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1. Introduction

Throughout this paper, the base field is the real numBeend all semialgebraic
maps are assumed to be continuous. For general terminoludjth@ theory of semi-
algebraic sets we refer the reader to [1].

Let G be a compact semialgebraic group. One can see easilyetleay com-
pact semialgebraic group has a Lie group structure, andecsely, every compact Lie
group has a semialgebraic group structuresémialgebraic representationf G is,
by definition, a semialgebraic homomorphigmm G — GL(n, R) for somen . In this
caseR"” equipped with the linear action af via is denoted byR"(p) and called a
semialgebraic representation spacé G. A semialgebraicG -seis a G -invariant semi-
algebraic set in some finite dimensional semialgebraicesspritation space ai . One
may define a semialgebraiG@ -set as a semialgebraic set witmélgebraic action
of G, but two definitions are equivalent wheh is semialgelatdicisomorphic to a
semialgebraic subgroup of some GLR), see [17, Thoerem 1.1]. Note that GLR)
is a semialgebraic set i, R} = R¥* where M, R) denotes the set of all x k real
matrices. AG -equivariant semialgebraic map between sgetimhicG -sets is called a
semialgebraicG -map

The simple homotopy theory and the theory of Whitehead dossihave equivari-
ant generalizations in the topological category, see &p.Ifi this paper we consider
the equivariant generalizations of them to the semialdgelrategory. Namely, we de-
fine the equivariant Whitehead group of a semialgebéaic asetthe Whitehead tor-
sion of aG -homotopy equivalence between semialgebfaic s.-8&breover, we prove
the semialgebraic invariance of the equivariant Whitehiasion.

The basic ingredients for the development are the existerican equivariant
semialgebraiaG -CW complex structure of a semialgebcic t (Beoposition 2.2) and
equivariant semialgebraic homotopy theory in [16]. We rdmthat the (equivariant)
Whitehead group is defined on a comple@ ( -) CW complex [6, HR}wever, in
general, a semialgebrai@ -set has a finite open -CW complagtste which is not
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necessarily complete. See Definition 2.1 for the definitiohsopen” and “complete”
G-CW complexes.

The core of X, denoted by ca ), is defined to be the maximal complete (and
thus compact)G -CW subcomplex of . It is shown, in [16, p.1664t there exists
a semialgebrai@G -retracty X — co(X) such that the inclusion maggx : ¢o(<)»
X is the semialgebraiG -homotopy inversegf . SinceXco( ) is mpiete G -CW
complex, the equivariant Whitehead group yvh ¢€o( )) is defiae in [6]. We define
the equivariant Whitehead group of a semialgebi@ic Aget by

Whg (M) := Whg (co(Xo))

where Xq is a preferred semialgebraic -CW complex structureMn . Xete ab-
other semialgebrai&G -CW complex structure &h . We may asdhatebothX and
Xo have the same underlying topological spade . A%t denote the composition

A%, co(X) <5 X = Xo 2 co(Xo).
Then we show in Section 3 thatf induces an isomorphism
(A¥)« - Whg (co(X )) — Whe (co(Xo)),

which implies that the definition of Wh M ) is independent oé tbhoice of a semi-
algebraicG -CW complex structure oW

For a G -homotopy equivalencg¢ M — N between two semialgebraic -sets we
define the Whitehead torsiong(f) of f to be an element in WhM ) as follows.
Choose any semialgebra@ -CW complex structukes End Mon  MNandespec-
tively. Put f = ry o foix: co(X) — co(Y). Thenr(F) € Whg (co(X)). We define
76 (f) by

76(f) = Mx)«(76(f)) € Whg (M).

Our main theorem asserts that such defined Whitehead toissiaell-defined, i.e.,
independent of the choice of semialgebr&ic -CW complexctiras, and is an equiv-
ariant semialgebraic invariant. Namely we have the folimyvtheorem.

Theorem 1.1. Let G be a compact semialgebraic grqupnd let M and N
be semialgebraicG -sets. For & -homotopy equivalenfteM — N there is a
well-defined Whitehead torsiong(f) € Whg(M), and if f is a semialgebraic
G-homeomorphism ther;(f) = 0.

Notice that the topological invariance of the Whiteheadsitox does not hold in the
equivariant topological category, see Examples 1.4.25 lah@6 in [13].
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Recently, S. lllman proved a similar result in [10, 11] forofmecessarily com-
pact) Lie groups acting smoothly and properly on smo6th ifolls with the com-
pact orbit spaces, which are not necessarily compact. Guiftsein this paper are mo-
tivated by those in [10, 11]. Indeed, Theorem 1.1 (and Thwote2 below) is mod-
elled on [10, Theorem IIl] and [11, Theorem III] (resp. [11hd&orem IV]). But the
differences of Theorem 1.1 (and Theorem 1.2) and the S. ignare as follows: The
stability under the finite union is one of many wide differeadetween the semialge-
braic category and the other (subanalytic or smooth) cayeg@r example, the infinite
union of locally finite semialgebraic sets is not a semiatgeEbset. Thus the attaching
map of infinite semialgebraic maps, which are well-definedhia intersections of the
domains, is not semialgebraic. So, in general, we must pseweialgebraic results in
finite steps. From this reason, in the semialgebraic cayegee only consider finite
G-CW complexes.

The assumption that the orbit spaces are compact is usedtiafigein [10, 11].
It is used in the construction of a complete fine -CW compéxcture of a proper
G-manifold. Thus everyG -CW complex in [11] is complete. Hoervin Theorem 1.1
(and Theorem 1.2), the acting groups are compact but theatgebraicG -sets and
their orbit spaces are not necessarily compact. Thus thaigkgebraic)G -CW com-
plex is not complete in general. Therefore the completeéshe G -CW complexes
is another wide difference between this paper and [10, 11].

When a semialgebrai¢ -séff is compact (equivalen#y,G is compact since
G is compact), we have Theorem 1.1 (and Theorem 1.2) from theltsein [10, 11].
So the focus of this paper is to generalize the results in ghilfinite completeG -CW
complexes to the finite ope@ -CW complex case.

In this paper we also discuss the restriction homomorphigtwéen Whitehead
groups in the semialgebraic category. We first discuss thezatipn of restricting the
compact (topological) groug; to a closed subgraip Gf . Ket  beompact
G-CW complex. The underlying topological spage  with the rietgtd action of H
does not have ail/ -CW complex structure which is compatibté thie givenG -CW
complex X in a canonical way, see [8, Section 2].

