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0. Introduction

Let (M, g) be a compact riemannian manifold and P a principal fiber bundle
over M with compact structure group K. A functional 3*YM which maps a con-
netion V of P to the square integral fM \ Rv \2 vg of the norm of the curvature
tensor of V is called the Yang-Mills functional. A Yang-Mills connection is
by definition a critical point of the functional 3YM. Therefore there is some
possibility that the so called direct method and the heat equation method can
be applied to construct a Yang-Mills connection of P.

When the manifold M is an algebraic manifold and the group if is a uni-
tary group, there is a strong relationship between the notion of stable vector
bundles and that of Yang-Mills connections ([4]), and Donaldson shows the
exsitence of a Yang-Mills connection by the heat equation method ([2]).

In this paper we consider homogeneous bundles as simple examples in or-
der to see in what situations the direct method and the heat equation method can
be applied to the existence problem of Yang-Mills connections. Let the rieman-
nian manifold M be expressed as a homogeneous space GjH and the principal
fiber bundle P as GxpK using a Lie group homomorphism p: H-+K. The
space CG of all (r-invariant connections forms a finite dimensional vector space.
Corresponding to the direct method, we will prove the following

Theorem 1. Assume that the Lie group H is connected. Then the func-
tion 3ΪYM\CG is proper if and only if one of the following conditions holds. (1) The
fundamental group nγ{M) of M is finite. (2) The Lie algebra ϊ of the structure
grogp K has no trivial factor as H-module.

This means that if (1) or (2) holds, then any minimizing sequence for the
function Sr

YM\CG has a convergent subsequence to a Yang-Mills connection.

1 This work was done while the author was staying in Max-Planck-Institut fur Mathematik in
Bonn, to which he is grateful for the hospitality.
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But if neither (1) nor (2) holds, a minimizing sequence may diverge to "oo".
However, even if neither (1) nor (2) holds, we can find a Yang-Mills connec-

tion by the heat equation—an ordinary differential equation in our case—method.

Theorem 2. The heat equation with a G-invaήant connection Vo as the
initial data has a solution V* which is a bounded curve in the space CG. In par-
ticular, the bundle P admits a Yang-Mills connection.

As a particular case of Theorem 2, we will see what happens in the case of
homogeneous complex situations. Finally, we will prove the mountain-pass
Lemma for the function 3fYM\CG. Remark that, when we consider Einstein's
equation the corresponding statement to Theorem 2 does not hold, i.e., the
solution diverges in general ([7, Introduction]).

1. Properness

We will prove Theorem 1 in this section. Let M be a compact homogene-
ous riemannian manifold G/Hj where G is a compact Lie group and H is a closed
subgroup. Denote by g, f) the Lie algebras of the Lie groups G, H respectively.
Fix a bi-invariant inner product ( , ) on g and denote by tn the orghogonal
complement of I) in g. The riemannian metric of the space M is represented by
an iί-invariant inner product g on m. Define a principal fiber bundle P=Gx PK
using a compact Lie group K and a homomorphism p: H—>K. The Lie al-
gebra of K is denoted by ϊ and is endowed with a bi-invariant inner product
<̂  , y. The differential: §-»f of the Lie group homomorphism p is denoted by
the same symbol p. The space ϊ becomes an ίf-module and an £Γ°-module via
p, where H° is the identity component of H. For basic facts about Lie groups,
refer to [3].

As usual, we denote by g' the semi-simple part of the Lie algebra g and
by j(g) its center. Let m' be the projection image from g' to m. The vector
space m decomposes as ίf-module:

(1.1) m = m ' 0 m n 8 ( 9 ) ,

which corresponds to the decomposition of the universal covering of M into a
compact manifold and a vector space. Therefore the fundamental group πλ(M)
is finite if and only if tπ Γl δ(fl) vanishes. When the Lie algebra ϊ decomposes
into the semi-simple part and the center, the functional 3!YM correspondingly de-
composes. These facts reduce the proof of Theoerm 1 to the following propo-
sitions.

Proposition 1.1. Assume that the Lie group H is connected. If the space

ϊ has a trivial factor as H-module and the space τπΠ5(g) does not vanish, then the

function EFYM \ CG is not proper.
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Proposition 1.2. If one of the followong conditions holds, then the function
3fYM\CG is proper.

1) The space ϊ has no trivial factor as IP-module.
2) The Lie algebra I is commutative and the space m Π 8 (fl) vanishes.
3) The Lie algebra t is semi-simple and the space trt Π δ(cj) vanishes.

