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NUMBER OF SYLOW SUBGROUPS AND p-NILPOTENCE OF
FINITE GROUPS

NAOKI CHIGIRA*

Department of Mathematics, Kumamoto University, Kumamoto, 8§60, Japany

1. INTRODUCTION

Let G be a finite group and 7(G) the set of primes dividing the order of G. The
classical theorems of Sylow assert that there are subgroups called Sylow p-subgroups
of order p” which is the highest power of a prime p dividing the order |G| of G and
that the number n,(G) of Sylow p-subgroups is congruent to 1 modulo p, which is
equal to the index |G : Ng(P)| for some Sylow p-subgroup P. We call n,(G) the
Sylow p-number of GG. Some arithmetical properties of n,(G) are studied in [8] and
[9].

A finite group G is said to be p-nilpotent if G has a normal p-complement, i.e.
G = 0,(G)P for some P € Syl,(G), the set of Sylow p-subgroups of G. There
are several conditions equivalent to the p-nilpotence of a finite group. See (19, II,
Theorem 2.27, p.155] for example.

There is an interesting conjecture concerning the Sylow p-number n,(G) of G and
the p-nilpotence of G. B. Huppert made the following conjecture:

Conjecture (B. Huppert [12]). Let G be a finite group. Then G is p-nilpotent if
and only if for every r € m(G), (p, n.(G)) =1 holds and Ng(R) is p-nilpotent for
R € Syl (G).

The following assertion has been made by Zhang as Theorem 2 in [20].

Claim. Let G be a finite group. Then G is p-nilpotent if and only if (p, n,(G)) =1
for every r € w(G).

This claim, if true, would confirm the Huppert conjecture and the paper makes
other claims as applications of it. There exist, however, infinitely many counterex-
amples to the claim which will be mentioned in §2 of this paper. The purpose of this
paper is to prove the following:
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9 NAOKI CHIGIRA

Main Theorem. Let G be a finite group.

(i) Suppose that p # 3 is a prime. Then G is p-nilpotent if and only if (p, n,(G)) =
1 for every r € n(G).

(ii) Suppose that G does not have a composition factor isomorphic with Us(q), where
q =2/, f even not divisible by 3. Then i is p-nilpotent if and only if (p, n.(G)) =1
for every r € 7(G).

Corollary 1. The Huppert conjecture holds true.

Our notation for simple groups and group extensions are taken from [4].

2. COUNTEREXAMPLES TO THE CLAIM

In this section, we will give counterexamples to the Claim in the Introduction.
Before discussing them, we will state a well known lemma which plays an important
role through this paper.

Lemma 1. Let a, n be integers greater than 1. Then except in the cases n = 2,
a=2"—1andn =26, a =2, there is a prime q with the following properties.
(i) g divides a™ — 1.
(1) ¢ does not divides a' — 1 whenever 0 <1 < n.
(iii) g does not divide n.

In particular, n is the order of a modulo q.
Proof. See [2, Theorem 8.3 (Zsigmondy), p.508].

Theorem 1. Suppose that G is the projective special unitary group Us(q) where ¢ =
w! > 2, u is a prime. If there exists a prime p € n(G) such that (p, n.(G)) =1 for
every prime r, then p =3, ¢ = 2/ and f is even not divisible by 3.

Proof. We see that |G| = (¢* + 1)¢*(¢*> — 1)/v, where v = (¢ + 1, 3). Note that
(q+1, g—1)=1or2,(qg+1, ¢*—g+1)=1or3and (¢—1, ¢ —g+1) = 1. Suppose
that ¢ is odd. By Lemma 1, there exists a prime r such that r divides ¢°—1, r does not
divide ¢ —1 (1 < i < 5) and r does not divide 6. Then r divides ¢*—¢+1. By [17], we
can find maximal subgroups of G. We see that N;(Q) is a maximal subgroup of order
¢*(¢*> — 1)/v and that Ng(R) is a maximal subgroup of order 3(¢* — ¢ +1)/v, where
Q € Syl,(G) and R € Syl.(G). We have p # u since p divides (|[Na(Q)|, |No(E)|)
and P C Ng(R) for some P € Syl,(G). If p divides ¢* — ¢ + 1, then p divides
(*—q+1, ¢ —1) =1or 3. It follows that p = 3. In this case P € Syls(G) is not
contained in Ng(Q) since |G : Ng(Q)| = ¢* +1 = (g + 1)(¢> — ¢ + 1) is divisible by
3, a contradiction. Hence p does not divide ¢* — ¢+ 1. Since P C Ng(R), we have
p = 3. By [5, Theorem 4], we have Ng(S) ~ S X Zy;,, where S € Sylo(G) and &k
satisfies the condition ¢ + 1 = 2%k, k odd. Since P C Ng(.5), we have that 3 divides
k which divides g + 1. Then ¢*> — g + 1 is divisible by p = 3, a contradiction since
(p, ¢* —q+1) = 1. Hence G does not satisfy the condition if ¢ is odd.
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Suppose that g is even. By [11], the maximal subgroups of G are:

¢ (g = 1)/v,

(q+1)/v x Us(q),

((g+1) x (g +1)/v).5,

((¢" —q+1)/v):3,

Us(2™) if k/m > 3 is odd prime,
Us(2™).3 if m is odd and k = 3m.