In the case whenX is a semialgebraic -CW complex structure sénaialge-
braic G-setM , one can always construct a semialgebraic -CWplexmstructure
Iz X on the H -spaceX such that each -equivariant cellXof isHan esuaptex
of |y X, see Lemma 4.1. We callyIX aidentity H -reduction ofX, following Illiman
[11]. Let Y denote the collection of (operfy -cells of X whicheacontained in
|co(X). ThenY is a compact (and thus complef®) -CW subcomplexgaf | h wit
|co(X) as the underlying space, and herice is a semialgelifaic -Qwtwgie of
|co(X) =|co(X)N Iy X|. Moreover co¥ ) and cofl X ) have the sani® -homotopy
type. In particular we may considéf as a preferiéd -redocRy (co(X )) of the
G-CW complex cok ) in [8, 9, 10, 11] (Proposition 4.6). Fromsthieason we de-
noteY by Ry (cok )), and call R (c&( )) preferred H -reduction ofco(X), follow-
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ing lllman [8, 9]. See Section 4 and [8, 9] for more detailscBgse caf ) is compact
(and hence complete), there is the restriction homomarptie§, : Wk (cok ))—
Whp (Ry (co(X ))) by [8, 9]. We are now able to define the restricttiomomorphism

Res&: Whe (co(X )™ Why, (Ry (cotX 1) Why, (colis X))

by Res§ = (ix). o Re$; , whereix : B (cd{ )) = c&( ¥~ co(lyzX) is the inclu-
sion map. By using the properties of Kes with the fact that efind the Whitehead
group Wh; M) of a semialgebrai¢ -séf by Wh (&( )) for arbityasemialge-
braic G -CW complex structur& ao¥f , we prove the following th&orin Section 4,
5 and 6.

Theorem 1.2. Let G be a compact semialgebraic grqugnd let H < G be a
closed semialgebraic subgroup 6f . L&  be a semialgebicet. -Bhen there ex-
ists a well-defined restriction homomorphism

Res@: Whg (M) — Why (M),

such that for aG -homotopy equivalengeé M — N between semialgebraiG -sets
and for the inducedd -homotopy equivalengg: My — Ngy obtained from the re-
striction of the acting groups; tdd, we have

i (fu) = Resfi(16(f)) € Why (M)
Furthermore for closed semialgebraic subgrougs < H < G, we have
Res$ = Res o Res§,.

Remark thatRes$; = Reg; whenM is compact. Theorem 1.2 is modelled on Theo-
rem VI of [11]. However, as is mentioned in the remark afteeditem 1.1, there exist
several wide differences between semialgebraic and ther atitegories, which make
our theorem meaningful and independent from the resultd 1. [

The authors would like to thank the referee for many invaleatmmments on this
paper.

2. G-CW complex structures on semialgebraicG-sets

In this section we discuss the semialgebr@ic -CW complexcsires on a given
semialgebraioG -set and list some of its basic properties.bégn with basic defini-
tions.

Derinimion 2.1, For the definition of & -CW complex we refer the reader6io [
A G-CW complex X is said to bdinite if X has only a finite nhumber o -cells. A
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G-CW complex pair(X, Y) consists of aG -CW compleX and@ -CW subcomplex
Y of X.

A G-CW complex X is calledstraight if each closedG -celk € X has a cross
sections :mx(c) — ¢ of the restricted orbit maprx|. as in [11, Definition 11.2].

Let X be aG -CW complex such that the orbit spaX¢G is a simplicial com-
plex and the orbit mapry: X — X/G is a cellular map, i.e., for each closed -cell
¢, mx(c) is a simplex ofX/G. For aG -CW complexX , an equivariant subdivisiafi
of X induces a subdivisioiX* /G of X/G. Conversely, ifX is a straight -CW com-
plex then any subdivisionX/G)* of the orbit spaceX/G induces an equivariant sub-
division X* := {7~(0) | o is a simplex of &/G)*} of X such thatX*/G = (X/G)*.

In this case the:-th barycentric subdivisiorof X is the induced subdivision o by
the n -th barycentric subdivision ot /G.

Recall that an openG -cell is the image of the restriction of haracteristic
G-map ¢.: G/H. x D" — ¢ to G/H, x int(D"), where intD" ) is the interior oD" .
Note that, whem =0, we let inf®) = D° as usual.

A finite openG €W complexis defined to be a -invariant subspace of some fi-
nite G-CW complexX by removing some op&h -cellsXf . Class@aCW-com-
plexes are calledompleteG-CW complexes here. LeXx be a finite opén -CW com-
plex. Recall that thecore of X, denoted by caX ), is the maximal complete -CW
subcomplex ofX . Hence c&( ) is compact. Af is complete, themrty coX ) =X .

From now onG denotes a compact semialgebraic group. In thivasgunt semi-
algebraic category, the following proposition shows thay aemialgebraids -set has a
straight semialgebraic finite opei -CW complex structureis proposition is proved
in [15, 17], but the proof has a minor mistake with an incortelproof. So we proof
it here. Moreover, by a similar way of the following proof, vean prove this propo-
sition for semialgebraic proper actions of honcompact a&gabraic groups (see, [2,
Theorem 4.4]).

Proposition 2.2. Let M be a semialgebraicG -set and a semialgebraic
G-subset ofM . Then there exist a pdiK, A) of finite openG €W complexes such
that
(1) the underlying spaces of andl are equal b andrespectively
(2) X/G is a finite open simplicial complex which is compatible witle orbit types
and C . Moreover the orbit mapy is a semialgebraic cellular map
(3) each openG -celt off is a semialgebraie -sahd thus its closur& in M is
a semialgebraicG -set
(4) each characteristictG -map,: G/H, x int(D") — ¢ is a semialgebraiaG -homeo-
morphism
(5) each openG -celt o has a semialgebraic cross sectianrx(c)— ¢ of x|z
where ¢ denotes the closure ef iX = M.
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Proof. Since every semialgebra@ -set has only finitely martyit types [17,
Theorem 3.2],M has finite orbit types, sa§ (H.), ..., (G/H;). Let My, denote the
set of points on orbit of type/H;), i.e.,

Muy={x € M |G, =gH;g~! for someg € G}.

Then My, is a semialgebrai&G -subset f . Let M — M/G be the semialgebraic
orbit map. By the semialgebraic triangulation theorem [8], there are a finite open
simplicial complexXK and a semialgebraic homeomorphismiK| — M /G which is
compatible with{m (M), ..., 7(M(uy)} and 7(C). Let K’ denote the first barycen-
tric subdivision of K . LetZ denote the subcomplex(n(C)) of K’. For simplicity,
identify |K’| and|L| with M/G and C/G, respectively.

We claim that

X ={c=n"Y0o)| o is an open simplex ok’}
A ={c=n"Y0) |0 is an open simplex of.}

are desired semialgebra@ -CW complexes.
Let v, ..., v, be generically independent points &f'. The n -simplex{vo, ..., v,)
spanned by, ..., v, is defined by

n
(vo, ..., vp) = {Zt,-v,- cR™
i=0

The openn -simplexu, ..., v,) spanned by, ..., v, is defined by

(Uo, ...,Un): {ihv,‘ e R" il‘,‘ =1 ¢ > O}
i=0

i=0
Note that the open O-simplex ( ) spanned by is not empty butvireex set{v}.
Let Ay =(vg, ..., w) fork=0,...,n. We filter byAg C --- C Ay C--- C A,, where
A is considered as a subset&f  through the (semialgebraiktision i : Ay — A,.
For each open simplex of K’, we can viewos = (v, ..., v,) and letd denote
the closure ofs in |K’| = M/G. Then{ is obtained fromA, by deleting some lower
dimensional open faces. A straight filtration ®fis a filtration

il‘,‘:l, ti ZO}

i=0

F=0_1CHHC--Cboy =90

whered, =N A foral k=0,...,n. If o= =---=0,-1 =2 butd, 72, then
dimo; =i for all i > p. Moreover, the verticesy, ..., v, can be ordered in such a
way that

(i) o — d—1 has a constant isotropy type, saffy( ), for< k < n.
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(i) v, €9 =10,
(i) (H) < (Hy—1) < -+ < (Hp).

