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1. Preliminaries and notations

In [2] and [3], we studied the properties of unit-regular rings satisfying the
comparability axiom. In this paper, we shall investigate unit-regular rings satisfying
s-comparability which is a generalized notion of the comparability axiom. In
section 2, we shall show that these rings have the property (DF), that is, P@®Q is
directly finite for every two directly finite projective modules P and Q. In section
3, we shall obtain a criterion of direct finiteness of projective modules over these
rings (Proposition 4 and Theorem 7). Using this result, we can determine the
types of directly finite projective modules and classify the family of all unit-regular
rings satisfying s-comparability into three types; Types A, B and C (Theorem
12). In section 4, we shall give the ideal-theoretic characterization for Types A,
B and C (Theorems 14, 15 and 16).

Throughout this paper, R is a ring with identity and all modules are unital
right R-modules.

NotATiON. If M and N are R-modules, then the notation NSM (resp.
NS @ M) means that N is isomorphic to a submodule of M (resp. N is isomorphic
to a direct summand of M). For a cardinal number « and an R-module M, aM
denotes the direct sum of a-copies of M. For a set X, we denote the cardinal
number of X by |X|. We denote by N, the set of all positive integers.

DEFINITION. A ring R is directly finite if xy =1 implies yx=1for all x,ye R. An
R-module M is directly finite if Endg(M) is directly finite. A ring R (a module
M) is directly infinite if it is not directly finite. It is well-known that M is directly
finite if and only if M is not isomorphic to a proper direct summand of M itself. A
ring R is said to be a unit-regular ring if, for each xe R, there exists a unit (i.e.
an invertible element) u of R such that xux=x. Let s be a positive integer. Then
a regular ring R is said to satisfy s-comparability provided that for any x,y€R,
either xR<s(yR) or yR<Ss(xR). Note that 1-comparability is called the
comparability axiom.
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Now we shall recall some elementary properties (see [2, Lemma 1]).

Let R be a unit-regular ring. Then

(1) Every finitely generated projective R-module P has the cancellation
property, and so P is directly finite.

(2) For any projective R-module X and any finitely generated projective
R-modules Y,,Y,,--- such that Y,®--- @Y, <X for all positive integers n, we have
that ®2,Y,<X.

(3) Let P and Q be projective R-modules such that Q is finitely
generated. Then P@®Q is directly finite if and only if so is P.

All basic results concerning regular rings can be found in a book by
K. R. Goodearl [1].

2. The property (DF)

Lemma 1. Let R be a unit-regular ring, and P be a projective R-module with
a cyclic decomposition P=@®;P,. Then the following conditions (a)~(c) are
equivalent.

(@) P is directly infinite.

(b) There exists a nonzero principal right ideal X of R such that
XS ®icr—gy,...iyPi for every finite subset {iy,---,i,} of I

(c) There exists a nonzero principal right ideal X of R such that ¥, X<@® P.

Proof. (b)=(c)=>(a)are clear. We will show (a)=>(b). Suppose P is directly
infinite. Then there exists a nonzero module Y such that P~P@®Y, and so we
can take a nonzero principal right ideal X of R such that X<Y and
XSSP, )® - ® P, for some finite subset {n(1),---,m(1)} of . Put I'=I—{iy, -,i,}.
Using that P~P@Y, we have that

(Puty® - @ Ppy1)) D(P;, @ - P )D(Dicr, P)
~(Ppy® -+ ®Pm(1))@(Pi1® - OP)D(Dier, P)DY.
Noting that every finitely generated projective module has the cancellation property,

we see that @, Pi~(®Piep, P)DY, and so XS Y S @y, P; as desired.

Proposition 2. Let R be a unit-regular ring satisfying s-comparability, and P
be a projective R-module. Then P is directly finite if and only if so is nP for every
positive integer n.

Proof. “If part” is clear. We will show “Only if part”. It is sufficient to
prove that if 2P is directly infinite, then so is P. Let P~@®, P; be a principal
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right ideal decomposition for P. Assume that 2P is directly infinite. From Lemma
1, there exists a nonzero principal right ideal X of R such that

Xs(Pn(1)®Pn(l)+ 1)® @(Pm(l)@Pm(l)+l)!
Xs(Pn(2)®Pn(2)+ l)® o @(Pm(2)®Pm(2)+ 1),

for some sequence n(1)=n(l)+1<m(l)=m(1)+1<n2)=n2)+1<m(2)=m(2)+1
<. of I, and so P,;=P,;+,; and P,; =P, for every positive integer i. We
shall argue in steps (I), (IT) and (III).