Put Q. a Sylow r-subgroup of G for r € 7(G). Since Na(Q2) = ¢'*2: (¢* = 1)/v, we
have that p does not divide ¢* +1 = (¢+1)(¢* — ¢+ 1). By Lemma 1, there exists a
prime r such that r divides ¢° — 1, 7 does not divide ¢' —1 (1 <7 < 5) and r does not
divide 6. Then r divides ¢* — ¢+ 1 and therefore we have p # r since P C Ng(Q,) for
some P € Syl,(G). Since No(R) = ((¢* — g+ 1)/v) : 3, we have p = 3. Furthermore
|G| is not divisible by 9 since P C Ng(R) for some P € Syls(G).

If f is odd, then ¢ + 1 is divisible by 3. In this case |G| is divisible by 9.

Hence we may assume that f is even. Then g — 1 is divisible by 3 and v = 1. Note
that ¢ — 1 is divisible by 9 if and only if f is divisible by 6. If f is even and f is not
divisible by 3, Ng(Q,) and n,(G) are the following:

No(Q2) = 475 (@ = 1), ma(G) = ¢ + 1

Ne(Q.) = (g + 1)‘>< Dyg-1y, n.(G) = q‘jS(q3 +1)/2 forr e m(g—1)
Na(Q,) = (¢ +1)*: Ss, n.(G) = qjg(q - 1)/6 forr e n(g+1)
Ne(Q)=(#—q+1):3, n(G)=¢(g+ 1)* (g —1)/3 for r: otherwise

We see that (n,(G), 3) =1 for every r € n(G). This completes the proof.

This theorem yields that the groups Us(q), where ¢ = 2/ and [ is even not divisible
by 3, are counterexamples to the Claim in the Introduction. As a corollary, we have a
lot of counterexamples to the Claim. Put U = {Us(q)| ¢ = 2/, f is even not divisible
by 3} and P the set of 3-nilpotent groups.

Corollary 2. Let Gy € U and Gq,... ,Gi € UUP. Then G = Gy X Gz X -+ X Gy
satisfies (n.(G), 3) =1 for every r € n(G) and G is not 3-nilpotent.
3. PROOF OF THE MAIN THEOREM

In this section, we will prove the Main Theorem. Our proof is along the same line
of Zhang [20]. We will need some lemmas from [20], some of which are claimed in it
without proofs.

Lemma 2. Let G be a finite group and M a normal subgroup of G. Then both n,(M)
and n,(G/M) divide n,(G), and moreover n,(G) is divisible by ny(M)n,(G/M).

Proof. See [20, Lemma 1].

Proposition 1. Let p be a prime. If G is p-nilpotent, then (n.(G), p) =1 for every
r e n(G).
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Proof. 1t is trivial if » = p. Suppose that r # p. Since G is p-nilpotent, G = O, (G)P
for some P € Syl,(G). Then r divides |Oy(G)|. Take R € Syl (G). Then R C
0,(G). By Frattini argument, we have G' = Ng(R)O,(G). Since p does not divide
|0,/(G)], we see that p divides |[Ng(R)| and therefore P € Ng(R). Thus the result

follows.

Proposition 2. Suppose that G is a finite group of minimal possible order satisfying
the following two conditions:

(i) There exists a prime p such that (n.(G), p) =1 for every r € 7(G).

(ii) G is not p-nilpotent.
Then G is a simple group.

Proof. Suppose that G has a nontrivial normal subgroup. Let N be a minimal normal
subgroup of G and set L/N = O,(G/N) where N C L. By the minimality of G, N
is a p-group and L = G. Now (p,n,(G)) = 1 for any r implies that G = N x Oy(G),
a contradiction.

Proposition 3. Let G be the alternating group A, onn > 5 letters. Then for every
prime p € 7(G), there exists a prime r € 7(G) such that (n.(G), p) # 1.

Proof. See [20, p.113].

Lemma 3. Let G be one of the sporadic simple groups. Put [ the largest prime in
7(G). Then

(i) L € Syli(G) is cyclic of order | and L is self-centralizing subgroup in G

(ii) There exists a prime r € w(G) such that (n.(G), 1) # 1.

Proof. Tt is easily seen that (i) holds. (See [4]).

(ii) If (n,(G), 1) = 1 for any r € 7((), then RL is a Frobenius group with Frobenius
complement L by (i), where R € Syl.(G) and L is a suitable Sylow [-subgroup of G.
This implies that [ divides |R| — 1 for any r € 7(G). This is a contradiction. (See

[4])-

Proposition 4. Let G be one of the sporadic simple groups. Then for every prime
p € 1(G), there exists a prime r € w(G) such that (n.(G), p) # 1.

