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BOUNDARY SLOPES FOR KNOTS

IcHiro TORISU

(Received November 7, 1994)

Let T be a torus. By the slope of an essential simple closed curve on T we
mean its isotopy class. The distance A(r1, 72) between two slopes 71 and 72 is
defined to be |71* 72|, where 71 and 7: are curves with slopes 71 and 72 and * denotes
homological intersection number. (Note that this is independent of all orienta-
tions. Note also that 4 is not a metric on the set of slopes ; the triangle inequality
does not hold.)

Now let M be an irreducible, orientable 3-manifold and 7 a torus component
of M. Let (F, 0F)C(M, T) be an incompressible, boundary incompressible,
orientable, genus g surface. Then the components of dF all have the same slope
on T, and we call this the boundary slope of F. Let S(M), denote the set of
boundary slopes of such genus g surfaces. When M is an exterior E(K) of a knot
K, we write S(E(K)), as S(K),.

Gordon and Luecke gave estimations of d-slopes in S(M)o and S(M),, and
showed that their estimations are the best possible (see [1], [3], [4]). So far,
however, there is no estimation of d-slopes in S(M), for g=2.

In this paper, we give some estimation of d-slopes in S(M)g for arbitrary g
when M has a certain geometric restriction, and we give an example which
estimates the strength of the theorem.

Our main results are then the following.

Theorem 1. If M has no essential annulus, then for any ¢, ¢2=1, nE
S(M)g,, ES(M)g,, we have A(r1, 12)<36(2¢1—1)(2¢2—1).

Theorem 2. Suppose a knot K has an m-string 0-irreducible tangle decom-
position.

(i) Let a/b (*0/1) be an element of S(K)y, where a and b are coprime
integers. Then |b|<g/m.

(i) g(K)=(m+1)/2, where g(K) is the genus of K.

Theorem 3. For any n non-trivial knots K, -+, K, and a/bES(Ki#t--#
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K»)g, we have |b|<g/(n—1).

The organization is as follows. In sections 1 and 2 we prove above theorems.
In section 3 we give an example which concerns Theorem 2 and construct 0-
irreducible tangles systematically.

1. Proof of Theorem 1

Let N(--) denote a tublar neighbourhood. Let G be a finite graph in a closed
surface S. We take edges and faces of G to be open edges and faces, i.e., compo-
nents of G—{vertices} and S— G, respectively. Then an edge e belongs to a face
fif eCcl(f), where cl(f) denotes the closure of f in S. A face is 1-sided if it has
only one edge (and one vertex).

To prove Theorem 1 we need the following lemma ([2, Lemma 6.2]).

Lemma 1.1. Let I" be a finite graph in a closed surface S, with V vertices
and no 1-sided faces which are open discs. Suppose that, for some integer n=
2, every vertex of I' has order greater than (max{[6(1—x(S)/ V)], 1})(n—1).
Then I' has n mutually parallel edges.

Suppose, for a contradiction, 4=4(r1, 2)>36(2g1—1)(2g.—1). Let F; be an
incompressible, d-incompressible, orientable, connected, genus g: surface with
d-slope 7: (1=1, 2). After an isotopy of F; we may assume that F1 and F3 intersect
transversely, and each component of dF; [resp. 0F:] intersects that of dF: [resp.
oF>] exactly 4(, 72) times. Then FiN F,=AIIS, where A is a disjoint union of
properly embedded arcs and S is a disjoint union of simple closed curves. By a
standard disc swapping argument, using the incompressibility of F} [resp. F:], we
may assume that no component of S bounds a disc on F» [resp. Fi]. Asin [2],
we form graphs Gr,, Gr, as follows. Let F; be the closed surface obtained by
capping off the boundary components of F; by disc (/=1, 2). We obtain a graph
Gr, in Fy by taking as the “fat” vertices of Gr, the discs attached as above, and as
the edges of Gr,, the arcs in A. Similarly we obtain the graph Gr, in F:. Since
Fi [resp. F:] is 0-incompressible, we may assume (again by a standard disc
swapping argument) that Gr, [resp. Gr,] has no 1-sided faces. Let #: denote the
number of boundary components of Gr, (=1, 2). Then Gr, has %, vertices, each
of order 4n; (i¥j). By a homological argument, we may assume #2>2. (If n,=
1, then OF: is null-homologus in Hi(E(K)). Hence d-slope of F;is 0/1.) Then by
the assumption, 4#:>36(2g1—1)(2g.—1)n2>6(2g1—1){6(2g:— 1) %2 —1} >[6(1—(2
—2¢1)/11)[{6(2g2—1)n2—1}. Hence by Lemma 1.1, Gr, has 6(2g:—1) 7. mutually
parallel edges. Let I" be the subgraph of Gr, arising from these edges. Then the
order of each vertex of I' is 6(2g.—1). Since 6(2g:—1)>[6(1—(2—2¢)/n:)], by
Lemma 1.1 again, I" has parallel edges. Let e and e: be edges of I" which are
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parallel and adjacent in F3, and let B [resp. E] be the disc in F; [resp. F2] cut off
by e; and e;. Put A=BUE, then A is either an annulus or a M&bius band
properly embedded in M.