Step (I). Noting that X S(P,1y®Ppi1)+1)® - ®(Pp1y® Py +1), We have a
decomposition X=@;,x; R such that x; RSP, for each i;=n(1),n(1)+1,---,m(1),
m(1)+1 by [1, Lemma 2.7]. Using that X S(P,2)® Py2)+1)® -+ @ (Pp(2)® P2y + 1)
we have a decomposition

X (X2 RO Xp(2)+ 1 R)D * - D(Xp2) RO X py(2)+ 1 R)
for some x,,R<® P,,, where i, =n(2),n(2)+1,---,m(2), m2)+1 and
X, R~@®;,x;, ;R

for some x;,; R<x;,,R<@® P, by [1, Corollary 2.9].

12,11

Therefore there exists a decomposition
X=®;,;,x;,,R
such that
Xy R~x;,,R<x; R and
2(x;,i,R)~x;  ,R®x;, ;, RSP; P,

112 172 12,11

§(Pn(1)<'B "'(_BPm(l))@(Pn(Z)@ "'®Pm(2)) (éP)

Next, noting that X <S(P,3®Puizy+1)®D - (Ppaz)® Prmzy+1)» We have decomposi-
tions

X= @ihizx R

irf2
~ (X 3y RO X3y + 1 R)D + - D (Xpn(3)RD X3y + 1R)
for some x;,R<@® P,,, where iy=n(3),n(3)+1,---,m(3), m3)+1 and

Xi iR

3,i1'2

R~®,;x;

1i2
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for some x;,;;,,R<x;,R<@® P;,. Therefore there exists a decomposition

xilxizR= ®i3xi1izi3R
such that
xilizistxis.inizR
and hence
X= ®ix,i2xi1izR = ®i1,i2,i3xi1i2i3R
such that
344451, B) = 2(X4,4,1, VD Xy, 1,1, RS 2(x,,1, R)D X, 5,1, R
§Pi1@Piz®Pi3

S(Py1)® P 1) D(Py2)® - @ Ppy2)B(Py3)®@ - @ Pp3) (£ P).
Continuing this procedure, we have a decomposition
X=®i i, isXiyiz iR
such that

5(x4,65...i,R)

S(Pn(l)@ @Pmu))@ @(Pn(s)@ ‘”@Pm(s)) (éP)
for each iy,i,,- -,i.

Step (I). Noting that X S(Pug+ 1)@ Puis+1)+1)D @ (Pruis+ 1)® Pruis+ 1y +1)s
we may assume with no loss of generality that XSSP,y ®Puss1y+1>
and $O X2X,41)R® X541+ 1R for some x4 \R<® Ppiiqy and X441 R
<@ Pusry+1- We put wyy \R=X, yRN X4 1)+ 1R in R, and so there exist
principal right ideals y,,+)R and y,41y+1R of R such that

Xn(s+ 1)y R =Wnis+ 1)ROYnis + R,
Xnis+ 1)+ 1R=Xp(s1 )R®Ypis+ 1)+ 1 R and
Wais+ 1y RO Vs + ) RO Yn(s+ 1)+ 1R S Pus 41y -
Therefore,
X2 Xpo 4 nyROXys+1)+1R
~(Wnis + RO Vs + /RO Vs + 1)+ 1 R)@Wys+ R

SPus+ 1)@ Was+ )R-
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We can take a direct summand z,;R of X such that z;R~w,,,,,R. Next, noting
that W hRS X S(Puis+2)®Pus+2)+ 0D+ D (Prns+ 2)® Prs 4 2)+ 1), We have that
Wais+ )R 2 X5+ 2) RO X5 4 2) 4 1R)D ++* @ (Xpuis + 2y RO Xpnis 1 29+ 1 R) for some x4 R
<@ Pus+2y Xns+2)+1R <@ Puiayits s Xmes )R <@ Prsrz) and Xp42)4 1R
<® Ppi+2p+1- We put wiR=x;Rnx;.,R in R for each i=n(s+2),---,m(s+2),
from which we have decompositions

