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Analysis of Temperature Field with Equiradial Cooling Boundary around

Moving Heat Sources ¥

—Heat Conduction Analysis for Estimation of Thermal Hysteresis during

Underwater Welding—

Akira MATSUNAWA *, Hiroyuki TAKEMATA ** and Ikuo OKAMOTO***

The paper describes the method of solving partial differential equation of heat conduction for moving source
under the boundary condition that the equiradial surface of finite length around a moving heat source, i.e., semi-spherical
surface for a point source and cylindrical surface for a linear one, is kept constant temperature, supposing ro estimate
thermal field in underwater welding by local cavity methods. Analyses are conducted for both point and linear heat
sources and rigorous solutions are obtained, and their results are compared in detgil with Rosenthal’s solutions.
Furthermore, the cooling rate at particular temperature range, which is practically useful for the prediction of hardness
of welded part of steel plate, are analysed using the obtained solutions and the effect of the radius of cooling boundary on

the rate are clarified for various welding variables.
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(Thermal Cycling)

1. Introduction

In underwater arc welding with wet or semi-wet
processes, there often arise metallurgical problems such as
hydrogen absorption and increase in cooling rate which
results in hardened weld structures as well as bringing
many kinds of weld defects. One of the authors (A.M.)
has developed an underwater welding process with fluid
stabilized local cavity in order to maintain a stable arc and
to solve or minimize the above unfavourable matters.
In the TIG and MIG melt run weldings with this process,
it was experimentally verified that the hydrogen absorp-
tion was less than that in carefully controlled manual arc
welding with a low hydrogen covered electrode in usual
air atmosphere. Another important feature of the process
is that the cooling rate of base metal can be adequately
controlled by selecting the cavity size. The relation
between cooling rate and cavity diameter is, however,
much dependent on various welding parameters such as
welding speed, heat input, etc., but the problem has not
been fully analysed theoretically and experimentally.

The paper describes an analytical method to evaluate
the temperature field in underwater welding by a circular
local cavity method. Here, for the simplicity of mathe-
matical analysis, an approach is made for a moving heat

1),2)

source either of point and linear one under the condition
that the equiradial boundary of constant temperature
around a source moves with the same speed with that of
heat source, which is the first order approximation of
thermal hysteresis during the underwater welding under
the question.

2. Modelling for Analysis

2.1. Nomenclature

The following nomenclature will be used throughout
this paper;

g heat input [J/s]

g heat input per unit length (=g/#) [J/s-m]

h : thickness of plate [m]

v : speed of source [m/s]

t : time [s] ’

T : temperature [C]

Tp: temperature of cooling boundary [C]
Tf: reference temperature (fuéion temperature, for

example) [C]

K : heat conductivity [J/s-m-C]

1/2\: thermal diffusivity [m?/s]
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radius of cooling boundary [m]

normalized temperature (<( T-Ty ) / (T/=T) ))

normalized radius (=/R )
non-dimensional plate thickness ( =\vk )

O > X X

2.2. Assumption and Boundary Condition

In order to obtain analytical solutions of differential

equation of heat conduction, the following assumption

and boundary condition are adopted here;

1) Physical properties of the plate, ie., K and X are
independent on the temperature and position.

2) The moving speed v and rate of heat input g are
constant.

3) Heat losses from surface by convection and radiation
are ommitted.

4) A cooling boundary of constant temperature (7=T) is
always placed at the position of equiradial distance R
from moving heat source and the temperature is kept
at Ty all over the place of 7 > R. Namely, the temper-
ature rise is zero, as shown in Figure 1, on and outside
of the semi-spherical surface for a point source and
cylindrical surface for a linear source, in which the
center of circular boundary coincides with the source
position.

The basic partial differential equation of heat con-
duction is expressed as well known as the following form
in the fixed co-ordinate (x, y, z).

