<table>
<thead>
<tr>
<th>Title</th>
<th>On doubly transitive permutation groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hiramine, Yutaka</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 15(3) P.613-P.631</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/10557</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/10557</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
ON DOUBLY TRANSITIVE PERMUTATION GROUPS

YUTAKA HIRAMINE

(Received April 22, 1977)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. Using the notation of [9], we denote a normal subgroup of G_α by N^α. Then, for $\beta \in \Omega$ other, we define N^β so that $g^{-1}N^\beta g = N^\gamma$ where $\gamma = \beta^g$.

In this paper we shall prove the following:

Theorem 1. Let G be a doubly transitive permutation group on a finite set Ω. Suppose that α is an element of Ω. If G_α has a normal simple subgroup N^α which is isomorphic to $PSL(2, q)$, $Sz(q)$ or $PSU(3, q)$ with $q = 2^n$, $n \geq 2$, then one of the following holds:

(i) $|\Omega| = 6$, $G \cong A_6$ or S_6 and $N^\alpha \cong PSL(2, 4)$.

(ii) $|\Omega| = 11$, $G \cong PSL(2, 11)$ and $N^\alpha \cong PSL(2, 4)$.

(iii) G has a regular normal subgroup.

We introduce some notations: Let G be a permutation group on Ω. For $X \leq G$ and $\Delta \subseteq \Omega$, we define $F(X) = \{ \alpha \in \Omega \mid \alpha^x = \alpha \text{ for all } x \in X \}$, $X(\Delta) = \{ x \in X \mid \Delta^x = \Delta \}$, $X_\Delta = \{ x \in X \mid \alpha^x = \alpha \text{ for all } \alpha \in \Delta \}$ and $X^\Delta = X(\Delta) / X_\Delta$, the restriction of X on Δ. If p is a prime, we denote by $O_p(X)$, the subgroup of X generated by all p'-elements in X. Other notations are standard ([16], [16]).

2. Preliminary results

Lemma 2.1. Let G be a doubly transitive permutation group on Ω of even degree and N^α a nonabelian simple normal subgroup of G_α with $\alpha \in \Omega$. If $C_G(N^\alpha) \neq 1$, then $N^\alpha = N^\alpha \cap N^\beta$ for $\alpha \neq \beta \in \Omega$ and $C_G(N^\alpha)$ is semi-regular on $\Omega - \{ \alpha \}$.

Proof. Set $C^\alpha = C_G(N^\alpha)$. By Corollary B3 and Lemma 2.8 of [17], C^α is semi-regular on $\Omega - \{ \alpha \}$ or N^α is a T.I. set in G. Since $|\Omega|$ is even and N^α is $\frac{1}{2}$-transitive on $\Omega - \{ \alpha \}$, $|N^\alpha: N_\beta^\alpha|$ is odd for $\alpha \neq \beta \in \Omega$. Hence N^α is not semiregular on $\Omega - \{ \alpha \}$. By Theorem A of [9], N^α is not a T.I. set in G. Hence C^α is semi-regular on $\Omega - \{ \alpha \}$.

Set $\Delta = F(N_\beta^\alpha)$. Since $C^\alpha \leq G(\Delta)$, $[C^\alpha, G_\alpha] \leq C^\alpha \cap G_\alpha = 1$. By Corollary...
B1 of [17], \(N_\theta^\beta \leq G_\lambda \) and so \([C^\alpha, N_\theta^\beta] = 1\). Let \(1 \neq x \in C^\alpha \) and set \(\beta^x = \gamma \). Then \(N_\theta^\beta = x^{-1}N_\theta^\beta x = N_\theta^\gamma \). Hence \(N_\theta^\beta \leq N_\theta^\gamma \). Since \(\beta \neq \gamma \) and \(G \) is doubly transitive on \(\Omega \), \(|N_\theta^\beta| = |N_\theta^\gamma| \). Hence \(N_\theta^\beta = N_\theta^\gamma \). Similarly we have \(N_\theta^\gamma = N_\theta^\beta \). Hence \(N_\theta^\gamma = N_\theta^\beta \) and so \(N_\theta^\gamma = N_\theta^\beta \). Since \(G \) is doubly transitive on \(\Omega \), \(N_\theta^\beta = N_\theta^\gamma \cap N_\theta^\beta \).

Lemma 2.2. Let \(G \) be a transitive permutation group on a set \(\Omega \), \(H \) a stabilizer of a point of \(\Omega \) and \(M \) a nonempty subset of \(G \). Then

\[
|F(M)| = |N_\theta(M)| \times |\text{cl}_\theta(M) \cap H| / |H|.
\]

Here \(\text{cl}_\theta(M) \cap H = \{ g^{-1}Mg | g^{-1}Mg \leq H, g \in G \} \).

Proof. Set \(W = \{(L, \alpha) | L \in \text{cl}_\theta(M), \alpha \in F(L)\} \) and \(W_\alpha = \{L | L \in \text{cl}_\theta(M), F(L) \equiv \alpha\} \). By the transitivity of \(G \), \(|W_\alpha| = |W_\beta| \) holds for every \(\alpha, \beta \in \Omega \). Counting the number of elements of \(W \) in two ways, we obtain \(|G: N_\theta(M)| \times |F(M)| = |G: H| \times |\text{cl}_\theta(M) \cap H| \). Thus we have Lemma 2.2.

Lemma 2.3. Let \(G \cong \text{PSL}(2, q), \text{Sz}(q) \) or \(\text{PSU}(3, q) \) with \(q = 2^n > 2 \) and suppose that \(G \) is a transitive permutation group on a set \(\Omega \) of odd degree. Let \(H \) be a stabilizer of a point of \(\Omega \). Then we have the following:

(i) \(H \) has a unique Sylow 2-subgroup \(S \) of \(G \) and \(H = DS \) for a Hall \(2 \)-subgroup \(D \) of \(H \) where \(D \leq Z_{q^2-1} \).

(ii) Let \(L \) be a subgroup of \(G \) such that \(|L| = |H| \). Then \(L \in \text{cl}_\theta(H) \).

(iii) \(S \) is semi-regular on \(\Omega - F(S) \) and \(|F(S)| = |F(H)| = |N_\theta(S): H| \).

(iv) Set \(D = V \times K \) where \(V \leq Z_{q^2+1}, K \leq Z_{q^1-1} \). Then \(K \) acts semi-regularly on \(\Omega - F(K) \) and if \(K \neq 1 \), \(|F(K)| = 2 |F(S)| \).

Proof. Since \(G \) is generated by its two distinct Sylow 2-subgroups and \(1 \neq |G: H| \) is odd, \(H \) contains a unique Sylow 2-subgroup \(S \) of \(G \) where \(S = O_2^\beta(H) \). By the structure of \(N_\theta(S) \) we have (i) (cf. § 3 of [2]).

To prove (ii) we may assume that \(S \leq L \). As above \(S = O_2^\beta(L) \) and \(L = D_\lambda S \) where \(D_\lambda \leq Z_{q^2-1} \). Since \(N_\theta(S)/S \) is cyclic and \(|H| = |L| \), we get \(H = L \). Thus (ii) holds.

Let \(t \in I(S) \). Applying Lemma 2.2, \(|F(t)| = |N_\theta(t)| \times |\text{cl}_\theta(t) \cap H| / |H| = (|N_\theta(t)| \times |\text{cl}_\theta(t) \cap N_\theta(S)| / |N_\theta(S)|) \times (|N_\theta(S)| / |H|) \). Since \(N_\theta(S) \) is a stabilizer of the usual doubly transitive permutation representation of \(G \), we have \(|N_\theta(t)| \times |\text{cl}_\theta(t) \cap N_\theta(S)| / |N_\theta(S)| = 1 \), hence \(|F(t)| = |N_\theta(S): H| \). On the other hand, \(|F(S)| = |N_\theta(S)| \times |\text{cl}_\theta(S) \cap H| / |H| = |N_\theta(S): H| \). Therefore \(S \) acts semi-regularly on \(\Omega - F(S) \). As \(N_\theta(H) = N_\theta(S) \), similarly we have \(|F(S)| = |F(H)| \). Thus (iii) holds.

Let \(x \) be a nontrivial element of \(K \). Then we have \(|F(\langle x \rangle)| = |N_\theta(\langle x \rangle)| \times |\text{cl}_\theta(\langle x \rangle) \cap H| / |H| = (|N_\theta(S)| \times |\text{cl}_\theta(S) \cap N_\theta(S)| / |N_\theta(S)|) / |H| \).

As before we have \(|N_\theta(\langle x \rangle)| \times |\text{cl}_\theta(\langle x \rangle) \cap N_\theta(S)| / |N_\theta(S)| = 2 \). Hence \(|F(x)| = 2 \cdot |N_\theta(S): H| \) and this is independent of the choice of \(x \in K^\lambda \). Thus (iv)
holds.

Lemma 2.4. Let $G=\mathrm{PSL}(2, q), \mathrm{Sz}(q)$ or $\mathrm{PSU}(3, q)$ with $q=2^n>2$ and S be a Sylow 2-subgroup of G. Let $H=N_G(S)$, t an involution outside H, $D=H \cap H^t$, $V=C_D(t)$ and $K=\{d \in D \mid d^t=d^{-1}\}$. Then the following hold:

(i) $N_G(\langle k \rangle)=\langle t \rangle \triangleleft D$ whenever $1 \neq k \in K$.

(ii) If $G=\mathrm{PSU}(3, q)$ and $1 \neq U$ is a subgroup of V, then $N_G(U)=C_G(V)=N \times V$ where N is a subgroup of G isomorphic to $\mathrm{PSL}(2, q)$.

Proof. (i) follows from the structure of $\mathrm{PSL}(2, q), \mathrm{Sz}(q)$ or $\mathrm{PSU}(3, q)$ (§3 of [2]).

We now regard $\mathrm{PSU}(3, q)$ as a usual doubly transitive permutation group on a set Ω with $|\Omega|=3^n+1$ points. Then V is semi-regular on $\Omega=\mathrm{F}(V)$ and $G(\mathrm{F}(U))/G(\mathrm{F}(U))$ is doubly transitive on $\mathrm{F}(U)=\mathrm{F}(V)$. Clearly $N_G(U) \leq G(\mathrm{F}(U))$ and $G_\mathrm{F}(U)=V$. Hence $N_G(U) \leq N_G(V)$. Since V is cyclic, $N_G(V) \leq N_G(\langle U \rangle)$ and so $N_G(U)=N_G(V)$. Now we set $M=\mathrm{O}_2^+(N_G(V))$. Then as $[Z(S), V]=1$ and $Z(S)$ is a Sylow 2-subgroup of $N_G(V)$, M centralizes V. By the Frattini argument $N_G(V)=(N_G(V) \cap N(S))M=N_H(V)M=\mathrm{DZ}(S) \cdot M \leq C_G(V)$. Hence $N_G(V)=C_G(V)$. By the direct computation, we obtain (ii).

Lemma 2.5. Let $G=\mathrm{PSL}(2, q), \mathrm{Sz}(q)$ or $\mathrm{PSU}(3, q)$ with $q=2^n>2$ and let S be a Sylow 2-subgroup of G.