Proof. Suppose that there exists a prime p such that (n,(G), p) = 1 for any r € 7(G).
Lemma 3 yields that p # [, the largest prime in 7(G). Since L € Syli(G) is self-
centralizing by Lemma 3 and P C Ng(L) for some P € Syl,(G), LP is a Frobenius
group and |P| divides | — 1. For J,, Suz, He, Fiyy, 1y, HN, Th, M, O'N, Js, |

and [ — 1 are as follows:
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Joy [=7 and [—-1=6=2-3,

Suz [=13 and [—1=12=2%.3,
He [=17 and [—1=16=2%

Fizg {=13 and 1—1:12:223,
Fi, [=29 and [—1=28=2%.7,
HN [=19 and [—1=18=2-3%
Th =31 and [ —-1=30=2-3-
M =71 and [—-1=70=2-5"-
O'N [=31 and [-1=30=2-3-
Js [=19 and [—1=18=2.3%,

We get a contradiction for each cases since |P| does not divide [ — 1.

Suppose that there exists a prime s # [ in m(G) such that S € Syl,(G) is cyclic of
order s, S is self-centralizing in G and s does not divide / — 1. Then s # p and the
order of Sylow p-subgroup of G divides (I —1, s —1). For Jy, My, HS, Ly, Fs3, Ja,

B, there exists such a prime s.

J1 s=11, [ =19 and (I—1,5s—1)=2,
Moy, s=7, =11 and (I—1,s—1)=2,
HS s=7, I=11 and ([—-1,s—1)=2,
Ly s=37, =67 and ([-1,5s—1)=6,
Figs s=17, =23 and ({—-1,s—1)=2,
Jy s=37, =43 and ([—1,s—1)=6,
B s=31, [ =47 and ({-1,s—1)=2.

In any case, we have a contradiction.

The rest of the sporadic simple groups are My, Myq, Mas, My, McL, Ru, Cos,
Co, and Co,. The Sylow 2-subgroup @ of these groups is self-normalizing. (See [4]).
Hence p = 2 and |Q| must divide { — 1, a contradiction. This completes the proof.

Let G be a connected reductive algebraic group over the algebraic closure of the
finite field F, of ¢ = u/ elements, with a Frobenius map £ : G — (G, where u is
a prime. The fixed points in G under F' then form a finite group GF, and all finite
simple groups of Lie type occur as the nonabelian composition factors of such GF.

Let ¥ be an irreducible root system. For a € ¥, set a* = 2a/(a,a), the coroot of
a. Then £* = {a*|a € T} is also a root system, the dual of X. A prime p is called
a torsion prime if L(X*)/L(X) has a p-torsion for some closed subsystem X, of %,
where L(Y) denotes the lattice generated by X.

Lemma 4. For various root systems, the torsion primes are as follows:

(1) For type A; Ci: none.
(i1) For type By, Dy, Ga: 2.
i

ii)
(iii) For type Eg, E7, Fy: 2, 3.
)

(iv) For type Eg: 2, 3, 5.
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Proof. See [1, 1.4.4, p.178].
To study the case of simple groups of Lie type, we will need the following:

Lemma 5. Let G be a connected semisimple algebraic group over the algebraic clo-
sure of the field ¥, and I' a Frobenius map of G.

(i) A direct product E =Y; x «-- x Y, of cyclic semisimple subgroups Y;’s of GF
can be embedded into a mazimal torus TT of GY, if the number of |Y;| not
prime to all torsion primes of G is at most two. In particular, we then have
Ngr(E)/Cgr(E) < W(G) the Weyl group of G.

(ii) A Sylow r-subgroup for r prime to the characteristic and the order of the
Weyl group can be embedded into a mazrimal torus TF of GF; in particular, it
is abelian.

Proof. See [15, Lemma 1.7].

Lemma 6. Suppose that G and H are finite groups satisfying G/Z(G) ~ H. Lel r
be a prime. Then n.(G) = n,(H). In particular, if (n,(H), p) =1 for some prime
p, then (n.(G), p) =1.

Proof. Note that Ng(R)/Z(G) = Ngz)(RZ(G)]Z(G)) for B € Syl,(G). Since
RZ(G)/Z(G) € Syl.(G/Z(G)), we have
G2 Na(B)| = |G/2(G) : Na(R)/Z(G)]
= |G/Z(G) : Noyzi)(RZ(G)/2(G))]
= [H : Nu(R)|
for some R € Syl.(H). Thus the result follows.

Proposition 5. Let G be a finite simple group of Lie type. If G is not isomorphic
with *A;(q), then for every prime p € w(G), there exists a prime r € m(G) such that

(no(G), p) # L.