2 2 2

Supposing that a point heat source ¢ is supplied on the

surface of semi-infinite plate and moves along the x-axis

with the constant speed of v, one can rewrite the

Equation (1) into the folowing form using the moving

co-ordinate ( &,y ,z) whose origin is taken at the heat

source.

92T  3°T , 3°T _ 3T  aT
e T Tar T M T ) @

where, £ = x — vi.

In case of the quasi-stationary state, i.e., 37/0r =0, the
equation is reduced to

22T | 92T  9°T _ aT
o T T T TN e 3).
Taking

non-dimensional heat input (=\vq/2nK (Tf~ Ty))

non-dimensional radius of cooling boundary ( =\vR)
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Fig. 1 Heat conduction modelling with equiradial cooling
boundary around moving heat sources
(a) Three dimensional heat flow
(b) Two dimensional heat flow
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after Rosenthal’s method?’, the Equation (4) becomes

220 2% 0%
aéz +ay2 +a—22-—(>\1))2(1)=0 (5)

Therefore, the present question is to solve the Equation
(5) under the above stated condition of 4).

3. Solution of Temperature Field with Symmetrical Cool-
ing Boundary around a Moving Heat Source

3.1. Point Heat Source (Three Dimensional Heat Flow)

The previous equation (5) has a complete symmetrical
form with respect to each axis of coordinate. Then,
employing the polar coordinate (7,a,8) and also con-
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sidering the spherical symmetricity of the problem under
question, the partial differential equation of (5) is con-
verted to the following differential equation;

d?(rd
Ly eay=o0 ©®
where, r = (£ + y? + z2)1/2

r
£ =rcosacosf
Yy = rsinacosf
z = rsin.

From the Equations (6) and (4), the general solution of
temperature becomes

1
T-T, =Texp(—>\vrcosacos B) x

[Cyexp(Mvr) + Cyexp (—dvr)] (7).
Substituting the following boundary condition;
{ r=7T, at r =R
—2mrK (0T)or) - q as r —» 0 ®),

the solution of temperature at an arbitrary point (7, a,
B ) within the region bounded by a spherical cooling
terminal can be expressed in the perfect form as

q 1
T — TO =W<-7exp [—ar (1 + cosacosB)] x

1 —exp [20w (R —r)]
1 —exp [ -2WR ]

).

or in non-dimensional expression 4) after the definition in
21,

0 1
oK P [—pA (1 + cosacosf)]

1 —exp [-2A(1-p)]
1 —exp [-2A]

(10).

If the last term is denoted as

= 1 —exp [2A(1—p)]

1 — exp [ 2A] an.

Y

it is obvious that

lim

r=1for 0 <p<i1
A»>oo =

13

(13)

and the Equation (10) completely coincides with the
cooling boundary is palced at infinity and is included
pressed as

6

Z (12),
n

1
= or P [ r(1 + cosacosf)]

since pA = (#/R) (WR) = Wwr Namely, the solution
obtained by Rosenthal is corresponded when the circular
cooling boundary is placed at infinity and is included
mathematically in the solution (10) in which the cooling
terminal is positioned at finite distance from source. It is
clear, therefore, that 7y defined by equation (11) means
the cooling term and represents the degree of deviation
in temperature from Rosenthal’s solution.

In Figures 2 and 3 are shown the behaviour of cooling
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o

0.4 |
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0

Fig. 2 Behaviour of cooling term 7 against radius of cooling
boundary (Three dimensional heat flow)

PA(=2v3)

Fig. 3 Temperature distribution along moving axis behind heat
source at various cooling boundary radius (Two di-

mensional heat flow; TO is assumed to be 0 C.)

term <y against the change in radius of cooling boundary
A and the temperature distribution along the rear axis of
source movement for various A-values. Temperature dis-
tribution near the source is not influenced by the cooling
terminal, ie., vy = 1, but obeys the Rosenthal’s solution



(14)

(A = o). In the region far from the source, however,
temperature decreases rapidly apart from the Rosenthal’s
solution due to the effect of cooling terminal. Naturally,
the effect reaches as far as to the higher temperature
region at center, when the A -value becomes small.