We will give proofs of these propositions by a series of lemmas. The
following lemma is fundamental.

Lemma 1.3. [5, Chapter II Theorem 11.7]. The space CG is canonically
identified with the space of all H-homomorphisms Horn^m, I), and the curvature
tensor RAEΞHomH(Λ2tti, I) of an element A€ΞHomH(ϊn, ϊ) is given by

(1.2) RA{v,«) = [A(υ),A(w)]-A([v, w]m)-p([υ, «,]„),

where ( )$ and ( )m denote the components with respect to the decomposition Q=
50m.

From now on an element of the space Homίr(tn, f) is identified with a con-
nection of P, and so the function 3*YM \ CG is regarded as

(1.3) S-rM(^) = V o l ( M ) x | ^ | 2 .

Since the properness of the function EFYM \ CG is independent of the choice of
inner products of m, we may assume that the inner product g is the restriction
of <̂  , y on g in this section.

Proof (of Proposition 1.1). The assumption implies that there are non-
zero elements X in a trivial factor of the iί-module ϊ and v0 in tn Π 8(8) Then
we can define an element A in Hom#(m, ΐ) by A(v)=(v, voyX, which satisfies
RλA=R° for any real number λ by formula (1.2). Q.E.D.

We decompose m as i/°-module into the trivial factor m0 and the sum m1

of the irreducible factors. Then we have inclusions:

(1.4) tΠiCm' and m(l5(9)cm 0 .

Lemma 1.4. There exist positive constants cly c2 and c3 such that for any
A^Homff(tny ϊ) it holds that

(1.5) l^ l^^l^lmJ^^IJIm' l-^.

Proof. We set [A A A] (v, w)=[A(v),A(w)] and observe that if
0, then A(m1)=0. In fact

(1.6) 0 = <[iί(m), A(m)l

), A(vφ .
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Therefore if we set ^ i n f {|[^4Λ-4]| AtΞΪlomH(m, ϊ), | i l | = l}, then

For the second term A(\v} w]m) of formula (1.2), it depends only on A | m'.

Q.E.D.

Proof (of Proposition 1.2. (1)). Since the space ϊ has no trivial factor as

ϋ"°-module, the space Hom#(m, f) coincides with Hom£r(m1, ϊ). Thus A,A\mr

and A \ mx coincide in Lemma 1.4. Q.E.D.

Proof (of Proposition 1.2 (2)). Let A be any element of Hom^(m, ϊ).

Since the Lie algebra! is commutative, the first term [A A A] of formula (1.2)

vanishes. Also, since ϊ is trivial as i/°-module, A(xxι1)=0. On the other hand,

since tnΠS(g)=0, it holds that m=m'=[m, tn] m +m 1 . Therfore if ii=t=0, then

the second term ^4([tn, ttt]m)=t=O. Thus we can define a positive number c1 by

inf {|^4|[m, m ] m | i G H o m ^ m , ϊ), |<4|=1} and, setting c2 to be the norm of

the third term, we get \RA\>c1\A\ -c2. Q.E.D.

To prove the case of semi-simple Lie algebra f, we introduce the following

usual notations. For a reductive Lie algebra ΐ, t(t) denotes a Cartan subalgebra.

When i is semi-simple and endowed with a bi-invariant inner product < , ) , we

denote by Δ(ΐ) its root system as a subset of t(t) and characterize root vectors

XΛϊΞ\ for α s Δ ( i ) by (1) [u, -XΓJ=<w, α>X_Λ for all ι*e=t(i) and (2) [XΛ, X_Λ]=

α. The following lemma will be proved later.

L e m m a 1.5. Let I be a compact semi-simple Lie algebra. For an element

(w0, wlf w2) of ϊ 3 we define an element (uOί ux> u2) of ϊ 3 by

(1.7) u0 = [wu w2]—w0, uλ = [w2> wo]—w1, u2 = [wOί w1]—w2,

then this map: ϊ3->f3 is proper.

Note that tπ0 becomes a subalgebra of g, i.e., [m0, m o]cm o, and [tπ0, m j is

contained in ttij. Since Cartan subalgebras t(§) and t(tn0) commute, there is a

Cartan subalgebra t(g) which contains t(§) and t(tπ0). The space t(g) decomposes

into the center g(g) and a Cartan subalgebra t(g'). It admits also an orthogonal

decomposition:

(1.8) t( β) = t ( 5 ) θ t ( m 0 ) θ t ( f l ) n m 1 .

