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0. Introduction

Let (M, g) be a compact riemannian manifold and P a principal fiber bundle
over M with compact structure group K. A functional &y, which maps a con-
netion V of P to the square integral [, |RY|?*v, of the norm of the curvature
tensor of V is called the Yang-Mills functional. A Yang-Mills connection is
by definition a critical point of the functional &Fy,. Therefore there is some
possibility that the so called direct method and the heat equation method can
be applied to construct a Yang-Mills connection of P.

When the manifold M is an algebraic manifold and the group K is a uni-
tary group, there is a strong relationship between the notion of stable vector
bundles and that of Yang-Mills connections ([4]), and Donaldson shows the
exsitence of a Yang-Mills connection by the heat equation method ([2]).

In this paper we consider homogeneous bundles as simple examples in or-
der to see in what situations the direct method and the heat equation method can
be applied to the existence problem of Yang-Mills connections. Let the rieman-
nian manifold M be expressed as a homogeneous space G/H and the principal
fiber bundle P as GX,K using a Lie group homomorphism p: H—K. The
space C; of all G-invariant connections forms a finite dimensional vector space.
Corresponding to the direct method, we will prove the following

Theorem 1. Assume that the Lie group H is connected. Then the func-
tion Fyy|Ce is proper if and only if one of the following conditions holds. (1) The
fundamental group = (M) of M is finite. (2) The Lie algebra ¥ of the structure
grogp K has no trivial factor as H-module.

This means that if (1) or (2) holds, then any minimizing sequence for the
function Fy,|C; has a convergent subsequence to a Yang-Mills connection.

1 This work was done while the author was staying in Max-Planck-Institut fur Mathematik in
Bonn, to which he is grateful for the hospitality.
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But if neither (1) nor (2) holds, a minimizing sequence may diverge to “co”.
However, even if neither (1) nor (2) holds, we can find a Yang-Mills connec-
tion by the heat equation—an ordinary differential equation in our case—method.

Theorem 2. The heat equation with a G-invariant connection V, as the
initial data has a solution V, which is a bounded curve in the space C;. In par-
ticular, the bundle P admits a Yang-Mills connection.

As a particular case of Theorem 2, we will see what happens in the case of
homogeneous complex situations. Finally, we will prove the mountain-pass
Lemma for the function &y, |C;. Remark that, when we consider Einstein’s
equation the corresponding statement to Theorem 2 does not hold, i.e., the
solution diverges in general ([7, Introduction]).

1. Properness

We will prove Theorem 1 in this section. Let M be a compact homogene-
ous riemannian manifold G/H, where G is a compact Lie group and H is a closed
subgroup. Denote by g, f) the Lie algebras of the Lie groups G, H respectively.
Fix a bi-invariant inner product < , > on g and denote by m the orghogonal
complement of § in g. The riemannian metric of the space M is represented by
an H-invariant inner product g on m. Define a principal fiber bundle P=G X ,K
using a compact Lie group K and a homomorphism p: H—K. The Lie al-
gebra of K is denoted by f and is endowed with a bi-invariant inner product
<, >. 'The differential: h—F of the Lie group homomorphism p is denoted by
the same symbol p. The space ¥ becomes an H-module and an H’-module via
p, where H? is the identity component of H. For basic facts about Lie groups,
refer to [3].

As usual, we denote by g’ the semi-simple part of the Lie algebra g and
by 3(g) its center. Let m’ be the projection image from g’ to m. The vector
space m decomposes as H-module:

(1.1) m=m'@mns(g),

which corresponds to the decomposition of the universal covering of M into a
compact manifold and a vector space. Therefore the fundamental group =,(M)
is finite if and only if mN3(g) vanishes. When the Lie algebra £ decomposes
into the semi-simple part and the center, the functional <y, correspondingly de-
composes. These facts reduce the proof of Theoerm 1 to the following propo-
sitions.

Proposition 1.1. Assume that the Lie group H is connected. If the space
¥ has a trivial factor as H-module and the space m N 3(g) does not vanish, then the
Sunction Fy, | C is not proper.
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Proposition 1.2. If one of the followong conditions holds, then the function
Fyul|Cg is proper.

1) The space ¥ has no trivial factor as H°-module.

2) The Lie algebra t is commutative and the space m N 3(g) vanishes.

3) The Lie algebra ¥ is semi-simple and the space m N\ 3(g) vanishes.