Case 1. A=BUE is an annulus: Then 0A is a union of two essential
simple loops on 7.

CLamM. A is not boundary parallel.

Proof. If A is boundary parallel, then e; partially bounds a boundary
compression disc of F3i, a contradiction.

By Claim and the assumption of the theorem, A is compressible, and hence T°
is compressible. Then it follows that M is a solid torus by the irreducibility of M.
This is a contradiction, since a solid torus has only one 0-slope.

Case 2. A=BUE is a Mébius band : If 0A is an inessential loop on T,
then the disc on T bounded by 0A and A make P? in M ; therefore M =M'#P3,
for some 3-manifold M’, a contradiction. Hence, 0A is an essential loop on 7.
Since M is orientable, N(A) is a twisted I-bundle over A. Therefore A= FrN(A)
is an annulus properly embedded in M, where F>N(A) is the frontier of N(A) in
M. By the assumption, A is compressible or boundary compressible. If A is
compressible, then by the argument in Case 1, we have a contradiction. Hence A
is boundary compressible. Thus we see A is boundary parallel by using the
irreducibility of M and the fact that A=F7N(A) is separating. Therefore M is a
union of N(A) and AX I along AX0; so M=N(A)=S'XD? a contradiction.
This completes the proof of Theorem 1.

2. Proof of Theorem 2 and Theorem 3

Let K be a knot in S®. The exterior of K is E(K)=S*—intN(K). A tangle
(B, t) is a pair that consists of a 3-ball B and a 1-dimensional manifold ¢ properly
embedded in B. A tangle (B, t) is an m-string tangle if t consists of # number
of arcs. A tangle (B, t) is called d-irreducible if d(c/(B— N(t))) is incompressible
in c/(B—N(t)). We say that K has an m-string d-irreducible tangle decomposi-
tion if it can be expressed as a sum of two #-string 0-irreducible tangles, i.e., there
is a sphere S meeting K transversely in 2 points, such that each of the balls
bounded by S determines, with its intersection with K, an m-string 0-irreducible
tangle.

Proof of Theorem 2. Suppose K is expressed as the sum of two #m-string
d-irreducible tangles (B, #1) and (B, t;). Let P denote dBiNE(K) (=0B:N
E(K)), then P is incompressible and 0J-incompressible by the definition of a
o-irreducible tangle and an argument in [6, Lemma 1.10]. Let F be an incompress-
ible, d-incompressible, orientable, connected, genus g surface with d-slope a/b. As
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in the proof of Theorem 1, we may assume that each component of JF [resp. oP]
intersects that of P [resp. 0F ] exactly |5| times, and we define F', P, Gr, and Gp.
Again we may assume that Gr and Gr have no 1-sided face.

Lemma 2.1. There is no disc face in Gr.

Proof. Suppose there is a disc face D in Gr, and D is contained in Bi. Then
cl(D)N(cl(Bi—N(t))) is a simple loop in d(c/(Bi—N(t))). By the definition
of a d-irreducible tangle, ¢/(D)Nd(c/(Bi—N(t))) bounds a disc D" in d(cl(B:
—N(#))). Let a be a component of 0D’ N 0P which is outermost disc in D’, and
let d be the (outermost) disc in D’ cut off by @. Then d is contained in P and it
produces a 1-sided face in Gr, a contradiction.

Let V and E, respectively, be the numbers of the vertices and the edges of Gr.
Note that E=m|b| V.

