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1. Introduction

In this paper, we shall discuss the problem to find sufficient conditions under
which the probability law of the solution to the stochastic differential equation has a
smooth transition density. There are many approaches to this problem in the theory of
partial differential equations. It is well known thatdknander ([2]) showed the rela-
tion between the hypoellipticity of second order elliptic differential operators and the
dimension of the Lie algebra generated by vector fields associated with coefficients of
the differential operator. Malliavin ([6], [7]) introduced the new differential calculus on
the Wiener space, and applied its calculus to the probabilistic proof of tien&hder
theorem. He introduced the Ornstein-Uhlenbeck operator which is an unbounded self-
adjoint non-negative operator on tfig-space over the Wiener space, and obtained the
integration by parts formula on this space ([3], [9]). On the other hand, Bismut ([1])
gave the different approach from Malliavin’s work. He showed the integration by parts
formula by using the Girsanov transformation. For the integration by parts formula,
the integrability of the inverse of so called Malliavin covariance matrix is essential.
Kusuoka and Stroock ([5]) presented a key lemma for the proof of the integrability.
Norris ([8]) gave a simplified proof of the key lemma. His proof of it is still consid-
erably long and complicated.

Instead of the Kusuoka-Stroock-Norris key lemma, we shall present a new lemma
that plays an important role in the Malliavin calculus for SDE’s. This can be proved
easily and directly only by using simple stochastic calculations, that is, the Ito formula
and the Fubini type theorem for stochastic integrals. In order to show the integrability
of the inverse of the Malliavin covariance matrix, it suffices to prove the exponential
decay of the Laplace transform of the quadratic form of the covariance matrix. It is
possible to prove the exponential decay by an iterative application of the new lemma.
Therefore, by using the new key lemma, we can easily show tireneihder theorem.

The organization of this paper is as follows: in Section 2, we give some prelimi-
naries that need in our argument, and introduce well-known results on the integrability
of the inverse of the Malliavin covariance matrix. In Section 3, our main results are
stated. In the final section, thedHnander theorem is proved.
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2. Preliminaries

Let (W{',F, P;{F}) be the m -dimensional Wiener space, that i#{ =
C(R+;R"wo = 0), F; = olws | s <t], F =V,F and P is the Wiener measure
on W§', F). Let Aj =a;(x)- 0 (j=0,1...,m) be smooth vector fields oR? such
that derivatives of all orders af.a; are bounded.

We consider the! -dimensional SDE

t r m
(1) X, =xo+ / ao(xy)ds + / Za,-(xs) odw!
0 0 =1

for xo € R?. This equation is equivalent to
! ! .
o) = o)+ [ Aodtedds + [ 37 o) o du.
0 07

for ¢ € C>(R%R). From the assumption for coefficients of (1), there exists
the unique solutionxr, =¥, xp, w) in the pathwise sense. Moreover the mapping
¥, defines a stochastic flow of diffeomorphisms &{. The Jacobi matrixZ, =
((8/8xé)lllti(xo, w))1<i j<a Of the diffeomorphism satisfies the linear SDE

t 1
2 Z, =1 +/ ay(xs)Zsds +/ Za,{(xs)Zs oduw!,
0 05

where I = §')1<; j<a- The symboly’ denotes the matrix §/9x/)¢! (x))1<i j<a for
any ¢ € C{RY;R%). Let U, be the solution to the linear SDE

1 t
(3) U =1- / Usag(xg)ds — / Z Usa)(x,) o dw'.
0 05

It is easily checked that, U, #&,Z, £ . Since coefficients of (1), (2), and (3) satisfy
the linear growth condition, we have

) E[ sup (5|7 + 12,17 + |U,]17) | < oo
s<t
for all p > 1. For a matrixA , its transposed matrix is denoted Ay Define
t
0 = / > Usai(x)ai(x,) Urds, Vi =Z,Q.7;.
0

The matrix V, is called the Malliavin covariance matrix. The following result is well
known in the Malliavin calculus (cf. [3], [9]).
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Proposition 1. For T > 0, if (detVy )t e N
law of xr has a smooth density.

