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1. Introduction. In this paper we give a consideration on singularity and
nonsingularity relations between two infinite direct product measures. In
statistical asymptotic theory the concept of singularity is closely related to the
existence of consistent sequence of test procedures. L. Shepp [4] considered
such a problem in the case where P,, the component distribution with a location
parameter ¢ of the product measure, has a constant carrier and the Fisher’s in-
formation number exists and is finite. Later L. LeCam [3] extended the result
of L. Shepp to the case where P, satisfy the quadratic mean differentiability
conditions. Our purpose is to seek conditions under which given two product
measures are singular, when the components P, do not necessarily satisfy such
regular conditions. ~

In Section 2 we introduce new quantities / and 7, and using them condi-
tions of singularity are described. Section 3 is devoted to the proof of the
quantity I being an extension of the Fisher’s information number. In Section
4 we consider the relation between the concept of nonsingularity and that of
contiguity which was introduced in L. LeCam [2]. Two examples not satisfy-
ing the usual conditions are given in Section 5.

2. The condition of singularity. Let © be an open set containing zero.
For each t=® let P, be a probability measure on a certain o-field 2 of subsets of
a set X. Let (X¥, AY) be the Cartesian product of countably many copies of

(X, ™). Let Q= fl[ P§  (direct product), P§P=P,(i=1,2,---) and
0.= E];th for 7r=(}’l:, h, +-). We say that Q, and Q, are singular if there
exists’a set B in AV such that Q,(B)=0 and Q,(B)=1. In this section conditions
are given to the sequence = for which Q, and Q, are singular. Let H={h; h=
0, k=0, P, and P, are not singular.} and H= [MH®, HP=H (=1, 2, ---).

=1

In the following the lower-case letters % with or without suffixes always mean

the elements taken from the set H. Throughout this paper the following assump-
tions (A-1) and (A-2) will be made.

(A-1) {P;; t= O} is dominated by a ¢-finite measure g on X,
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We denote by f(x, ) the density of P, relative to x and define a function X(x, k)
as follows.

(2.1) X(x, k) = [f(x B)/f(x, 0)]—1  if fix, 0)>0
=0 if f(x,0)=0.

(A-2) X(x, h)—0 in probability for P, as h~—0.
We define

2.2) p() = | [fx, Bfis, O

S. Kakutani [1] gave useful criteria for determining singularity or equivalence
(i.e. absolutely continuous with each other) of infinite product measures. As
the proofs of Theorem 2, 3 and 4 lean heavily on his result, we now quote a ver-
sion of it without proof.

Theorem 1. (Kakutani). Let z=(h,, h,, ---) be an element of H. (1) Q,
and Q, are singular if and only if Ij p(h;)=0. (2) If P, and P, are equivalent for
every i, then Q, and Q,, are equivalent if and only if ﬁ p(h;)>0.

Proposition 1. Under our assumptions (A-1) and (A-2) we have
(2.3) lim p(k) = 1.
h->0

Proof. Let g(x, k) be a function such that g(x, /)=1 or 0 according as
| X(x, B)| <1 or | X(x, k)| >1. Obviously we have |g(x, &) X(x, k)| =1 for all
xe X, and g(x, ) X(x, £)—0 in probability for P, as h—0. From the Lebesgue’s
convergence theorem we have

(2.4) limS [f(x, h)[f(x, 0)]"g(x, B)dP, = 1.
h>0JX
This implies (2.3). This completes the proof of the proposition.

From this proposition it follows that for any sufficiently small neighbor-
hood U of zero we have UN [0, oo)C H and inf {p(k); ke UN[0, =)} >0. We
denote by T the class of functions (x, &) satisfying the following conditions
(T-1)—(T-3).

r-1) 0=9(x, =1 for all 2 and all x= X .
(T-2) v(x, B)—1 in probability for P, as h—0.