Since eachn -simplex oM /G is of the form ¢ we restrict our attention to the
orbit mapn: N =778 — N/G =6.

Ciam 1. There exists a semialgebraic glold@)  -sliceNof

Proof of Claim 1. It is enough to construct a semialgeb@ic apiV — G/H,,.
The construction is done by induction on dimensionsiotf dimg = 0, § is a point
and N is an orbit, and hence the semialgebi@ic -map(d) — G/H, is the iden-
tity map. Assume that there exists a semialgebtaic -pjap: 7 1(0,—1) — G/H,.
Then it is sufficient to extend th& -mafy_1 to 7= 1(0,) =N — G/H,.

Sinced, — J,—1 has one orbit type and contractible, there is a semialgeloraiss
sections :§, —d,_1 — N¥ C N. Let Y denote the closure of §(— §,_1) in N. Let
B =7"%5,_1)NY, then the orbit mapr maps ¢, B ) onto §,, 5,_1).

We now claim that there exists a semialgebraic retractianY — B. Let L
be a semialgebraic triangulation &  which is compatiblehwit. ReplaceL by its
barycentric subdivision. Take a regular open semialgebmaighborhoodl’ = St;, (B)
of B in L. Then, by [4, Theorem 1, Theorem 2.7], there is a seralaigic retraction
h: U’ — B since B is closed.

On the other hand, the s&t =U’) is a semialgebraic neighborhood &f ;.
Let T be a semialgebraic triangulation 6f which is compatible with{¢,_1, U, d,}
and replaceT by its barycentric subdivision. L&t be the rmguleighborhood
Sty (6,—1) of §,—1 in T. Thend,_1 C V C U. SinceV — §,_1 is contractible,
by [4, Theorem 3], there is a semialgebraic retractiord, - 6,1 — V — ,_1. Let
V' =7~ YV)NY C U'. Then the cross sectian induces the semialgebraic retracti

r'=sorom:Y—-B— V' —B.
By composingh and’, we get a semialgebraic retraction

hor' on Y—-B
Y =9.
id on B.

It extends to a semialgebrai6 -retraction N = 7=1(5,) — 7 1(d,_1) by ¢(gx) =

gy(x) for all g € G andx € Y. (Note thate is a G -map because §{—6,_1) C N7))
Hence we obtain a semialgebrait -m@p f=10¢: N — G/H,, and a global

semialgebraicH, -slices F, (eH,). O

CLaim 2. There exists a semialgebraic cross section = N of 7 such that any
point of §(; — dx—1) has the constant isotropy subgroup for eack B < n.
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Proof of Claim 2.  We prove the claim by the double inductiontba dimension
of G, and the number of components 6f

By Claim 1, there exists a semialgebraic retractipn N :— G/H, = 7 1(v,).

If H, # G, consider the slices = ~(eH,). ThenS is anH, -space with the orbit
spaceS/H, = N/G. By the induction hypothesis, we can find a semialgebraitisec
s:8 — 8 C 7 }8) = N of the orbit mapS — S/H,, and this section is a desired
section.

On the other hand iff, =G , thew® # (. Let N’ = N — N¢. Then¢’' =
§—m(N©) is again a simplex, and by the previous argument of the vdsmn H, # G,
we can find a semialgebraic sectieft &' — N’ of the orbit mapN’ — N’'/G. We
now define a semialgebraic sectioné == N by

s(x) = {s’(x), xed

77 x), x € n(NOY).
Such defined is continuous because is compact. U

Let c =7~ Y(o) and¢ the closure of iM . Than 7=%(5). By Claim 2, there
exists a semialgebraic cross sectign § — ¢ of the orbit map. We now define the
semialgebraic characteristi6 -mafp GyH. x 6 — ¢ by gH., x )— gss(x), where
H. is the isotropy subgroup of;(65” —¢"~1). The properties (1)—(5) follows easily from
the construction. This completes the proof. O

Note that the property (5) in Proposition 2.2 is the straigss condition ofX .

Proposition 2.3 ([16, p.166]). Let X be a finite openG GW complex structure
which satisfies(1)—(5) in Proposition 2.2 Then there exists a semialgebraic strong
G-deformation retractR: X’ x I — X’ such thatRy = R(-,0) = idy., R(a,t) = a
for all (a,7) € coX’) x I and R; = R(-,1) =r: X’ — co(X’) is a semialgebraic
G-retraction, where X’ is the first barycentric subdivision of

Derinimion 2.4, Let M be a semialgebraiG -set. gemialgebraicG €W com-
plex structure onM is, by definition, a finite opez -CW complex (fa¢ ) which sat-
isfies the properties (1)—(5) in Proposition 2.2. If we replX by its barycentric sub-
division, then there is a semialgebraic stroig -deformatietractionr :X — co(X)
by Proposition 2.3. Hence, without loss of generality we raggume thaevery semi-
algebraic G CW complex structureX on a semialgebra@ -set admits a semialge
braic strong G -deformation retractiomyx: X — co(X). In particular, every semialge-
braic G -CW complex structure is finite.

Note that the underlying space &f is equalMd . Therefore afsemialgebraic
G-set M, there exist a compact semialgebr@ic -sulset X co( M ofnd aasemi-
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algebraic strongs -deformation retrat M x I — M such thatRp = idy, R(a,t)=a
forall (a,t) € AxI andRy=r: M — A is a semialgebrai@; -retraction. Moreover,
the inclusioni :A — M is a semialgebrai&G -homotopy inverse rof . In particular,
is a semialgebraicz -homotopy equivalence.

RemArRk 2.5. Proposition 2.3 is proved in [16, Theorem 3.7 and p.1B6} since
the construction of thes -retraction is used in Section 3, ketch the proof of it
here for readers convenience. Lt be a semialgeliraic -CWpleanstructure on a
semialgebraia; -seM in & -representation sp@ce . We replace its barycentric
subdivision X’. For the semialgebraic characteristt -m#@p G/H x int(D") — ¢
of an openG -cellc ofX , lets denote the setf, el x int(D")) and let Go (resp.
f») denotec (respf. ). Then for each opénn - -a@lr, there exists a semialgebraic
characteristicG -mapf,: G/H x 6 — G& C X, where{ is a subset of a compact
standardn -simplexA” by removing some finite open lower-dirizarzd faces ofA” .
Thuso = f,(eH x int(d)) anda = f,(eH X ).