(i) If T is a maximal subgroup of S, then $N_G(T)=S$.

(ii) Unless $G=\mathrm{PSU}(3, q)$ where $q=2^n$ and n is odd, then by conjugation $N_G(S)$ acts regularly on the set of all maximal subgroups of S.

Proof. Since $N_G(S)$ is strongly embedded in G, $S \leq N_G(T) \leq N_G(S)$ and so $N_G(T)=RS$ where R is a Hall 2-subgroup of $N_G(T)$. As $|S:T|=2$, R centralizes $S/T=Z_2$ and hence there exists an element $t \in C_R(R)-T$. If $G=\mathrm{PSL}(2, q)$ or $\mathrm{Sz}(q)$, then $R=1$ (§3 of [2]). If $G=\mathrm{PSU}(3, q)$ and $n \neq 1$, then by (ii) of Lemma 2.4, $t \in \Omega(S)=\Omega(S) \leq T$, a contradiction. Thus (i) holds.

Let Γ be the set of all maximal subgroups of S. Then by conjugation, $N_G(S)$ acts on Γ and $(N_G(S))_T=S$ for $T \in \Gamma$ by (i). Under the assumption of (ii), we can easily verify $|\Gamma|=|N_G(S):S|$. From this (ii) follows at once.

Lemma 2.6. Let $G=\mathrm{PSL}(2, q), \mathrm{Sz}(q)$ or $\mathrm{PSU}(3, q)$ with $q=2^n>2$ and A be the full automorphism group of G. Let S be a Sylow 2-subgroup of G. Then $C_A(S)=Z(S)$.

Here we identify G with the inner automorphism group of G.

Proof. Let Ω be the set of all Sylow 2-subgroups of G. Then A acts faithfully on Ω and the action of G on Ω is the same as the usual doubly transitive permutation representation. Hence S is regular on $\Omega=\{S\}$ and so $C_A(S)$ is a 2-subgroup of A. If $G=\mathrm{Sz}(q)$, A/G is cyclic of odd order and so $C_A(S) \leq G$. Hence $C_A(S)=C_G(S)=Z(S)$. If $G=\mathrm{PSL}(2, q)$, S is abelian, so that $C_A(S)=S$.

If $G \cong PSU(3, q)$, there exists a field automorphism such that $\langle f \rangle S$ is a Sylow 2-subgroup of $N_A(S)$. From this $C_A(S) \leq O_2(N_A(S)) \leq \langle f \rangle S$. If $g \in C_A(S) - S$ where $g \in \langle f \rangle$ and $s \in S$, then g centralizes $Z(S)$ and so g is a field automorphism of order 2 by the structural property of A. Since g centralizes s, s must be contained in $Z(S)$. Therefore g centralizes S, while g is a field automorphism of order 2. This is a contradiction. Thus $C_A(S) = S \cap C_A(S) = Z(S)$.

Lemma 2.7. Let $G \cong PSU(3, q)$, $q = 2^e$ such that n is even. Then $\text{Aut}(G) = \langle f \rangle G$ for a field automorphism f of G (see [14]). Let B be a Borel subgroup and let D be a diagonal subgroup of G. Then $B = DS$ and $\text{Sylow } 2$-subgroup S of G. Set $D = V \times K$ with $V = Z_{q+1}$, $K = Z_{q-1}$. Then $C_A(Z(S)) = \langle \tau \rangle VS$ where $A = \langle f \rangle G$ and $\{\tau\} = I(\langle f \rangle)$.

Proof. By the structural properties of A, $[V, Z(S)] = 1$ and $C_{\langle f \rangle}(Z(S)) = \langle \tau \rangle$. Since $N_A(Z(S)) \supset O_2(N_A(Z(S))) = S$, $N_A(Z(S)) = \langle f \rangle N_G(S)$. Hence $C_A(Z(S)) = C(Z(S)) \cap \langle f \rangle DS = C_{\langle f \rangle}(Z(S)) VS$. Let $gh \in C_{\langle f \rangle}(Z(S))$ with $g \in \langle f \rangle$, $k \in K$. Since g is a field automorphism of G, it centralizes a nontrivial element s in $Z(S)$. Then k centralizes s and so $k = 1$, for otherwise $s \in C_A(k) = VK$, a contradiction. So $C_{\langle f \rangle}(Z(S)) = C_{\langle f \rangle}(Z(S)) = \langle \tau \rangle$. Thus $C_A(Z(S)) = \langle \tau \rangle VS$.

3. The case $|\Omega|$ is even

Let G be a doubly transitive permutation group on a finite set Ω of even degree satisfying the assumption of our theorem. Let $\alpha \in \Omega$ and $\{\alpha\}, \Delta_1, \ldots, \Delta_r$ be the set of all \mathbb{N}^\ast-orbits on Ω. Since \mathbb{N}^\ast is normal in G_α, $|\Delta_i| = |\Delta_j|$ for $1 \leq i, j \leq r$. Hence $|\Omega| = 1 + |\Delta_i|$ and so both $|\Delta_i|$ and r are odd. From this, \mathbb{N}^\ast_{β} contains a unique Sylow 2-subgroup of \mathbb{N}^\ast for $\beta = \alpha$ by (i) of Lemma 2.3. Set $S = O_2(\mathbb{N}^\ast_{\beta})$.

(3.1) The following hold.

(i) For each Δ_i with $1 \leq i \leq r$, there exists $\beta_i \in \Delta_i$ such that $\mathbb{N}^\ast_{\beta_i} = \mathbb{N}^\ast_{\beta_i}$.
(ii) $F(S) = F(\mathbb{N}^\ast_{\beta_i})$, $|F(S)| = |\mathbb{N}^\ast(\mathbb{N}^\ast_{\beta_i}) : \mathbb{N}^\ast_{\beta_i}| \times r + 1$ and S is semi-regular on $\Omega - F(S)$.
(iii) Set $C^\ast = C_G(\mathbb{N}^\ast)$. Then $C^\ast = O(G_\alpha)$ and is semi-regular on $\Omega - \{\alpha\}$.

Proof. Let $\gamma \in \Delta_i$. Since $|\mathbb{N}^\ast_{\beta_i}| = |\mathbb{N}^\ast_{\beta_i}|$, by (ii) of Lemma 2.3, $\mathbb{N}^\ast_{\beta_i} = (\mathbb{N}^\ast_{\beta_i})^\ast$ for some $x \in \mathbb{N}^\ast$. Put $\gamma^\ast = \beta_i$. Then $\beta_i \in \Delta_i$ and $\mathbb{N}^\ast_{\beta_i} = \mathbb{N}^\ast_{\beta_i}$. Thus (i) holds.

Hence by (iii) of Lemma 2.3, for each Δ_i with $1 \leq i \leq r$, $F(S) \cap \Delta_i = F(\mathbb{N}^\ast_{\beta_i}) \cap \Delta_i$, $|F(S) \cap \Delta_i| = |\mathbb{N}^\ast_{\beta_i}(\mathbb{N}^\ast_{\beta_i}) : \mathbb{N}^\ast_{\beta_i}|$ and S is semi-regular on $\Delta_i - (\Delta_i \cap F(S))$. Thus (ii) holds.

Since $[O(G_\alpha), \mathbb{N}^\ast] \leq O(G_\alpha) \cap \mathbb{N}^\ast$ and \mathbb{N}^\ast is a non abelian simple group, $[O(G_\alpha), \mathbb{N}^\ast] = 1$ and so $O(G_\alpha) \leq C^\ast$. By Lemma 2.1, C^\ast is semi-regular on
ON DOUBLY TRANSITIVE PERMUTATION GROUPS

\[\Omega - \{ \alpha \} \] Since \(G_\alpha \triangleright C^\alpha, C^\alpha \) is \(\frac{1}{2} \)-transitive on \(\Omega - \{ \alpha \} \). Hence \(|C^\alpha| \mid |\Omega| - 1 \). From this \(C^\alpha \) is of odd order and hence \(C^\alpha \cong O(G_\alpha) \). Thus \(C^\alpha = O(G_\alpha) \).

As a Chevalley group, \(N^* \) has a Borel subgroup \(N_\alpha^*(S) \). Let \(D \) be a diagonal subgroup of \(N_\alpha^*(S) \). Then \(N_\alpha^*(S) = DS \). We now denote \(G_\alpha \) by \(G^\alpha \). By the properties of \(PSL(2, q) \), \(Sz(q) \) or \(PSU(3, q) \) ([14]), there exists a field automorphism \(f \) such that \(\langle f \rangle \triangleright N^*/N^\alpha \) is a Sylow 2-subgroup of \(N^*/N^\alpha \). Since \(C^\alpha = O(G_\alpha) \), we may assume \(f \) is a 2-element in \(G_\alpha \). Since \(DC^\alpha \cap N^\alpha = D \) and \(SC^\alpha \cap N^\alpha = S \), \(D \) and \(S \) are \(f \)-invariant. Clearly \(\langle f \rangle \) is a Sylow 2-subgroup of \(G_\alpha \). Since \(\langle f \rangle \cap N^\alpha = 1 \), \(\langle f \rangle \cap S \leq C^\alpha \) and so \(\langle f \rangle \cap S = 1 \). Thus we have the following.

(3.1) There exists a 2-element \(f \) in \(G_\alpha \) satisfying the following.

(i) \(f \) acts on \(N^* \) as a field automorphism of \(N^* \).
(ii) \(D \) and \(S \) are \(f \)-invariant and \(\langle f \rangle \cap S = 1 \).
(iii) \(\langle f \rangle \) is a Sylow 2-subgroup of \(G_\alpha \).

(3.2) \(N^\alpha \cap N^\beta \) is cyclic of odd order.

Proof. By Lemma 2.1 and (iii) of (3.1), we may assume that \(C^\alpha = 1 \). First we claim that \(|S|: S \cap N^\beta| = 1 \) or 2. Since \(S/S \cap N^\beta \) is isomorphic to a 2-subgroup of the outer automorphism group of \(N^\beta \), \(S/S \cap N^\beta \) is cyclic. But \(S/S' \) is an elementary abelian 2-group and so \(S/S \cap N^\beta \) is cyclic. As \(S/S \cap N^\beta \) is cyclic and \(G^\alpha \cap N^\beta \) is cyclic, \(S/S \cap N^\beta \) is cyclic. As \(S/S \cap N^\beta \) is a normal subgroup of \(G^\alpha \cap N^\beta \) of order 2, \(I(G^\alpha) \subseteq N^\beta \cap N^\alpha \). Let \(f \) be as defined in (3.1). Then \(f \neq 1 \) as \(N^\beta \cap N^\alpha \leq N^* \). Let \(\tau \in I(\langle f \rangle) \). Since \(\tau \in N_\alpha^*(S), S = N^\alpha \) and \(I(S) = \{ \alpha \} \) is odd, there exists \(\gamma \) such that \(\gamma \in F(\tau) \cap F(N^\alpha) \) and \(\gamma \neq \alpha \). Clearly \(N^\alpha \leq N^\gamma \), so that \(N^\beta \leq N^\gamma \). Therefore we may assume \(F(\tau) \equiv \beta \) and \(\tau \in G_{\alpha \beta} \). By Corollary B1 of [17] \(F(N^\beta) = F(N^\alpha) \). From this \(F(\tau) \equiv F(N^\beta) \equiv F(N^\alpha) \) because \(\tau \in I(G_{\alpha \beta}) \subseteq N^\beta \cap N^\alpha \). So \(\langle \tau \rangle N^\beta \leq \langle \tau \rangle N^\alpha \cap (N(N^\beta)_{F(N^\beta)}) \). Let \(D \) be as defined in (3.1). Then \(D \leq N_\alpha^*(N^\beta) \) and \(D \) is \(\tau \)-invariant. Hence \([D, \tau] \leq \langle \tau \rangle N^\alpha \cap (N(N^\beta)_{F(N^\beta)}) \) \(\cap D = 1 \). Therefore \(\tau \) centralizes \(D \). Since \(\tau \) is a field automorphism of \(N^\alpha \) of order 2 and \(D \) is a diagonal subgroup of \(N^\alpha \), this is a contradiction.