The assumption of constant temperature on the semi-
spherical surface of radius R (see the assumption 4) in the
section 2.2.) is equivalent to the fact that the heat sink of
finite intensity is distributed on the boundary surface.
The sink intensity is easily obtained from equations (9) or
(10) in either dimensional or nondimensional form.

% T _ Mg exp [—NR (1+cosacosB)]
KGR = 2R [1 —exp (—20R))]
(13)
_i( 00 _2exp [-A(1l+cosacosB)]
n 03(pA)” p=g A(l—exp[-2A1)
(14)

Figure 4 shows the distribution of heat sink intensity
on the surface of semi-spherical cooling boundary. The

25

1 (ao _ 2e~A(1.cosdcosB) 1
m3PK g A1 - e-2A)

Azt A=K/b !
Az\S A=%/b (
.

 Az25 8%/

Fig. 4 Distribution of heat sink intensity on the surface of cooling
boundary (Three dimensional heat flow)

sink intensity shows, as seen in the figure, the maximum
value at the rear end on the moving axis (i.e.,a=7,8=0
& Wwg=—A), and it decreases remarkably with the re-
duction of a (or increase in f). Furthermore, the intensity
naturally reduces with increase in A and it is small enough
so as to be practically negligible except in the region of
rear part of source on the plate surface, if A is greater
than 5. ‘

3.2. Linear Heat Source (Two Dimensional Heat Flow)

As there is no heat flow in the z-direction in case of
two dimensional flow, the Equation (4) can be expressed
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as follow using the cylindrical coordinate (7, a );

d’® 1 ad )
- (wyes=o (s)
Since the boundary condition in this case is
T = To at r = R
(16),

oT :
—2WK(F) ~>q'=qlh as r - 0

the objective solution of equation (15)is

T-1T, =q_exp [MAvrcosal-K,y(Wr) x

2nhK
Koy (MWR) I,(wr)
[1“ Io(va)'KZ(xvr)] a7

or in dimensionless form

0 1

- T4 [—pAcosa] Ky (pA) x

,[1_ Ko (A) | Iy (ph)
Ip (A) Ky (pA)

] as

Here, Ky and I, are the modified Bessel functions of O
order and H (=Avh) is the nondimensional plate thick-
ness.

The cooling term in case of two dimensional flow is

Ko(A) | Iy (pA)

vl 1p(A)  Ky(pA)

(19)

and its change with A is shown in Figure 5 by solid lines,
in which is also indicated the behaviour of cooling term

1.0 ——=
///’ = f=‘0.70
X s P =0.80
0.8 F:O.Z/:// //// / 7]
// // P=080
os L f3T
. , 50 // P
> ’/ //
// 7 f=095
0.6 [ _ 1
/A _Z
Y P
0.2 -7
- = P=099
X . /—F=.1 0
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
A

Fig. 5 Behaviour of cooling term 7Y against radius of cooling
boundary in case of two dimensional heat flow (Broken line
shows the case of three dimensional flow)
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in three dimensional flow by broken lines. Since the
divergence of heat flux in two dimensional flow is less
than that in three dimensional case, the influence of cool-
ing terminal is greater, particularlly in case of smaller
values of A, in the two dimension. However, in the region
of larger values of A, the values of ¥ and <" agree quite
well each other and hence the equation (18) can be ex-
pressed with good zipproximation, if A islarger than 4, as

—:zﬁ% exp [ —pAcosal * Ky (pA) x
1-— —2A (1 —
[ 7 e[xp (_2( 5 ”)]] for A>4 (20).

It is evident that equations (17), (18) and (20) com-
pletely include the Rosenthal’s solution of two dimen-
sional flow which corresponds the condition of infinite
value of A.

