

s+1M=0 (Proposition
2.5). By Lemma 2.1, multiplication by v/ on M is a comodule map. Hence
the localization v^M, considered as the direct limit of the system

vf vf
M-^-+M-?-+M>~y

is an associative BPJ *BPJ-comodu\e. Furthermore, M->vήιM is a comodule
map.

Now assume that vn~
ιM is an associative comodule. As a *;n-divisible asso-

ciative comodule, vn~
ιM is ^Λ_!-torsion by Proposition 2.8. Thus υk~

ιvn"
ιM

= 0 for each k satisfying 0*ζk<n by Proposition 2.5. Assume induccively
that M is ^_ rtorsion. By the "only if" part of this proposition, vk~

ιM is an
associative comodule. Since vn"

1vk~
lM=vk~

lvn~
1M=0, the associative como-

dule vk~
ιM is #Λ-torsion, By Proposition 2.5, vk~

ιM is ^-torsion and thus is
zero. So M is ^-torsion.

3. More 2?P*-module properties of BPJ*2?PJ-comodules

This section develops some algebraic preliminaries to Section 4. All of
the results here are well-known or trivial when BPJ=BP. Our point of
departure is the BPJ*BPJ version of Landweber's Filtration Theorem (1.16). A
unifying technique is the following.

Lemma 3.1. Let j : Λ->Γ be a homomorphism of commutative rings with
unit. Let A be a right A-module and let B and C be two-sided T-modules such
that there is an isomorphism B®VC^C®VB of left Y-modules. Further assume
that B is T-flat. If T o r ^ , C)=0, then ΎOY^A®^, C)=0.

Proof. If either B or C is Γ-flat, we have a Kϋnneth exact sequence

Tor 2

Γ (^® Λ B, Q - ^ T o r ^ ^ β)®ΓC->Tor 1

Λ(^, B^^-^Ύor^A®^, C)->0 .

When B is Γ-flat (and the roles of B and C are interchanged), this gives an

i s o m o r p h i s m . Ύ o r f ^ C ) ® ^ ^ 0 x ^ , 0 ® ^ ) . The lemma now follows

immediately from the isomorphism B®ΓC^C®TB.
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Throughout this section, let J={q0, •••, qn-i} be an invariant regular
sequence of length n. Let A=BP* and T=BPJ*.

For any commutative ring R and any i?-module M, we have two dimensions
of concern. The projective dimension, h. dim^ M, is the greatest integer k
such that Ext/(M, iV)Φθ for some R module N. The weak dimension,
w. dim^ My is the greatest integer k such that ΎorR\My N) Φ 0 for some i? module
N. Of course, w. dim^ M < h . dim^ M.

Lemma 3.2. The projective dimension of Y as a A-module is n.

Proof. Let Z^— {q0, •••, qm-i) <Ξ/, m<w. For m<n, there are short exact
sequences of Λ-modules

0 - BPJm* h BPJa* - BPJm+u - 0

showing inductively that h. dimΛ BPJm*^tn. The ideal (#0, •••, qn_ι) has radical
(̂ o> '">Vn-i) [10> Proposition 2.5]; so T=BPJ* is a «;ll_1-torsion module. By
the "ideal annihilator estimate" [6, Proposition 4.6], h. dimΛΓ>τz.

Corollary 3.3. Tor1

Λ(Zφ[ί;1, •-, vm]y Γ)=0 for all m>n.

Proof. Apply Landweber's Theorem 4.2 of [9] to the connective,
associative SP^ΰP-comodule BPJ*=Γ.

Lemma 3.4. For any m satisfying

To Γ l

Γ (Zφu .-, vn+k]®ABPJ*BPJ, BP*IIM) = 0 .

Proof. Recall that BPJ*BPJ is Γ-free. Tor1

Λ(Z(/>)[^1, —,»„+*], BP*/Im)=0
for w < i ί + ^ + l . For n^my BP*\Im is a Γ-module. Apply Lemma 3.1.

Recall that E(fn)^=Z(p)[vu •••, vM_u vm> vm'1].

Lemma 3.5. Let M be an associative BPJ^BPJ-comodule. Let B be
(i) Γ, (ii) BPJ*BPJ, or (iii) BPJ*(vm->BPJ). Then ToΓ l

Γ(£(m)*®Λβ, M)=0.