(3.3) The following hold.

(i) \(N^\alpha \cap N^\beta = N^\gamma \cap N^\delta \) for, \(\gamma, \delta \in F(N^\alpha \cap N^\beta) \) with \(\gamma \neq \delta \).
(ii) \(G(F(S)) = N_\alpha(N^\alpha \cap N^\beta) \).
(iii) Let \(M \) be a subgroup of \(N^\alpha \cap N^\beta \) which contains \(S \). Then \(F(M) = \langle f \rangle \cap S \).
$F(S)$ and $N_G(M)$ is doubly transitive on $F(S)$.

(iv) $C_{G_{a}}(S)=Z(S) \times C^a$.

(v) Let M be as defined in (iii) and suppose $C^a \neq 1$. Then $O_2(C_{G}(M))_{F(S)}$ is a regular normal elementary abelian 2-subgroup of $N_{G}(M)_{F(S)}$.

Proof. Let $\gamma, \delta \in F(N^a \cap N^\beta)$ with $\gamma \neq \delta$. We may assume $\alpha \neq \gamma$. Since G is doubly transitive on Ω, $|N^\alpha \cap N^\beta| = |N^\gamma \cap N^\beta|$. By the choice of $\gamma, N^\gamma \cap N^\beta \leq N^\gamma$ and $N_{N^a}(S)/S$ is cyclic. Hence $N^\gamma \cap N^\beta = N^\gamma \cap N^\beta$. Similarly $N^\gamma \cap N^\alpha = N^\gamma \cap N^\alpha$. Thus (i) holds.

Since $N_{G}(N^\alpha \cap N^\beta) \leq N_{G}(S), N_{G}(N^a \cap N^\beta) \leq G(F(S))$. Let $x \in G(F(S))$. Then $\alpha^x, \beta^x \in F(S)$ and $F(S)=F(N^a)$ by (ii) of (3.1). Hence $\alpha^x, \beta^x \in F(N^\alpha \cap N^\beta)$. Therefore by (i) $N^\alpha \cap N^\beta = N^\alpha \cap N^\beta$ and so $x \in N_{G}(N^\alpha \cap N^\beta)$. Thus (ii) holds.

Suppose $S \leq M \leq N^\alpha \cap N^\beta$. If $M^f \leq G_{a\beta}$ for some $g \in G_a$. Then $M^f = M$ because $S < M$ and $N^\alpha \cap S$ is cyclic of odd order. By the Witt’s Theorem $N_{G_{a}}(M)$ is transitive on $F(M) - \{a\}$. Similarly $N_{G_{a}}(M)$ is transitive on $F(M) - \{\beta\}$. We may assume $|F(M)| > 2$. Hence $N_{G_{a}}(M)$ is doubly transitive on $F(M)$. By (ii) of (3.1), $F(M) = F(S)$. Thus (iii) holds.

We denote G_{a}/C^a by G_a. Clearly $C_{G}(S) = Z(S) = Z(S) \times C^a$. The converse implication is obvious. Thus (iv) holds.

Suppose $C^a \neq 1$. Then since C^a is semi-regular on $\Omega - \{a\}$, $C_{G}(M)_{F(S)} \cong (C^a)^{F(S)} \cong 1$. As $N_{G}(M)_{F(S)}$ is doubly transitive by (iii), $C_{G}(M)_{F(S)}$ is transitive. By (iv), $(C^a)^{F(S)} \leq C_{G_a}(M)_{F(S)} \leq (Z(S) \times C^a)^{F(S)}$ and so $C_{G_a}(M)_{F(S)} = (C^a)^{F(S)}$. Hence $C_{G}(M)_{F(S)}$ is a Frobenius group and so $O_2(C_{G}(M)_{F(S)}) \neq 1$ because $|F(S)|$ is even. Since $C_{G}(M)_{F(S)} \cong (Z(S) \times C^a)^{F(S)} = Z(S), O_2(C_{F}(M)_{F(S)}) = O_2(C_{G}(M)_{F(S)})$ and this is regular on $F(S)$. As $N_{G}(M)_{F(S)} \geq C_{G}(M)_{F(S)}, O_2(C_{G}(M)_{F(S)})$ must be a regular normal elementary abelian 2-subgroup of $N_{G}(M)_{F(S)}$. Thus (v) holds.

(3.4) There exists an involution t such that $ccl_{G}(t) \cap S = \phi, \alpha^t = \beta$ and $F(t) \cap F(S) = \phi$. Set $\mu = |N_{N^a}(S) : N^a_{\phi}|$ and $|S| = q^f$. Then we have

(i) $|\Omega| = (q^f + 1)\mu r + 1$.

(ii) $|C_{S}(t)| \geq \sqrt{q}, \sqrt{2q}$ or q according as $N^a = PSL(2, q), Sz(q)$ or $PSU(3, q)$, respectively. Furthermore $|C_{S}(t)|$ and $|F(S)| = \mu r + 1$.

(iii) If $\mu = 1$, then $|\Omega| = 6$ and $G = A_6$ or S_6.

(iv) $|\Omega| = |F(S)|_{2^*} |G : N_G(S)|_{2^*}$.

Proof. Since $|\Delta_t| = |N^a : N^a_{\phi}| = |N^a : N_{N^a}(S) : N^a_{\phi}| = (q^f + 1)\mu$ and $|\Delta_t| = |\Delta_t| \mu r + 1$. Hence (i) holds.

Since G is doubly transitive on Ω, there exists an involution t such that $ccl_{G}(t) \cap S \neq \phi$ and $\alpha^t = \beta$. Then t normalizes $O_2(N_{N^a} \cap N^\beta) = S$. Claim $F(t) \cap F(S) = \phi$. Suppose not and let $\gamma \in F(t) \cap F(S)$. As $S \leq N^a_{\gamma}$, $S \leq N^\alpha \cap N^\beta$ by (i) of (3.3). Let g be such that $t^g \in S$. Then $t \in N^a \cap G_{\gamma} = N^a_{\gamma}$ where $\delta = \alpha^{t-1}$ and
hence \(t \in N' \). Since \(t \) normalizes \(S \) and \(\langle t \rangle S \leq N' \), \(t \) must be contained in \(S \), a contradiction. Hence \(F(t) \cap F(S) = \phi \). From this \(C_S(t) \) acts semi-regularly on \(F(t) \) and so \(|F(t)| \) is divisibly by \(|C_S(t)| \). Since \(t^S \in S \), \(|F(t)| = |F(t^S)| = |F(S)| \), hence \(|C_S(t)| | F(S)|.

If \(N^\ast \cong PSL(2, q) \), then \(|\Omega_1(S'/S^\ast)| = |S^\ast| = q \) and by Lemma 1 of [7], \(|C_S(t)| \geq \sqrt{q} \). If \(N^\ast = Sz(q) \), then \(|\Omega_1(S'/S^\ast)| = q \). Since \(q \) is an odd power of 2 in this case, similarly \(|C_S(t)| \geq 2\sqrt{q} \). If \(N^\ast \cong PSU(3, q) \), then \(|\Omega_1(S'/S^\ast)| = q^2 \) and so similarly \(|C_S(t)| \geq q^2 \). Thus we have (ii).

Suppose \(\mu = 1 \). Then \(N^\ast \) is doubly transitive on each \(N^\ast \)-orbit \(\neq \{\alpha\} \). Applying Theorem D of [10], \(r = 1 \). Therefore, \(|F(S)| = \mu r + 1 = 2 \) and so by (i) and (ii), \(N^\ast \cong PSL(2, 4) \) and \(|\Omega| = 6 \). Thus (iii) holds.

(3.5) Let \(\pi \) be the set of primes which divides \(q - 1 \) and \(K \) a Hall \(\pi \)-subgroup of \(N^\ast \cap N^\# \). If \(K \neq 1 \), then \(C^\ast = 1 \).

Proof. Suppose \(K \neq 1 \) and \(C^\ast \neq 1 \). Set \(\Gamma_i = \Delta_i \cap F(S) \) and \(\Lambda_i = \Delta_i \cap F(K) \). Then by (i) of (3.1) and Lemma 2.3, for each \(i \) with \(1 \leq i \leq r \) \(|\Lambda_i| = 2 |\Gamma_i| = 2 |N^\ast(S) : N^\#(S) : N^\ast(S) \cap N^\#(S)| \) and \(K \) is semi-regular on \(\Delta_i - \Lambda_i \).

By (v) of (3.3), \(O_2(C_G(KS))^{F(S)} \) is a regular normal elementary abelian 2-subgroup of \(N^\ast(KS)^{F(S)} \). Set \(E = O_2(C_G(KS)) \). It follows from (iv) of (3.3) that \(E^{F(S)} \leq (Z(S) \times C^\ast)^{F(S)} \). Since \(F(Z(S)) = F(S) \) by (ii) of (3.1) and \((C^\ast)^{F(S)} = 1 \) by (iii) of (3.1), \((Z(S) \times C^\ast)^{F(S)} = Z(S) \). On the other hand \(Z(S) \cap C(K) = 1 \) (cf. § 3 of [21]) and so \(E = E^{F(S)} \). Hence \(E = E^{F(S)} \) and so we have \(|F(S)| = |E| \). Since \(KS \) is a subgroup of \(N^\#_S \) which contains \(S \), by (ii) of (3.1) we have \(F(S) = F(KS) \). From this \(F(S) \) is a subset of \(F(K) \). Hence \(|F(K) - F(S)| = |F(K) - \{\alpha\}| - |F(S) - \{\alpha\}| = \sum \limits_{i=1}^{r} |\Lambda_i| - \sum \limits_{i=1}^{r} |\Gamma_i| = r \times |N^\ast(S) : N^\#(S)|. \) Since \(r \) is odd, \(|F(K) - F(S)| \) is odd. On the other hand \(E \) fixes \(F(K) - F(S) \) setwise because \(E \) centralizes \(S \) and \(K \). Therefore \(E \) fixes an element \(\gamma \in F(K) - F(S) \) as \(E \) is a 2-subgroup of \(G \). Since \(N^\#/O_2(N^\#) \) is cyclic of odd order, \(K \leq N^\# \) and \(|K : O_2(N^\#)| = |N^\# |N^\# \cap N^\ast| \), we have \(K \cdot O_2(N^\#) \leq N^\# \cap N^\ast \). Hence \(K \leq N^\ast \) and so \(|C_G(K)| \) is odd by (i) of Lemma 2.4. Since \(C_G(K)/C_N(K) \cong C_{g}(K)N^\#/N^\#C^\ast \), a Sylow 2-subgroup of \(C_g(K) \) is cyclic. But \(E \leq C_g(K) \) and hence \(|E| = |F(S)| = 2 = \mu r + 1 \). From this \(\mu = r = 1 \). By (iii) of (3.4) \(C^\ast = 1 \), which is contrary to the assumption \(C^\ast \neq 1 \). So (3.5) holds.

