

Title	On the commutativity of the radical of the group algebra of a finite group
Author(s)	Motose, Kaoru; Ninomiya, Yasushi
Citation	Osaka Journal of Mathematics. 1980, 17(1), p. 23-26
Version Type	VoR
URL	https://doi.org/10.18910/10551
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Motose, K. and Ninomiya, Y.
Osaka J. Math.
17 (1980), 23-26

ON THE COMMUTATIVITY OF THE RADICAL OF THE GROUP ALGEBRA OF A FINITE GROUP

KAORU MOTOSE AND YASUSHI NINOMIYA

(Received December 27, 1978)

Let K be an algebraically closed field of characteristic $p > 0$, and G a finite group of order $p^a m$ where $(p, m) = 1$ and $a > 0$. We denote by $J(KG)$ the radical of the group algebra KG . In case p is odd, D.A.R. Wallace [6] proved that $J(KG)$ is commutative if and only if G is abelian or $G'P$ is a Frobenius group with complement P and kernel G' , where P is a Sylow p -subgroup of G and G' the commutator subgroup of G . On the other hand, in case $p = 2$, S. Koshitani [1] has recently given a necessary and sufficient condition for $J(KG)$ to be commutative. In this paper, we shall give alternative conditions for $J(KG)$ to be commutative.

If $J(KG)$ is commutative, then G is a p -nilpotent group and a Sylow p -subgroup of G is abelian ([6], Theorem 2). We may therefore restrict our attention to a p -nilpotent group. Now, we put $N = O_p(G)$. For a central primitive idempotent ε of KN , we put $G_\varepsilon = \{g \in G \mid g\varepsilon g^{-1} = \varepsilon\}$. Let a_i ($i = 1, 2, \dots, s$) be a complete residue system of $G(\bmod G_\varepsilon)$.

$$G = G_\varepsilon a_1 \cup G_\varepsilon a_2 \cup \dots \cup G_\varepsilon a_s.$$

Then K. Morita [2] proved the following:

Theorem 1. *If G is a p -nilpotent group, then $e = \sum_{i=1}^s \varepsilon^{a_i}$ is a central primitive idempotent of KG and KGe is isomorphic to the matrix ring $(KP_\varepsilon)_f$ of degree f over KP_ε for some f , where P_ε is a Sylow p -subgroup of G_ε .*

In what follows, for a subset S of G , we denote by \hat{S} the element $\sum_{x \in S} x$ of KG . By [5], Theorem, it holds that $J(KG)^2 = 0$ if and only if $p^a = 2$. When this is the case, $J(KG)$ is trivially commutative. Therefore we may restrict our attention to the case $p^a \geq 3$. The following proposition contains [1], Theorem 2.

Proposition. *If G is a non-abelian group and $p^a \geq 3$, then the following conditions are equivalent:*

- (1) $J(KG)$ is commutative.
- (2) $(G'P)' = G'$ and $J(KG'P)$ is commutative.
- (3) (i) G' is a p' -group, and

(ii) each block of $KG'P$, which is not the principal block, is of defect 0 if $p \neq 2$ and of defect 1 or 0 if $p=2$.

(4) (i) G' is a p' -group, and

(ii) for each $x \in G' - 1$, $C_{G'P}(x)$ is a p' -group if $p \neq 2$ and its order is not divisible by 4 if $p=2$.

Proof. (1) \Rightarrow (2): We put $H=G'P$. Since H is a normal subgroup of G , we have $J(KH) \subset J(KG)$. Hence $J(KH)$ is commutative, and so, by [6], Theorem 2, $|H'|$ is not divisible by p . Since $J(KG)$ is commutative and $J(KG) \supset J(KH) \supset J(KH'P) \supset \hat{H}'J(KP)$, by [6], Lemma 3, we have $\hat{G}'KG \supset J(KG)^2 \supset \hat{H}'^2J(KP)^2 = \hat{H}'J(KP)^2 \supset \hat{H}'P$. Thus, we have $G' \subset H'P$. Since G' is a p' -group by [6], Theorem 2, we have $G'=H'$.

(2) \Rightarrow (3): Since $J(KG'P)$ is commutative and $(G'P)'=G'$, G' is a p' -group by [6], Theorem 2. Now, we put $e_1=|G'|^{-1}\hat{G}'$, and $e_2=1-e_1$. Then e_1 and e_2 are central idempotents of $KG'P$. Thus we have $J(KG'P)=e_1J(KG'P) \oplus e_2J(KG'P)$. Since $J(KG'P)$ is commutative, by [6], Lemma 3, we have $J(KG'P)^2=e_1J(KG'P)^2 \oplus e_2J(KG'P)^2 \subset (\hat{G}'P)'KG'P=\hat{G}'KG'P=e_1KG'P$. Therefore $e_2J(KG'P)^2=0$, and so by Theorem 1, every non-simple block of $e_2KG'P$ is isomorphic to the matrix ring over KD , where K is of characteristic 2 and D is a group of order 2. Hence $e_2KG'P$ is a direct sum of blocks of defect 0 or of defect 1 or 0 according as p is odd or 2. Since $e_1KG'P (=e_1KP)$ is the principal block, we obtain (3).

(3) \Rightarrow (4): This is easy by [3], Theorem 4.

(4) \Rightarrow (3) is trivial.