Proof. Both Γ and BPJ^BPJ are Γ-free. As a direct limit of copies
of BPJ*BPJ, BPJ*{vm-ιBPJ) is Γ-flat. By Landweber's Exact Functor
Theorem [9], Ύor1

A(E(m)^ BP*//A)=0, k^ - 1 . Iϊk>n, BP*jIk is a Γ-module
and so Lemma 3.1 implies that ΓVovι

v{E{m)^®hBy BP^Ik)=0, k^n. If M is
finitely presented, M has a finite filtration whose subquotients are isomorphic
to suspended copies of BP*IIk, k^n (1.14). By an induction over M's filtra-
tion, ToriΓ(2?(m)*®AJS,Λ/)==0 when M is finitely presented. By (1.13), this
suffices to prove the lemma.

Lemma 3.6. Let M be an associative BPJ*BPJ-comodule. If zv. dimΓ
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—fl+1, then:
(i) T o r ^ Z ^ K - , < | ® Λ Γ , M ) = 0 ;

(ii) £//£ sequence

0 -* ZC/>)[^, •••, ^m+i]®ΛΛί - ^ > Z(p)[vu •••, U 1 W + J ® A M

is exact.

Proof. By Corollary 3.3, the endomorphism^w+1®Γ oϊZφ[vly " yvm+1]®AT
is injeccive; part (ii) follows from the resulting short exact sequence and from
(i). Let A=Z(p)[vu -~,vm] a n d n o t e t h a t vm~1A=E(m)*. So vm~1Ύor1

Γ(A®A

Γ,M)^Tor x

Γ(£(//z)*®ΛΓ,M) = 0 by Lemma 3.5 (i). So Tor 1

Γ(i4®ΔΓ,M)
is a ^-torsion module. Part (i) is obvious when w. dimΓM==0; we may assume
w. dimΓ=&>0. Using (1.13) we construct an exact sequence of BPJ*BPJ-
comodules

where F is Γ-free. Consequently, w. dimΓi£<&— 1 and we assume inductively
(ii) that A®AK is ^-torsion free. (N.B. k— K m — 1—w+l ) So the ^-torsion
module Tor! r(^4®Ar, M) injects into the ^w-torsion free module ^ 4 ® A Γ ® Γ i ^ ^
A®AK thus establishing (i).

Proposition 3.7. Let J be a finite invariant regular sequence of length n.
Let M be a connective associative BPJ*BPJ-comodule. If w. dimBPjJVί^k—n3

then M is vk-torsίon free.

Proof. Il suffices to prove by an induction on />& that vk acts injectively
on Z(p)[vu •• ,z;/]®ΛM. When l=k, this follows from the m-\-l=k case of
Lemma 3.6 (ii). The general proof follows from a five lemma argument
involving a diagram whose horizontal rows are two copies of the short exact
sequences of 3.6(ii) (/=m) and whose vertical arrows represent multiplication
by vk. The left vertical arrow would be injective by a subsidiary induction on
dimension; the right one by the original induction on /.

4. Hurewicz homomorphisms

Let J={qOy •••, qn-i} continue to be an invariant regular sequence of
length n. Let Γ=BPJ*^BP*l(qOy •• ,#w_i) and let A=BP*. The ring epi-
morphism Λ-»Γ results in the identification A®KB^A®VB for arbitrary
Γ-modules AΓ and ΓB. Hence, throughout this section, we can adopt the
convention that A®B means A®AB.

By Lemma 3.5(i), X\->E(m)*®BPJ*X defines a homology theory; let
Έ{myJ) be its representing CW spectrum. E(m,J)*X^E(m)*®BPJ*X for
any CW spectrum X. Recall from §2 that we can form the spectrum vm~ιBPJ
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with π^v^BPfiozv^BPJ*. For a spectrum Y, we have the Boardman
map Y->E(m,J)ΛY which induces a Hurewicz homomorphism π*(YΛX)~*
E(m>J)*( Y/\X). The key topological results of this section compute the kernels
of these homomorphisms when Y=BPJ or vm~ιBPJ. These computations
depend on a theorem of Ravenel concerning the right unit of the BP spectrum.

Theorem 4.1 (Ravenel [13]). Let ηm be the composition

Vm: BP^BP^BP -> Z/p[vm]®BP*BP .