(3.6) Suppose \(K \neq 1 \) and let \(S_i \) be a subgroup of \(S \). If \(S_i \leq N_G(S) \) and \(S_i \leq S \) for some \(g \in G \), then \(S_i \leq Z_3 \times Z_4 \) and \(|S_i| \leq |G|/|N^\ast| \).

Proof. Set \(S_i = T \). By (ii) of (3.1), \(T \) is semi-regular on \(\Omega - F(T) \). Claim
\(F(T) \cap F(S) = \emptyset \). Suppose not and let \(\gamma \in F(T) \cap F(S) \). Then \(T \leq N^S_T \) and \(S \leq N^T_S \). By (3.2) \(T \leq N^S_T \cap N^T_S \) and \(S \leq N^S_T \cap N^T_S \) and so \(TS \leq N^T_S \). Since \(S \) is a Sylow 2-subgroup of \(N^S_T \), \(TS = S \). Hence \(T \leq S \), a contradiction. Thus \(F(T) \cap F(S) = \emptyset \). From this \(T \) acts semi-regularly on \(F(S) \). By (ii) of (3.3), \(T \) normalizes \(N^\gamma_S \cap N^\gamma_T \) and so \(TS \leq N^\gamma_S \cap N^\gamma_T \). Since \(S \) is a Sylow 2-subgroup of \(N^\gamma_S \cap N^\gamma_T \), \(TS = S \). Hence \(T \subseteq S \), a contradiction. Thus \(F(T) \cap F(S) = \emptyset \). From this \(T \) acts semi-regularly on \(F(S) \). By (ii) of (3.3), \(T \) normalizes \(N^S_T \cap N^T_S \) and so \(TS \leq N^S_T \cap N^T_S \). Hence \(T = N^S_T \cap N^T_S \). Now \(N^S_T \cap N^T_S \) acts on \(F(S) \) and \(F(K) \). But in this case since the outer automorphism group of \(N^S_T \cap N^T_S \) is cyclic of odd order, \(|G|/|N^S_T \cap N^T_S| \) is a prime in both cases. This is a contradiction.

If \(N^S_T \cap N^T_S \neq \emptyset \), similarly we obtain \(\sqrt{2}q < |G_S(t)| \cdot |2 \cdot G_a/N^a| \). But in this case since the outer automorphism group of \(N^a \) is cyclic of odd order, \(|G_a/N^a| \)
is odd and so $\sqrt{2q} \leq 2$. Hence $q \leq 2$, a contradiction.

If $N^\ast \simeq PSU(3, g)$, similarly $q \leq |C_4(t)|/|2|G_4/N^\ast|$. Hence $q = 2^2$, $N^\ast \simeq PSU(3, 2^2)$. As in the first case, $r = 1$ and $(\mu, |K|, |F(\Omega)|, |\Omega|) = (5, 3, 11, 326)$ and so $11 = |F(\Omega)|/|\Omega| \cdot |\Aut(PSU(3, 2^2))|$, a contradiction.

In (3.8)-(3.11), we shall prove that $N^\ast = N^\ast \cap N^\beta$. First we note the following.

(3.8) If $C^\ast = 1$, $N^\ast = N^\ast \cap N^\beta$.

Proof. Since N^\ast is a nonabelian simple group, (3.8) follows immediately from Lemma 2.1.

(3.9) Let p be a prime with $p | |N^\ast_\beta: N^\ast \cap N^\beta|$ and assume the following:

\[(*) \quad p \neq 3 \text{ if } N^\ast \simeq PSU/(3, 2^2) \text{ and } n \text{ is odd.} \]

Then $\mu = p$.

Proof. It follows from (3.8) that $C^\ast = 1$. Hence G_4/N^\ast is isomorphic to a subgroup of the outer automorphism group of N^\ast and so under the hypothesis $(*)$, a Sylow p-subgroup of G_4/N^\ast is normal and cyclic ([14]). Set $N^\ast G = N^\ast (S)$. Since $W/N^\ast \leq G_4/N^\ast = G_4/N^\ast$, a Sylow p-subgroup of W/N^\ast is normal and cyclic. Hence all elements in W of order p are contained in N^\ast because $|N^\ast_\beta N^\ast_\beta/N^\ast| = |N^\ast_\beta: N^\ast \cap N^\beta| = |N^\ast_\beta: N^\ast \cap N^\beta|$ and $p | |N^\ast_\beta: N^\ast \cap N^\beta|$. Let P be a Sylow p-subgroup of W. Then $\Omega_2(P) \leq N^\ast N^\ast_\beta$. Set $Q = \Omega_2(P)$. Since $N^\ast N^\ast_\beta / N^\ast_\beta \simeq N^\ast_\beta / N^\ast \cap N^\beta$, by (3.2) $N^\ast_\beta N^\ast_\beta / N^\ast_\beta$ is cyclic and so Q' is a cyclic subgroup of N^\ast_β, similarly $Q' \leq N^\ast_\beta$. Hence $Q' \leq N^\ast \cap N^\beta$ and the p-rank of Q/Q' is at most 2.

By the Frattini argument, $N^\ast G = (N^\ast G \cap N(P))W$. Let M be a normal subgroup of $N^\ast G \cap N(P)$ such that $M F^G$ is a minimal normal subgroup of $N^\ast G F^G$. We choose M so that its order is minimal. Since $N^\ast G F^G$ is doubly transitive, $M F^G$ is an elementary abelian 2-subgroup or a direct product of isomorphic nonabelian simple groups. As Q' is cyclic, $M/C_M(Q')$ is abelian and its Sylow 2-subgroup is cyclic. Hence by the minimality of M, $M = C_M(Q')$.

Set $\overline{Q} = Q/Q'$. We argue that $C_M(\overline{Q}) \leq W$. To prove this, it suffices to show that $M \cap C_M(\overline{Q})$ stabilizes the normal series $\overline{Q} \leq Q' \leq 1$ and hence $O_p(M)$ centralizes \overline{Q} by Theorem 5.3.2 and Theorem 5.3.1 of [6]. Obviously $O_p(M) \leq W$ and so $O_p(M) = M$ by the minimality of M. Therefore M centralizes P. Let x be an element of M such that $x^2 = \beta$, then $P \cap N^\ast_\beta \leq N^\ast \cap N^\ast = N^\ast \cap N^\beta$. But since $P \cap N^\ast_\beta$ is a Sylow p-subgroup of N^\ast_β, $P \cap N^\ast \cap N^\beta$, a contradiction.

Set $C = C_M(\Omega_2(\overline{Q}))$. Then $M/C \leq GL(2, p)$ because the p-rank of \overline{Q} is at most 2. By the minimality of M, $M/C \leq SL(2, p)$. On the other hand $O_p(C) \leq C_M(\overline{Q}) \leq W$. Therefore $C F^G$ is a normal p-subgroup of $N^\ast G F^G$. Since
\(p \neq 2, C^{F(S)} = 1\) and so \(C \leq W\). Hence \(M^{F(S)}\) is isomorphic to a homomorphic image of a subgroup of \(SL(2, p)\).

Hence if \(M^{F(S)}\) is an elementary abelian 2-group, we have \(M^{F(S)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2\) and \(|F(S)| = 4\). From (ii) and (iii) of (3.4), \(\mu = 3\) and \(r = 1\). By (ii) of (3.4), \(N^a \cong PSL(2, 4), PSL(2, 16)\) or \(PSU(3, 4)\) and hence \(|G_a : N^a| = 1, 2 \text{ or } 4\), which is contrary to \(p||N^a : N^a \cap N^a|| = |N^a_a/N^a_a/N^a_a|\).

If \(M^{F(S)}\) is a direct product of isomorphic non abelian simple groups by Dickson's Theorem (Hauptsatz 8.27 [8]) \(M^{F(S)} = PSL(2, p)\) with \(p > 5\) or \(A_5\). Claim \(M^{F(S)} = PSL(2, 3)\) or \(A_5\). Suppose \(M^{F(S)} = PSL(2, p)\) with \(p > 5\). Then \(|F(S)| = 6, \mu = 5\) and \(r = 1\). By (ii) of (3.4), we obtain \(q = 2^2\) and \(N^a = PSL(2, 4)\). Hence \(5, |N^a : N^a_a| = 5\), a contradiction. Thus \(M^{F(S)} = PSL(2, p)\) with \(p > 5\). Hence \(|N^a : F(S)| = M^{F(S)} = 1\) or 2. From this as \(|F(S)|\) is even, \(M^{F(S)}\) is also doubly transitive. Again by Dickson's Theorem, we know all maximal subgroups of \(PSL(2, p)\) with \(p > 5\) and hence \(PSL(2, p)\) with \(p > 5\) has a unique doubly transitive permutation representation of even degree, which is the known one. From this \(|F(S)| = p + 1\). Since \(|F(S)| = \mu r + 1 = \mu + 1\), we obtain \(\mu = p\).

(3.10) If \(N^a = PSU(3, q)\) and \(n\) is odd, then \(3, |N^a : N^a \cap N^b|\).

Proof. By (3.8), we may assume \(C^a = 1\). Set \(W = N_G(S)_{F(S)}\) and let \(P\) be a Sylow 3-subgroup of \(W\). As \(G_a = N^a \cap N^b/N^a \leq G_a/N^a\), a Sylow 3-subgroup of \(W/N^a\) is an abelian 3-group of rank at most 2, so that \(P' \leq N^a\) and similarly \(P' \leq N^b\). Hence \(P' \leq N^a \cap N^b\) and \(P'\) is cyclic.

Similarly as in the proof of (3.9) we can choose a normal subgroup \(M\) of \(N_G(S) \cap N(P)\). Denote \(P/P'\) by \(\hat{P}\). Then \(\Omega^a_{\hat{P}}\) is an elementary abelian 3-subgroup of \(W/N^a\) at rank at most 3. Then as in the proof of (3.9), \(M\) centralizes \(P'\) and \(C_{M}(\hat{P})\) is contained in \(W\). Hence \(M/C \leq SL(3, 3)\) where \(C = C_{M}(\hat{P})\).