We denote by t(g')0 the image of the orthogonal projection from l(g') to t(m0).

Lemma 1.6. Denoting by {tno)
f the semi-smiple part of m0, we get

(1.9) t(g')o+(mo)' = m

Proof. It is clear that the left hand side is contained in the right hand side.

Let v be an element of the right hand side which is orthogonal to the left hand
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side. Then v is an element of the center S(tπ0), and is orthogonal to t(g')
Therefore we see that ^eg(g) and so by (1.1) we conclude that ^ = 0 . Q.E.D.

We restate Proposition 1.2 (3) as follows for later use.

Proposition 1.7. If the Lie algebra f is semi-simple, then \A\τtι'\ is esti-
mated from above by using \RΛ\.

Proof. First remark that, by Lemma 1.5, if we take vθJv1,v2^m with
K«Jm=»2) [«Ί, fl2]m=«Ό, [^2^o]m=^p then |;1(^ )Γ S are estimated by using
IRAI. Therefore we can get an estimation of A | (ttt0)' because the space (πx0)' is
spanned by its roots and root vectors. Next we decompose a root αEΔ(g') by
(1.8) and denote by a0, αx the t(mo)9 t(g) Π mrcomponent, respectively, and set
a'=aQ-\-av The vector a' is the m-component of α, and belongs to m'.

Now assume that α 0 φ0. Then

(1.10) ± Ia 0\ 2 X±Λ = [a0,X±ΰ6] = [a0, (X

and so X±ΰύ<=m. Setting vQ= \ a' \ ~~2a', vλ= | a' \ ~ιXΛ, v2= \ a' \ ~ιX-.Λ, we can

get an estimation of A(a') by the previous remark. Moreover, since A(Adha')=
Adp(Λ) A{a') for h^H°, we get an estimation of \A(a0) \ by

(1.11) \A(ao)\ =

where dh is Haar measure of H°. Since the space t(g')0 is spanned by such
αo's, we get an estimation of A\t(Qf)0. Combining with the estimation of
A\(moy, we get an estimation of A\{m'ίlnt0) by Lemma 1.6. Finally, using
Lemma 1.4 and the inequality: | A \ m' | < | A \ (tn' Π m0) | + | A \ mλ \from (1.4), we
get an estimation of A \ mly therefore of A \ m'. Q.E.D.

Proof (of Lemma 1.5). We set £=max {|u0\, |u x | , |u2\} and l=\wo\, and
show that / is bounded from above by using c. In the following, c/s mean
positive constants which depend only on c and do not depend on /. First we
see that

(1.12) K I 2 - £ | ^il <<>i, α>i+O = <tou [w2> wo]>

oy w0y<ι2+ci,

and so | w1 \ <l-\-c. By the same way we see also that | w2 \ <l+c.
We choose a Cartan subalgebra t(ϊ) containing w0 and a linear order > of

t(ϊ) so that if ζw0, α>>0, then a > 0. Denote by Π={ai} the fundamental
root system. Since Π is basis of t(ϊ), whose pattern is independent of the choice
of orders, it holds that
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(1.13) I Σ * , α, | > £ i Σ |* f | for any (a,).

We set w1=z-{-Σ a« XΛ> where z is an element of t(I) and the summation is
taken for roots αGΔ(f). Then we see that

(1.14) [w0) wj = Σ dcί\θt,

(1.15) w2 = [w0, wλ]—u2 = Σ <**<&>

(1.16) [w0, w2] = — Σ α Λ < α , wo>
2 XΛ—[w0, u2],

from which we get

(1.17) ux = [w2y w0]—wι = Σ <*«<&> ^o>2 ^ Λ + [ ^ o , w 2 ] — z — Σ «Λ - Ϊ

(1.18) Σ βΛ<α, ̂ o>2-l) ̂  = ^ + « ! - K «J

Since {XΛ\ αEΔ(!)} are orthogonal, it follows that

(1.19) \aJKa,w0y-l\<\XΛ\-\(l+c)+c+c2cl)<c3(l+l).

Therefore, if <α, wQ>2>2, then

(1.20) \aΛKa,woy<2c3{l+l).

Furthermore, since

(1.21) - [ ^ + Σ βΛ Xa, Σ αβ<α,

= Σ K) 2<«, wo> α—[wj,

we get

(1.22) w0 = [WlJ ^ 2] t ( f )-K) t(f)

= Σ (^)2<α, wo> « — K , «2]t(ϊ)-K)t(ϊ)

Now for a positive number £, we define a subset Π3 of the fundamental root
system Π by

(1.23) Πe = {α,eΠ; <«„«>„> < £ | ^ 0 | \a,\} .