Then Vm(vm)=vm and for k>ly

Vm(vm+k) = vmtk

pm-vjktk modulo (vm(vm+1), —, vm(vM+k-i))

Let G(tnJ)*=Zφu ..., vm]®BPJ*BPJand let λ: G{m,J)*-»vm-ιG(m,J)*
^ E(m} J)*BPJ be the localization homomorphism. We have two Hurewicz
homomorphisms induced by BPJ's right unit:

A.'(Γ): Γ = BP/* ^ BPJ*BPJ -> G(m,JU

hm{Γ) = Xohm'(T): Γ ^ J 5 P Λ B P / - E(m,J)*BPJ.

For a left Γ module M, we define:

= hm\T)®\: M^T®M-> G{m,J)*®M

hm(M) = A β ( Γ ) ® l : M ^ Γ ® M -> E(tnJ)*BPJ®M.

Lemma 4.2. Lei m># L^ h'=hm\BP*]!„). For any non-zero element
y in BP*IIm, left multiplication by h\y) in G(m,J)*®BP*lIm is injective.

Proof. The m=n=0 case is well-known; so we assume that m>0. Since
ηR(vs) = vs modulo IS-BP*BP [2,11.16.1], we have the isomorphisms ζ and p
in commutative diagram 4.3.

(4.3)

H Zlp[vm]®BP*BP 1 Θ 0 Λ ?l* Zlp[Vu\®BPJ*BPJ

Zlp[vm]®BPJ*BPJ®BP*IIm

Im = Z(p)[vu -, vm

A Z//>-basis element of BP*/Im is (represented by) a monomial of form

^mi°^m+i1^m+22'"=^1' Let i = / 0 + * " i + V " and let
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If E=(elye2, •••) and ̂ = ^ 1 ^ 2 . . . , observe that (jΛj)*tE=zEt0 which is a left
BPJ*-basis element of BPJ^BPJ (Lemma 5.10). Filter each gradation of the
image of 1®(JΛJ)* by defining vm

a®zEt0to be of lower filtration than vm

b®zFt0

provided that •••, es+2=fs+2, es+1=fs+ly but es<fs. We now interpret Theorem
4.1 as saying that ζ~ιph\vI)~{\®{jΛj)*)vm(vI) = vm

i®zpmi>0 modulo terms of
lower filtration. The result is now evident.

Corollary 4.4. Let m>n. Then hm(BP^Im): BP^Im->E(m}J)^BPJ®
BP*IIm is a monomorphism.

Proof. By Lemma 4.2, left multiplication by vm®\=h\vn) on G(m,J)*®
BP*\Im is monic; thus the localization map \®\\ G(m, J)*®BP*jIm->
E(m,J)*BPJ®BP*IIm is monic. A second application of Lemma 4.2 shows
that hm\BP*IIm) is injective. But hM(BP^IM)={\®l)hm'(BPjIm).

Let us adopt the notation

HJP): υM-ψ = v.-WPJ* = π*{vm-*BPJ) -> E{m,J)^υm-ιBPJ)

for the Hurewicz homomorphism induced by the Boardman map vm~ιBPJ—>
E{m,J)f\vm-ιBPJ. For any Γ-module M, we define %M{M) by

hm{M) = hm(Γ)®l: vm~lM = vm^T®M- E(mJUvm^BPJ)®M.

Using the notation λ(M): M ̂ vm~ιM for the algebraic localization of M and
λ: BPJ^»vm~1BPJ for the topological localization of the spectrum BPJ, we
have the commutative diagram 4.5.

(4.5) M k ^ l E(tn, J)*BPJ®M

! \

Lemma 4.6. Let m^n. For any associative BPJ*BPJ-comodule M, fom{M)
is monk.

Proof. For a future analogy and some present simplicity, let A=
Γ, B=E(mJ)*BPJ, and f=hJΓ): A-*B. We record four essential facts.
( i ) By Corollary 4.4, f®BP^Im: A®BP^Im->B®BPjIm is monic.
(ii) By Lemma 3.5(ii), T o r ^ ΰ , BP^Ij+1)=0, w < j + l ( < m + l ) .
(iii) By Lemma 3.5(iii), Ύor1

Γ(B®vm-1Γ, BP*IIj)=0, n<j.
(iv) A is connective.
The lemma is well known when m=n—0; so we assume m>0. Multiplication
by Vj on BP^/Ij induces commutative diagram 4.7 which has exact rows. We
assume n^j^m so that the bottom torsion term is zero as indicated.
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(4.7)