If \(M^{F(S)}\) is an elementary abelian 2-group, by the structure of \(SL(3, 3)\), \(M^{F(S)} = \mathbb{Z}_2 \times \mathbb{Z}_2\) and so \(|F(S)| = 4, \mu = 3\) and \(r = 1\). Let \(p_1 \in \pi\). Since \(n\) is odd, \(3 \notin \pi\). Therefore \(p_1 = 3\). By (3.7), \(\pi_{F(S)} \cap |N^a \cap N^b|\). Hence \(p_1 ||N^a : N^a \cap N^b||\) and applying (3.9) to \(p_1\), we have \(\mu = p_1 = 3\), a contradiction.

If \(M^{F(S)}\) is a direct product of isomorphic non abelian simple groups, we have \(M^{F(S)} = SL(3, 3)\) because every proper subgroup of \(SL(3, 3)\) is solvable. Hence \(|N_G(S)_{F(S)} : M^{F(S)}| = 1\) or 2 and so \(M^{F(S)}\) is also doubly transitive. By (ii) of (3.1), \(N_{N^a(S)_{F(S)}} = N^a\). Therefore, \(N_{N^a(S)_{F(S)}} = N^a\) is cyclic of order \(\mu\). Since \(|SL(3, 3)| = 2^3 \cdot 3^2\cdot 13, \mu = 3\) or 13. If \(\mu = 3\), applying (3.7) and (3.9), \(\pi\) is empty, a contradiction. If \(\mu = 13\), then \((M_a)^{F(S)} \triangleright N_{N^a(S)_{F(S)}} = Z_{13}\). Hence \((M_a)^{F(S)}\) is isomorphic to the normalizer of a Sylow 13-subgroup in \(SL(3, 3)\), while this permutation representation of \(SL(3, 3)\) is not doubly transitive. Thus (3.10) is proved.

(3.11) \(N^a = N^a \cap N^b\).
Proof. Suppose not and let p be a prime with $p | N^*_\beta | N^*_\alpha \cap N^\beta |$. Then it follows from (3.7), (3.9) and (3.10) that $q-1=p^e$ for some integer $e \geq 2$. If e is even, $p^e \equiv 1 \pmod{4}$, while $q-1 \equiv -1 \pmod{4}$, a contradiction. If e is odd, $2^e=q=c(p+1)$ where $c=p^{e-1}p^{e-2}+\cdots+p+1$. We note that $e \geq 3$. Since c is odd, $c=1$, a contradiction. Thus $N^*_\beta = N^*_\alpha \cap N^\beta$.

(3.12) Suppose $N^* = PSL(2, q)$ or $Sz(q)$ and $G \neq A_6, S_6$. Then
(i) $N^*_\beta = N^*_\alpha \cap N^\beta$ is a Sylow 2-subgroup of N^*_α.
(ii) If $N^* = PSL(2, q)$, then $|F(S)| = q$ and $|\Omega| = q^2$.
(iii) If $N^* = Sz(q)$, then $|F(S)| = q^2$ and $|\Omega| = q^4$.
(iv) There is an element x in G such that $S \neq S^x$, $[S, S^x] = 1$ and $F(S) \cap F(S^x) = \phi$.

Proof. By assumption, $N^*_N(S) = (q-1)q^i$ where $|S| = q^i$. Hence (i) follows immediately from (3.7) and (3.11).

We now argue that $|F(S)|$ is a power of 2. By (v) of (3.3), it suffices to consider the case $C^* = 1$. Applying (ii) of (3.4), $q | |F(S)|^2$. By (i), $\mu = |N^*_N(S): N^*_\beta| = q-1$ and so $|F(S)| = \mu r+1=(q-1)r+1$. Hence $q | (r-1)^3$, while r is a divisor of n where $2^r = q$ because $C^* = 1$ and $G_{a\alpha}/N^*$ is isomorphic to a subgroup of the outer automorphism group of N^*_α. Therefore $r=1$ and $|F(S)| = q$, a power of 2.

Hence by (iv) of (3.4), $|F(S)| = (q-1)r+1 | |\Omega| = (q+1)(q-1)r+1$ and so $q | (q-1)r+1$ and $(q-1)r+1 | q^i$. From this, $(i, r) = (1, 1), (2, 1)$ or $(2, q+1)$. If $(i, r) = (1, 1)$ or $(2, q+1)$, we obtain (ii) or (iii), respectively. We argue $(i, r) = (2, 1)$. Suppose $(i, r) = (2, 1)$. Then $N^* = Sz(q)$, $|F(S)| = q$ and $|\Omega| = q(q^2-q+1)$. In this case, $|G_{a\alpha}/C^*N^*|$ is odd, we have $I(G_{a\alpha}) = I(N^*_\alpha \cap N^\beta)$. From this, all involutions in a fixed Sylow 2-subgroup of $G_{a\alpha}$ have a common fixed point set. By [12], G has a regular normal subgroup and so $q^2-q+1=1$, a contradiction.

Since by (iv) of (3.4) $|\Omega| = |F(S)| \times |G: N^*_S(S)|$, $|G: N^*_S(S)|$ is divisible by 2. Let S_1 be a Sylow 2-subgroup of $N^*_S(S)$ and S_2 a Sylow 2-subgroup of $N^*_S(S)$. Since $2 | |G: N^*_S(S)|$, $S_1 \neq S_2$. Let $x \in S_2 \setminus S_1$, then $S \neq S^x$ and $S_1 \nmid S \cap S^x$. Suppose $\gamma \in F(S) \cap F(S^x)$. Then by (i), $SS^x \leq N^\gamma$ and so $S = S^x$, a contradiction. Therefore $F(S) \cap F(S^x) = \phi$ and hence $[S, S^x] = 1$ by (ii) of (3.1). Thus (iii) holds.

(3.13) The following hold.
(i) $N^*_\alpha \neq Sz(q)$.
(ii) Suppose $N^* = PSL(2, q)$ and let S^x be as defined in (3.12). Then $O_2(C_{a\alpha}(S))$ is a Sylow 2-subgroup of $C_{a\alpha}(S)$ and $O_2(C_{a\alpha}(S)) = S \times S^x$.

Proof. Suppose $N^* = PSL(2, q)$ or $Sz(q)$. If $C^* = 1$, $O_2(C_{a\alpha}(S))^{p(S)}$ is a regular normal subgroup of $N^*_S(S)^{p(S)}$ by (v) of (3.3). If $C^* = 1$, by (iv) of (3.3)
\(C_G(S) = Z(S) \) and so \(C_G(S) \cap F(S) = Z(S) \). By (3.12), \(C_G(S) \cap F(S) \geq (S^*)^F(S) \neq 1 \), and \(|F(S)| = q = |S| \) and so \(C_G(S) = Z(S) \times S^* \). Hence in both cases \(O_2(C_G(S)) \) is regular on \(F(S) \).

Since by (iv) of (3.3) \(C_G(S) \cap F(S) = C_G(S) = Z(S) \) and by (ii), (iii) of (3.12) \(q' \mid S^* \mid = F'(S) = |C_G(S) : C_G(S)| \), we have \(|O_2(C_G(S))| = Z(S) \times S^* \). Hence \(O_2(C_G(S)) \) is a \(S \)-subgroup of \(C_G(S) \).

Since \(Z(O_2(C_G(S))) = Z(S) \times S^* \), and \(|F(S)| = |S| \), \(Z(S) \times S^* \) and this is a \(S \)-subgroup of \(C_G(S) \).

Since \(Z(O_2(C_G(S))) \cap F(S) = Z(S) \times S^* \) and \(|F(S)| = |S| \), \(Z(S) \times S^* \) and \(Z(S) \times S^* \) is abelian. So (3.13) follows.

(3.14) Suppose \(N^* \cong PSL(2, q) \) and \(G \neq A_6, S_6 \). Put \(E = O_2(C_G(S)) = S \times S^* \), \(W = \{ T | T \in ccI(S), T \leq E \} \). Then we have the following:

(i) \(|W| = q \) and \(\Omega = \bigcup F(T) \) where \(T \) runs over every element of \(W \).

(ii) \(N_G(E) \cap ccI(S) \subseteq E \) for all \(s \in I(S) \).

(iii) If \(E \cap E^* \cap ccI(s) = \phi \) for some \(g \in G \), then \(g \in N_G(E) \).

Proof. Let \(D \) be a Hall 2'-subgroup of \(N_{2^m}(S) \). Then \(D \cong Z_{d-1} \) and by (i) of (3.12) \(D \) is semi-regular on \(\Omega = \{ \alpha \} \). If \(d \in N_{2^m}(S^*) \), \(\langle d \rangle \) acts semi-regularly on \(F(S^*) \) since \(\alpha \in F(S^*) \). Hence the order of \(d \) divides \(|F(S)| \). But \(|F(S)| = q \) by (ii) of (3.12), hence \(|d| (q, q - 1) = 1 \) and so \(d = 1 \). Therefore \(N_{2^m}(S^*) = 1 \).

Hence \(|\{ S^* | d \in D \}| = q - 1 \) and \(|\{ S^* | d \in D \}| \leq W \) as \(D \) normalizes \(E \). If \(S = S^* \) for some \(d \in D \), \(S = S^* = S_{d, 1} \), a contradiction. Hence \(|W| \geq q \).

If there exist \(S_1, S_2 \in W \) such that \(S_1 \neq S_2 \) and \(F(S_1) \cap F(S_2) \neq \phi \) \(\gamma \in F(S_1) \cap F(S_2) \). Then \(S_1, S_2 \leq N^* \) by (i) of (3.12) and so \(<S_1, S_2> = N^* \), which is contrary to \(<S_1, S_2> \leq E \). Hence \(F(S_1) \cap F(S_2) = \phi \) for \(S_1, S_2 \in W \) such that \(S_1 \neq S_2 \).

Since \(|F(S)| = q \) and \(|\Omega| = q^2 \) by (ii) of (3.12), we have \(|W| \leq q \). Thus (i) holds.

Let \(s \in I(S) \) and suppose \(s \in N_G(E) - E \) for some \(g \in G \). Then \(s \in N^* \) where \(\gamma = \alpha^g \). By (i) we choose \(T \in W \) so that \(\gamma \in F(T) \). Then \(\langle \gamma \rangle, \langle T \rangle = N^* \) as \(s \in T \) and \(T \) is a Sylow 2'-subgroup of \(N^* \). On the other hand \(\langle \gamma \rangle, \langle T \rangle \leq \langle s \rangle \), which is a 2-subgroup of \(N_G(E) \), a contradiction. Thus (ii) holds.

Let \(1 \neq T \in E \cap E^* \cap ccI(s) \) for \(g \in G \) and \(s \in I(S) \). Then there are \(S_1 \leq E \) and \(S_2 \leq E^* \) such that \(T \in S_1 \cap S_2 \) and \(S_1, gS_2g^{-1} \in W \). Since \(F(S_1) = F(T) = F(S_2) \) by (ii) of (3.1), \(<S_1, S_2> \leq N^* \cap N^* \) for \(g \in F(T) \). Hence \(S_1 = S_2 \) by (i) of (3.12). Applying (ii) of (3.13) to \(S_1 \), we obtain \(E = O_2(C_G(S_1)) = O_2(C_G(S_2)) = E^* \). Thus (iii) holds.

(3.15) Suppose \(N^* \cong PSL(2, q) \) and \(G \neq A_6, S_6 \). Then \(G \) has a regular normal subgroup.