The number 6 will be fixed later independently of /. In the following, the
constants cx are also independent of 8. Put

(1.24) 5 = Δ ( ! ) Π Σ

An element β of Δ(ϊ)—S can be represented as Σ m% <*i (<%if^Π), where all

t are non-negative or all are non-positive. Hence
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(1.25) l</3,«Ό>|=ΣK<«Ό,α, >l

;>ζw0, α, > for some « , e I l - Π t

Therefore if / ^ 1 and y/Ύ^ 6)'1, then, by (1.20), we see that

(1.26)

We represent Σ«es(«<«)2<\#> w^ a as Σ *,«,- ( « , e Π e ) . Since

(1.27) Σ («.)'<«, »«>•« = Σ ((«β)2+(O2K«,«Ό> «,

all ί, are nonnegative, and so

(1.28) <«>o, Σ ί, α,> = Σ ^ < ^ «/> < Σ si\w0\ \aέJs

On the other hand, from (1.13), (1.22) and (1.26), if / is greater than 1 and

\fϊ(cAe)-\ then

(1.29) = I«; 0 - Σ w w

<i+c7e-3+csι+c9.

Combining it with (1.28),

(1.30) <w0, Σ Jfα^^^o^P+ίpolynoinial of / of order 1).

Therefore, again using (1.22) and (1.26), we see that if / > 1 , y/2 {cAS)'\
then

z2 = <wQ> woy

(1.31) <^io^ 2 +^ I [̂ o> wil I + (polynomial of / of order 1)

= c10Sl2+c\w2+u2\ +(ρolynomial of / of order 1)

<c10Sl2+(polynomial of / of order 1).

Thus choosing S so that c l o£<l/2, we get the desired estimation of /. Q.E.D.

2. Gradient Flow

We consider the heat equation for the functional 3ΎM with respect to the
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L2 inner product, which becomes

(2.1) -JiVt= ~(grad 3YM)*>

If we choose V0^CG as the initial data of this equation, then the solution V* is

a curve in CG and coincides with the solution of the ordinary differential equa-

tion defined by the vector field — grad(2Γ

rΛί|C
>

G). As is easily computed from

formula (1.2), the equation is given by (up to constant multiplication of time

variable t),

(2.2) -j^- A, = Σ [Aj, [Aj, A ] ] - Σ CA[A,, Λ ] ~ Σ C/{[Aj, Ps]

+ | Σ c/k[Aj, Ak]-1. Σ c/έ c / ^ , - 1 Σ c/4 c;t Pn

where we take orthonormal basis {υ{} of m with respect to g and baiss {vs} of

§, and set

(2.3) ^ = 4(t>,), A = p(».),

All the summations are taken for j, k, I, s, which appear twice in the terms.

We will prove Theorem 2 for equation (2.2). Denote by A(t) the solution.

First of all, as we see from equation (2.1) or (2.2), when the Lie algebra ϊ

decomposes as ϊ'®g(f), the solution also decomposes, and the j(i)-component

of A0(t) is constant. Therefore we may assume that the Lie algebra I is semi-

simple. Then, by Proposition 1.7, the norm of A(t) \ m' is estimated from above

by using | i2^(0) | . Therefore, denoting by (tn')^ the orthogonal compliment of

m' in m with respect to g, it is sufficient to prove that A{t)\{m')J~ is bounded.

To show it, we choose an arbitrary unit vector v0 in (m')"1", choose orthonormal

basis {ϋi\ 0<z'<dim m} of m containing v0, and prove that A0(t) is bounded.

For A0(t), equation (2.2) is simplified as

(2.4) -L- Ao = Σ [Aj, [AJ, A Π - Σ C/O[AJ, Λ]

In fact the structure constants Cj°k vanish in equation (2.2) because [m, tn]mC

m'. Moreover, since the inner product £ is i/-invariant and v0 is orghogonal to

tn', the vector v0 is an element of m0, and as the remark following Lemma 1.5,

[m0, m ] c m , which implies that the structure constants C/o also vanish.

Next, since the equations do not depend on the choice of inner products on

f, we may assume that the root vetcors XΛ of ϊ are unit.