Put A = co( ). ThenA is the union of all ope@ -cekss of X such that
cl(Go) C M, wherecl Go) denotes the closure afio in Q. Namely, A is the union
of openG -cells which have semialgebraic characteristic psna: G/Hxd6 — Go =
Go such thaté is some compact standard -simplew . Themr N A # o for all
openG -cellsGo of X.

Let C, be the set of opes n- -cell§s of X such thatGo N A = @. Clearly C,
is a finite set and’p = @.

Let Xo = A and X, =AU X® for n > 1, whereX®™ is the n -skeleton ofY .
Clearly X, =AU {Go | Go € Cx, 0<k <n}.

For each operG n- -celGo € C,, by the nonequivariant result in [4], there exists
a nonequivariant semialgebraic strong deformation rétnacF’: o x I — & from & to
do = o —int(c). Hence we have a semialgebraic strafig -deformation tairac

Riz: G x I — Go (gx, 1) — gFX(x, 1)

from G7 to GOo(C X, —1).

Put R" =U{R}5 | Go € C,}. ThenR" : X, x I — X, is a semialgebraic strong
deformation retraction fronk, t&,_;. We denoteR" -( 1) and R}.;(-, 1) by " and
r¢=, respectively. Clearly” £{rl= | Go € C,}.

Then we can defin®™*1 @ R': X;y1 x [ — X for 1 < i,

R*(x, 2t) ifo<t<1/2

i+1 i —
R @ Ri(x. 0= { RI(R™(x, 1), 2 —1) if1/2<t<1.

The mapR in Proposition 2.3 is obtained by

R=R"®R" '® - -®R°®R: X xI—>X
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which is the desired semialgebraic stroidgy -deformatiomacébn from X to A ,
wherem = mi{n € N | X = X,}. In particularr =R; =rtor2o---or" Lo
is a semialgebraic; -retraction frod tb

Now we study some elementary properties of semialgelraicw eédmplex struc-
tures on semialgebrai¢ -sets, which are useful in the edaivaCW category. The
following three lemmas and proofs of them are semialgebraicsions of Corol-
lary 11.7, Lemma 11.8 and 11.9 given in [11].

Lemma 2.6. If X; and X, are two semialgebraicz GW complex structures on
a semialgebraicG -seiM, then there exists a semialgebraie CW complex structure
X* on M such thatX* is a commonG -subdivision of; and X».

Proof. For each (=,1 2) the orbit spadg/G is a finite open simplicial com-
plex structure ofM/G with underlying spaceM /G such that allr(c) are semialge-
braic subsets oM /G for all openG -cellsc ofX; , wherer: M — M/G is the or-
bit map. LetC be the set of subsets(c) for all open G -cellsc ofX; or X,. Then
C is a collection of finite semialgebraic subsets of a semiaigie setM/G. By the
nonequivariant triangulation theorem [5], there is a firs&mnialgebraic open simplicial
complex structure X/G)* of M/G which is compatible withC. By the straightness
of X;, (X/G)* induces a semialgebraic -CW complex structife on M which is
a commonG -subdivision ok; and X5. U

Lemma 2.7. Let X andY be semialgebrai& CW complex structures on some
semialgebraicG -sefgespectively. Iff: X — Y is a semialgebraioG -map then there
exists a semialgebrai&G -subdivisian* of Y such thatf: X — Y* is skeletal and
eachG -cellc ofX the image(c) is a G-CW subcomplex ot *.

Proof. Each opernG -cek oK is a semialgebra@ic -subsetXof , asmtdn
f(c) is a semialgebrai@&G -subset &f . Set

A ={f(c) | ¢ is an openG -cell ofX},
B={d | d is an openG -cell ofr'}.

ThenC = AU B is a family of finite semialgebrai&G -subsets Bf . Thus the set
m(C) ={x(d) | §€C}

is also a family of finite semialgebraic subsets 10fG, wherer is the orbit map of
Y. By the semialgebraic triangulation theorem [5], therestexia semialgebraic finite
open simplicial complex structur&  oF/G which is compatible withm(C). Then

K is a subdivision ofY /G. SinceY s straightk induces a semialgebréic -CW
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complexY* on Y which is compatible wittC. Let f:X/G — Y*/G be the induced
semialgebraic map by . Thefi is skeletal because every semialgebraic map can not
be dimension increasing, see [1, Theorem 2.2.8]. Hefic&X — Y* is also skeletal.

O

It is shown in [16] that any topologicali -homotopy class ofantinuousG -map
between two semialgebrai@ -sets can be represented by algebriaicG -map. From
this and the above lemma, we can see that any continGous -etagdn semialge-
braic G -sets isG -homotopic to @ -skeletal map.

Lemma 2.8. Let f: X — Y be a semialgebraiatG -map between semialgebraic
G-CW complex structures on some semialgebréic ;setspectively. Then there ex-
ists a semialgebraia@; -subdivisioki* of X such thatf maps each op&h -cell f
into an openG -cell ofY .

Proof. SinceY is a semialgebrai@ -CW complex structure,

A={f"Xd) | dis an openG -cell ofr}
is a family of finite semialgebrai&; -subsets Bf . Set
B={c | ¢ is an openG -cell ofx}.
ThenC = AUB is also a family of finite semialgebraic -subsetsXf . By thailgir
argument as in the proof of Lemma 2.7, there exists a senhied@eG -subdivisionX*
of X which is compatible withC. Clearly X* is the desiredG -CW complex. O

We shall use the following lemma to prove Theorem 1.1 in $ac8.

Lemma 2.9. Let f: M — N be a semialgebraiocG -homeomorphism between
semialgebraicG -sets. Then there are semialgeb@i€W-complexesXx and oM

and N, respectively such thatf: X — Y is a G-isomorphism of; GW complexes.

Proof. From Proposition 2.2 we take a semialgeb@ic -CW dexngtructure
X on M. Set

Y=f(X)={f(c) | ¢ is an openG -cell of X}.

Since f is a semialgebraic homeomorphisin, is a semialgellra@W complex
structure onN . Moreovef X — Y is a G -isomorphism of; -CW complexes. [
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3. The Whitehead group of a semialgebraidG-set

In this section we will prove Theorem 1.1. We first discuss edwmasic properties
of Whitehead groups and Whitehead torsions. For detail®i@fejuivariant Whitehead
group and the torsion we refer the reader to [6], [7] and [13].

Let G be a compact Lie group. For a finite complete -CW comptex e,de-
note its equivariant Whitehead group by WIX ( ). Note that M (s Jan abelian
group. Remember that each element of WX ( ) is an equivalelassg; (/, X ) of a
G-CW complex pair ¥, X ) such thax is a strodg -deformation retacdcV, where
two pairs (/, X ) and ¥, X ) are equivalent if there is an equivariarmial deforma-
tion from V to Wrel X.

A G-map f : X — Y between finite complet&; -CW complexes induces a group
homomorphismf,: Whg(X) — Whg(Y) defined by fi(sg(V, X)) = sg(V LfJ Y, Y).