Proof. We count the set \(\{ \langle \gamma \rangle, T | \gamma \in F(T), T \in ccI(S) \} \) in two ways and we have \(q^2 \times (q + 1) = |ccI(S)| \times q \) by (3.12). Hence \(|ccI(S)| = q(q + 1) \). On the other hand we have \(|ccI(S)| = |G: N_G(E)| \times q \) by (i), (ii) of (3.14). From this, \(|G: N_G(E)| = q + 1 \).
Set $\Gamma = \text{cl}_G(E)$. We now consider the action of G on Γ. By definition, G is transitive on Γ and $N_G(E)$ is a stabilizer of $E \in \Gamma$. We argue that G is regular on Γ. Suppose not and let $s \in S$ such that $s \neq E \in G$. Then $gsg^{-1} \in N_G(E)$. By (ii) of (3.14), $gsg^{-1} \in E \cap E = N_G(E)$. Hence $E = gEg^{-1}$. By (iii) of (3.14), $E \neq gEg^{-1}$. Hence $E = gEg^{-1}$, a contradiction.

Since $S \leq N_G(E)$ and $|S| = \frac{|\Gamma|}{2}$, Γ is regular on Γ and $G\Gamma$ is doubly transitive. Since S is abelian and regular on Γ, $G\Gamma$ is a Frobenius group on Ω by (ii) of (3.1).

We now consider the case that $N_G(E) = \text{PSU}(3, q)$. By (3.7) and (3.11), $N_G(E) = U$ where U is a Hall 2'-subgroup of $N_G(E)$ and $U \leq Z_{q+1}$ with $\varepsilon = (q+1, 3)$. As in the proof of (3.1)', we set $N_{G^*}(S) = DS$ and $D = V \times K$. Here $V = Z_{q+1}$ and $K = Z_{q-1}$. Since $N_{G^*}(S) \geq N_G(E)$, we assume $U = V \cap N_G(E)$.

(3.16) Suppose $N_G(E) = \text{PSU}(3, q)$. Then $N_G(E) \leq N^* \cap N^\beta$ is a Sylow 2-subgroup of N^*. In particular $\mu = q^2 - 1$. We proceed as follows:

Proof. Suppose not and $U \neq 1$. If $U \neq G_{a\beta}$ for $g \in G$, $U = N^a \cap N^\beta = N^a \cap N^\beta \cap N^\beta \leq N^a \cap N^\beta$. Hence U is conjugate to U^g in $N^a \cap N^\beta \leq G_{a\beta}$.

By the Witt's Theorem $N_G(U)$ is doubly transitive on $F(U)$. By (ii) of Lemma 2.4, $N_{N^*}(U) = N \times V$ where $N \simeq \text{PSL}(2, q)$. Hence $N_G(U)$ satisfies the assumption of Theorem 1. By (i) of (3.1), the number of fixed points of U on Δ, is constant for each N^*-orbit Δ, and so $|F(U)| = |F(U) \cap \Delta_1| \times r + 1 = (|N_{N^*}(U)| \times |N^a \cap N_{N^*}(U)|) \times |N^\beta_0 : N_G(U)| \times |N^\beta_0 : N_G(U)| \times r + 1 = (|PSL(2, q)| \times |V|) \times |Z(S)| \times |U| \times r + 1 = (q^2 - 1) \times r \times |V| \times |U| + 1$. Hence $|F(U)|$ is even and $|F(U)| = 6$. Applying (3.12) to $N_G(U)$, we obtain $|F(U)| = q^2$, $|F(U) \cap F(Z(S))| = q$. Hence $r = 1$, $U = V$, $N^a_0 = V \times S$ and $|F(U)| = q^2$ and so $\mu = |N_G(S) : N^*| = q - 1$. Since by (ii) of (3.1) $F(U) \equiv F(S)$, $|F(Z(S))| = |F(S)| = q$. Furthermore by (3.15), $N_G(V)^F$ has a regular normal elementary abelian 2-subgroup, say $E^F(V)$. Clearly $E^F(V) \leq C_G(V)^F$. Hence we may assume that E is a 2-subgroup of $C_G(V)$. Put $P = E^F(V)$. Then $|E| = |P|q^2$. By (i) of (3.4), $|\Omega| = q^2 - q^3 + q$ and so $2q^2 \not{|} \Omega - F(V)|$. Hence there exists $\gamma \in \Omega - F(V)$ such that $|E : E\gamma| \leq q$. Let T be a Sylow 2-subgroup of γ containing $E\gamma$. Since $E\gamma | T \cap N^\gamma$ is isomorphic to a subgroup of $T/T \cap N^\gamma$ and $T/T \cap N^\gamma \simeq TN^\gamma$ is cyclic. If $E\gamma \cap T \cap N^\gamma = 1$, $E\gamma$ is cyclic and so $|E\gamma | E\gamma \cap P| \leq 2$. Then $|E\gamma \cap P| \geq |E\gamma|/2 \geq |P|/2 \geq |P|$, a contradiction. Hence $E\gamma \cap T \cap N^\gamma = 1$. Let $z \in E\gamma \cap T \cap N^\gamma$ with $z \neq 1$. Since $|F(z)| = q < |F(P)|$, $z \in E$ and $E^F(V)$ is regular, we have $F(z) \cap F(V) = \phi$. Hence V acts semi-regularly on $F(z)$. From this, $q = |F(z)| = (q+1)/k$ for some integer $k \geq 1$. Since q is a power
of 2, \(q + 1 / \varepsilon - 1 = 0 \), a contradiction.

(3.17) Suppose \(N^* = PSU(3, q) \). Then the following hold.

(i) \(|\Omega| = q^2 - q + q^2, |F(S)| = q^2 \).

(ii) \(N_G(S)^F(S) \) has a regular normal subgroup.

Proof. If \(C^* \neq 1 \), (ii) follows from (v) of (3.3) and so \(|F(S)| \) is a power of 2. By (3.4) and (3.16), \(|F(S)| = (q^2 - 1)\varepsilon + 1 \) and \((q^2 - 1)\varepsilon + 1 | (q^3 + 1)(q^2 - 1)\varepsilon + 1 \), hence \((q^2 - 1)\varepsilon + 1 | q^2 \). By calculation, we obtain \(r = \varepsilon \). So (i) follows.

We now assume \(C^* = 1 \). By (ii) of (3.4), \(q | |F(S)| = (q^2 - 1)\varepsilon + 1 \) so that \(r = qk + \varepsilon \) for an integer \(k \geq 0 \). Since \(C^* = 1 \), \(r \) is a divisor of \(|G_2/N^*| \). Hence \(r | 2n\varepsilon \), so that \(r n\varepsilon \). Therefore \(n\varepsilon \geq r = qk + \varepsilon = 2^a k + \varepsilon \). Hence \(k = 0 \) and \(r = \varepsilon \). From this (i) follows.

Let \(f \) be a field automorphism as defined in (3.1) and let \(T \) be a Sylow 2-subgroup of \(N_G(S) \) which contains \(<f> S\). Since \(|N_G(S): N_{G_2}(S)| = |F(S)| = q^2 \) by (i), \(|T| = 2^m q^2 \) where \(|<f>| = 2^m \). Since \(T \triangleright S \) and \(\Omega - F(S) = q^2(q^2 - 1) \) there exists \(\gamma \in \Omega - F(S) \) such that \(|T: T_\gamma| = q^2 \), hence \(|T_\gamma| = 2^a q^2 \) and \(T = ST_\gamma \). Set \(W = T_\gamma \cap N^2 \). Then \(W \) is semi-regular on \(F(S) \) because \(\gamma \in \Omega - F(S) \). In particular \(|W| \leq |F(S)| = q^2 \). We note that \(|T_\gamma N^2/|N^2| \leq 2^m \). Since \(T_\gamma W = T_\gamma N^2/N^2 \), we have \(|W| \geq q^2 \). Hence \(|W| = q^2 \) and \(W \) is regular on \(F(S) \). Moreover \(|T_\gamma : W| = 2^m \).

Since \(N_{G_{2g}}(S)/S \cong N_{G_{2g}}(S)N^2/S^2 \) by (3.16), \(N_{G_{2g}}(S)^F(S) \) is isomorphic to a homomorphic image of a subgroup of the outer automorphism group of \(N^* \). Hence \(N_{G_{2g}}(S)^F(S) \) is abelian when \(n \) is even or \(f = 1 \). In this case by [1], (ii) holds because \(|F(S)| = q^2 \). We now assume \(n \) is odd and \(|<f>| = 2^m \). Since \(T = ST_\gamma \) and \(|T : W| = 2^m q^2 \), \(|F(S)| = q^2 \) by (i). For otherwise \(f \in N_G(S)^F(S) \) and \([f, D] \leq N_G(S)^F(S) \cap D = 1 \) as \(D \) is \(f \)-invariant and \(D \leq N_G(S) \). But since \(f \neq 1 \), \(f \) does not centralize \(D \). Therefore \(f^{F(S)} \neq 1 \). As \(f \in G_2 \), \(f^{F(S)} \in W^{F(S)} \). Hence \(T^{F(S)} = <f>^{F(S)} W^{F(S)} = W^{F(S)} \). Since \(W^{F(S)} \) is regular, \(f^{F(S)} \) is not conjugate to any element in \(W^{F(S)} \). Hence \(f^{F(S)} \) is not contained in \(O^2(N_G(S)^F(S)) \) by Lemma 2 of [3]. Since \(<f^{F(S)}> \) is a Sylow 2-subgroup of \((N_G(S)^F(S))_aB \), \(O^2(N_G(S)^F(S))_aB \) is of odd order. As before \((N_G(S)^F(S))_aB \) is isomorphic to a homomorphic image of a subgroup of the outer automorphism group of \(N^* \), \(O^2(N_G(S)^F(S))_aB \) is abelian. Again by [1], \(O^2(N_G(S)^F(S)) \) has a regular normal subgroup as \(|F(S)| = q^2 \). Thus (ii) also holds in this case.

(3.18) \(N^* \neq PSU(3, q) \).

Proof. Let \(f \) be as in (3.1). By the same argument as in the proof of (ii) of (3.17), we have \(I< <f> > \neq N_G(S)^F(S) \) and so \(S \) is a Sylow 2-subgroup of \(N_G(S)^F(S) \).

By (ii) of (3.17), there is a normal subgroup \(L \) of \(N_G(S) \) such that \(L \geq N_G(S)^F(S) \) and \(L^{F(S)} \) is an elementary abelian 2-group of \(N_G(S)^F(S) \). Let \(T \) be a Sylow 2-subgroup of \(<f>L \) which contains \(f \). Set \(E = T \cap L \). Then \(E \)
is a Sylow 2-subgroup of L. Since S is a unique Sylow 2-subgroup of $N_G(S)_{F(S)}$, $E/S \cong L^F(S)$ is an elementary abelian 2-subgroup of order q^2. As $\langle f \rangle \cap E = \langle f \rangle \cap \langle e \rangle \cap S = 1$, $T = \langle f \rangle E \triangleright E$.