x;R=w;R®y;R,
Xiy 1 R=wW;R®y; 1R for some y,R<® x;R and y,,;R<® x;,,R
and
X R®xX; 4 | R=(W;,R®y;R®y;+ R)®wW,R S P;®w;R

for each i = n(s+2),---,m(s+2). Therefore w, 4 \,R < (Pys+2) @@ Ppss2)
D Was+2)RD - @Wps+2)R) and 2Wy 4 2)RD -+ @ Wpnis 4 2)R) SWys+ nyR. We can
take a direct summand z,R of w,,, )R such that z,R>~w, ) R® - ®W,4+ R,
and hence

Xs(Pn(s+l)® @Pm(s+1))®(Pn(s+2)@ "'®Pm(s+2))@Z2R
and
2z;R) SWys+ yR224 R

Continuing this procedure, we can take a family {z,R};2, of principal right ideals
of R such that

Xs(Pn(s-&’ 1)® ®Pm(s+ 1))@ @(Pn(s+k)@ “'@Pm(s+k))@sz9
X=2z,Rz2z,RZ---, and that

2(z,+R) Sz R for each positive integer k.

Step (III). We claim that z;R<S(P,)® - @ Pp(1)® - ®(Pyy® -+ ® Py for
some positive integer k. We assume that z R £s(x,;,... R) for all ij,iy--,i, and
k, and so z,R#0. Using that R satisfies s-comparability, x;;,..; R<s(z.R), and
so we have that X=xil,iz,,..isxiliz._.isRSS‘(zk,R)_,ﬁ_(s'+1)(zk,R)5X for some positive
integer / and k' by step (II), which contradicts the direct finiteness of X. Hence
there exist positive integers iy,---,i; and k such that z R s(x R)S (P
D DPp1)D -+ B(Ppiy® -+ @ Pps)) by step (D).

Combining steps (II) and (III), we see that X <S(Pus+1)® @ P+ 1))
DD (Pn(s+k)@"‘@Pm(s+k)) @ zZR S (Pnu)@ "'@Pm(l)) DD (Pn(s+k)
@ ®Pps+ry) (SP). Similarly, we apply the above discussion for I—{n(1),n(1)+1,
-, m(s+k),m(s+k)+1}. Continuing this procedure, we have that 8§ (X<® P,
from which P is directly infinite. Therefore the proof of the proposition is complete.

igipig
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Theorem 3. Let R be a unit-regular ring satisfying s-comparability. Then R
has the property (DF), that is, P@®Q is directly finite for every two directly finite
projective R-modules P and Q.

Proof. Let P=@;,P; and Q=®;;, Q; be cyclic decompositions of P and
Q. Assume that P@Q is directly infinite. We may assume, without loss of
generality, that /=1' and |I]=oc0 by the elementary properties (1) and (3). From
Lemma 1, there exist a nonzero principal right ideal X of R and a sequence
nl)< - <m(l)<n(2)<:-- <m(2)< --- of I such that

X S(Pp1y® Q1)@ ++* B (P (1)@ Crm1))>
XS (Pn(2)® Qn(Z))('B ot @(Pm(2)® Qm(Z)),

from which we have a decomposition X=p,R®¢;R for each positive integer i such
that p, RSP, ® -+ ® Py and ;RS 0,y ® - ®Q,y.  Set J={ie Ny | p,R<s(q;R)}.
If |[J|=00, then X=p,ROqRS(s+1)q;R for all ieJ, and so N X=X
SO +)PigiRNSD® (s+1)Q. Therefore (s+1)Q is directly infinite, and so
is Q by Proposition 2. Otherwise [J|<oo. We see that |J'|= o0, where J'=N,—J.
Then ¢;R<Ss(p;R) for all ieJ’, and so X=p,ROq;RS(s+ 1)(p;R), hence N XS D
®Dicrr W+HDPRS® (s+1)P. Therefore (s+1)P is directly infinite, ans so is
P. Thus the theorem is proved.

3. Directly finite projective modules

In this section, we shall determine the types of directly finite projective modules.

Proposition 4. Let R be a unit-regular ring satisfying s-comparability, and P
be a non-finitely and non-countably generated projective R-module with a cyclic
decomposition P= @ P;, where ||>¥,. Then P is directly infinite.