We will give proofs of these propositions by a series of lemmas. The
following lemma is fundamental.

Lemma 1.3. [5, Chapter II Theorem 11.7]. The space Cg is canonically
identified with the space of all H-homomorphisms Hompy(m, t), and the curvature
tensor RA*=Homg(A*m, ¥) of an element A=Homy(m, t) is given by

(1.2) Ri(v, w) = [A(v), 4(w)]—A ([0, w]m)—p([2, @]s) ,
where ( )y and ( )y, denote the components with respect to the decomposition g=

Hpm.

From now on an element of the space Homg(m, £) is identified with a con-
nection of P, and so the function Sy, |C; is regarded as

(1.3) Fyu(A) = Vol (M) x |RA2.

Since the properness of the function Sy, |C; is independent of the choice of
inner products of m, we may assume that the inner product g is the restriction
of <, > on g in this section.

Proof (of Proposition 1.1). The assumption implies that there are non-
zero elements X in a trivial factor of the H-module f and v, in mN3(g). Then
we can define an element A in Homg(m, ) by A(v)=<v, v,y X, which satisfies
RM =R for any real number A by formula (1.2). Q.E.D.

We decompose m as H’-module into the trivial factor m, and the sum m,
of the irreducible factors. Then we have inclusions:

(1.4) mcm’ and mNz(g)cm,.

Lemma 1.4. There exist positive constants c,, ¢, and c; such that for any
AeHomy(m, ¥) it holds that

(1'5) [R4| >¢ | A|my|*—c,| A|m'| —c;.

Proof. We set [AAA] (v, w)=[A(v), A(w)] and observe that if [AAA]=
0, then A(m;)=0. In fact
(1.6) 0 = <{[A(m), A(m)], p()> = <A(m), [p(h), A(m)]>
= {A(m), A([h, m])> = <A(m), A(m,)>.
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Therefore if we set ¢,=inf {|[AAA]|; A=Homy(m, ¥), | 4|=1}, then ¢>0.
For the second term A ([v, w],) of formula (1.2), it depends only on A|m’.
Q.E.D.

Proof (of Proposition 1.2. (1)). Since the space ¥ has no trivial factor as
°-module, the space Homy(m, £) coincides with Homy(m,, ). Thus 4, 4|m’
and A |m, coincide in Lemma 1.4. Q.E.D.

Proof (of Proposition 1.2 (2)). Let A be any element of Homg(m, f).
Since the Lie algebra  is commutative, the first term [A A A] of formula (1.2)
vanishes. Also, since § is trivial as H%module, A(m,)=0. On the other hand,
since m N 3(g)=0, it holds that m=m'=[m, m],+m,. Therfore if 440, then
the second term A4 ([m, m],)=+0. Thus we can define a positive number ¢, by
inf {|4|[m, m]y|; A=Homy(m, ), | A|=1} and, setting ¢, to be the norm of
the third term, we get |R4| >¢,| 4| —c,. Q.E.D.

To prove the case of semi-simple Lie algebra £, we introduce the following
usual notations. For a reductive Lie algebra 1, (1) denotes a Cartan subalgebra.
When t is semi-simple and endowed with a bi-invariant inner product < , >, we
denote by A(i) its root system as a subset of t(i) and characterize root vectors
X, et for acA(l) by (1) [4, X,]=<u, a)> X_, for all uct(i) and (2) [X,, X_,]=
a. The following lemma will be proved later.

Lemma 1.5. Let ¥ be a compact semi-simple Lie algebra. For an element
(o, Wy, w,) of T we define an element (uy, uy, u,) of ¥ by

(1.7) ty = [wy, wy]—w,, u, = [wy, w]—w,, u,= [w,, ] —w, ,
then this map: B—¥ is proper.

Note that m, becomes a subalgebra of g, i.e., [m,, m]Cm,, and [m,, m,] is
contained in m;. Since Cartan subalgebras () and t(m,) commute, there is a
Cartan subalgebra t(g) which contains t(f)) and t(m,). The space t(g) decomposes
into the center 3(g) and a Cartan subalgebra t(g’). It admits also an orthogonal
decomposition:

(1.8) t(g) = t(h) D t(my) Dt(g) N, .

We denote by t(g’), the image of the orthogonal projection from t(g’) to t(m,).
Lemma 1.6. Denoting by (m,)’ the semi-smiple part of my,, we get

(1.9) £(g")o (1) = m' Ny .