T T T T 1.
A=5

ALk
y (Rosenthal)

B 1.0+
{ ‘

A

Fig. 6 Temperature distribution inside the region bounded by
circular cooling boundary (Two dimensional flow)

Figure 6 shows an example of calculated temperature
distribution by equation (16) and in Figure 7 are re-
presented the effect of radius of cooling boundary and
heat input on the calculated bead width and pool length.

The heat sink intensity on the cylindrical surface of
cooling terminal can be readily calculated as the same
manner with the previous three dimensional case and
the results are;

_K(%) F=R =;\% exp (—\R cos a) + K; (WR) x

[1+ Ko(WwR) I;(WR)

] (1),

15

(15)

or

1 086
- (m)pzl ='1§—exp(—Acosa) K;(A) x

Ko(A)' IJ(A )

[+ I, (A)-K; (A)

1 (22),

where, K; and [; ére the modified Bessel functions of the
first order.

1/A

(b)

Fig. 7 Effect of heat input and radius of cooling boundary on
bead parameters
(a) Bead width
(b) Pool length

In Figure 8 is shown the intensity distribution of heat
sink computed from equation (22). Overall tendency is
similar to that of point heat source shown in the previous
Figure 4, but the rate of intensity decrease with increase
in A is rather dull compared with that in three dimension-
al case, which is primarilly caused by the fact that di-
vergence of flux is smaller in linear heat source.
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Fig. 8 Distribution of heat sink intensity on the surface of cooling
boundary (Two dimensional flow)

4. Average Cooling Rate at Particular Temperature Range

In underwater welding by local cavity methods, there
usually takes place more or less the metallurgical deterio-
ration of welded part induced by the influence of en-
vironmental water. In welding of steel, for example, there
often arises the problems such as decrease in ductility,
delayed fracture (stress corrosion cracking), etc., at the
remarkably hardened part. Hence, the hardness has been
often taken as an important measure of welding fabri-
cation.s)’ 6)

Cooling rate is, therefore, one of the important factor
to be controlled in underwater welding processes, since
the hardness of steel plate has a strong dependence on
the cooling rate at particular range of temperature. It is
widely recognized that the average cooling rate from
800 C (0 = 800/1,500 = 0.533)to 500 C(# = 0.333)
determines the hardness of steel plate. According to a
recent work by Arata et al.”) , the hardness of the weld
metal can be predicted in satisfactory accuracy if the
cooling rate in the above temperature range and the
chemical compostion of steel are known.

The temperature change with time at a certain point
(x, », z) in the fixed coordinate is related as following
with the temperature gradient at the corresponding point
(¢,7, 2) in the moving coordinate.

0T (x,y,2,0) _ 3T (¢,»,2) 3 _ 3T »,2)

ot o0& ot o¢

23)
The above cooling rate can be expressed in dimensioless
form by the following way.
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AT _ T 36
v (Tf -T,) o =~y 3 - -\ (Tf— T,) 30D
From the second and forth terms,

U T R U .

w29 awE) | T A g

where, Pe = (E/R)
Here, the factor (1/Av?) having the unit of time is
the parameter for nondimensional transformation.

The average cooling rate at the particular tempera-
ture range A9 = 60; — 6, is thus defined as follow.

Y Y
w? (At ) 6,—0, aE; — £y)

-1 6, -0
A (o, — b)) (25)

Notations Pg; (oré; ) and pe, (or £,) in the above
equations are the distances in £ -direction from the source
where 0 adopts 6; and 6, respectively.

As has been already described in the previous Figures
4 and 8, the most remarkably cooled place is that where
the heat sink intensity becomes maximum, namely at the
rear part of source on the moving line (£-axis). In the
next, therefore, will be described the average rate at this
part.