0 =

The vertical //s are f®BP^/Ik

ys as appropriate. By a downward induction
beginning with j=m (i), we assume f3 is monic. By an upward induction on
the dimension of elements in connective A®BP*jIj (iv), we assume fλ is monic
in the dimension of interest. Note that ί®Vj raises dimensions. Thus/ 2 is
monic by the five lemma. By this double induction f®BP*j!j is monic for
j satisfying n^j^tn. Upon ^-localization / induces / : υm~1A—>E(miJ)^
(vm-ιBPJ). Since (vm-1A)®BP^/I~0 for j>m, we have that f®BP*βj:
vm-1BP*IIj-+E(tn)J)*(vm-1BPJ)®BPjIj is monic for all; satisfying » < ; . To
prove f®M is monic for all associative SP/^JSPZ-comodules, it suffices to
prove f®M is monic where M is finitely presented (Lemma 1.13). Such a
finitely presented comodule M has a finite filtration by sub-comodules whose
subquotients are suspended copies of BP^Ijy j > n. The remainder of the proof
is a five-lemma-aided induction over the filtration of M using fact (iii) to have
the "bottom-left torsion term" zero.

Lemma 4.8. Let m^n and let M be an associative BPJ^BPJ-comodule.
Left multiplication by hm(M)(vm) acts injectively on E(m,J)*BPJ®M.

Proof. Let A=B=G(mJU=Z(p)[vly-..,vm]®BPJ*BPJ. Let /: A-+B
be left multiplication by hm'(Γ)(vm). We record four essential facts.
( i ) By Lemma 4.2, f®BP*jIm is monic.
(ii) By Lemma 3.4, Tor^JB, BP^Ij+1)-=0, n<j+
(iii) By Lemma 3.5 (ii), Ύor^υ^B, BPjIj)=0y

(iv) A is connective.
Follow the pattern of the proof of Lemma 4.6.

Theorem 4.9. Let J={q0, •• ,̂ f

n_1} be an invariant regular sequence of

length n and let m^n. Let M be an associative BPJ*BPJ~comodule. The kernel

of

hM(M): M->E(m,J)*BPJ®BPUM

is the vm-torsion subgroup of M.

Proof. In diagram 4.5, hm{M) is monic by Lemma 4.6. By Lemma 4.8,
left multiplication by hm(M)(vm)—i.e. right multiplication by vm®\—is monic
on E(myJ)*BPJ®M. Thus the localization map E(m,J)*(\)®l is monic in
4.5. Thus the kernel of hm(M) coincides with that of \{M) which is the vm-
torsion subgroup of M.
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Theorem 4.10. Let J={qOy "*,qn-i} be an invariant regular sequence of
length n and let m^n. Let X be any CW spectrum.
(i) The Boardman map vm~ιBPJ->E(m, J) /\vm~ιBPJ induces a Hurewίcz
monomorphism

ftm{X): π*(vm

(ii) The Boardman map BPJ->E(m, J) /\BPJ induces a Hurewicz homomorphism

hm{X): π*(BPjΛX) - E(mJUBPjΛX)

whose kernel is precisely the vm-torsίon subgroup of BPJ*X=π*(BPJ /\X).

Proof. The latter part follows immediately from Theorem 4.9 and the
isomorphism E(mJ)*(BPJ ΛX)^E(m,J)*BPJ®BPJ*X (Lemma 3.5(ii)).
Similarly, the first part follows from Lemma 4.6.

Corollary 4.11. Let J continue to be an invariant regular sequence of length
n and let m^n. For any CW spectrum X, (vm~1BPJ)*X=0 if and only if
E(m,J)*X=0.

Proof. The "only if" statement follows from a Conner-Floyd type iso-
morphism :

^E(m)*®Vm-iBP* BPJ*X.

Its converse follows from Theorem 4.10(i) and the isomorphisms

Corollary 4.12. Let J be a finite invariant regular sequence of length n. Let
Let X be a connective CW spectrum. If w. dimBPjJίPJ*X^m—ny then

the Hurewίcz homomorphism

hm(X):

is injective. (Cf. [6, Theorem 6.1].)

Proof. Proposition 3.7 and Theorem 4.10 (ii).

5. BPJ*BPJ and BPJ*BPJ

Let A be an algebra over the ground ring R> N be an jR-module, and M
be an associative ^4-module. Then there is an isomorphism

θ: Hom^ (A®R N, M) -+ Horn* (Ny M)

defined by θ(f)=f(v®\) where η: R->A is the unit map. θ~\g)=φ(l®g)
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where φ: A®RM-+M gives M's ^-module structure. (Adams [1, p. 320].)

Lemma 5.1. Let h: M->A®RN be an A-module homomorphism. If h is
split epic as an R-module homomorphism, then it is also split epic as an A-module
map.