Since $T \triangleright S$ and $|\Omega - F(S)| = q^2(q^2 - 1)$ by (i) of (3.17), we can choose $\gamma \in \Omega - F(S)$ such that $|T: T_\gamma| = q^2$. Hence $|T_\gamma| = 2^n q^2$ where 2^n is the order of f. Since $T_\gamma | T_\gamma \cap C\gamma N^\gamma = T_\gamma N^\gamma C\gamma / C\gamma N^\gamma$ is cyclic of order at most 2^n, $|T_\gamma \cap C\gamma N^\gamma| = |T_\gamma \cap N^\gamma| \geq q^2$. Moreover $T_\gamma \cap N^\gamma / T_\gamma \cap N^\gamma \cap E = (T_\gamma \cap N^\gamma)E/E$ is cyclic of order at most 2^m, we have $|T_\gamma \cap N^\gamma \cap E| \geq q^2 / 2^m$. Since the order of f is a divisor of $2n$, we have $|T_\gamma \cap N^\gamma \cap E| \geq q(2^n / 2^m) \geq q$.

If $T_\gamma \cap N^\gamma \cap E$ contains no element of order 4, then $T_\gamma \cap N^\gamma \cap E$ is an elementary abelian 2-subgroup of N^γ of order q and hence $T_\gamma \cap N^\gamma / T_\gamma \cap N^\gamma \cap E$ is an elementary abelian 2-group. Therefore $|(T_\gamma \cap N^\gamma)E/E| \leq 2$ and so $|T_\gamma \cap N^\gamma \cap E| \geq q^2 / 2 > q$, a contradiction.

If $T_\gamma \cap N^\gamma \cap E$ contains an element x of order 4, then $1 \neq x \in S$ because E/S is an elementary abelian 2-group. Since $\gamma \in F(x^2)$, by (ii) of (3.1) we have $\gamma \in F(S)$, which is contrary to $\gamma \in \Omega - F(S)$. Thus (3.18) holds.

In this section we have proved the following:

Theorem 2. Suppose G^α satisfies the hypothesis of Theorem 1 and $|\Omega|$ is even. Then $N^\alpha \neq S_2(q)$, $PSU(3, q)$, $N^\alpha = PSL(2, q)$ and either

(i) $G^\alpha \cong A_5$ or S_6 or

(ii) $|\Omega| = q^2$, $|N^\alpha| = |N^\alpha \cap N^\beta| = q$ and G has a regular normal subgroup.

4. The case $|\Omega|$ is odd

Let G be a doubly transitive permutation group on Ω of odd degree satisfying the assumption of Theorem 1. By Theorem A of [10] and Theorem B of [11], we may assume $C_G(N^\alpha) = 1$. Hence G_{α}/N^α is isomorphic to a subgroup of the outer automorphism group of N^α. Let $\{\alpha_1, \Delta_1, \Delta_2, \ldots, \Delta_r\}$ be the set of all N^α-orbits on Ω. Clearly r is a divisor of $|G_{N^\alpha}/N^\alpha|$.

From now on we assume that G has no regular normal subgroup and prove that $G \cong PSL(2, 11)$. Let M be a minimal normal subgroup of G. Then by assumption, $M_{\alpha} \neq 1$.

(4.1) M is simple and $N^\alpha \leq M$.

Proof. Since G is doubly transitive and $M_{\alpha} \neq 1$, M is a simple group (cf. Exercise 12.4 of [16]). If $N^\alpha \leq M$, then $M_{\alpha} \cap N^\alpha = 1$ as N^α is simple and hence $M_{\alpha} \leq C_G(N^\alpha) = 1$, a contradiction. Thus $N^\alpha \leq M$.

As in (3.1), there is a 2-element f of M_{α} such that f acts on N^α as a field automorphism, $\langle f \rangle S \triangleright S$, $\langle f \rangle \cap S = 1$ and $\langle f \rangle S$ is a Sylow 2-subgroup of M_{α}, where $N_{N^\alpha}(S) = DS$ is a Borel subgroup of N^α, S is a unipotent subgroup of N^α, and D is a diagonal subgroup of N^α.
(4.2) If $f \neq 1$, then $I(N^\alpha) \neq N^\alpha \cap N^\beta$ for $\beta \neq \alpha$.

Proof. Suppose $f \neq 1$ and $\tau \in I(\langle f \rangle)$. Since M is a simple group with a Sylow 2-subgroup $\langle f \rangle S$, $\tau^f \in S$ for some $g \in M$. By Lemma 2 of [3], set $\gamma = \alpha^{-1}$. Then $\tau \in N^\gamma$ and clearly $\tau \in N^\gamma \cap N^\alpha$, so that $I(N^\gamma) \neq N^\gamma \cap N^\alpha$. By the transitivity of G, we obtain $I(N^\gamma) \neq N^\alpha \cap N^\beta$ for any $\beta \neq \alpha$.

(4.3) Suppose $f = 1$. Then $N^\alpha \neq Sz(q), PSU(3, q)$.

Proof. If $N^\alpha = Sz(q)$, $|G_a/N^\alpha| = 2$ and hence $f = 1$, a contradiction. Therefore $N^\alpha \neq Sz(q)$. Suppose $N^\alpha = PSU(3, q)$ and let $s \in Z(\langle f \rangle S) \cap I(S)$. As in the proof of (4.2), $ccl(\tau) \cap S \neq \phi$. Then since τ is an extremal element there exists $g \in M$ such that $\tau^g = s$. Let $\tau_1 \in N^\alpha$ and $\tau_2 \in N^\alpha$. By Lemma 2.4, $\tau \in N^\gamma$ and $\tau \in N^\gamma$ is a strongly embedded subgroup of N^α. Since $|N^\alpha/N^\beta| = 2$, N^α/N^β is solvable, while N^α/N^β is solvable, a contradiction.

Let V_1 be a τ-invariant Hall 2-subgroup of N^α. Then since V_1 normalizes $\Omega_2(O_2(N^\alpha)) \leq Z(S)$, V_1 centralizes $Z(S)/Z(S) \cap N^\alpha \cap N^\gamma = Z(S)$. Hence by (i) of Lemma 2.4, $V_1 \leq Z(S)$ and so $\tau \in I(S)$. Therefore $I(N^\gamma) \leq Z(S)$. Similarly $I(N^\alpha) \leq Z(S)$. Since $\tau \in I(N^\gamma)$, we have $N^\alpha \cap N^\gamma \leq C(\tau) \cap N^\alpha$. Since τ is a field automorphism of order 2, $C(\tau) \cap N^\alpha = K \cap N^\alpha$. Hence $N^\alpha \cap N^\gamma \leq KZ(S) \cap N^\alpha = Z(S) \cap N^\alpha$. By Bender's Theorem ([2]), $N^\alpha/N^\beta \cap N^\gamma$ is not solvable, while $N^\alpha/N^\beta \cap N^\gamma$ is solvable, a contradiction.

We claim that $F(z) = F(Z(S))$ for $z \in I(N^\alpha)$. Set Δ_1 to be an arbitrary N^α-orbit on $\Omega - \{\alpha\}$. Since all elementary abelian 2-subgroups of N^α of order q are conjugate in N^α, there exists $\gamma \in \Delta_1$ with $Z(S) \subseteq N^\gamma$. Hence by Lemma 2.2, $|F(z) \cap \Delta_1| = |C_\gamma(z)| \times |Z(S)|/|N^\gamma| = (q + 1)/\epsilon \times q^2(q-1)/|N^\gamma|$ for $z \in I(N^\gamma)$. On the other hand $|F(Z(S)) \cap \Delta_1| = |N^\gamma(Z(S))/|N^\gamma| = (q^2 - 1)/\epsilon \times q^2/|N^\gamma|$. Hence $F(z) \cap S = F(Z(S)) \cap S$, and so $F(z) = F(Z(S))$. In particular $F(\tau) = F(Z(S))$ for $\tau \in I(N^\alpha)$ and $N^\alpha \cap N^\gamma = \{\beta\}$.

We claim that $(V_1)_F(\langle z \rangle) = 1$. Set $S_1 = O_2(N^\alpha)$. Let $d \in V_1$ with $d \neq 1$, Δ_1 be a N^α-orbit which contains β and let D_1 be a τ-invariant Hall 2-subgroup of N^α. Then by Lemma 2.2, $|F(X) \cap \Delta_1| = |N^\alpha(X)| \times |Z(S)|/|N^\gamma| = |D_1(Z(S))/|N^\alpha| = q^2 - 1)/\epsilon \times q^2/|N^\gamma|$. Since $S_1/N^\alpha \cap N^\gamma$ is cyclic and $N^\alpha \cap N^\gamma \leq Z(S)$, $S \subseteq S_1$. Therefore $F(X) = F(Z(S))$ and so $(V_1)_F(\langle z \rangle) = 1$.

Since $D_1 \leq N^\alpha(Z(S))$ and $\tau \in N^\alpha(Z(S))$, $(\tau, D_1) \leq N^\alpha(Z(S))_F(\langle z \rangle) \cap D_1$
ON DOUBLY TRANSITIVE PERMUTATION GROUPS

629

1. Hence \(D_1 \leq C(\tau) \cap N_{\alpha}(S) = KZ(S) \) with \(K \simeq \mathbb{Z}_{q-1} \), which is contrary to \(|D_1| = (q^2-1)/6 \). So (4.3) is proved.

(4.4) Suppose \(N^\sigma \simeq PSL(2, q) \) and \(f \neq 1 \). Then the following hold.

(i) \(N^\sigma_\beta \) is a 2-subgroup of \(N^\sigma \) and \(|N^\sigma_\beta : N^\sigma \cap N^\beta| = 2 \).

(ii) Let \(\tau \in \langle f \rangle \). Then for some \(\beta \neq \alpha \) and \(\tau \in N^\sigma_\alpha - N^\sigma_\beta \), \(|C_{\beta}(\tau)| = \sqrt{q} \) and \(N^\sigma \cap N^\beta \leq C_{\beta}(\tau) \leq N^\sigma_\beta \).

Proof. As in the proof of (4.3), there exist \(s \in I(S) \) and \(g \in M \) such that \(\tau^s = s \) and \((C_{\langle f \rangle}(\tau))^s \leq \langle f \rangle S \). Put \(\beta = \alpha s^{-1} \). Then \(\tau \in N^\sigma_\alpha - N^\sigma_\beta \) and \(C_{\beta}(\tau) \leq N^\sigma_\beta \). Since \(\tau \) is a field automorphism of \(N^\sigma \) of order 2, \(|C_{\beta}(\tau)| = \sqrt{q} \). Claim \(N^\sigma_\beta \leq N_{N^\sigma}(S) \). If \(q \neq 2^a \), as \(C_{\beta}(\tau) \leq N^\sigma_\beta \), a Sylow 2-subgroup of \(N^\sigma \) is non cyclic. Hence as in the proof of (4.3), \(N^\sigma_\beta \leq N_{N^\sigma}(S) \). If \(q = 2^a \), \(N^\sigma_\beta \simeq \mathbb{A}_5 \) and so \(\langle \tau \rangle N^\sigma \simeq \mathbb{A}_5 \) and \(M = G_\alpha = S_5 \). In particular \(r = 1 \). Hence \(N^\sigma_\beta \leq N_{N^\sigma}(S) \).