Proof. It is clear that the left hand side is contained in the right hand side.
Let v be an element of the right hand side which is orthogonal to the left hand
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side. Then v is an element of the center 3(m,), and is orthogonal to t(g’).
Therefore we see that v €3(g) and so by (1.1) we conclude that v=0. Q.E.D.

We restate Proposition 1.2 (3) as follows for later use.

Proposition 1.7. If the Lie algebra ¥t is semi-simple, then |A|m’| is esti-
mated from above by using |R4|.

Proof. First remark that, by Lemma 1.5, if we take v,, v,, v,Em with
[©0, V1]m="22, [V1, Volm="0, [V2, Volm=70;, then |A(v;)|’s are estimated by using
|R4|. Therefore we can get an estimation of A4 |(m,)’ because the space (m,)’ is
spanned by its roots and root vectors. Next we decompose a root @< A(g’) by
(1.8) and denote by «y, «; the t(m,), t(g) N m,-component, respectively, and set
a'=a,+a,. The vector o’ is the m-component of ¢, and belongs to m’.

Now assume that ay==0. Then

(1.10) + oo * Xy = [eto, Xa] = [0 (Xa)t]+ [0 (Xsa)m]
= [ao: (Xim)m em )

and so X,,em. Setting v,=|a’| ?a’, v,=|a’| 'X,, v,=|a'| ' X_,, we can
get an estimation of A(a") by the previous remark. Moreover, since 4(Ad,a’)=
Ad,y A(a') for he H', we get an estimation of | A(a,)| by

1) 4@ = A(] , adaya) | <( | 1a@ade)ldn =1 @)

where dh is Haar measure of H°. Since the space t(g’), is spanned by such
ay's, we get an estimation of A[t(g"),, Combining with the estimation of
A|(my)’, we get an estimation of 4[(m’Nm,) by Lemma 1.6. Finally, using
Lemma 1.4 and the inequality: [A|m’| < |A|(m'Nmy)|+ | 4| m,|from (1.4), we
get an estimation of 4 |m,, therefore of A|m’. Q.E.D.

Proof (of Lemma 1.5). We set c=max {|u,|, |u,|, |u4,|} and I=|w,|, and
show that / is bounded from above by using ¢. In the following, ¢,s mean
positive constants which depend only on ¢ and do not depend on I. First we
see that

(1.12) [, | —c|w, | <<wy, w4u,> = {w,, [w,, wy]>
= <[wl’ w2]) w0> = <w0+uo; ‘wo>£12+61 )

and so |w;| <I+4c. By the same way we see also that |w,| <I+-c.

We choose a Cartan subalgebra t() containing w, and a linear order > of
t(¥) so that if {w,, a>>0, then a > 0. Denote by II={«a;} the fundamental
root system. Since II is basis of t(f), whose pattern is independent of the choice
of orders, it holds that
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(1.13) | 33wl =6 2 |x;|  for any () .
®;e]T wie]T

We set w,=z+ 3] a, X, where 2 is an element of t(f) and the summation is
taken for roots = A(¥). Then we see that

(114) [wo» 201] =2] a¢<a: w0> X—-a ’
(115) [‘wm wl] U, = 2 au<a: w0> X-—u Uy,
(1‘16) [wOJ wz] - —2 a¢<d wo>2 [w(b uz] ’

from which we get
(117)  uy = [w,, wo] —w, = 23 aLat, we)? X+ [wo, th] —2— ay X, s
(1.18) S a(Ka, wy*—1) X, = 2-+u,—[w,, ] .

Since {X,; a=A(f)} are orthogonal, it follows that

(L19)  lagl I<at w—1] < | Xal () Fetc, ) <egl-+1).
Therefore, if {a, w,*>2, then
(120) Iaa I <a: 'w0>23263(1+ 1) *

Furthermore, since

[w), wz]t(f) [y, 23 aular, wop X_o— uz]t(r)
(1.21) = [2+2 a, X, 2 ala, wy X—u]t(t)—[wb uz]t(r)
= X} (@)X, wep-a—[w, uz]t(r) )
we get
(1.22) wo = [wy, wZ]t(t)—(uO)t(f)
= 33 (az)Kat, wp>+ o —[wy, “zjt(r)“(uo)t(r) .

Now for a positive number &, we define a subset II, of the fundamental root
system II by

(123) He= {aiEH;<ab w0> <8|w0[ Iatl} .