Lemma 22. g=> V(mlbl—l)/AZ+1
Proof. Note that 2—2g=yx(F)=V —E+X:x(F;), where F; runs over all
faces of Gr. Since x(F:)<0 by Lemma 2.1, we have 2—29< V—E=(1—m|d|) V.

If F is a Seifert surface, then @/5=0/1 and V' =1. Therefore, by Lemma 2.
2, g=(m+1)/2.

If F is not a Seifert surface, then V' >2. Therefore, again by Lemma 2.2, g=
m|b).

This completes the proof of Theorem 2.

Proof of Theorem 3. Let A, ***, An-1 denote the annuli in E(K) defining the
connected sum as illustrated in Figure 2.1, and put P=U7{A..

A An-1

Figure 2.1
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We define F, P, Gr, G, E, and V as in the proof of Theorem 2. Then Gr does
not have a disc face. To show this note that P cuts E(K) into the disjoint union
"1E(K;). Suppose Gr has a disc face D. Then D is a properly embedded disc

in some E(K:), and we can see that 0D is essential in dE(K;). This implies that
K; is a trivial knot, a contradiction.

Next we remark £=(n—1)|b|V. Then as in the proof of Lemma 2.2, we see
2—29<V—E=V—(n—1)|b|V. Hence, g= V{(n—1)|b|—1}/2+1.

If V=2, then we obtain g=(%—1)|5|. If V=1, then F is a Seifert surface, and
hence g(Kift-#Kn)=n>n—1.

This completes the proof of Theorem 3.

3. Constructing d-irreducible Tangles

In this section, we give a systematic construction of d-irreducible tangles. And
combining the results of [5] with this construction, we present examples of knots
which estimate the strength of Theorem 2.

A Montesinos tangle T(r1, -, 7a) (r:€QU{1/0}) is a tangle illustrated in
Figure 3.1.

where is a rational tangle of slope r i

Figure 3.1

First we study which Montesions tangle is d-irreducible.

Theorem 4. Suppose n=2, ;€ Z U{1/0} (1<i<wn), and n, r»E{q/2|q<
Z}. Then T(n, -+, vn) is a 0-irreducible tangle.

REMARK.

(1) (B, t)=T(@1/2, p/q) is not a o-irreducible tangle, indeed, c/(B— N(t))
is a genus 2 handlebody.

(2) After having done this work, the author learned that Wu [7] had
proved that, except for trivial cases, a Montesinos tangle which is not 0-irreducible
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is T(1/2, p/q).

Proof of Theorem 4. Put T(7, =+, 7»)=(B, t), E(t)=cl/(B—N(t)), and let
A, -+, An-1 be the surfaces in E(¢) as illustrated in Figure 3.2.

Figure 3.2

Then U7 A; decomposes E(¢) into [17=1E(t:), where E(t:) is the exterior ¢/(B;
—N(t:)) of a rational tangle (B;, ) of slope 7: (1<i<n).

Suppose E(t) has a compressing disc D. Then we may assume D intersects U
A; transversely. By using the assumption that 7;%1/0 (1<7<#), we can isotope
D so that DN (U A;) consists of only arcs. In the following, we assume that |D N
(UA;)| is minimized ; we see this number is not zero by using the same assump-
tion. Let @ be a component of DN (U A;) which is outermost in D, and let E be
the disc in D cut off by @, such that (int E)N(UA:;)=#. Then a lies in some A,
and (A;, @) is of one of the six types illustrated in Figure 3.3.

type (i) type (ii) type (iii)

)
ap
(.

type (iv) type (v) type (vi)

Figure 3.3
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Then one of the following three cases occurs.

(1) E is contained in E(#) (or E(tx)) and E(#) (or E(t)) is of X-type.

(2) E is contained in E(#) (or E(tx)) and E(#) (or E(tx)) is of Y-type.

(3) E is contained in E(#;), where 2<;<n—1.

Here, we say that E(#) [resp. E(t.)] is of X-type if each component of
F»N(t) [resp. F¥N(¢)] has one boundary component in A; [resp. A.-1], Y-type
otherwise. We show that we can find a contradiction in any case. We consider only
Case (2), because the arguments for Cases (1) and (3) are similar to that for Case
(2). It should be noted that (Ai, @) is not of type (vi) since E(#) is of Y-type.