Proof. Let G be a finite simple group of Lie type over a field F, of ¢ elements, where
g = u/, uis a prime and f is a positive integer. Suppose that there exists a prime
p such that (n,.(G), p) = 1 for any r € 7(G). Since G has a subgroup B = UH so
called Borel subgroup, where U € Syl,(G) and Ng(U) = B, it follows that p divides
|B|. By [6, Theorem 4.253, p.313], U has a trivial signalizer. Hence we have p # u.
This yields that p divides |H| and P, C H for some P, € Syl,(G). Since H is abelian
for any type, P, is abelian. Also G has a subgroup N & H such that N/H ~ W(G),
the Weyl group of G. Since Py C H, p does not divide |W(G)|. In particular, p # 2
since the Weyl group has even order for any type.

There exists a simply connected algebraic group G with Frobenius map F' such
that GF/Z(GF) ~ G except for the case where G ~ 2F,(2)'. By Lemma 6, we have
(n(GF), p) = 1 for any r € n(G) = n(G¥). We will consider GF except for some
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cases. Note that G has a Borel subgroup BF = UFHF | where UF e Syl,(GF) and
Ngr(UF) = BF. We see that P C H¥ for some P € Syl,(GF), P is abelian and p
does not divide |W (G|

G~ Aq): |GF| = g2 T1HN (¢ 1) and HF ~ Z,_;x-+-x Z,_ (I times). Since
P C HF for some P € Syl,(GF), p divides ¢— 1 and therefore ¢ > 2. By [1, G] or [3],
GF has a maximal torus T of type T(A;) whose order is (¢'*' —1)/(g—1). By Lemma
1, there exists a prime 7 such that » divides ¢+!—1,  does not divide ¢' —1 (1 < i <)
and r does not divide [ + 1 except for the cases where [+ 1 = 2 and ¢ = 2° — 1 or
[4+1 = 6 and ¢ = 2. Then we see that R C T for some R € Syl,(GT). Since there exist
no torsion primes for type A; by Lemma 4, it follows that Ngr(R)/Car(R) C W(G)
by Lemma 5. Since p does not divide [W(GF)| = |[W(G)| = (L + 1)!, P is contained
in Czr(R). Then PR = P x R is abelian and P x R is contained in some maximal
torus 7Ty by Lemma 5. Since T(A;) is the only type of maximal torus whose order
is divisible by r, we have |T}| = (¢! — 1)/(¢ — 1). This yields that p divides
(¢~ 1)/(g— 1), g—1). Since ((¢*' = 1)/(g—1), g—1) = (I+ L g — 1), p divides
[ + 1 which divides |W(GF)], a contradiction.

Suppose that [+ 1 =2 and ¢ = 2° — 1. By [19, I, Excercise 7, p.417], we can find
maximal subgroups of A;(q) =~ L,(q). We have Ng(S) = S for 5 € Syly(G). This
implies that p = 2, a contradiction.

G~ By(q) (1 >2): |GF| =¢"TTI'_,(¢¥ — 1) and HY ~ Z,_y X +++x Zy—y (I times).
Then p divides ¢ — 1 and therefore ¢ > 2. By [1, G] or [3], GF has a maximal torus
T of type T(B;) whose order is ¢' + 1. By Lemma 1, there exists a prime r such that
r divides ¢® — 1, r does not divide ¢ — 1 (1 < i < 2l — 1) and r does not divide 2!
except for the cases where 20 = 2 and ¢ = 2° — 1 or 2l = 6 and ¢ = 2. Then we see
that R C T for some R € Syl (GF). Since ¢(¢* — 1) is divisible by 2, we have r # 2.
Since the torsion prime for type B; is 2, it follows that Nar(R)/Cer(R) € W(G)
by Lemma 5. Since p does not divide |[W(G¥)| = [W(G)| = 2'-1I, P is contained
in Cgr(R) for some P € Syl,(GF). Then PR = P x R is abelian and P x R is
contained in some maximal torus 7} by Lemma 5. Since T(B;) is the only type of
maximal torus whose order is divisible by r, we have |T}| = ¢' + 1. This yields that
p divides (¢! + 1, ¢—1). Since ¢ — 1 divides ¢/ — 1, (¢’ + 1, ¢— 1) = 1 or 2. This is
a contradiction.

G ~ Cy(q) (I > 2): By an argument similar to that in the case where G' >~ Bi(q),
there is no prime p for the groups G ~ C(q) satisfying (n.(G), p) = 1 for any
r e m(G).

G~ Di(q) (1> 4): |GF| = ¢=Y(¢' = 1)T1Z1(¢* — 1) and HY ~ 7,y xX 2,
(I times). Then p divides ¢ — 1 and ¢ > 2. By [1, G] or [3], GF has a maximal
torus T of type T(D;) whose order is (¢"~* 4+ 1)(¢ + 1). By Lemina 1, there exists
a prime r such that 7 divides ¢**=Y — 1, r does not divide ¢ — 1 (1 < i < 21 —3)
and r does not divide 2(/ — 1) except for the cases where 2(/ —1) =2 and ¢ = 2" — 1
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or 2(l = 1) = 6 and ¢ = 2. We see that R C T for some R € Syl, (GF). Since
q(¢* — 1) is divisible by 2, we have r # 2. Since the torsion prime for type Dy is
2, it follows that Ngr(R )/CGF( ) € W(G) by Lemma 5. Since p does not divide
IW(GF)| = [W(G)| = 21 - 1!, P is contained in Cgr(R) for some P € Syl,(GF).
Then PR = P x R is abelian and P x R is contained in some maximal torus 77 by
Lemma 5. Since T'(D;) is the only type of maximal torus whose order is divisible by r,
we have |T;| = (¢""41)(q+1). This yields that p divides ((¢""'+1)(¢+1), ¢—1) = 1,
2 or 4, a contradiction.