Therefore
Whg : { finite completeG -CW compleXx — { abelian group}

is a covariant functor. For & -homotopy equivalenteX +— Y its Whitehead torsion
76(f) € Whg (X) is the classs 4 ), X) where Z (f) is the mapping cylinder of any
equivariant skeletal approximatioﬁ of f. This definition of the Whitehead torsion of
f is the same as the one defined in [6, 7]. Note that the Whiteheaibn of f is
defined to bef.(7¢(f)) € Whg (Y) in [13].

We now discuss basic properties of Whitehead groups andeWé#ad torsions.

Proposition 3.1 ([6, Lemma 2.1, 2.2 and Proposition 3.8], [7, Theorem B])et
X, Y and Z be finite complet&s GW complexes.
Q) If f, g: X — Y are G-maps which are&5 -homotopithen f,. = g.: Whg(X) —
Whg (Y).
(2) Let X* be an equivariant subdivision of . Then the identity nyapX* — X is
a simple G -homotopy equivalencand thus7s(f) = 0.
(3) Let f: X - Y andg: Y — Z be G -homotopy equivalences. Then we have

768 0 ) = 16(f) + - 76 (8).
(4) Let X CY C Z. If X is a strong G -deformation retract of andl is a strong
G-deformation retract ofZ . Then we have
s6(Z, X) =rusg(Z,Y)+s6(Y, X)

wherer: Y — X is a skeletalG -retract.

In nonequivariant case, we have the following proposition.

Lemma 3.2. If X is a simply connected finite comple®@W complex then
Wh(X) = 0.
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7 m(co(X))
m(coX))UT

Fig. 3.1.

The above lemma is obtained from the isomorphism Xh§ Wh(r1(X)) for a con-
nected spac& , see [3, Section 21], [6, Corollary 1.2.8], [1205].

From now onG denotes a compact semialgebraic group.Met benéalge-
braic G -set andX a semialgebrafe¢ -CW complex structureMdn nThere is a
semialgebraic strong; -deformation retractioh X :— co(X). Let X* be a semial-
gebraic G -subdivision ofX . Then the underlying space ofXco(s rdntained in the
underlying space of ca(*). Recall that coX ) and ca(*) are complete semialgebraic
G-CW complexes. Letj : cd )— co(X*) denote the inclusion map between the
underlying spaces. Thepn is skeletal apd #to( )) can be viemged G -CW sub-
complex of cok™). Moreover, the restriction mapx|cox+) Of rx is the semialgebraic
G-homotopy inverse of

Lemma 3.3. The inclusion mapj: co(X) — co(X*) is a simple G -homotopy
equivalence and thus;(j) = 0 € Whg (co(X))

Proof. It suffices to construct a forma -deformation from(Xt) to co(X).
With the same notation as in Remark 2.5, let be the maximagen such that
Ch # @. Let Go € Cy, i.e., Go is an openG r -cell ofX such thato Nco(X) =@
and Gz N co(X) # @. Note that the orbit space¥/G and X*/G are semialgebraic
finite open simplicial complex structures @d/G which are induced by the orbit map
m: M — M/G. We denoter(Gc) by 7. SetGB :=cok*)NGa, Gb(B) :=GBNX,_1
and C :=x(GB), b(C) = w(Gb(B)), see Fig. 3.1. TherC anb(C) are simplicial
subcomplexes of cal*/G). In particular, b(C) (and thusC ) is simply connected be-
causeT (and thusC ) is strong deformation retractia) w(co(X)) =C N w(co(X)) =
A"~1 The inclusioni :b(C) — C is a homotopically equivalent skeletal map. By
Lemma 3.2, we have Wh(C)) = 0, and thusi is a simple homotopy equivalence.
Hence there is a formal deformation fro®  t§C). Using the cross section from
7 =x(G7) to Gg and the givenG -action, we have a form@l -deformation fréw@
to Gb(C). By the finiteness of the number of elementsdpfand the induction argu-
ment onk , we get a formal; -deformation from &6() — co(X). O

Sincerx|cor+) © j = idcox), We havers(rx|cox+)) = —j«T6(j) = 0 € Whg (co(X™))
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from Proposition 3.1 and Lemma 3.3.

NotaTion. Let X be a semialgebrai6 -CW complex structure on a semigdgeb
G-setM . The mapy : cd ) M =X denotes the inclusion from c&( ) % and
rx: M = X — co(X) denotes the semialgebraic stro6g -deformation itetacin
Proposition 2.3. Letr be another semialgebr@ic -CW comptexcture onM . Then
we denotery oix = rylcox): €O(X)— co(Y') by A\f. Note thatA\¥ has a semialgebraic
G-homotopy inverse\k : co(Y) — co(X). So we denotak by (\¥)I=21.

Now we prove that any semialgebrait -set has a well-defimaglsiG -homotopy
type.

Lemma 3.4. Let M be a semialgebraicz -set. Le&f arid be semialgebraic
G-CW complex structures o . Them;(ry o ix) = 0 € Whg (co(X)), and thus\f =
ryoix: €o(X)— co(Y) is a simpleG -homotopy equivalence.

Proof. By Lemma 2.6, there exists a semialgebri@ic -CW coxmptaucture Z
on M which is a commorG -subdivision of anid . Lgt : &o(—)co(Z) denote
the inclusion map and thus the restriction magcoz) of rx is the G -homotopy in-
verse of jx . By Lemma 3.3jx is a simplé -homotopy equivalenee, ic(jx) =
0 € Whg (co(X)), and thusrg(rx|coz)) = —(jx)«7c(jx) = 0 € Whg(co(Z)). Similarly
we haverg(jy) = 0 € Whg(co(t')) andrg(ry|coez)) = 0 € Whg(co(Z)). By Proposi-
tion 3.1,

76(ry 0 ix) = 76(rylco@) © jx) = 76 (jx) + (ix)s t76(ry|cozy) = 0

in Whg (X). Thereforery oix: co(X) — co(Y) is a simpleG -homotopy equivalence.
O

It follows from Lemma 3.4 that the simpl& -homotopy type dh efided in
this way, is independent of the choice of the semialgebi€W -complex structure
on M.

Now we define the equivariant Whitehead group for a given akgebraicG -set
M. Let X andY be semialgebrai€ -CW complex structuresdn . Thenntlp
MY = ryoix: co(X) — co(Y) has aG -homotopy inversg}: co(Y) — co(X). By
Proposition 3.1, we have

()\;)* o ()\if)* = ()\§ o )\if)* = (idcogx))+ = idwhg (coex))

and Q). o (A%)« = idwh, (o)) Accordingly, the map\{ induces an isomorphism
(A\¥)«: Whg (coX )) = Whg (co(Y ))
with the inverse homomorphism
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(AX)«: Whg (co(t ) — Whg (co(X )).
Let us fix a semialgebrai@G -CW complex structuky on M. We define the
Whitehead group o by

Whg (M) := Whg (co(Xo)).

Thus we obtain the Whitehead group WM ( ) such that, for eachiadgebraic
G-CW complex structureX o/ , there is an isomorphism
(Ax)« 1 Whe (co(X')) = Whg (co(Xo)) = Whg (M)
where Ay = A% .
Now we prove Theorem 1.1.