Proof. For each iel, put I,={jel| P,<sP;}. If |[[|= ¥, for some i€, then
we see that Ry P, <@ (Dier,sP) <@ sP, from which sP is directly infinite, hence
so is P from Proposition 2. Thus we may assume that |/} is finite for all iel. We
can take i;el, iel—1I, ,iyeI—(I;, Ul,) and so on. By the calculation of cardinal
numbers, we see that I—(/;, Ul,,U---) is a nonempty set, and so there exists
ipel—(I;,uI,u---). Nothing that iy¢l, Ul,,u--- and that R satisfies s-
comparability, we see that P, <sP; for each i=i,,i,,--. Hence ¥ P, <@ s(P;,

io~

@P,®---)<@® sP. Thus sP is directly infinite, hence so is P as desired.

NotE. Let R be a unit-regular ring satisfying s-comparability. Then we see
that every directly finite projective R-module is finitely generated or countably
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generated from the above proposition.

Lemma 5. Let R be a unit-regular ring satisfying s-comparability, and let
P, P,,---,P, be cyclic projective R-modules, where n=2. Then there is a set
{iyin, iy ={1,2,-+-,n} such that sP,2P;,, s*P;,XP;,--- and s" 'P,QP; .

Proof. We shall prove this lemma by the induction on n (22). For cyclic
projective modules P; and P,, we have that sP, 2P, or sP,2 P,, and so the
lemma holds when n=2. Assume that sP; X P;,,--- and s"~ lP,lzP For P,
and P,,,, we have that sP,2P,,, or sP,,,;2P;,. In the first case,

§"P; 2sP; 2 P,,,,hence wecantakei,,,=n+1. Inthesecond case, we see that
SPye1 R Pyys
§*P,, 2 sP;, 2 P;

22

§S"P, . R8"P 2P, ,

from which we can take j,=n+1, j,=i;,~-- and j,,,=i,, and s0 {ji,"*Jp+1}
={1,--,n+1}. Therefore the induction argument works.

Lemma 6. Let R be a unit-regular ring satisfying s-comparability. Let
P,,P,,---,P, and X be cyclic projective R-modules such that X $ s(P,@®---®P,). Then
P,® - - @®P,<S5X, where §=54s5' 4 - 4571

Proof. Assume that X $s(P1€B~--®P,,). Then we see that P, <sX by the
s-comparability and X{sP,. Then we have decompositions

X=X, @X =X, @X ==X, ®X{;
such that
X1 1@ ®X P
From Lemma 5, we may assume that sX,;2X,, s°X;;2X;3,-- and

571X, 2 X,,, from which P, <5X,,. Note that Xl*l,fwst. If not, we see that
X=X,,®X} SP,®sP,Ss(P,®P,), which contradicts the assumption. Hence we
have that P, <sXj%, and that

Pi®P,S5X 1 Ds X S3(X DX ) SSX.
Noting that P, S5X Y, we have decompositions

Xf"1=X21@X2*1=Xzz@X2*2= =X2s@X2"§
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such that
X21®"'@X232P2.

From Lemma 5, we may assume that sX,,2X,,, s°X,;2X,;,--, and
s 'X,,2X,,. Hence P,<$5X,,. Note that X} $sP;. If not,

X=X ®X} =X, ®X;;®X})SP,®P,®sP;=s(P,®P,®P;),

which contradicts the assumption. Then P;<5X3Y, and so P,@®P,®P;<S5X;,
B®EX, D5X)S5(X1®XH)S5X. Continuing this procedure, we see that P,
@ @P,~3X.

Henceforth we put §=s5%+s"+--- +5°7! for s.

Theorem 7. Let R be a unit-regular ring satisfying s-comparability, and let P
be a countably generated projective R-module with a cyclic decomposition
P=®>,P;,. Then P is directly finite if and only if, for each nonzero cyclic projective
R-module X there exist positive integers n and t such that @2 ,P;<tX.

Proof. “Only if part”. Assume that P is directly finite, hence so is sP. From
Lemma 1, we see that, for each nonzero cyclic projective module X there exists
a positive integer n such that X £ s(P,®P,,,;®---). Wesee that P,®P,, @ - $5X
from Lemma 6 and the elementary property (2).