G~ Ee(Q)t GF| = (g = 1)(¢° = D)(¢® = D(¢® = 1)(¢® = 1)(¢"2 — 1) and A" =~
Zyoy X =+ X Zy_y (6 times). Then p divides q—l By [1, G] or [3], GI has a maximal
torus 1’ of type T'(Fs) whose order is (q — @ +1)(¢*+q+1). By Lemma 1, there
exists a prime r such that r divides ¢!* — 1,  does not divide ¢ =1 (1 < i < 11)
and r does not divide 12. Since ¢'? — 1 = (q6 — )(q* + 1)(¢* — ¢* + 1), r divides
q¢* —¢*+1and R C T for some R € Syl, (G ). Since the torsion primes for type Fg
are 2 and 3, it follows that Ngr(R)/Car(R) C W(G) by Lemma 5. Since p does not
divide |W(éF)| = [W(G)| = 27-3%.5, P is contained in Csr(R). Then PR =P x R
is abelian and P x R is contained in some maximal torus 7} by Lemma 5. Since
T(Es) is the only type of maximal torus whose order is divisible by r, we have |T1| =
(¢* = ¢*+1)(¢*+g+1). This yields that p divides ((¢*—¢*+1)(¢*+¢+1), ¢—1) =1
or 3, a contradiction.

G~ Brq): |G"| = ¢®(¢* = 1)(¢° = 1)(¢* = 1)(¢"° — 1)(¢"* = 1)(¢"* = 1)(¢"° = 1)
and HF ~ Z,_y x -+- x Z,_; (7 times). Then p divides ¢ — 1. By [1, G] or [3],
GF has a maximal torus T of type T(FE7) whose order is (¢° — ¢* 4+ 1)(¢ + 1). By
Lemma 1, there exists a prime r such that r divides ¢'® — 1, r does not divide ¢¢ — 1
(1<i< 17) and r does not divide 18. Since ¢'* — 1 = (¢° — 1)(¢® + 1)(¢® — ¢* + 1),
r divides ¢° — ¢® +1 and R C T for some R € Syl, (GF) Since the torsion primes
for type E. are 2 and 3, we have Nsr(R)/Car(R) € W(G) by Lemma 5. Since p
does not divide |W(C~;F)| = |W(G)| =2°-3*.5.7, P is contained in Cgr(R). Then
PR = P x R is abelian and P x R is contained in some maximal torus 7y by Lemma 5.
Since T'(E7) is the only type of maximal torus whose order is divisible by r, we have
ITy| = (¢° — ¢*+1)(g+1). This yields that p divides ((¢°* —¢*+1)(¢+1), ¢—1) =1
or 2, a contradiction.

G~ Es(q): |G| = ¢"°(¢* = 1)(¢* = (" — D(¢" = )(¢"* = 1)(¢* = 1)(¢"" —
1)(¢®° —1) and HY ~ Z,_; x -++ x Z,—1 (8 times). Then p divides ¢ — 1. By [1, G] or
(3], GF has a maximal torus T of type T'(Eg) whose order is ¢®*+¢"—¢* —¢* — ¢’ +q+ 1.
By Lemma 1, there exists a prime r such that r divides ¢°* — 1, r does not divide
¢ —1 (1 <1i<29)and r does not divide 30. Since ¢*° — 1 = (¢'° = 1)(¢° + D)(¢* +
G+ )P +q —¢ —¢* =@ +q+1),rdivides " +¢"—¢" —¢' —¢’+ g+ 1 and
R C T for some R € Syl,(G"). Since the torsion primes for type Fs are 2, 3 and 5
and ¢(¢® — 1) is divisible by 30, it follows that Ngr(R)/Car(R) C W(G) by Lemma
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5. Since p does not divide |W(GF)| = |W(G)| = 2*-3° .52 -7, P is contained in
Csr(R). Then PR = P x R is abelian and P x R is contained in some maximal
torus 7; by Lemma 5. Since T'(Fjg) is the only type of maximal torus whose order is
divisible by r, we have [Ti| = ¢® +¢" — ¢ — ¢* — ¢® + ¢+ 1. This yields that p divides
(+qd —¢—¢"—¢+q+1, ¢g—1) =1, a contradiction.