p>1 LP(W{, P), then the probability

Throughout this papefk. ’s denote certain positive absolute constants, which may
change every lines. It is sufficient for the assumption of the above proposition that
E[{inf.za(z - Orz)} "] is bounded for allp > 1, because

E[(detVy) 7] = E[(detUr)" (detQr ) "]

ol 2o

IN

Lemma 1. If the condition

SUPE[(z - Qrz) "] < o0
|z]=1

is satisfied for allp > 1, then the following one is also satisfied for all> 1.
E[{ inf (z - QTZ)}*P] <0
=1

Proof. For anyz, 7z’ € $971, we have|z-Qrz—z7'-0r7'| < 2| Q7| |z—7'|. Hence
it is possible to choose a sequengg }, of points onS?~ such that, for any > 0,
if 2o Qrzn > 2r (1< n < c(|Or|l/r)*™1), then inf,—1(z - Qrz) > r. Therefore we
have

E[{‘in_f (z- Qrz)}_”} = 1*(19)_1/0 A”‘lE{exp{—Alirﬂ:fl(z-Qrz)}}d/\
<e [ v H{Efepl-Ainf e 0ra)i 105l <A] + Pl > N Jax
0

o[ vt / AP int (e 0r2) <r Qr]| <A ] dr
0 lz|=

+P[|Q7l| > Alfax

0 c.(\/r)'t
A1 / e M ZP[zn - Qrzn < 2r] dr

n=1

(E[HQTH””]) N 1}CM

)\p+l
—2d

00 00 r2
C. / A2d+1172{/ e*)\r E 5
0 0

n>1

<D / P P, Qrz, < rldr .

n>l

< c.

S—

IN

- Qrzn < 2r] dr}d)\ +c.
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e Sl 0rz) 4 e

n>l

c. SUPE[(z - Qr2)* * P +c.
lz[=1

< oQ.

IN

The proof is complete. O

From Lemma 1 and the equality

Bl 0r) 1= () [ N Elep(-XG - 0ra)lax
our main purpose is to find a sufficient condition under which
(6) SUPE [ex{—A(z - Q72)}] = o(A™") (A — o0)
is satisfied for allp > 1.

3. Lower bounds of functionals of semimartingales

Let g(r) be a continuous semimartingale. Then

(6) /0 g > { /5 g /O Tﬁé}g(r)zdr
: /5 Lar / té dg(s)? = /O (o)

wheredr(s) = (s +d) AT —s Vv § for § > 0. This inequality is very simple, but it will
turn out that the new key lemma is a consequence of this inequality.
For the sake of simlicity, set

T m

Ml =exof - [ Zc,(r)dw 5[ o)

for an R"-valued continuous semimartingad¢r) = {(;(r)}2,. Let the symbol||¢|| de-
note the value sypé(r)| for a given process(r).
Consider semimartingales

m m

dF(t) = fo(t)dt + > fi(tydw},  dfo(t) = foolt)dt + _ foi(t)dw},

i=1 i=1
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and define

roy={wewg | SN+ DI > a4

Jj=0 Jj=0

Theorem 1. Let A > 1. There exist positive constan%, C1, C» independent of
F(-) and )\, and a positive random variablefl?) with E[M(T’\)] < 1 such that the
inequality

m

T T
@) Co /0 MF(@1)2dt + A\~ logM > ¢, /O AVAN" £t — C
j=0

holds on the complement of the gef\) for sufficiently large.