(3) \Rightarrow (1): Since $G'P$ is a normal subgroup of G and $[G:G'P]$ is not divisible by p , we have $J(KG)=J(KG'P)KG$. We put $e_1=|G'|^{-1}\hat{G}'$, and $e_2=1-e_1$. Then e_1 and e_2 are central idempotents of KG and $J(KG)=e_1J(KG'P) \cdot KG \oplus e_2J(KG'P)KG$. Since $e_1J(KG'P)KG \subset \hat{G}'KG$, $e_1J(KG'P)KG$ is a central ideal of KG by [4], Lemma 5. By Theorem 1, every block of $e_2KG'P$ is isomorphic to the matrix ring over KD , where D is a p -group. From our assumption, every non-simple block of $e_2KG'P$ has the radical of square zero. Hence $e_2[J(KG'P)KG]^2=e_2J(KG'P)^2KG=0$, and so $e_2J(KG'P)KG$ is commutative. Thus, $J(KG)$ is commutative.

REMARK. The condition (4) of Proposition for p odd is equivalent to the condition of Wallace's result ([6]) that $G'P$ is a Frobenius group with complement P and kernel G' .

Now, in case $p=2$, we shall give the conditions for $J(KG)$ to be commutative.

Theorem 2. Assume that $p=2$, $2^a \geq 4$ and $G' \neq 1$. Then the following conditions are equivalent:

- (1) $J(KG)$ is commutative.
- (2) G' is of odd order and $|P \cap P^h| \leq 2$ for every $h \in G'P - P$.
- (3) G' is of odd order and $C_{G'P}(s)/\langle s \rangle$ is either a 2-group or a Frobenius group with complement $P/\langle s \rangle$ for every involution s of P .

Proof. (1) \Rightarrow (2): Suppose that $J(KG)$ is commutative. Then, by Proposition, G' is of odd order. Let h be an arbitrary element of $G'P - P$, and x an arbitrary element of $P \cap P^h$. Then $hxh^{-1}x^{-1} \in P \cap G' = 1$, and so $x \in C_{G'P}(h)$. Thus, $P \cap P^h \subset C_{G'P}(h)$. Since we may assume that $h \in G' - 1$, we obtain $|P \cap P^h| \leq 2$ by Proposition.

(2) \Rightarrow (3): Let s be an arbitrary involution of P such that $C_{G'P}(s) \neq P$. Then $P \cap P^s = \langle s \rangle$ for $x \in C_{G'P}(s) - P$, and so $C_{G'P}(s)/\langle s \rangle$ is a Frobenius group with complement $P/\langle s \rangle$.

(3) \Rightarrow (1): Let x be an element of $G' - 1$, and S a Sylow 2-subgroup of $C_{G'P}(x)$. Suppose that $S \neq 1$. Then $S \subset P^u$ for some $u \in G'P$, and $x \in C_{G'P}(S) \subset C_{G'P}(s)$ for every involution s of S . Hence, $C_{G'P}(s)$ is not a 2-group, and so $C_{G'P}(s)/\langle s \rangle$ is a Frobenius group with complement $P^u/\langle s \rangle$. Thus, we have $S \subset P^u \cap P^{ux} = \langle s \rangle$, and hence $|C_{G'P}(x)|$ is not divisible by 4, which implies (1) by Proposition.

Corollary. Assume that $p=2$, $2^a \geq 4$ and $G' \neq 1$. If $J(KG)$ is commutative, then a Sylow 2-subgroup of G is a cyclic group or an abelian group of type $(2, 2^{a-1})$.

Proof. Suppose that $J(KG)$ is commutative. Then, by Theorem 2, $|P \cap P^h| \leq 2$ for every $h \in G'P - P$. If $P \cap P^h = 1$ for all $h \in G'P - P$, then $G'P$ is a Frobenius group with complement P and kernel G' . Hence P is cyclic. On the other hand, if $P \cap P^h = \langle s \rangle$ for some $h \in G'P - P$ and some involution s of P , then $hsh^{-1}s^{-1} \in P \cap G' = 1$, and so $h \in C_{G'P}(s)$ and $h \notin P$. Therefore $C_{G'P}(s)$ properly contains P . Hence, $C_{G'P}(s)/\langle s \rangle$ is a Frobenius group with complement $P/\langle s \rangle$ by the condition (3) of Theorem 2. Hence $P/\langle s \rangle$ is cyclic, and so P is a cyclic group or an abelian group of type $(2, 2^{a-1})$.

REMARK. In case G is a non-abelian group and $p^a \geq 3$, S. Koshitani [1] proved that if $J(KG)$ is commutative, then $N_G(P)$ is abelian. This is included in the following proposition: *Let G be a non-abelian group, and $p^a \geq 3$. If $J(KG)$ is commutative then G is a semi-direct product of G' by (abelian) $N_G(P)$.*

Proof. It is easy to see $G = G'N_G(P)$. Suppose that $J(KG)$ is commutative. Let x be a p' -element of $N_{G'P}(P)$. Since $G'P$ is a p -nilpotent group, $N_{G'P}(P)$ is the direct product of P and a normal p' -subgroup, and so $C_{G'P}(x)$ contains P . Hence, by Proposition (4), we have $x=1$, which implies that $G' \cap N_G(P) = 1$.

References

- [1] S. Koshitani: *Remarks on the commutativity of the radicals of group algebras*, Glasgow Math. J. **20** (1979), 63–68.
- [2] K. Morita: *On group rings over a modular field which possess radicals expressible as principal ideals*, Sci. Rep. Tokyo Bunrika Daigaku A **4** (1951), 177–194.
- [3] M. Osima: *On primary decomposable group rings*, Proc. Phys.-Math. Soc. Japan **24** (1942), 1–9.
- [4] D.A.R. Wallace: *Group algebras with central radicals*, Proc. Glasgow Math. Assoc. **5** (1962), 103–108.
- [5] ———: *Group algebras with radicals of square zero*, ibid. **5** (1962), 158–159.
- [6] ———: *On the commutativity of the radical of a group algebra*, ibid. **7** (1965), 1–8.

Department of Mathematics
Shinshu University
Matsumoto 390, Japan