G~ Fy(q): |GF| = ¢®*(¢* — 1)(¢* — 1)(q 1)(q2—1) and HF ~ Z,_y x -+ X Zy_,
(4 times). Then p divides ¢ — 1. By [1, G] or [3], GF has a maximal torus T
of type T(Fy) whose order is ¢* — qz + 1. By Lemma 1, there exists a prime r
such that r divides ¢'* — 1, r does not divide ¢ — 1 (1 < ¢ < 11) and r does not
divide 12. Since ¢"2 — 1 = (¢® — 1)(¢* + 1)(¢* — ¢* + 1), r divides ¢* — ¢* + 1 and
R C T for some R € Sylr((}F). Since the torsion primes for type F4 are 2 and
3, it follows that Nzr(R)/Cse(R) € W(G) by Lemma 5. Since p does not divide
|W(GF)| = |W(G)| = 27-3%, P is contained in Cgr(R). Then PR = P X R is abelian
and P x R is contained in some maximal torus Tj by Lemma 5. Since T'(Fy) is the
only type of maximal torus whose order is divisible by r, we have |Ti| = ¢* — ¢* + 1.
This yields that p divides (¢* — ¢* + 1, ¢ — 1) = 1, a contradiction.

G ~ Gy(q): We see that |GF| = ¢®(¢* — 1)(¢° — 1) and HY ~Z, yxZ, 1. Thenp
divides ¢ — 1. By [1, G] or [3], G¥ has a maximal torus T of type T(G,) whose order
is ¢* —q+ 1. By Lemma I, there exists a prime r such that r divides ¢® — 1, r does
not divide ¢ — 1 (1 <1 < 5) and r does not divide 6 except for the case where q=2.
Note that G5(2) is not simple. We see that R C T' for some R € Sy, (GF) Since the
torsion prime for type Gy is 2, it follows that Ngr(R)/Cer(R) € W(G) by Lemma
5. Since p does not divide |W((~;F)| = |W(G)| = 12, P is contained in Car(R).
Then PR = P x R is abelian and P x R is contained in some maximal torus T} by
Lemma 5. Since T(G4) is the only type of maximal torus whose order is divisible by
r, we have |Ty| = ¢* — ¢ + 1. This yields that p divides (¢* — ¢+ 1, ¢—1)=1,a
contradiction.

G~ M) (1> 3): |GF| = ¢ TIE (g — (-1)1).

If [ is even, then |HF| = (¢ — 1)/*(¢ + 1)"/2. Since (¢ + 1)" divides |G|, p divides
g—1. By [1, E.IL1.10, p.188-190], we have the orders of maximal tori of GF. There
is a maximal torus 7' of order ¢/*'4+1/g+1. By Lemma I, there exists a prime r such
that r divides ¢2(Ht1) — 1, 7 does not divide ¢ —1 (1 <7 < 2(I41) —1) and r does not
divide 2(I + 1) except for the cases where 2( +1) =2 and ¢ =2"—lor 2(/ +1) =6
and ¢ = 2. We see that R C T for some R € Syl,(GF). Since there exist no torsion
primes for type A; by Lemma 4, it follows that Ngr(R)/Cer(R) C W (G) by Lemma
5. Note that W(GF) # W(G). Since [ > 4, there exist 2 € P and y € R such that
[z, y] = 1. Put z = zy. By Lemma 5, there is a maximal torus T, containing z.
Since there is only a type of maximal torus whose order is divisible by r, we have
ITy| = (¢*")/ (g +1). This yields that p divides ((¢"** +1)/(¢+1), ¢—1) =L or 2,

a contradiction.
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If [ is odd, then |HF| = (¢ — 1)#V/2(¢ + 1)(=1/2 Since (¢ + 1)" divides IGF,
p divides ¢ — 1. There is a maximal torus 7' of order ¢ +1. By Lemma 1, there
exists a prime r such that r divides ¢* — 1, r does not divide ¢d—-1(1<:i<20-1)
and r does not divide 2! except for the cases where 2 = 2 and ¢ = 25 — 1 or
2l = 6 and ¢ = 2. Since r does not divide ¢! — 1 we see that R C T for some
R € Syl.(GF). Since there exist no torsion primes for type 4; by Lemma 4, it follows
that Ngr(R)/Cgzr(R) C W(G) by Lemma 5. Since | > 3, there exist € P and
y € R such that [z, y] = 1. Put z = zy. By Lemma 5, there is a maximal torus
T, containing z. Since there is only a type of maximal torus whose order is divisible
by r, we have |Tj| = ¢' + 1. This yields that p divides (¢ +1, ¢—1) =l or 2, a
contradiction.

If 20 = 6 and ¢ = 2, then G ~ ?43(2) ~ C,(3). It is already discussed.