(T-3) Thnere exists 0<M < oo and 0<8§< oo such that | X(x, &) v(x, h)| =M
for P,-almost all xe X for every k4 satisfying 0=/ =34.
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Let @ be the class of strictly monotone increasing continuous functions ¢
from [0, o) to [0, co) satisfying ¢#(0)=0. For each y&T and each ¢=P we
define

I(v, ¢) = lim sup (A [X(x, ¢~ ()F2(x, §7'(0)dP,
I(v, 9) = lim inf (1) [X(x, 002, 67 P,

a(v, b) = 1—S v(x, h)dP,

Sf(x,00>0

(2.5)

B, b) = 1—Sxy<x, h)dP, .

Theorem 2. (1) If there exist yET and ¢=@ such that I(y, ¢)< oo,
lim sup a(7, h)/[¢(h)]* < oo and lirr}l sup B(7v, h)/[¢(h)]’< oo, then Q, and Q. are not
h->0 >0

singular for any = € H satisfying i é(h;)? <oo. (2)Ifthereexist yeT and p= @
=1
such that 0<I(7y, §)=oo, then Q, and Q, are singular for any n = H satisfying
2 g(h)'="co.
Proof. First we prove the part (1) of the theorem. Let
J(v, ) = SX[X(x, h)*y(x, h)dP,, and

(2.6)
p*(h) = | [fis, )G O (x, B dp

then we have

(2.7) Jor by = |1 Biftw, O 11 (, B)aP,
= 2—a(7, h)—B(7, h)—2p*(h) .

Since p(k)= p*(h) we have from (2.7)

(2.8) p(h)z1—(1/2{e(v, h)+B(7, B)+J (v, k)} .
Using the inequality
(2.9) 1—x=exp (—2x) (for sufficiently small x=>0)

we have for every integer n=>1 and every sufficiently small 4,, &,, -+, A,
210) T p(h)zexp[—{ (v, h)+ 3 8(r, b+ I, B)Y]
On the other hand I(v, ¢)< oo implies

(2.11) 0= 31/(v, k=1 23 s UL, 9)+1]
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for every n=1 and every sufficiently small %, &,, ---, h,,.
According to Theorem 1 our result follows from (2.10) and (2.11).
Next we prove the part (2) of the theorem. It is easy to see that

(2.12) Jo, WL [(fx, Bifix, )1 dP,
<2U[1—p(k)]  (L=2M+4)

where M is a constant appeared in (I'—3). Hence it follows that

(2.13) p(h)<1—(1/2) J(v, H)L™".
By the inequality

(2.14) 1—x=<exp (—x) (for every x)
we have for every n=1 and every h,, h,, -+, h,,

(1.15) I p(h) < exp [—(12L) 22 (v, B} -
On the other hand I(7, ¢)>0 implies

(2.16) SV B)ZIr, S 3 #7112

for every n=1 and every sufficiently small 4,, &,, ---, A,.
Again by Theorem 1 we have the desired result from (2.15) and (2.16). This
completes the proof of the theorem.

The following theorem shows that for somewhat restricted class {P,; 10}
the converse of Theorem 2 is also true.

Theorem 3. Let ¢ be an element of ®. (1) If Q, and Q, are not singular
for any = € H satisfying i B(h;)*< oo, then I(v, g)< oo for any yeT. (2)If Q,
=1

and Q, are singular for any =< H satisfying E::: d(h;)’=oo, then 0<I(7v, )< oo
for any yET satisfying
(2.17) lim a(v, B)/[¢(R)] = lim (v, K)/[$(R)]* = O .

Proof. To prove this theorem we shall use an analogous method to that
employed in L. Shepp [4]. First we prove the part (1). Suppose that
I(7y, ¢)=oo for some y=T'. Then we can choose a sequence {¢;,}  H such that

(2.18) 0< §(t)=(1/2)’ and J(v, 2)/[$()] 22

for every =1, 2, ... For each 7 let 7, be the integer such that
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(2.19) r 2B <1S (it D2 ST -

Define h,=t, if j,_,<i<j, where j,=r, and j,=r,+7,+---+r, (k=2). It is
easy to see that ==(h,, h,, --)EH, i d(h;)*< oo and 2](7, h;)=oco. From
(2.15) it follows that

(2.20) ii p(h)=0.