Proof. Srep 1. By using inequality (6) and the Ito formula, we have

T T
/ N F2dt > / \6rd F?
0 0

/OT )\46T{<Zi: F2+ 2Ff0)dt + ZFZI_:fidw"}

1
Ny

T
- / 2N NS P2 fdr
0 i

1 oa @
7*|OgMT + 11+ L+ I3,
Ny

T T
log MV + / Nor Y fde+ / 2\*67 F fodt
0 ; 0

where Y8 < N; < 3\"/4 and MY = M [(2N:1M\*6; Ff;)]. We consider lower esti-
mates ofIy, I, I3 on "' (\)°. Seté = A\~3. Since 36 =1 on P, T — 6],

T T T
11:/ A frar f/ ML —N%7) ) fPat z/ A frdr—2x77%,
0 - 0 - 0 -
Since 0< §; < 6 = A3, we see that

I

Y

T T T
- / NF2%dr — / A2 fZdt > — / NF2%dr — T4,
0 0 0

T T
—2N1\? / F2 " f2dt > 2N, A7/ / X F2t.
0 i 0

Y

I3



686 T. KOMATSU AND A. TAKEUCHI

Therefore we obtain the inequality

(8) c. / )\4F(t)2dt+ |ogM<1>> / A fi@)?de —c.

0 0 i=1

STEP 2. For the sake of simplicity, set = A~ and ;. = A/, From the Fubini
type theorem for stochastic integrals, we obtain the equality

w | ( [ ) as =2 [ s | ([ otwra) sowpa
= 29 / " ds /_ {F(s)— F(u) — / SZ ﬁ(u)dw;;} folw)du

T
2u° / ds / {F(s) — F(u)} fou)du — pi* /O hA(U)Z fiw)dw!

= IogM(z) +24 / ds / {F(s) — F(u)} folu)du
s
N 8,2 2
+7/0 pohy Z fidv
= L logi @+ 1+ 15,
No T
where 3172 < N, < 3y,
(v+a)/\T )
() = 2 / / folwdu, 0P = My [(Noyi*hy ).
(A2
We see that

v+,
I @)] < 265 fol / (v—s+e)ds < =52

on I"(\)°. To estimate ofl4, Is on I" (\)° are routine works.

T s
< [as [ 2ol F6) - Pl

IA

T s
12| f2)|e(T — <)+ / ds / J3\F(s) — F(u)Pdu

IN

T s
TRl [ as [ 2ntS(F?  F)du

IN

T
Tu 1+ 4/ pY2F2ds,
0
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Therefore we obtain the estimate
T s 2 1 ~ 0
9) 10 / ( / - fo(u)du) ds — ElogM;)
T T
< C./ ,ulGFZdt + c./ ,LL4Z fizdt +c.
0 0 F

STeP 3. Next we consider the lower estimate of the left-hand side of (9). Define
a new process

609 =6 -0fe0)+ [ faliddu =z~ + [ (s~ uddfalo).
Then [Ex(s; 5)| < €] fo| for s —e <1 <s. By using the Ito formula, we have

Ex(s;5)?
Phols <P+ [ 26 -6+ [ - Y fotuldu

v

2fos — ) + / 20— )i )dfolo)

Hence
T s 2
ug/( fo(u)du) ds
: ; ) T s
Z “/ Jols *5)25[“'2#9/ ds/ (s — u)&x(u; s)d fo(u)
T—e T
= p /O fods + /O nxdfo,
where
(u+e) AT
m(u) = 2u9/ (s — u)éx(u; s)ds.
uVe

Since it holds that

()] < 24 / (s — u) |Ex(u; )|ds < =2

u
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on I' (\)‘, we have

T, ps ’ T T
ug/ (/ fo(u)du) ds 2/ ufozds—u‘2+/ nxdfo
€ s—€ 0 0
T T T .
= / llfozdS*N72+/ TIAfoodM*'/ m Yy fudw'
0 0 0 -
>/T féds —c 2_ 1ty AN/I(S)—&/T| 2D fodu
- o 1% 0 NY N3 g T 2 o TIx i 0i

T
1 -
> / pfds —c.u? — A log MY — c.Ngp™*,
0 3

where 3//2 < N3 < 3u* and M%) = M7 [(Nanx for)]. Therefore we obtain the estimate

9 T s 2 1 ~ (3 T )
(10) I / (/ fo(u)du) ds > A log M} +/ wigds — c.
€ s—e 3 0

on I" (V). Set M = (MD)VE/N (M@Yi/N2 (M) VE/Ns| Then
EIMM] < EIMPIVFN E[MPIVI e B[PV < 1,

From (8), (9) and (10), we obtain inequality (7). ]

4. Existence of the smooth density

In this section, we prove the ddmander theorem by using Theorem 1. Kor
@, = p(x)- 9, (e C®RERY), let [A;, ®]=A;@ — DA, and set

m

o[ Ao, @] =[Ao, ] + Eizzlle,-,[Am]], olA;, @1=[A;, @] (j=1,...,m).