“If part”. Assume that for each nonzero cyclic projective module X there
exist positive integers n and ¢ such that @2 ,P;<tX, and that P is directly
infinite. There exists a nonzero principal right ideal Y of R such that
YS@® _q,.....iyP: for every finite subset {i},---,i,} of I from Lemma 1, and we
can take positive integers » and ¢ such that @2 ,P;<tY. Then we see that

tYS R YS(OR,P)SEY,

which contradicts the direct finiteness of Y.

Corollary 8. Let R be a simple unit-regular ring satisfying s-comparability,
and let P be a countably generated projective R-module with a cyclic decomposition
P=@®2,P;. Then the following conditions (a)~(c) are equivalent.

(@) P is directly finite.

(b) There exist positive integers n and t such that ®> ,P;StR.

(c) PSUER for some positive integer .

Proof. Note that R is simple. Then for each nonzero principal right ideal
X of R, there exist positive integers ¢, and ¢, such that X<¢#;R and R<t,X by
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[1, Corollary 2.23]. Combining this result with Theorem 7, we see that this
corollary holds.

Note. It is known from [4] that simple directly finite regular rings satisfying
s-comparability are unit-regular.

DEerFINITION. Let R be a unit-regular ring satisfying s-comparability. Let
CP(R) be the family of cyclic projective R-modules. For elements 4 and B in
CP(R), we define the relation “~” as follows: 4~ B provided that 4 <¢,B and
that B<t,A4 for some positive integers ¢, and ¢,. It is clear that the relation “~”
is an equivalence relation. Put [A]={BeCP(R)}| 4 ~ B} for each A€ CP(R). We
see that ({[4]| BeCP(R)}, =) is a linearly ordered set, where [4]=[B] means
that B <t A for some positive integer t.  Note that this definition is well-defined. We
define [A]%[B] if [A]J=[B] and [4]#[B], and this is equivalent to saying
that ¥,B <354 by the following Lemma 9.

Lemma 9. Let R be a unit-regular ring satisfying s-comparability, and let A
and B be elements in CP(R). Then AStB for some positive integer t if and only

if RoB£3A.

Proof. “If part”. Assume that 8,B¥354. If A£¢B for all positive integers
t, we see that 4 £s(tB) and so tB<3A4 for all ¢ from Lemma 6, hence W,B<s54
which contradicts the assumption.

“Only if part”. Assume that 4 <¢B for some positive integer z. If ¥, B <354,
we see that 5iB < 8B <54 $5tB, which contradicts the direct finiteness of §tB.

Let R be a unit-regular ring satisfying s-comparability. For a countably
generated projective R-module P with a cyclic decomposition P=® 2 P;, we
consider the following three conditions (x), (A) and (B) in order to investigate the
direct finiteness of P:

(*) For each nonzero cyclic projective R-module X, {ie No| X<5P;} is a
finite set.

(A) () [P,]=[P,+1]=--- for some positive integer n.

(i) ®2,4+,1P;<StP, for some positive integer ¢.
(B) There exists a sequence i,<i,<--- of positive integers such that

[Pi1]=[Pi1+1]= %[Piz]=[Pi2+1]= %[Pig]z[PhH]:

Notes 1. If (x) holds, then {ie No| X<sP;} is a finite set for each nonzero
cyclic projective R-module X.

2. If P is directly finite then P has the property (*). Because if P does not
have (), then R, X< @ §P and so §P is directly infinite, hence so is P.
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3. For a countably generated projective R-module P with a cyclic
decomposition P=@2 | P; such that P has (x), we see that either condition (A)(i)
or (B) holds, but not both, by a linearly orderedness of ({[4]| 4€CP(R)}, ).

Proposition 10. Let R be a unit-regular ring satisfying s-comparability, and P
be a countably generated projective R-module with a cyclic decomposition P= @ | P;
such that P has (%) and (A)i). Then P is directly finite if and only if (A)ii) holds.

Proof. “If part”. Assume that (A)(ii) holds. For each nonzero cyclic
projective module X, there exists a positive integer m (=n+ 1) such that P, <sX
from the condition (%) and Note 1 above. Thus, using the condition (A)(i), we
have that @2, , P; StP, <SP, Sst' Xforsome . By Theorem 7, P is directly finite.