Without loss of generality we assume E is contained in E(#). Put S=c/(0E
—a), and Ti and T3 the components of F7N(#) ; we assume that T: N\ @=0 in case
a is of type (ii), (iii), (iv), or (vi). By elementary but careful arguments, we may
assume (E(#), A1, E) is as illustrated in Figure 3.4 (i)-(v) according as the type of
(A1, @). Here, in case (A1, a) is of type (v), Figure 3.4 (v) illustrates (E(#), Ai,
E) only modulo integral twists of E(t).

type (ii) typeiii)

type (iv) type (v)

Figure 3.4

These figures imply that (1) if (A, a) is of type (i), (ii), (iii), or (iv), then »1=1/
0 and (2) if (A1, @) is of type (v), then »1=¢/2 with ¢ an odd integer. This is a
contradiction.

This completes the proof of Theorem 4.[]

From now, a thorough understanding of [5] is assumed, and we investigate the
genus of the surface realizing a od-slope in the following proposition.
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Proposition 1 ([5, Proposition 2.2]). For each p/qE Q, there exists an
incompressible, 0-incompressible, orientable surface in the complement of some
Montesinos knot, with o-slope p/q.

Concerning Theorem 2, we look for surfaces whose d-slopes have denomina-
tors ¢. Then, following the first half of the proof of the above proposition, we
obtain the following theorem.

Theorem 5. For a natural number q, let K, be the Montesinos knot M(2/
7, 1/(8¢+13), —1/3, 5/18, 1/(8¢+13), —1/3) or M(2/7, 1/(8¢+13), —1/3, 2/17,
1/(8¢+13), —1/3,5/18,1/(8¢q+13), —1/3) according as q is odd or even. Then
E(K,) contains an incompressible, 0-incompressible, orientable surface Sq, such
that the denominator of the o-slope of Sq is q, and the genus of Sq is at most
cq where c is a constant independent of q.

REMARK. By Theorem 4, K, has a 2-string 0-irreducible tangle decomposi-
tion.

We give the proof only for the case where ¢ is odd, because the proof for the
case where ¢ is even is similar.

Proof of Theorem 5. We shall use notations of [5]. First we recall the
construction of the K (see [5, pp. 455-456]). Viewing S® as the join of two circles
A and B, let the circle B be subdivided as a six-sided polygon. Then the join of
A with the 7th edge of B is a ball B;. Put H;=B:N B;+1=0B; N 0B;+1, then 0B;
=H;_1UH;. The 6 balls B; (1<7<6) cover S*. Recall that (S? K,) is constructed
as the union (B, #) U+ U(Bs, ts), where (B, t1), -+, (Bs, fs) are rational tangles
of slopes 2/7, --,—1/3 respectively. In the proof of Proposition 1, an incompress-
ible, d-incompressible, orientable, candidate surface Sq is constructed as follows.
For each rational tangle (B, ), choose an edgepath 7y: as follows.

— 71 goes linearly from (1, 6, 2) to the point A=(4¢g—3)(1, 2, 1)+3(1, 6, 2).

— 72 and 75 go linearly from (1, 8¢+12, 1) to the point B=(4g—1)(1, 0, 0)+(1,
8¢+12, 1).

— s and 7s are constant, at the point C=(4¢, 8¢+12, —4—4q).

— 74 first goes linearly from (1, 17, 5) to (1, 6, 2) and second goes linearly (1, 6, 2)
to the point A.

To each 7, a surface S; in (B, #) is associated so that S;NH;=S:11NH..
Then S;=U7?1S:. The d-slope of Sy is given by 7(S;) — 7(S,), where 7(Sq)=2/
g—2, and 7(So) is a certain integer associated with a Seifert surface So. Hence the
denominator of the d-slope of Sy is q.

Finally we roughly estimate the genus of S,.

(1) Through all S; the number of saddles is less than cig, where ¢ is a
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constant independent of ¢ (1<7<6).

(2) The number of arcs in H;NS: is less than cz2q, where c2 is a constant
independent of g (1<7<6).

Hence we can see that the genus of Sy is at most ¢g, where ¢ is a constant
independent of g.

This completes the proof of Theorem 3.
REMARK. In Theorem 5 we can take ¢=100.
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