Hence Q, and Q, are singular. This proves the part (1).
Next we show the part (2). Suppose that there exists y T such that

(2.21) lim o, h)/[$(R)] = lim B(v, k)/[¢(R)]* = O,
and that I(y, $)=0. Then we can choose a sequence {¢;} C H such that
(2.22) 0< ) =(1/2)%, J(v, t)/[p(t ) =27",
a(v, t)[¢@) =27 and B(v, )/ =27
for every i=1,2, ---. Let == (h,, h,+*) be a sequence constructed from {¢;}

by the same method as employed in previous section. Then we have

2.28) 330 h)<eo, Ta(y, k) <o, 31A(Y, h)<oo and that
DS = oo .

From the inequality (2.10) we have

(2.24) Ij p(h)>0.

Hence Q, and Q, are not singular. This completes the proof of the part (2).

3. The quantity 7. In the following proposition we shall show that the
quantity / defined in (2.5) includes the concept of the usual Fisher’s information
number. Let Y(x,A) be a function defined by

(3.1) Y(x, k) = [f(x, 1)f(x, 0)]*/*—1 if f(x, 0)>0
=0 otherwise.

Define y,&T" and ¢, P as follows.

3.2) Yo(x, B) =1 if | X(x, B)| =1
=0 otherwise.

¢’o(h) =h.
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Proposition 2. Suppose that Y(x, h) is quadratic mean differentiable at h=0
with a derivative V i.e.,

(3.3) 1,,"13 (l/hZ)SX[Y(x, h)—(1/2)hV]?dP, = 0.
Then we have

(34) j(')’o; d)o) = !(')'o’ (r,)o) = SXVzdPo< oo .
Proof. From the quadratic mean differentiability of Y(x, ) it follows that
(3.5) lim (l/hz)SX[ Y(x, B)—(1/2) RV [ Y(%, B)+2) vo(x, B)dP, = 0.
h->0
By the Lebesgue’s dominated convergence theorem we have from (3.5)
(3.6) lim (1//12)5 [X(x, B)—hV]*vy(x, B)ydP, = 0.
k>0 X
Thus we have
(3.7) lim (1//12)5 [X(x, B)) vo(x, B)dP, = S V*dP, .
h->0 X p.¢
This concludes the proof of the proposition.

4. The concept of contiguity and that of nonsingularity. In this
section we shall show that the two concepts of nonsingularity and contiguity coin-

”

cide with each other. For each integer =1 let A= [] AP, AP=A, Q, ,=

i=1
I1 P, P§=P, (i=1,2, ---) and Q, ,= II Py, for z=(h,, h,, ---).
i=1 i=1
Theorem 4. Let = be an element of H. (1) If {Q, .} and {Q. .} are con-
tiguous, then Q, and Q. are nonsingular. (2) If each P,, is equivalent to P,, then

the converse of (1) is also true.

Proof. First we prove the part (1). Assume that {Q,,} and {Q, ,} are
contiguous, and that

(4.1) 1j p(h) = 0.

Let A, be the logarithm of the likelihood ratio of Q. , to Q,,. By Theorem 1
in L. LeCam [2] we can find a subsequence {#'} C {n} such that the distribution
of A, under P, ,, converges weakly to a distribution L[A], and furthermore

(4.2) SRl exp (A)dL[A] = 1.

Let € be any positive number. For the & there exists >0 which is a continuity
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point of L[A] such that

(4.3) S exp [A/2]dL[A] <€ .
IAlI>a

From (4.1) and (4.3) we have

(4.4) SRI exp [A/2]dL[A]<lim S exp [Ay[2]dPy 6 = €.