Proof. Let the i?-module map /: A®RN->M be a right inverse for h.
Then θ~\f(η® 1)) is the desired ^4-module splitcing of h.

Lemma 5.2. Let C be a coalgebra over R, N be an R-module, and M be an
associative C-comodule. Let h: C®RN-^M be a C-comodule map. If h is split
monic as an R-module homomorphism, then it is also split monic as a C-comodule
map.

Proof. This is the formal dual of Lemma 5.1.

Let J={q0, •••, qn_^\ be a finite invariant regular sequence in BP*. By
Baas [4], there exists an associative left BP-module spectrum BPJ with pairing
φ: BPΛBPJ-+BPJ such that π*BPJ=BPJ^BP*l(qOy ..., q^). Let JM+ι=
feo> •"> ?«}> m<n BPJm and BPJm+1 are related by a cofibration of .BP-module
spectra

&BPJ. φm{qmAί) BPJm h BPJm+1

 kS S^BPJm .

Here d is the dimension of qm in BP*. φm: BP/\BPJm->BPJm defines BPJm's
βP-module structure; φJlAjm-i)=jm-i°φm-i a n d Ψn = Ψ- BPJ0 = BP and
φo=m:BPΛ BP-+BP. Let

jm+s,m =jm+s-lo'"°jm: BPJm~>BPJm+s .

Let Lm=jmfi°c. S°->BPJm where ι: S°->BP is the unit for the Brown-Peterson
spectrum.

The homomorphism

ψ: BPJ^BPJ^BPJ^1^^ ( l Λ Γ Λ l ^

<^~ BPJ*{BPABP)®BPJ* BPJ*{BPJtABPJm)

mikes BPJ*(BPJtA BPJm) into an associative BPJ*(BP A BP)-comodule.
(See Wϋrgler [16].) <p{lAJnto)—jn,o0(Po gives a distinguished element of
BPJ*(BPABP). A map /: BPJι/\BPJm-^BPJ is said to be primitive if

ψ[f] = h'n,o°<Po]®[fl In other w o r d s J ί ^ Λ ^ X l Λ Γ Λ l ) = ^ 0 Λ l ) ( l Λ l Λ / ) .
We follow Wϋrgler in denoting the set of primitives of BPJ^(BPJιABPJm) by
PrBPJ*(BPJ,ABPJM).

REMARK 5.3. When BPJι=BPJm=BPJ) a multiplication μ: BPJ A BPJ->
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BPJ in BPJ*(BPJΛBPJ) is primitive if and only if the following three con-
ditions hold.
(i) μ{φΛl)=φ(lΛμ): BPΛBPJΛBPJ-+BPJ
(ii) μ(φΛl)(TΛl)=μ(lΛφ): BPJΛBPΛBPJ-+BPJ
(iii) μ(lΛφ)(lΛT)=φoT{μΛl): BPJΛBPJΛBP-+BPJ
(The first two conditions imply the third.) Conditions (i), (ii), and (iii) give
Araki-Toda's characterization of a quasi-associative multiplication [3].

Lemma 5.4. Let a multiplication μ: BPJΛBPJ->BPJ be quasi-associative
and let cn: S°->BPJn=BPJ be a unit for μ. Then the following diagram com-
mutes.

BPΛBPJ ^ - ^ BPJ ΛBPJ 4-^° BPJ ΛBP

BPΛBPJ

Proof. Routine.

Proposition 5.5 (Wurgler [16, Theorem 5.1]). Let J={qOf •••, qn_^ be

an invariant regular sequence of BP*. For 0</w<w, there is a quasi-associative
multiplication μm\ BPJm ΛBPJm-> BPJm with unit tm\ S°->BPJm such that
jm-i°μm-i=μm(jm-iΛjm-i) as maps BPJm^ΛBPJm.^BPJm.

Proof. For 0<m<w, we construct primitive maps μm': BPJm_λΛBPJm->
BPJm a n d μm: BPJmΛBPJm->BPJm such that all of the obvious compositions
commute:

(iϋ)
(iv)
where T: BPJmΛBP->BPΛBPJm is the switching map. (Compare Lemma 5.4.)
The proof is by induction on m. We sketch the inductive step.