Theorem 3.5(Theorem 1.1). Let M and N be semialgebraiG -sets.
(1) Any G -homotopy equivalencg: M — N has a well-defined equivariant White-
head torsionrg(f) € Whg (M).
(2) If f: M — N is a semialgebraioG -homeomorphism theg(f) = 0 € Whg (M),
and thusf is a simples -homotopy equivalence.

Proof. (1) We choose a semialgebrdic -CW complex structdresxdY onM
and N, respectively. Then the composite map

f:ryofOiX: CO(X)HCO(Y)

is a G -homotopy equivalence. We defire(f) = (Ax):(16(f)) € Whg(M) where
76(f) € Whg (co(X)).

It remains to prove that(f) is independent of the choice of semialgebraic
G-CW complex structures o and . Supposeand Y’ are another semialgebraic
G-CW complex structures o and , respectively. Put

f'=ry o foix: coX') — co(Y’).

Let \Y, =rxs oix: co(X)— co(X’) and A}, = ry: oiy: co(Y )— co(r’), then ), o 7,
f o X%, 1 co(X)— co(Y’) are G -homotopy equivalences which ate -homotopic, and
thus 76 (A}, o f) = 76(f’ o A%,)). By Proposition 3.1, we have

76(F) + £l e O0) = 6 (0\5) + (A5 6 ().

By Lemma 3.4,76(\%,) = 0 and6(\),) = 0, and thusrg () = (\X) 2 276 (f).

On the other hand), = rx:oix is G-homotopic tory:oix,orx,0ix = (Ax/) " toAy
becausex, o rx, = rx, is G-homotopic to the identity map ig on Xo. This implies
A5« = (Ox)EY). 0 (Ax)«. Hence we have

M)« (76(F)) = Ox) (76 (F)-



302 D.H. PRk AND D.Y. SuH

This completes the proof.

(2) By Lemma 2.9, there exist semialgebraic -CW complexctines X andY on
M and N, respectively, such thgt X — Y is a G -isomorphism of oper; -CW
complexesX andr . Moreovelf = ry o f oix = fleogx): CO(X) — co(Y) is also
a G-isomorphism of complet& -CW complexes Xo( ) andyco( ). Thys) = 0 €
Whg (co(X )). Thereforerg(f) = (Ax)«(76(f)) = 0 € Whg (M). O

4. H-reductions of semialgebraicG-CW complexes

In this section we introduce the notion of the identity -retion and the pre-
ferred H -reduction of aG -CW complexes, following [8, 9, 10].11

Note that, in this paper, we only treat a semialgebraic -d@thvis contained in
a semialgebrai@; -representation sp@€p) for some semialgebraiG -representation
p: G — GL,(R). Hence we can replacé Ipy(G)(C GL,(R)). In this case we know
that every compact subgroup of GIR) is algebraic (see [14, 17]), and thus semial-
gebraic. If H is a closed subgroup of a compact semialgebraamG (C GL,(R)),
then H is a compact subgroup of GRY, and thusH is a semialgebraic subgroup of
G. Conversely, every semialgebraic subgroup of a semiadigelyroup is closed ([18,
Corollary 2.8], [2]).

Let G denote a compact semialgebraic group, @&hd  a closed Igemiaic sub-
group of G. LetM be a semialgebra@ -set. We consider the intlamtions of H
on M by restricting the acting grougr t& , and denote this seyalalaic H -set
by My . Let X be a semialgebraic -CW complex structure Mn , andidenghe
induced action off orX . In this case one can always give Hhe cesfaa semial-
gebraic H -CW complex structure as follows.

Lemma 4.1. Let G be a compact semialgebraic group alld  a closed semialge-
braic subgroup ofG . LetM be a semialgebraie -set aXid a senieie G-CW
complex structure o/ . Then there is a semialgeb@icCW-complex structurd y X
on My such that eaclG -cell X is aH -subcomplex! gfX.

Proof. We recall that the orbit spadd/G and the orbit mapr: M — M/G
are semialgebraic. Th&€ -CW complex structsie  induces aadgetiraic finite open
simplicial complex structure&l /G of M/G by =. Note that each (opery -cell of is
an H -invariant semialgebraic set. Take a semialgebraicefiniten simplicial complex
structureL ofM/H which is compatible with open simplices a&f/G and orbit types
mu((Mu)x)) of My whererny: My — (My)/H is the orbit map. We replacé by
its barycentric subdivision. Theh.  induces a desired sem@ihic H -CW complex
structure J; X , see Proposition 2.2. ]

We call a semialgebraidd -CW complex structurg ¥ , as in Lemmniy 4n
identity H -reduction ofX following lllman in [11]. From Lemma 4.1 we have
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Corollary 4.2. Let X be a semialgebraioG GW complex structure on some
semialgebraicG -se . Ify X and 1%, X are two identity # -reductions of a semial-
gebraic G CW complexX then there exists an identity -reductlgnX of X which
is a commonH -subdivision df; X and I, X.

Proof. By Lemma 2.6, there exists a semialgebraéic -CW comgleucture
I% X which is a commonH -subdivision ofyIX and,IX. Then [; X also has the
property that eactG -cell ok is a semialgebraic (opgh) -CWceniplex of [; X,
and thus }; X is an identity H -reduction ofX . O

By considering the collection of allf -cells inyIX  contained |ioo(X)|, we can
view co(X) as a semialgebraif -CW complex structure|oa(X).

Corollary 4.3. Let M be a semialgebraicG -set anki a semialgebr&icCW
complex structure orM . Lej =ix: co(X )< co(lg X) be the inclusion map. Then
(1) n is a semialgebraicH -homotopy equivalenead
(2) if I'; X is another identityH -reduction ok ang’: co(X) — co(ly X) is the
inclusion mapthen ' o nl=: co(ly X) — co(l}; X) is a simple H -homotopy equiva-
lence wherer[—Y denotes anH# -homotopy inverse mf

Proof. (1) Sincerx X — co(X) is the semialgebraiG -homotopy inverse of
the inclusion mapy : cd 9§ X, the restriction x|coq, x): €0o(lz X) — co(X) is the
semialgebraicH -homotopy inverse of
(2) We choose another identity -reductidp X of X and the inclusion’: co(X) <
co(ly X). Since|ly X| = |1’y X| = |X| = M, we have the following diagram commute
up to H -homotopies:

’

co(X) i co(ly X)

Fx /
|co(IH X)

ryr [
rx leotty x) | | M x| i x

co(ly X)

X

Ty x
Thus#’ oyt~ and ry x o, x are H -homotopic. Hence, by Lemma 3.4,

7 onl=H: co(ly X) — co(l; X)
is a simple H -homotopy equivalence. ]

When M is a compact semialgebraic -set, every semialgeltfa@V eomplex
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structure X onM is finite and complete. Thus ¥o( )X , gl )FX ( dan
|X| = |l X| = M. From this we obtain the following corollary as a conseqeenf
Corollary 4.2 and 4.3.