FNGES

Thus we have

(4.5) SRI exp [A/2]dL[A] = 0.

But this does not occur, since L[A] is a probability distribution on R*. 'Therefore
we have

(4.6) fI p(h;)>0.

Hence Q, and Q, are nonsingular.

Next we prove the part (2). Let Q, and Q, are nonsingular. Then by
Theorem 1 Q,and Q, are equivalent. Therefore for any sequence {B,} satisfying
B,e%"and Q, (B,)—0asn—occ, we have Q, ,(B,)—0 as n— oo, and vice versa.
Thus {Q, .} and {O.,} are contiguous. This concludes the proof of the
proposition.

From Theorem 2, 3 and 4 we have the following result.

Corollary. Let mw=(h,, h,, ---) be an element of H. Suppose that P,, t=©
are absolutely continuous with each other, and that there exist yET' and ¢ D such
that

(#.7) 0<I(v, $)=I(v, p)< oo,
lim a(¢, B)/[¢(h)]" = lim B(y, A)/[¢(A)]" = 0.

Then {Q, ,} and {Q- .} are contiguous if and only if = satisfies i é(h;)’ < oo.

Finally we remark that all the same results as stated in this paper hold if we
take an arbitrarily fixed < ® instead of zeroand if H'={h; h=0,0-+h=0, P,and
P,., are not singular.} or H'={h; =0, §+hs®, P,and P,,, are not singular.}
instead of H. In this paper the parameter space © is restricted to a subset of
real line. It seems to the auther that an extension to a multidimensional case
of O is easy.

5. Examples. In this section we shall give some examples which do not
satisfy the usual conditions.

ExampLE 1. Let X= ©®= R'. Let P, be the distributions having the
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following densities relative to the Lebesgue measure.

(.1) flx, 1) = [1—|a—t[]".
Define v(x, k) as follows.
(5.2) v(x, k) =1 if |fIfI=1]h

=0 otherwise,

where f' means the ordinary differential (which exists for almost all x& X) of f
with respect to t at t=0. Let ¢(h)=(h*- |logk|)"* for 0=h=<exp [—(1/2)],=
[(1/2) exp [—(1/2)]k]"/* for exp [—(1/2)]<h<2. We then have yeT and ¢ = ®,
and that I(v, ¢)=I(v, $)=2. Since a(v, h)=2h* and B(v, k)=Hh*(2 for
0=<h=exp [—(1/2)], it follows that

(5.3) lim (v, B)/[$(R)] = lim B(v, h)/[$(R)) = 0.
Thus, according to Theorem 2, for any sequence n=(h,, h,, --+) satisfying
0sh,<exp[—(1/2)] (=1,2,:)Q, and Q, are singular if and only if
33 (k) log hy| = co.

ExampLE 2. Let X=R', ©=(0, =), and let 0=® be any fixed number.
Let P, be the uniform distribution on (0, £). Define ¥(», /)=1 and ¢(h)=
(—h)"* for any h satisfying —0<h<0. Then we have a(v, h)=08(v, #)=0 and
J(v, B)=(—h)[(6+h). Hence it follows that
(5.4) lim a(y, B[] = lim By, B[S0 =0,

I(y, ¢) = I(v, $) = 1/6..

Thus for any sequence z=(h,, h,, -+*) of nonpositive numbers Q, and Q, are
singular if and only if 2} (—h;)=rco.

On the other hand, for any £>0 let v(x, £)=1, ¢,(k)=h and ¢,(h)=h">.
Then we have

lim A, WIS F =0 (=1,2)
55) I 6) =10, $) = 6%, Tim oy, DS = =,
Iy, ¢) = 107, $) = 0, lim (v, B[$B)F = 1/6

Hence it follows that for a sequence #=(h,, &,, ---) of nonnegative numbers Q,

and Q, are singular if )3 (h;)*? = oo, and Q, and Q, are nonsingular if i h;< oo,
=21

=1
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