G~ By(q) : |*Ba(q)| = ¢*(¢* + 1)(g — 1). By [18], we have all maximal subgroups
of 2By(q). Since |Ng(Q)| = ¢*(q — 1) for some Q € Syly(G), p divides ¢ — 1. By
Lemma 1, there exists a prime r such that r divides ¢* — 1, r does not divide g —1
(1 <7 < 3)and r does not divide 4. Then r divides either ¢++/2¢+1 or ¢—+/2¢+1.
We see that R € Syl.(G) is contained in either a cyclic group A; of order ¢+ V2q+1
or a cyclic group A, of order ¢ — /2¢+ 1 and Ng(R) is contained in either Ng(A,)
of order 4(q + /2 + 1) or Ng(A;) of order 4(qg — 4/2¢ + 1). In both cases, p divides
¢* + 1. This yields that p divides (¢* +1, ¢ —1) = 1 or 2, a contradiction.

G = Diq) (1 2 4): [6F] = (g + ) I (g — 1) and [717] = (= 1)~ (q+1).
Then p divides p— 1. There is a maximal torus 7' of order ¢'+ 1. By Lemma 1, there
exists a prime r such that » divides ¢* — 1, » does not divide ¢ —1 (1 < <2l - 1)
and r does not divide 20 except for the cases where 20 =2 and ¢ =2* — 1 or 2 =6
and ¢ = 2. Since [ > 4, we do not have to consider the exceptional cases. We see
that B C T for some R € Syl,(GF). Since the torsion prime for type D; is 2 by
Lemma 4, it follows that Ngr(R)/Car(R) C W(G) by Lemma 5. There exist z € P
and y € R such that [z, y] = 1. Put z = zy. By Lemma 5, there is a maximal torus
T, containing z. Since there is only a type of maximal torus whose order is divisible
by r, we have |T;| = ¢ + 1. This yields that p divides (¢ + 1, ¢—1) = L or 2, a
contradiction.

G~ *D4(q): We have that [°Dy(q)] = ¢"*(¢* + ¢* + 1)(¢® — 1)(¢* — 1). By [13], we
have all maximal subgroups of ®Dy(q). Since |Na(Q)| = ¢'*(¢> — 1)(¢ — 1) for some
Q € Syl (G) and ¢* + g+ 1 divides ¢® + ¢* + 1, p divides ¢ — 1. There is a maximal
torus T of order ¢* — ¢> + 1. By Lemma 1, there exists a prime r such that r divides
¢? — 1, r does not divide ¢ —1 (1 < i < 11) and r does not divide 12. Since r
divides ¢* — ¢ + 1, we see that R C T for some R € Syl.(G) and Ng(R) € Ne(T),
whose order is 4(¢* — ¢* + 1). This yields that p divides (¢* —¢*+1, ¢—1)=1,a
contradiction.

G~ Eo(q): |GF] = ¢ = )@ + 1)(® = D(¢® = 1)(¢° + )(¢" — 1 and [H"| =
(g —1)%(qg 4+ 1)%. We see that P is abelian and p divides p — 1. There is a maximal
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torus T of order (¢* — ¢* + 1)(¢* — ¢+ 1). By Lemma 1, there exists a prime r such
that r divides ¢'* — 1, r does not divide ¢' — 1 (1 <7 < 11) and r does not divide
12. We see that r divides ¢* — ¢* + 1 and R C T for some R € Syl (GF). Since
the torsion primes for type Eg are 2 and 3, it follows that Ngr(R)/Car(R) C W(G)
by Lemma 5. There exist z € P and y € R such that [z, y] = 1. Put z = zy. By
Lemma 5, there is a maximal torus 7} containing z. Since there is only a type of
maximal torus whose order is divisible by 7, we have |Ti| = (¢* — ¢* + 1)(¢* — ¢+ 1).
This yields that p divides (¢* —¢*+1)(¢* —q¢+1), g—1) =1, 2 or 4, a contradiction.

G ~°Fi(q) (¢>2): |"Fa(9)| = ¢'*(g — 1)(¢* + 1)(¢* — 1)(¢° + 1). By [16], we have
all maximal subgroups of ?F4(q). Since |Ng(Q)| = ¢**(¢ — 1)? for some @ € Syl,(G),
p divides ¢ — 1. By Lemma 1, there exists a prime r such that r divides ¢'* — 1, r
does not divide ¢ — 1 (1 <4 < 11) and r does not divide 12. Then r divides either
@ +V2¢ +q+/2q+1 or ¢ =28 +q—+/2q+ 1 since ¢ =1 = (¢°* = 1)(¢* +1)(¢" -
@ +1) = (® =)@+ (@ + V2@ + ¢+ 24+ 1)( = V28 + ¢—v/2¢+1). We see
that R € Syl,(G) is contained in either a cyclic group of order ¢*++v/2¢*+q++/2¢+1
or a cyclic group of order ¢ — +/2¢3 + ¢ — v/2¢ + | and Ng(R) is contained in either
a maximal subgroup of order 12(¢? + v/2¢> + ¢+ v/2¢ + 1) or a maximal subgroup of
order 12(¢? — v/2¢® + g — v/2q + 1). In both cases, p divides ¢° + 1 since |*Fy(q)] is
divisible by 9. This yields that p divides (¢° + 1, ¢ — 1) = 1 or 2, a contradiction.