By using the Ito formula,

d(U, @) = Uy o[ Ao, @], dt+ Y U; o[A;. @], dw;.

We shall introduce sets of vector fields:

.Ao = {A]_,...,Am},
A = {olA;, @] | @ € A—1, j=0,1L....m} (k>1)

Theorem 2. Assume that Brmander’s condition is satisfiedhat is the linear
space generated byJ, A at xq is RY. Then forT > 0, the probability law ofx; has
a smooth density.
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Proof. By the Hbrmander condition, there exist an integer> 0 and constants
v, n > 0 such that

(11) > o)) =

@ GUZ:() A

for all z € S~ andy with|y — xo| < 7. Consider the following stopping time:

S = inf{t > 0| sup|x; — xo| >~ or sup||Us —I|| > 1/2} AT.
t

s<t s<

From the Chebyshev inequality, the Burkholder inequality and (4), we see that

}

(12)  PIS<A 1< P| sup |y —xo| >y | +P| sup U, 1] =
t<A\—B <28

1 NIk

IN

c. E{ sup |x; — xol? ] +ec. E{ sup ||U, — I
1<A—P 1<A—PB

O(A—qﬁ/z)

for all ¢ > 4/3, where 3 = 271-%. Remark thatlz*U,| > 1 — ||I — U,|| > 1/2 under
t <S.Setoy =271% (k=0,1...,n). Consider a functionalR(\*z, A4;) defined
by

T
Qre A)= [ 37 - Ui

0 goeu
for z € -1 For a given vector fieldd =¢(x) - 9, let ||@|| denote the value
SUR<, <7 |Uip(x)|. Define subsetd} N) of W' by I'n(\) =0 and
= {wews | Y lldlas, @112+ llolA;. olAo, @117 > X2 |
j=0

DA j=0

for k > 1. From (4),P [ Q)] = o(A~?) as XA — o for p > 1. Fork > 1, by Theorem
1, there exists a positive random variable}k”\) with E[M(T“)] < 1 such that the
inequality

(13) c.Qr(A\"1z, A1) > =A% logMEN + .07 (A% z, A) —c.

holds onT} Q). Set A, = J;-o A By the iterative application of (13),

(14) c.Qr(\*z, Ag) > —A~“log MY + c.0r(A\*z, A} —c.
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n
> = 3N log MY +e.0r (A2 A)) —c.
k=1

on Nizo [x(V)°. By the Jensen inequality, we see

n 1/”

TR R

k=1 k=1

for sufficiently largeA. From (11), (12) and (14), we have

E[ exp{—A(z - Qrz)} }
< E[ exp{f)\(z . QTZ)}I{Szz\—ﬁ} ] + P[S < )\7’8]

n

< c.E {H(M;k’/\)))\iak exp{ —c.Qr(A*z, A;)}I{SEA—B}}

k=1

+P LL:%Q(A)} +P[S <A P

IA

.E |exp{ —c.Qa-s (A2, A}) bz "

<e. exp{—c.Aza“‘ﬁ inf inf )" (z-¢(y))2}+o()\_”)

z|=1 |y—xo|<
G bmml<y £,

+o(x°7)

0()\_”).

Since property (5) is satisfied, the transition densityxef is smooth. O

RemArRk. The new key lemma can be extended to the general semimartingale
with the jump term. Hence we can discuss the regularity on the transition density asso-
ciated with the jump type SDE. This will be discussed in the forthcoming paper ([4]).
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