If \(r = 1 \), as \(N^\sigma_\beta \leq N_{N^\sigma}(S) \).

(4.5) Suppose \(N^\sigma \simeq PSL(2, q) \) and \(f \neq 1 \). Let \(T = N^\sigma_\alpha N^\sigma_\beta \). Then

(i) \(N^\sigma_\gamma(T) \) is doubly transitive on \(F(T) \).

(ii) \(N^\sigma_\gamma(T) = S \) and \(S_T = N^\sigma_\gamma \) for every \(\gamma \in F(T) \).

Proof. Since \(G_{ab}/N^\sigma_\gamma \) is cyclic and by (i) of (4.4) \(T/N^\sigma_\beta = Z_2 \), \(I(G_{ab}) \subseteq T \). Clearly \(\langle I(G_{ab}) \rangle = T \). Hence by the Witt's Theorem, we have (i).

Let \(K_1 \) be a Hall 2\(^{-}\)-subgroup of \(N_{N^\sigma}(T) \). Then \(K_1 \) normalizes \(T \cap N^\sigma = N^\sigma_\beta \). Since \(T/N^\sigma_\beta = Z_2 \), \(K_1, T/N^\sigma_\beta = 1 \) and so \(T = C_T(K_1)N^\sigma_\beta \). If \(K_1 \neq 1 \), by (i) of Lemma 2.4 \(C_T(K_1) = 1 \). Hence \(K_1 = 1 \) and \(N_{N^\sigma}(T) = S \).

Let \(\gamma \in F(T) - \{ \alpha \} \). Then obviously \(N^\sigma_\gamma \leq S_T = N^\sigma_\gamma \). Since \(G \) is doubly transitive on \(\Omega, |N^\sigma_\gamma| = |N^\sigma_\gamma| \), so that \(N^\sigma_\gamma = S_T = N^\sigma_\gamma \). Thus (ii) holds.

(4.6) Suppose \(N^\sigma \simeq PSL(2, q) \) and \(f \neq 1 \). Put \(q = 2^a \). Then

(i) \((n, |N^\sigma_\beta|) = (2, 2), (2, 2^2), (4, 2^3) \) or \((6, 2^4) \).

(ii) If \((n, |N^\sigma_\beta|) = (6, 2^4), N^\sigma_\gamma(T)^{F(T)} = A_5 \).

Proof. \(|G_{ab}/N^\sigma| = n \) and \(f \neq 1 \), \(n \) is even and so we set \(n = 2m \). By (ii) of (4.4), \(|N^\sigma_\beta| = 2^{m+1} \) where \(\epsilon = 0 \) or 1. Since \(N_{G_{ab}}(T)/T \leq G_{ab}/T \simeq (G_{ab}/N^\sigma_\beta)(T/N^\sigma_\beta) \) and \(N_{G_{ab}}(T)^{F(T)} \) is cyclic and \(|N_{G_{ab}}(T)^{F(T)}| = m \). By (4.5), \(N^\sigma_\beta(T)^{F(T)} \) is doubly transitive and \(S_T = S/N^\sigma_\beta \) is semi-regular on \(F(T) - \{ \alpha \} \). Since \(N_{G_{ab}}(T)^{F(T)} \) is cyclic, by [1] \(N_{G_{ab}}(T)^{F(T)} \simeq PSL(2, q_1) \) where \(q_1 \) is a power of 2 or \(N_{G}(T)^{F(T)} \) has a regular normal subgroup. If \((n, |N^\sigma_\beta|) \neq (2, 2), (2, 2^2) \) and \((4, 2^3) \), \(S_T \) contains a four-group, which is semi-regular on \(F(T) - \{ \alpha \} \). Hence \(N_{G}(T)^{F(T)} \) contains no regular normal subgroup and so
\(N_\sigma(T)^{F(T)} \cong PSL(2, q_1) \). Since \(N_{N^*}(T)^{F(T)} = S^{F(T)} = S/N_\sigma^* \) and \(N_{G_\alpha}(T)^{F(T)} \supset \ N_{N^*}(T)^{F(T)}, q_1 = 2^{m-e} > 2 \). Hence \(2^{m-e} - 1 = |N_{G_\alpha}(T)^{F(T)}| \), so that \(2^{m-e} - 1 | m \). From this, \(e=1, m=3 \) and \(N_\sigma(T)^{F(T)} \simeq A_5 \). Thus (4.6) holds.

(4.7) \(f=1 \).

Proof. Suppose \(f \neq 1 \). Then by (4.3) and (4.6), it suffices to consider the case (i) of (4.6).

If \(N^* \cong PSL(2, 2^2) \) and \(|N_\sigma^*| = 2 \), \(G_\sigma = N_\sigma^* N^* \cong Aut(N^*) = S_6 \). Hence \(r=1 \). Therefore \(|\Omega| = 1+ |N^*: N_\sigma^*| = 31 \) and \(|G| = |\Omega| \). Therefore, \(|G_\sigma| = 2^3 \cdot 3 \cdot 5 \cdot 31 \).

By the Sylow’s theorem, \(G \) has a regular normal subgroup of order 31. But this is a contradiction as \(G \supset N^* \).

If \(N^* \cong PSL(2, 2^3) \) and \(|N_\sigma^*| = 2^4 \), as above \(G \in \mathfrak{S}_6 \) and \(|N^*: N_\sigma^*| = 16 \), a contradiction.

If \(N^* \cong PSL(2, 2^4) \) and \(|N_\sigma^*| = 2^5 \), \(|Aut(N^*)| : N^*| = 4 \) and so \(|G_\sigma: N_\sigma^* N^*| \leq 2 \). Hence \(r=1 \) or 2 and \(|\Omega| = 511 \) or 1021 respectively. By Lemma 2.2, for \(s \in N_\sigma^* \setminus \{1\} \), \(|F(s) \setminus \{\alpha\}| = 14 \) or 28 respectively. Let \(\tau \) be a field automorphism of \(N^* \) of order 2 as in (4.4). Then \(C_{N^*}(\tau) \cong PSL(2, 2^2) \) and \(|F(\tau) \setminus \{\alpha\}| = 14 \) or 28 since \(\tau \) is conjugate to \(\sigma \). From this an element \(\chi \in C_{N^*}(\tau) \) of order 5 fixes at least four points in \(\Omega \). Since \(5 \not| \displaystyle \sum \Omega \), \(\langle \chi \rangle \) is a Sylow 5-subgroup of \(G \) and so \(x^\chi \in N^* \) for some \(g \in G \). But \(F(x^\chi) = \{\alpha\} \) because \(|N_\sigma^*| = |N_\sigma^*| = 2^3 \) for all \(\gamma \neq \alpha \).

Therefore \(|F(x^\chi)| = 1 \), which is contrary to \(|F(x^\chi)| \geq 4 \).

If \(N^* \cong PSL(2, 2^3) \) and \(|N_\sigma^*| = 2^4 \), by (ii) of (4.6), \(|N_{G_\alpha}(T)^{F(T)}| = 3 \). Hence \(3 \not| \displaystyle \sum \Omega \), \(\langle \chi \rangle \) is a Sylow 3-subgroup of \(G \). Since \(G_{G_\alpha: N_\sigma^* N^*} = G_\sigma \cong Aut(N^*) \) and \(N_\sigma^* N^*: N^*| = 2 \) by (i) of (4.4), we have \(G_{G_\alpha: N_\sigma^* N^*} = G_\sigma \cong Aut(N^*) \). In particular \(r=1 \) and \(|\Omega| = 16381 \). Moreover \(|F(s) \setminus \{\alpha\}| = 60 \). As before \(|F(\tau) \setminus \{\alpha\}| = 60 \), \(C_{N^*}(\tau) \cong PSL(2, 2^3) \) and an element of \(C_{N^*}(\tau) \) of order 7 fixes at least five points. But since \(7 \not| \displaystyle \sum \Omega \) and \(7 \not| \displaystyle \sum N_\sigma^* \), every element of order 7 fixes exactly one point, a contradiction.

(4.8) \(G^\Omega \cong PSL(2, 11) \), \(|\Omega| = 11 \).

Proof. By (4.7), \(|M_\sigma: N^*| \) is odd and so a Sylow 2-subgroup of \(N^* \) is also that of \(M \). By [4], [5] and [15], it suffices to consider the following cases:

(i) \(N^* \cong PSL(2, 2^2) \), \(M \cong PSL(2, q_1) \), \(q_1 \equiv 3 \) or 5 (mod 8), \(q_1 > 3 \).

(ii) \(N^* \cong PSL(2, 2^3) \), \(C_M(t) \supset Z_2 \times PSL(2, 3^{3m+1}), t \in I(M) \) (\(m \geq 1 \)).

(iii) \(N^* \cong PSL(2, 2^4) \), \(M \cong J_1 \), the smallest Janko group.

First we consider the case (i). If \(|N_\sigma^*| \) is odd, every involution in \(M \) has a unique fixed point and so \(M \cong PSL(2, 5) \) by [2]. But then \(M = N^* \), a contradiction. Hence \(|N_\sigma^*| = 2, 4, 6, 10 \) or 12. On the other hand \(r=1 \) or 2 because \(|Aut(N^*)| : N^*| = 2 \). From this \(|\Omega| = 1+ |N^*: N_\sigma^*| = 7, 11, 13, 21, 31 \) or 61. Since \(M \cong PSL(2, q_1) \) and \(|M| = |\Omega||N^*| \), we get \(|\Omega| = 11, |N_\sigma^*| = 6 \) and \(M \cong PSL(2, 11) \). Thus \(|\Omega| = 11 \) and \(G \cong PSL(2, 11) \).
Next we consider the case (ii). As in the case (i), $|N_\alpha^*|$ is even. Let $t \in I(N_\alpha^*)$. Since $|M_\alpha: N_\alpha^*|=1$ or 3, $I(M_\alpha) = \{ t^g | g \in M_\alpha \}$ and so $C_M(t)$ is transitive on $F(t)$. Hence $|F(t)| = |C_M(t): C_{M_\alpha}(t)|$. Since $|C_{M_\alpha}(t)| = |C_{M_\alpha}(t)N_\alpha^* : N_\alpha^*| |C_{N_\alpha^*}(t)|$, $|F(t)| \geq (3^{2m+1} - 1)3^{2m+1}(3^{2m+1} + 1)/24$. Since $|M_\alpha: N_\alpha^*| = 1$ or 3, $r = 1$ or 3. Therefore $|F(t)| = 1 + (|C_{N_\alpha^*}(t)|/|N_\alpha^*|) \cdot r < 1 + 8 \times 3 = 25$. Hence $25 > (3^{2m+1} - 1)^{3/24}$ and so $3^{2m+1} < 11$, a contradiction.

Finally we consider the case (iii). Since $N_\alpha^* = PSL(2, 2^3)$, $3^3 | N_\alpha^*$. But $3^2 \not| |M| = |J_1| = 2^6 \cdot 3 \cdot 7 \cdot 11 \cdot 19$, a contradiction.

OSAKA KYOIKU UNIVERSITY

References