Now we define a function L on the vector space ϊ. Let 2δ be the sum of

all positive roots of ϊ. We represent 2δ as 2 δ = Σ #,•«,-. Let {ωt ; l<i<r} be

the fundamental weight system of ϊ, and set ξi=(ni)~1 ωf . For w^t, we de-
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fine

(2.5) L(w) = max{<Adγ w, £,->; \<i<r, Ύ(=K} .

Lemma 2.1. For w^t, the value L(w) is realized by γ^K such that
λ.άyw belongs to the positive Weyl chamber W. In particular L is a norm of I.

Proof. From the assumption, for any

(2.6) 0 = <[X, Adγ «,], ξ, > = <X, [Ad, w, ξ$> .

Therefore Adγ w and ξ{ belong to the same abelian subalgebra of I. Since all
Cartan subalgebras are conjugate, we may assume that Adγ wEίt(ΐ). If <̂ Ady w,
αy)> < 0 for some αyEΠ, then, taking ηGί which gives the reflection with re-
spect to (Xj, for any ξk we see that

(2.7) = <Ad7 w-21 aj I ~\ajy Adγ w>. aj9 ξk>

- <Adγ to, ξk>-21 aj I -2<αy, Ad7 w > (n,)

That is, when Adv ^ is mapped into W by the Weyl group, the value L(w) is
still realized. Q.E.D.

We reduced the problem to the case that the Lie algebra ϊ is semi-simple
in order to use the following

Lemma 2.2. Let I be semi-simple. There exists a positive number S with
the following property. Let w be a unit vector in the positive Weyl chamber W.
If <w, α, > <£, then there is ξj such that <w, f y> > <wy £-,.>.

Proot. Set w=*ΣjXkak. Then all xk are positive and ζw,ξky=(nk)~1 xk.
Assume that ζwy ξky < ζw, ξ>> for all k. Then, since <αy, α t ><0 for j Φi,

(2.8) <w, αf > = Σ <oίjy αf >

= K Γ 1 Σ <ny α y , α f > *,- = (w,)"1 <2δ, α t> Λ;(.

because 2δ belongs to the open positive Weyl chamber W. Thus the conclusion
follows from the continuity. Q.E.D.

Proof (of Theorem 2). It is sufficient to prove that L(A0(t)) is bounded.
Since A0(t) is real analytic, L(A0(t)) is continuous and, by Lemma 2.1, piece-
wisely represented as

(2.9)

where <y(ί) is a real analytic curve of K and ξx is taken by renumbering of suffix.
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We may assume that j(t) = ί at a time t=t0 by changing the Cartan subalgebra

t(ϊ) if necessary. We set A~us+ΣΛ^j X«> where « y et(ϊ) and αGΔ(f). At

the time t=t0, we see that

(2.10) A- L(A0) = <A- Ao, ξϊ+Q-j- Ύ, Ao], ξλy = <-j- Ao, f,> .

Thus assigning (2.4), the last expression

Σ
= - Σ < Σ j < , o y a , Σ

•>*° aeiffl αεi(f)

- Σ C/o< Σ *?<α,fi>^-««*+ Σ a>
>•*+<> αeΛ(t) αe4(I)

= - Σ { Σ <α, ξ,> <α, Λ> (*?)2+ Σ <α, &> <α, Λ> (*Γ)2

αei(!),o>0 Φ̂° *Φ°

+ Σ ( c / β - CΛ) <α, f ,> *y χrβ}.
This summation is taken only for positive roots «GΔ(f) such that ζa,

0. If we represent such α a s Σ m{ <xiy then /wx> 1 and all τ«t >0, and so <α, ̂ j>

> I ωι I " x. Therefore by Lemma 2.2, it holds that <α, ̂ 40>>^ IΛI In fact, if

I<α, ^ 0>I < ^ I Λ I , then |<al9 Ao>\<S\A0\ and so <A0, ξ{> > <A0, fx> for some

1, which contradicts the maximality of <^AOy ξ{}. We regard the last expression

as a quadratic form of (x*) and (xJΛ), and see that, if L(A0) is sufficiently large,

and so is \A0\, then the coefficients of (x*)2 and (x'k*)2 are sufficiently greater

than that of x* xj*, which implies the non-positivity of the last expression.
Q.E.D.

REMARK 2.3. From the boundedness of A(t), we see that any subsequence

of A(t) has a subsequence which converges to a Yang-Mills connection. It

seems to the author that A(t) itself converges. At least it is clear that if the

closure of the set {A(t)\ t^R+} contains an isolated Yand-Mills connection,

then A(t) converges. Here we mean by isolated to be isolated modulo the ac-

tion of the normalizer group Nκ(ρ(H)) of ρ{H) in K.