Corollary 4.4. Let X be a semialgebrai¢; GW complex structure on a compact
semialgebraicG -seM, and letly X be an identityH -reduction ok . Thep X rep-
resents the simplé/ -homotopy type of the semialgebiaic Mset

In [8, 9], lllman proves the following proposition for the fia completeG -CW
complexes wherG is compact Lie group.

Proposition 4.5 ([8, 9]). Let G be a compact Lie group. For a finite com-
plete G CW complex X there exist a finite completé CW complexRy X and an
H-homotopy equivalencg: X — Ry X such that
(1) dim(Ry X ¥ =dimXxX ,for each closed subgroug df, and
(2) the H -isotropy types occurring iRy X and in the H -spaceX are equal.
Moreover n: X — Ry X is unique up to a simplédd -homotopy type., if ': X —
R); X is another such choice theql o nl=Y: Ry X — R}, X is a simple H -homotopy
equivalence.

We calln: X — Ry X apreferred H -reductiorof X following [8, 9, 11].

Suppose thaty, X ) is a finite complee@ -CW complex pair and thak —
Ry X is a preferredH -reduction ok . Then there exists a preferlededuction
n:V — Ry V of V, which extends), and this construction is unique up to a sim-
ple H-homotopy equivalenceel Ry X, see [9, Theorem 6.3].

Moreover, suppose thaf X — Y is a G-map between two finite complete
G-CW complexes. Let): X — Ry X andn: Y — RyY be preferredd -reductions
of X andY , respectively. Then we obtain an indudgd -map

RHf: Re X - RyY

by defining R; f =no fo 671 If fis a G-homotopy equivalence thenyRf  is an
H-homotopy equivalence.

The construction of a preferred/ -reduction X — Ry X and an identity
H-reduction |y X of X are quite different. However, the followirgyoposition says
that they agree for all semialgebraie¢ -CW complex strustuse a compact semi-
algebraicG -set. In fact, lllman [11] proves the followingoposition in the equivari-
ant subanalytic category by using similar techniques useitheé proof of Theorem 6.1
in [9]. If we follow exactly the same argument as in the prodf theorem 14.2
in [11], we can prove the following proposition. The detai® left to the reader.

Remember that every semialgebragic -CW complex structure eemialgebraic
set is (automatically) complete whet  is compact.
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Proposition 4.6 (cf. [11, Theorem 14.2]). Let M be a compact semialgebraic
G-set andX a complete semialgebraic CW complex structure oM . Ldty X be
an identity H -reduction. Then the identity map

0= |dX X —lgX
is a preferredH -reduction ok .

From Proposition 4.6, we have the following. L¥t aKhd be catgkemialge-
braic G -CW complex structures on some compact semialgeltresets. If f : X — Y
is aG-map then R f =idofoidi ! =idyofoidy = f = fu =lu f.

Generally, letX be a semialgebraiz -CW complex structure areraialgebraic
G-setM, and let 4 X be an identity/ -reduction &f . Recall thatXto( co(ly X)
denotes theH -CW complex structure on Xo( ) which is the cotlacof H-cells of
co(ly X) lying in the underlying space of c&( ). Then &b ¢o(ly X) and co(l X )
are complete and the set éb(Nxo(ly X) =coX)Nly X is a H-CW subcomplex of
co(ly X) with | co(X)Nco(ly X)| = | co(X)|. Moreover we can identify ca{ Nco(ly X)
with 15(co(X)). Thus by the above proposition

6 = idcox): co(X) — co(X)N co(ly X)

is a preferredH -reduction of c&( ). From this reason we degof& )N co(ly X) by
Ry (coX)).

5. The restriction homomorphism

In this section we construct the restriction homomorphi®es§: Whg(M) —
Whpy (M) for a semialgebrai@; -se¥  whed is a closed semialgetsabgroup
of G. lllman proves the following proposition.

Proposition 5.1 ([8, 9, 11]). Let G be a compact Lie group anfl  a closed
subgroup of G . LetX be a finite complet6 CW complex andRy X a pre-
ferred H -reduction ofX . Then there exists a well-defined retsn homomorphism
Reg, : Wh; ¥ ) — Why(X) as follows choose a preferredd -reductiof: X —
Ry X, and defineRes; §c ¢/, X)) =suz (R; V. Ry X )e Why (X). Moreover
(R1)suppose thatf: X — Y is a G-homotopy equivalence between finite complete
G-CW complexes and leRy f: Ry (X) — Ry (Y) be the H -homotopy equivalence
induced fromf . TheRes, ¢(f)) = ma(Ry f) € Why (X).

(R2)Let K < H < G. Then theK €W complexesRx (Ry X) and Rx X have the
same simplek -homotopy type. FurthermdRes! o Re$;, = Re§ for each finite com-
plete G CW complexX .

From this and Proposition 4.6, we have the following lemmam is compact.
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Lemma 5.2. Let M be a compact semialgebraic -set akd a semialgebraic
G-CW complex structure orM . Then there exists a well-definediotistn homomor-
phismRes; : Wh; & )— Why (X) which satisfies the above conditio(R1) and (R2).

We now consider the case whew is not necessarily a compadtlgebraic
G-set. LetX be a finite (open) semialgebra@ic -CW complex stinecbn M . As we
have mentioned in the previous sectiony R €o( )) = gd(l N do(X) is a preferred
H-reduction of coX ). Note that ca( ) is complete af@y (co(X)) = |co(X)|. Thus,
by Lemma 5.2, there exists a restriction homomorphism

Reg; : Wh; (cok ))— Why (co(x)) = Why (Ry (co )))

which satisfies the conditions (R1) and (R2). igt 5 R §o(<)) co(ly X) be the
inclusion map and letx X — co(X) be the (semialgebrai@y -restriction map. In
particular,ix is an (semialgebrai@y -homotopy equivalendt i x)l=Y = rx|coq,, x),
and hence

(ix)«: Why (R (coX )= Why (co(ly X))

is an isomorphism.
We are now able to define the restriction homomorphism

Res$: Whg (co(X )) — Why (co(ly X))

by Res§ = (ix)« o Reg, . Then, by the definition ORes$, we have the following
commutative diagram:

G
Resy

Whg (co(X )) Why (co(l X))

Whp (Ry (coX )))

Theorem 5.3. Let M and N be semialgebraicG -setand let X andY be
semialgebraic G EW complex structures oM  andV, respectively. Suppose that
f: X — Y is a G-homotopy equivalence and l&f f: co(ly X) — co(lgY) be
the H-homotopy equivalence induced frofp i.e., Iy f = rpy o f o if,x. Then
ResS(r6(f)) = mu(ly f) € Why (co(ly X)).