The number € will be fixed later independently of /. In the following, the
constants c; are also independent of &. Put

(1.24) S=Aamn 3 Za,

E

An element B of A(f)—S can be represented as >\ m; a; (a;II), where all
m; are non-negative or all are non-positive. Hence
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(1.25) [KB, we>| = 23 |mw,, |
><w,y, ;> for some a; II—II,
>c, él.

Therefore if />1 and v/ 2 (¢, €)%, then, by (1.20), we see that

(26)*I<B, wop | < (2e5(14-1))*I<B, wop| ~°
(1.26) < (2es(IH+1)) (e, €D
< &73.

We represent 3,e5(@,)Ka, woy-a as 3] s;a; (a; I1,).  Since

(127) Es(aa)z<a’ w0>° a =mESE,u>0((ad)2+(a—¢)2) <a: w0>' a,

all s5; are nonnegative, and so

(1.28) Savg, 23 8,00 = 30 sKw, @ < 20 5;|wo| | ;| €
<&l s, .

On the other hand, from (1.13), (1.22) and (1.26), if I is greater than 1 and
vV 2 (¢,€)7, then

OIS DIENA
(1-29) = |w,— 5% (ap)2<:8’ wo>’:8+[w1; uz]t(f)+(u0)t(r) |

<46, 873 +cl+cy .
Combining it with (1.28),
(1.30) Lwy, 33 50> <6, EPP+(polynomial of [ of order 1).

Therefore, again using (1.22) and (1.26), we see that if />1, \/2(c,&)7,
then

PP = <w,, wop
= ey, ﬂ% (ag) KB, wp>+ B+ 5,0, —[wy, “z]t(r)_(“o)t(r)>
(1.31) <¢1p&P+c| [w,, w,]| +(polynomial of I of order 1)

= ¢,0El+c|wy,+u,| +(polynomial of / of order 1)
< ¢,pEP+(polynomial of [ of order 1).

Thus choosing € so that ¢,,6<<1/2, we get the desired estimation of /. Q.E.D.

2. Gradient Flow

We consider the heat equation for the functional &y, with respect to the
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L, inner product, which becomes

d
@b V= —(grad Fru)e, = (VR
If we choose V,&(; as the initial data of this equation, then the solution V, is
a curve in Cg and coincides with the solution of the ordinary differential equa-
tion defined by the vector field —grad(Fyy|Cs). As is easily computed from
formula (1.2), the equation is given by (up to constant multiplication of time

variable £),
d s
(2.2) 7 A;=21[4,,[4;, A]l-2 CH[A4;, A]—3 C[4), pd
1 . . . s
‘*‘E P Cj'k [Aj: Ak]—% > Cj'lz lek AI_% S Cj'k ik Ps

where we take orthonormal basis {2;} of m with respect to g and baiss {v;} of
H, and set

(2.3) A4; = A(vy), ps = p(2),
[v,9]] = 2 C#; 0+ CFj o, .

All the summations are taken for j, k, [, s, which appear twice in the terms.

We will prove Theorem 2 for equation (2.2). Denote by A() the solution.
First of all, as we see from equation (2.1) or (2.2), when the Lie algebra
decomposes as t'P3(E), the solution also decomposes, and the 3(f)-component
of A(2) is constant. Therefore we may assume that the Lie algebra t is semi-
simple. 'Then, by Proposition 1.7, the norm of A(¢)|m’ is estimated from above
by using |R4®|. Therefore, denoting by (m')* the orthogonal compliment of
m’ in m with respect to g, it is sufficient to prove that A(z)|(m’)™" is bounded.
To show it, we choose an arbitrary unit vector v, in (m’)*, choose orthonormal
basis {v;; 0<¢<<dim m} of m containing v,, and prove that A, (#) is bounded.
For A(t), equation (2.2) is simplified as

(2.4) L A= 214, [4;, A2 ChlA4, 4]
In fact the structure constants C,% vanish in equation (2.2) because [m, m],,C
m’. Moreover, since the inner product g is H-invariant and v, is orghogonal to
m’, the vector v, is an element of m,, and as the remark following Lemma 1.5,
[m,, m]Cm, which implies that the structure constants C;; also vanish.

Next, since the equations do not depend on the choice of inner products on
¥, we may assume that the root vetcors X, of f are unit.