G ~ *Fy(2)": There is no prime p satisfying (n.(G), p) =1 for any r € n(G) since
Ng(S) = S for S € Syly(G).

G~ Gy(q) : ["Ga(q)l = ¢*(¢*+1)(¢—1). By [14], we have all maximal subgroups of
XG4(q). Since |Ng(Q)| = ¢°(¢* — 1) for some @ € Syl3(G), p divides ¢g—1. By Lemma
1, there exists a prime r such that r divides ¢° —1, r does not divide ¢'—1 (1 <1 <5)
and r does not divide 6 since ¢ is a power of 3. Then r divides either ¢ + /3¢ + 1
or ¢ — /3¢ + 1. We see that R € Syl.(G) is contained in either a cyclic group A; of
order g+ /3¢ + 1 or a cyclic group A, of order ¢ — /3¢ + 1 and Ng(R) is contained
in either Ng(A;) of order 6(q++/3¢+1) or Ng(A;) of order 6(¢ — /3¢ +1). In both
cases, p divides ¢°>+ 1. This yields that p divides (¢ + 1, ¢ —1) = 2, a contradiction.

Proof of the Main Theorem. (i) It follows from Theorem 1, Propositions 1, 2, 3, 4
and 5.
(i1) It follows from Propositions 1, 2, 3, 4 and 5.

To prove Corollary 1, we need the following:

Proposition 6. Let G be a finite group. Suppose that for everyr € n(G), (p, n.(G))
=1 holds and Ng(R) is p-nilpotent for R € Syl.(G). Then G is p-nilpotent.

Proof. Suppose that the assertion is false. Take G a counterexample of minimal
possible order. Then G is simple by Proposition 2. Propositions 3, 4 and 5 yields
that G ~ Us(q) ¢ = 2/, f is even not divisible by 3 and p = 3. In the proof of
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Theorem 1, we have that Ng(Q3) = (¢+ 1) X Dy(,_1y, which is not 3-nilpotent. This
completes the proof.

Proof of Corollary 1. Tt follows from Propositions 1 and 6.

4. SYLOW GRAPHS OF FINITE GROUPS

As applications of the Claim in the Introduction, a couple of claims are made n
[20], about which we will discuss below. Note that the Claim is not necessary for the
proofs of Theorem 2 and of Theorem 3.

The Sylow graph [',(G) of a finite group G is defined as follows. The vertices
V(I'5(G)) of T's(G) are the set of prime divisors of any Sylow numbers of G and two
vertices p and ¢ are joined by an edge if pg divides some Sylow Sylow numbers of G.

Note that V(I',(G)) is not always equal to 7(G). In fact, let G = Us(q), ¢ = 2/ f
even not divisible by 3. Then we see that V(I';(G)) € 7(G) by Theorem 1.

Theorem 2 ([20, Theorem 3]). If G is not a finite group with a non-connected Sylow
graph then G is not simple.

Proof. 1t is easily seen that I';(G) is connected for any sporadic simple group G. See
[4].

The Sylow graphs of the alternating groups As is connected. See [4]. Assume that
n > 6. Take [ the largest prime in 7(A,). Then |N4 (L) =1-(l —1)-(n = 1)!/2.
This yields that n;(A,) is divisible by 2. If there exists an odd prime r € m(A,)
such that r does not divide n;(G), then there exists Hall {l, 7}-subgroup of A,. This
contradicts [10, Theorem A4]. This yields that any odd prime in (A, ) not equal to
[ divides n;(A,). By [7], n,(G) # [ for any p € m(A,) since n > 5. Hence I';(A,) is
connected for n > 6.

Suppose that G is a simple group of Lie type over GF'(q), ¢ = uf, u a prime. By [6,
Theorem 4.253, p.313], U € Syl,(G) has a trivial signalizer. This yields that n,(G) is
divisible by u if p # u. Suppose that any r dividing n,(G) does not divide n,(G) for
any p # u. Then {r € 7(G)|r divides n,(G), p # u} € n(B), where B = UH is the
Borel subgroup of G. Suppose that 7(H) # @. Take r € n(H). Then Ng(R) 2 H
since H is abelian. Since |G : Ng(R)| is not a prime power by [7], there exists a
prime ¢ # u which divides n,(G). This is a contradiction since ¢ ¢ m(B). This yields
that 7(B) = {u}. Then n,(G) is a power of u for any p # u. This contradicts [7].
This implies that there exists a prime » dividing n,(G) such that r divides n,(G) for
some p # u. Hence I'y(G) is connected. Suppose that 7(H) = @. Then ¢ = 2. It
I',(G) is disconnected, n,(G) must be a power of 2 for any odd prime r € V(I';(G)).
This contradicts [7]. This completes the proof.

This implies the following:

Theorem 3 ([20, Theorem 4]). Let G be a finite group such that all Sylow numbers
of G are prime power. Then G is solvable.
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Proof. Tt follows from Lemma 2 and Theorem 2.
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