Since vR{qi) e (qQy •••,?/)• BP*BP, the cofibration

(5.6) BPJ, J-!> BPJι+1 h Sd

induces a split short exact sequence of BPJt-modules,

(5.7) 0 - BPJ*{BPJkΛBPJt) - BPJ*{BPJkΛBPJι+1)

^Δljζ BPJ*{BPJk/\BPJ,) - 0 .

We assume inductively that BPJl(BPJk/\BPJ)~BPJ*(BP/\BP)®BPJmtN
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for some BP/^-module N. By Lemma 5.1, (5.7) splits as BPJ*(BP/\BP)-
modules and the middle term of (5.7) has the desired inductive structure. By
Lemma 5.2, (5.7) splits as BPJ*(BP/\BP)-comodules. Hence the functor
Pr{—) preserves the exactness of (5.7). We first pick μJ^PrBPJ^BPJ^A
BPJm) satisfying (i) and (ii), and next μm£ίPrBPJm*(BPJm/\BPJm) satisfying
(iii) and (iv).

Quasi-associative multiplications μ: BPjΛBPJ->BPJ with unit ιn\ S°->
BPJ exist by Proposition 5.5. We assume that a choice of such a μ is fixed
throughout this paper.

The cofibration (5.6) induces two split short exact sequences of
βP/*-modules.

(5.8) 0 - BPJtPPjJi BPJ*BPJι+X BPJ*BPJt -> 0

(5.9) 0 - BPJ*BPj!*£ BPJ*BPJtJZ BPJ*BPJ, -> 0

Recall that BP*BP^BP*[tu t2, •••] where the indeterminate t{ is of dimen-
sion 2p{—2. (Let to= 1.) Thus BPJ*BP^BPJ*[tly t2, •••]. An argument using
Lemma 5.1, similar to that of the proof of Proposition 5.5, shows that
BPJ*BPJι is a free left BP/^BP-module. Let A=(a0, •••, at_^) be an /-tuple
of O's and l's. A free left BP/^JBP-basis of BPJ*BPJt is given by the sym-
bols

dA = d^o—d^fi-i

of dimension Σy^y (dimension (g; ) + l ) . In (5.8),^* sends dΛ to a symbol of
the same name. We choose elements dAd^BPJ^BPJl+1 so that kι*(dAdι)=dA.
Let ZEA^LBPJ*BPJ be the element corresponding to tι

e^"tm

emdA where E=
(*u "•> *m> °> •")• L e t c : BPJ*BPJ->BPJ*BPJ be the conjugation induced by
interchange of the BPJ factors of BPJ A BPJ.

Lemma 5.10. LetJ= {qo> •••, qn_^ be an invariant regular sequence ofBP*.
A free BPJ* basis for BPJ^BPJ is given by the elements zEtA where A=
K> '••> an-i) ™ a sequence of O's and Γs. The left action of BP*BP on BPJ*BPJ
is given by

(5.11) tFzB Λ = z*+F-A .

BPJ*BPJ is free as a right BPJ^-module on the basis c(zE'A).

As explained in §1, 1Λ*Λ: BPJAS°-+BPJΛBPJ induces a coaction

ψx: BPJ*X - BPJ*(BPJΛX)^BPJ*BPJ®BPU BPJ*X

and we define elementary BPJ operations sEA by the formula
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(5.12) ψ z («) = Σ c(z* A)®sEιΛ(x).
ΈJ,A.

Since BPJ*BPJ is Hausdorff, each elementary BPJ operation

SB.A. BPJ*()-+BPJ*+d(),

d=yΣlei(2pi—2)+^aj(dim(qj)+l)i is induced by a unique map of spectra SEtΛ:
BPJ->SdBPJ. By an induction (over /<w) using (5.9), one can prove:

Lemma 5.12. BPJ*BPJ is a direct product of copies of BPJ* indexed by
the maps SEA. Each element Θ^BPJιBPJ has a unique representation as a con-
vergent infinite sum

B,A

where d is the dimension of SEA.

REMARK 5.13. Another induction using the exactness of (5.9) shows that

for 0 < / < n and qA<=BPJ*. This establishes (1.8).

REMARK 5.14. The composition SEAoSFB has a representation
by Lemma 5.12. Here the dimension of SGC must be greater than or equal
to the sum of the dimensions of SEA and SFB. Since sEAosFfB==SEtA*

oSEB^~
(SE A

oSFB)*y (1.9) is established. In general, the relations given by SEAoSF B

will be even more frightful than the ones given by rEorF in BP theory. In par-
ticular: S00oS00 will not be Soo unless the ^ ' s in Remark 5.13 happen to be all
zero.
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