Now we define a function L on the vector space f. Let 2§ be the sum of
all positive roots of £. We represent 28 as 26=>)n,a;. Let {w;; 1<i<r} be
the fundamental weight system of £, and set £,=(n,)"' w;. For wet, we de-
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fine
(2.5) L(w) = max {{Adyw, £>; 1<i<r,yeK}.

Lemma 2.1. For wel, the value L(w) is realized by v=K such that
Adyw belongs to the positive Weyl chamber W. In particular L is a norm of t.
Proof. From the assumption, for any X ¥,

26) 0 = {[X, Ady ], £> = <X, [Ady w, £]> .

Therefore Ady w and &; belong to the same abelian subalgebra of . Since all
Cartan subalgebras are conjugate, we may assume that Adywet(f). If {Adyw,
a;> <0 for some a;€&Il, then, taking &K which gives the reflection with re-
spect to a;, for any &, we see that

{Adyyw, &> = <Ad,(Adyw), &>
(2.7) = (Adyw—2|a;| Ka;, Adyw)>-a;, &>
= {Adyw, Ep—2|a;| Xa;, Adyw) (n;)™ 5,
> <{Adyw, & .

That is, when Ady @ is mapped into W by the Weyl group, the value L(w) is
still realized. Q.E.D.

We reduced the problem to the case that the Lie algebra  is semi-simple
in order to use the following

Lemma 2.2. Let ¥ be semi-simple. There exists a positive number & with
the following property. Let w be a unit vector in the positive Weyl chamber W.
If <w, a;> <&, then there is £ ; such that {w, ;> > {w, .

Proot. Set w=3>) %, ;. Then all x, are positive and <w, &,>=(m;)"! x;.
Assume that {w, &> <<w, &> for all k. 'Then, since {a;, a;><0 for j %1,

(2.8) lw, a;p = ; laj, ap x;>Lay, @ %+ % {aj, o> ni(n) ™" x;

= (m) 7 X <nj aj, o> x; = (m)) 7 <28, a;> x>0,
because 28 belongs to the open positive Weyl chamber IW. Thus the conclusion
follows from the continuity. Q.E.D.

Proof (of Theorem 2). It is sufficient to prove that L(A4,(¢)) is bounded.
Since A,(2) is real analytic, L(4,(t)) is continuous and, by Lemma 2.1, piece-
wisely represented as

(2.9) L(A\(t)) = <Adyq Ay(2), £, Adyy Ay(t)E W,

where (2) is a real analytic curve of K and £, is taken by renumbering of suffix.
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We may assume that y(¢)=1 at a time ¢=1, by changing the Cartan subalgebra
t(f) if necessary. We set A;=u;+ >3, 7 X,, where u;i(f) and acA(f). At
the time t=t,, we see that

4 roay =<2 4 ¢l
@10 L L) = Ly e+l v, Al 8> = <L 4, 8.

Thus assigning (2.4), the last expression

= — 2 <M 4, [E0 4D~ 2, Clo<En 4], 4w
=—2< 3 x¥a, A0>X_m E x‘”<a EDX >

*0 aEA(f) acA(t

—_ 0< E xl<a:§1>X—wuk+ E xk ¢>

7 k0 A(Y) asA(f)

=— X { E<a £ <at, Ao (27)*+ E {a, &> <a, Ao (x*)*

as A(f),a>>0 7F0
‘J{"ij*o(Cj —C¥ o) {a, £ x; X%} .

This summation is taken only for positive roots o € A(¥) such that <a, £,>=+
0. If we represent such « as >) m; «t;, then m; >1 and all m,;>0, and so <{a, &>
>|w, | '. Therefore by Lemma 2.2, it holds that {a, A>>&|A4,|. In fact, if
|<et, Al <€|A4,l, then |{ay, Ap| <€|A4,| and so <A, &;> > <{A,, &> for some
i, which contradicts the maximality of {4, £,>. We regard the last expression
as a quadratic form of (x7) and (x7%), and see that, if L(4,) is sufficiently large,
and so is |4,|, then the coefficients of (x5)? and (x3*)* are sufficiently greater
than that of x7 xz*, which implies the non-positivity of the last expression.

Q.E.D.

ReMARK 2.3. From the boundedness of A(t), we see that any subsequence
of A(t) has a subsequence which converges to a Yang-Mills connection. It
seems to the author that A(t) itself converges. At least it is clear that if the
closure of the set {A(#); t=R*} contains an isolated Yand-Mills connection,
then A(t) converges. Here we mean by isolated to be isolated modulo the ac-
tion of the normalizer group Ng(p(H)) of p(H) in K.