In case of three dimensional heat flow, the temperature
distribution along the f-axis behind source becomes as
follow from the previous Equations (8) or (9). '

1 1 —exp[-2M0W(R — §)]

_ =_42 1
Tl s R T T an(cwR) O

or

6 11 —exp [-2A(1 — pg)]
n peAA I —exp (=2A) @7)

In the above equations, however, Pg (or £) can not be
solved algebratically for a given 6, and hence one has to
determine the solution by a numerical method such as
Newton-Raphson method. On the other hand in the case

- of Rosenthal’s solution,

0 1

no - \E

and one can readily calculate the average cooling rate as

1 A B 6, — 6, _ 0,0,
AV (Al‘)el_)ez WRV(I"] —72) n
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Namely, the non-dimensional cooling rate between 6; and
8, is reverse proportional to the dimensionless heat input.

Figures 9 and 10 show the numerically calculated
results of average cooling rate vs. radius of cooling

1.0

)91-82

Py
at

(

0.5

i
Av2

Fig. 9 Effect of cooling boundary radius on the cooling rate
along moving axis at particular temperature range ( 0
= 800/1,500 = 0.533 and 62= 500/1,500 = 0.333)
(Three dimensional heat flow)

1.0

)91- 02

28
at

(
°
o

A
A2

0 10

n

Fig. 10 Effect of heat input on cooling rate between 6; and 0,
(Three dimensional flow)

boundary and heat input. In the caluclation, 67, and 62

have been chosen 0.533 ( = '800 C/1,500 C )and 0.333

( =500 C/1,500 C) respectively, considering the hardness

of steel. As seen in Figure 9, the cooling rate decreases

rapidly and gradually reaches the Rosenthal’s case when

the radius of cooling boundary is increased under the
' condition of constant heat input. While, as seen in
Figure 10, when the heat input is increased under the
constant cooling radius, the rate reduces along that of
Rosenthal’s case, but it rises remarkably in the range
above a certain critical heat input.

The cooling rate in case of linear heat source can
be also calculated in the similar way, and Figure 11
shows the results along the moving axis and fusion
line (weld bond line). The tendency is quite similar
to that of previous point heat source, but the effect
of cooling boundary on the cooling rate is more eminent

17

amn

n/H

Fig. 11 Effect of heat input on cooling rate between 8; and 6, in
case of two dimensional heat flow (Solid line: along
moving axis, Broken line: along fusion boundary)

than that in three dimensional case due to the intrinsic
characteristic of two dimensional conduction.

The above stated analysis leads one to recall the
importance of selecting optimum relations between
cavity radius (radius of cooling boundary) and welding
parameters (heat input, welding speed, plate thickness,
etc.) in the underwater welding using a local cavity
method, or otherwise one may obtain very hardened
weld even under the same condition with that of welding
in air,

5. Concluding Remarks

In the above have been described the method of solving
temperature filed when a equiradial cooling boundary
around either a point or linear heat source moves with the
source, which is aimed to estimate the thermal hysteresis
during underwater welding by a circular local cavity for-
mation method. The analysis has been conducted,
however, by using very simplified models for the sake of
mathematical treatment just like as other heat conduction
investigations. So far the models employed here are con-
cerned, the authors have proved the existence of rigorous
solutions, but they have neglected the following matters
which may be important factors in fusion welding. They
are firstly the temperature dependence of thermal
properties of materials, secondly the absorption and re-
lease of latent heat at melting and solidification, and
thirdly the convection heat transfer due to liquid metal
flow in a weld pool. Several reports have been published
on the former two subjects®) ~1°) and thus it is possible
to compare the differences between calculations when one
considers these two factors or not. About the last factor
of convective heat transfer, however, quantitative works
have not been fully conducted yet but it remains as an
important item of future investigations. In addition to the
above stated general matters, the assumption of cooling
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boundary in this analytical model is equivalent with that
the heat transfer coefficient between the plate surface and
environmental water outside the cavity and also the heat
conductivity of plate outside the cooling boundary are
both supposed to be infinity, when one contrasts the
practical underwater welding with a circular local cavity.
It is, therefore, necessary to carry on further experimental
verifications how much extent the theoretical analysis in
this paper can well estimate the thermal fields in practical
processes. On these matters will be precisely explained in
future reports.
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