Proof. Since B (coX ))C co(ly X) C Gceo(ly X) C X, we can take a semi-
algebraic G -subdivision* of X which is compatible with the semialgebra@ -set
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G co(lg X). Then cok™) D co(ly X) becauseG cofl X ) is compact. Let ti¢ -maps

i1: Ry co(X)— Ry co(X*),
i2: Ry co(X)— co(ly X), and
i3: co(lg X) — Ry co(X*)

denote the inclusions so that = i3 o i,. By Lemma 3.3, the inclusiony : c&( )}
co(X*) is a simpleG -homotopy equivalence, i.eg(ix) = 0 € Whg(co(X)). It implies
that 74 (i1) = Re$; ¢6(ix)) =0 € Why (Ry (co(X ))) since Rix . Hence

su(Ru co(X™), Ry co(X)) =su (Z (1), Ry co(X)) = 0€ Why (Ry (co(X )))

where Z (1) denotes the mapping cylinder éf.
We now consider the following semialgebraic stroAg -defatiom retractions;

r1 = Rurx|r, corx+) Ru COX™) — Ry co(X),
ro =Ry rX|co(IH X)- co(ly X) - Ry co(X) and
r3 =1, x|R, corx+): Ru cOX*) — co(ly X)

with the H -homotopy inverseg for =1, 2, 3, respectively. Nibtat 1 andry o r3
are H -homotopic andy(r1) = 0 € Why (Ry co(X*)). By Proposition 3.1 (4), we have

(r2)«su(Rr co(X™), co(ly X)) +su (co(ly X ), Ry coX ))
=sy(Ry coX*), Rg co(X))=0Q

From this we have
su(Ru co(X™), co(ly X)) + (i2)+su(co(ly X), Ry co(X)) =Q
But from the definition of £,). we have
(i2)su(co(ln X), Ry co(X')) =sy (co(k X ) co(k X ))=0
in Why (co(ly X)). Hence
7u(i3) = su(Ry co(X™), co(ly X)) = 0€ Why (co(ly X)).

By Proposition 3.1, we havey(i;) =0 and7y () =0 for all k =1, 2, 3.

Let Ry f: Ry (coX)) — Rp(co(Y)) be theH -homotopy equivalence induced
from f, i€, Rif = Rs v o fleow)- By (R1) we have R&5 () = 7u(Ru f),
and so it remains to showaf.(7y(Ru f)) = Tu(lu f). Let i5: Ry colt ) — co(ln ¥)
denote the inclusion. Note thdf o Ry f and |y f o i» are H -homotopic and thus
TH(iéO Ry f) :TH(IH f o iz). But

(50 Ry £) =7u(Ru )+ R £ 7u(is) = (R f)
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and

(g f 0i2) = 7(i2) + (" Di(ru(ln 1) = (U D (rulla ).

Thus (2).(ta(Ry f)) =u(1x f). Hence we have
ResG(16(f)) = mu(ly f) € Why (co(ly X)). O

Recall that the Whitehead group Whv( ) of a semialgebi@ic issetefined by
Whg (co(X)) for arbitrarily semialgebrai; -CW complex struet X onM , and from
the definitions ofry(fx) and |y f we getry(fu) = Tu(r,v o f o, x) = Ta(lg f).
Thus we have the following.

Corollary 5.4. Let G be a compact semialgebraic group and ¥t  be a closed
semialgebraic subgroup off . Lé¥ amd  be semialgeb@ic -SHtgn there ex-
ists a well-defined restriction homomorphisRes$: Whg (M) — Whg (M) such that
if f: M — N is a G-homotopy equivalenc¢hen Res$ (76(f)) = Tu(fu) € Why (M),
where fy: My — Ny is the H -homotopy equivalence obtained from the restrictbn
the acting groupG toH .

As a consequence of Corollary 5.4, we obtain the following.

Corollary 5.5. Let M andN be semialgebrai¢G -sets. ff: M — N is a sim-
ple G-homotopy equivalence then the indudéd -nfap My — Ny by f is also a
simple H -homotopy equivalence.

Remark that ifM is compact semialgebraic thRas$ = Re$; and B f duf =
fu.

6. The transitivity property of the restriction homomorphi sm

In this sectionG denotes a compact semialgebraic group,kand H < G de-
note closed semialgebraic subgroupsf . We shall provertresitivity property in
condition (R2) of the restriction homomorphism.

Lemma 6.1. Let M be a semialgebraicG; -set. L&t  be a semialgeb@i€W-
complex structure oM . Then fdf < H < G
(1) co(lx (I X)) and co(lx X) have the same simpl& -homotopy type.
(2) Rk (Ry (coX )))and Rk (co(X)) have the same simpl& -homotopy type.

Proof. (1) Since & (4 X ) and ¢ X are semialgebraic -CW complexustr
tures onMg , coit (4 X )) and cofl X ) have the same sim@le -homotgpe tby
Lemma 3.4.
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(2) Because R (R (cA ))), R (cH( )) have the same underlyimgepco(X) and
co(X) is complete (and thus compact)x R s(R (€o( ))) and R Xcohaye the same
simple K -homotopy type by Lemma 3.4. U

Remark that Proposition 5.1 (R2) implies Lemma 6.1 (2) diyebecause cd( )
is a completeG -CW complex. Note that we can takeXl Ryt X1 ).

Theorem 6.2. Let X be a semialgebrai¢G GW complex structure on some semi-
algebraic G -set. Then foK < H < G the following diagram is commutative.

G
Resy

Whg (co(X )) Whg (co(lk X))

M %

Why; (co(ly X))

Proof. By the definition of the restriction homomorphis®es$ = (i1). o Re¢, ,
Rest = (iy). oRed! andRes¢ = (i3). o Re§ where

i1: Ry (co(X))— co(ly X),
i2: Rg(co(ly X)) co(lx X) and
iz: co(X)— co(lx X)

are the inclusions such thag =i, oi;.

Ciam. Red o(i1). = j.oRef wherej : R R (cd{ Y- Rg(co(ly X)) is the
inclusion.

Note thati, o j = i3 becausg Rx Ry (coX )] =|co(X)|. Hence we have

Rest o Res§ = (iz). o Reg o(i1). o Reg;
= (i2)« o j« o Ref o Re$;
= (i20 j)« o Re§
= (i), o Re§

=Res$.
So it remains to show the above claim.

Proof of Claim.  This follows from Lemma 6.1 and the definitioh Red! as
follows:

JjxoRes §u V. Ry (cok ))))
= j«(sx(Rx V, Rk Ry (coX ))))
= sk (Rxk V Urg Ry (cox )) R (CO(lr X)), Rk (co(ls X )))



310 D.H. Rrk AND D.Y. SuH
On the other hand

Reg! o(i1).(su (V. Ry (coX))))

= Reg! §u V Ur, (cox)) €Ol X), co(ly X)))

= 5k (Rx (V Ury (cox ) €O(ln X)), Rk (co(ly X))

=5k (Rk V Ur, Ry (cotx ) Rx (cO(lr X)), Rg (co(ly X )))

Hence Reg o(i1). = j. o Reg! . O
This completes the proof. U
As a corollary of Theorem 6.2, we have the following.

Corollary 6.3. Let G be a compact semialgebraic grgugnd K < H < G be
closed semialgebraic subgroups 6f . Lt be a semialgebtaiet then the fol-
lowing diagram commutes.

ResC

Whg (M) . Whg (M)
Why (M)
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