3. Appendix

First, we consider the relation between equation (2.2) and holomorphic vec-

tor bundles. Let M be an algebraic manifold and P a principal [/(r)-bundle.

Take the complexification GL(r,C) of the compact Lie group U(r), and

complexify P to a principal GL(r3 C)-bundle Pc. There is a one-to-one cor-

respondence between holomorphic structures 9 of Pc and connections V of P

whose curvature tensor Rv are of type (1,1). Kobayashi shows that if the cor-

responding connection V to a holomorphic structure 3 is a Yang-Mills connec-

tion, then 5 is semi-stable ([4]). Conversely, the following holds. Let ϋ0 be a
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holomorphic structure and Vo the corresponding connection. Heat equation
(2.1) with initial data Vo has a unique solution V*, whose curvature tensors are
of type (1,1). Let dt be the corresponding holomorphic structure. Then all dt

are conjugate to d0 under automorphisms of Pc. Moreover if 90 is stable, then
both V* and Bt converge, and lim ϋ0 is conjugate to ϋ0 ([2)]. In our homogeneous
situation, we get

Corollary 3.1. Let M and P be as above with homogeneous assumption. Let

90 be an invariant holomorphic structure. Then the solution dt has a convergent

subsequence. But if 9"0 is not semi-stable, then the limit of dt is not conjugate to Bo.

Next we consider the so called mountain-pass lemma. Let S be a mani-
fold and/a function of S. We say that the mountain-pass lemma holds on the pair
(S,f) if it has the following property: If there are relative minima xl3 x2^S of
/ which are not contained in a connected component of the critical point set, then
there exists an unstable critical point X 3 G S .

Theorem 3.2. The mountain-pass lemma holds on (CG, 3?YM\CG)

EXAMPLE 3.3. Assume that G is semi-simple and set i/={id}, K=G and
p=id. Then the space CG is identified with EndΛ(g), and 3?YM(A)=0 if and
only if A is a Lie algebra homomorphism. Therefore ^4=0 and A—id are
critical points of 3fYM\CG, and belong to different connected components. Thus
we can conclude, by the mountain-pass lemma, that there exists another unst-
able Yang-Mills connection in CG. When the riemannian metric g on G is bi-
invariant, it is easy to get such an unstable Yang-Mills connection, say A=
(1/2) id. However it is not clear to see the existence of such a connection for a
general left invariant metric on G without our Theorem.

As in the above example, if the space S is a vector space and if the func-
tion / is (by Theorem 1) proper, then the mountain-pass lemma holds by
[1, (VI 6.1)]. For general case, i.e., when the fundamental group πx(M) may be
infinite, we use the next lemma. Let V be a finite dimensional vetcor space, S
a closed convex domain of V and / a smooth function on V. A point x in S
is said to be critical in S if and only if one of the following conditions is satis-
fied. (1) x is an interior point of S and is critical for /. (2) x is a boundary
point of S and it holds that (df)x(y—x)>0 for all y^S. The following is a
finite dimensional version of Struwe's mountain-pass lemma, where the Palais-
Smale condition is equivalent to the properness.

Lemma 3.4. ([6, Chapter II Theorem 1.13]). If the function f \ S is propery

then the mountain-pass lemma holds replacing critical by critical in S.

Proof (of Theorem 3.2). Let {v{\ \<i<k} be orthonormal basis of (m')^
and {v{\ k<i<n} that of m'. We regard the vector space F— Hom#(m, f) as a
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subspace of ! * = {(Au - ,Ak, Ak+1, , An)}, where A~A{v^. Using the decom-
position: ί=ΓΘδ(ϊ) and the function L on ! ' defined by (2.5), we set

(3.1) S= {{At)ξΞV\L((A^<cznά \{At)h(ι)\<cίox \<i<

where c is a sufficiently large constant. Then S is a closed convex domain of
V and by Propostioon 1.7 the function 3ΎM\CG is proper on S. If A^dS is
critical in S, then, by definition, (d^FYM\CG)A(B—A)>0 for all 5<=S. But
Proof of Theorem 2 implies the opposite inequality, provided that c is sufficiently
large. Thus AGS is critical in S if and only if A is critical in the usual sense,
and so the proof reduces to Lemma 3.4. Q.E.D.
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