3. Appendix

First, we consider the relation between equation (2.2) and holomorphic vec-
tor bundles. Let M be an algebraic manifold and P a principal U(r)-bundle.
Take the complexification GL(r,C) of the compact Lie group U(r), and
complexify P to a principal GL(r, C)-bundle P¢. There is a one-to-one cor-
respondence between holomorphic structures 3 of P¢ and connections V of P
whose curvature tensor RY are of type (1,1). Kobayashi shows that if the cor-
responding connection V to a holomorphic structure 9 is a Yang-Mills connec-
tion, then @ is semi-stable ([4]). Conversely, the following holds. Let 3, be a
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holomorphic structure and V, the corresponding connection. Heat equation
(2.1) with initial data V, has a unique solution V,, whose curvature tensors are
of type (1,1). Let 3, be the corresponding holomorphic structure. Then all 9,
are conjugate to 9, under automorphisms of P€. Moreover if 3, is stable, then
both V, and 9, converge, and lim 3, is conjugate to 9, ([2)]. In our homogeneous
situation, we get

Corollary 3.1. Let M and P be as above with homogeneous assumption. Let
0, be an invariant holomorphic structure. Then the solution 3, has a convergent
subsequence. But if 0, is not semi-stable, then the limit of 3, is not conjugate to 9,.

Next we consider the so called mountain-pass lemma. Let S be a mani-
fold and f a function of S. We say that the mountain-pass lemma holds on the pair
(S, f) if it has the following property: If there are relative minima x;, x,&S of
f which are not contained in a connected component of the critical point set, then
there exists an unstable critical point x;& S.

Theorem 3.2. The mountain-pass lemma holds on (Cg, Fyr| C).

ExampLE 3.3. Assume that G is semi-simple and set H={id}, K=G and
p=id. Then the space C; is identified with Endg(g), and Fy,(4)=0 if and
only if A4 is a Lie algebra homomorphism. Therefore 4=0 and A=id are
critical points of Fy,,|Ce, and belong to different connected components. Thus
we can conclude, by the mountain-pass lemma, that there exists another unst-
able Yang-Mills connection in C;. When the riemannian metric g on G is bi-
invariant, it is easy to get such an unstable Yang-Mills connection, say A=
(1/2)id. However it is not clear to see the existence of such a connection for a
general left invariant metric on G without our Theorem.

As in the above example, if the space S is a vector space and if the func-
tion f is (by Theorem 1) proper, then the mountain-pass lemma holds by
[1, (VI 6.1)]. For general case, i.e., when the fundamental group z,(M) may be
infinite, we use the next lemma. Let ¥ be a finite dimensional vetcor space, S
a closed convex domain of ¥ and f a smooth function on V. A point x in S
is said to be critical in S if and only if one of the following conditions is satis-
fied. (1) « is an interior point of S and is critical for f. (2) x is a boundary
point of S and it holds that (df),(y—x)>0 for all y&S. The following is a
finite dimensional version of Struwe’s mountain-pass lemma, where the Palais-
Smale condition is equivalent to the properness.

Lemma 3.4. ([6, Chapter II Theorem 1.13]). If the function f|S is proper,
then the mountain-pass lemma holds replacing critical by critical in S.

Proof (of Theorem 3.2). Let {v,; 1<¢<k} be orthonormal basis of (m’)*
and {v;; k<<t <n} that of m’. We regard the vector space V=Homg(m, ) as a
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subspace of t"={(4,, -+, 44, 411, =+, 4,)}, where A,=A(v;). Using the decom-
position: $=1'P3(f) and the function L on £’ defined by (2.5), we set

(3.1 S = {4)eV; L((4,)y)<c and |(4,)n] <c for 1<i<k},

where ¢ is a sufficiently large constant. Then S is a closed convex domain of
V and by Propostioon 1.7 the function Fyy|Cs is proper on S. If A€dS is
critical in S, then, by definition, (d Fyy|Co)a(B—A)=>0 for all BES. But
Proof of Theorem 2 implies the opposite inequality, provided that ¢ is sufficiently
large. Thus A€ S is critical in S if and only if 4 is critical in the usual sense,
and so the proof reduces to Lemma 3.4. Q.E.D.
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