“Only if part”. Assume that P is directly finite. By Theorem 7, there exist
positive integers k and ¢ such that ®2,P;<StP,. We may assume n+1<k. Then
@2+ 1Pi=(Pps 1@ ®P_ )O(DLUP)S(Pps @ - D Py )DtP, <SP, for some
t' usig the condition (A)(i). Therefore (A)ii) holds.

Proposition 11. Let R be a unit-regular ring satisfying s-comparability, and P
be a countably generated projective R-module with a cyclic decomposition P= @ , P,
such that P has (%) and (B). Then P is directly finite.

Proof. Assume that P is directly infinite and P= @2, P, has (¥) and (B). Then
there exists asequence n(1)<m(1)<n(2)<m(2)< --- of positive integers such that

XsPn(l)®"'®Pm(l)’
XSP"(Z)('B "'@Pm(2)a

for some nonzero cyclic projective module X, and that X £sP, for some i,, and
that [P; JZ[P;,, ] - by () and (B). We take a positive integer n(t+1) with
Iy <yt <n(t+1). Then SSXS(Pupsy® @ Pt 1)D - ®(Prp+55@ *** D P4 53)
SRoPi,,, S5P;, Ss5X, which contradicts the direct finiteness of s5X.

Therefore we have the following theorem from Propositions 4, 10 and 11.

Theorem 12.  Unit-regular rings R satisfying s-comparability are of the following
three types A, B and C, and exclusively:

Type A. There exists a countably generated directly finite projective R-module
P with a cyclic decomposition P=@®2 P; such that P has (%) and (A), and every
countably generated directly finite projective R-module has (x) and (A) for some
cyclic decomposition.

Type B. There exists a countably generated directly finite projective R-module
P with a cyclic decomposition P=®> P; such that P has (%) and (B), and every
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countably generated directly finite projective R-module has (¥) and (B) for some
cyclic decomposition.
Type C. All directly finite projectgive R-modules are finitely generated.

Proof. It is sufficient to prove that Types A and B are independent. For a
unit-regular ring R satisfying s-comparability, there exist countably generated
projective R-modules P and Q with cyclic decompositions P=@®2,P; and
Q=@®{,Q; such that P has () and (A) and that Q has (») and (B). Then P,%sQ,,
for some i, by (%), and so Q; <sP,. Similarly, P, <sQ,, ., for some m (=n). Then
[P,]=[P,] and [P,]2[Q;]2[Q;,. ]2 [Pn], which contradicts the property of the
order “=".

Note. It is clear from the condition (#) that every unit-regular ring satisfying
s-comparability with Soc(R)#0 is of Type C.

4. Types A, B and C

In this section, we shall give an ideal-theoretic characterization of Types A,
B and C. Some results in this section are similar to the ones of [3]. But our
proofs require something extra from [3].

Let R be a unit-regular ring satisfying s-comparability. We denote the family
of all ideals of R by L,(R). Then L,(R) is a linearly ordered set under inclusion
by the proof of [1, Proposition 8.5]. We put I(R)=n{I| 0#IeL,(R)}.

DEFINITION. A subfamily {/;};2; of L,(R) is said to be a cofinal subfamily
of L,(R) if all /; are nonzero, I, 21,2 -+, and if for each nonzero X in L,(R) there
exists a positive integer n such that X>1,.

For an element a of a ring R, we put £,=Z{xR| xe R and xR<aR}.

Lemma 13. Let R be a unit-regular ring satisfying s-comparability.

(a) Foreachae R, X, is the smallest ideal of R containing a, and hence X,= RaR.

(b) Foreacha,be R, 2,<X, if and only if aR < HbR) for some positive integer t.

(c) For a,beR, X,£%, if and only if 8o(aR)SS(bR). Therefore we see that
X,=X, if and only if [aR]=[bR], and Z, £Z, if and only if [aR]£[bR].

Proof. See the proof of [3, Lemma 3.2] and Lemma 6.
Theorem 14. Let R be a unit-regular ring satisfying s-comparability. Then

the following conditions (a)~(c) are equivalent:
(a) R is of Type A.
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(b) Soc(R)=0 and I,(R)#0.

(c) There exists a countably generated directly finite projective R-module P
with a cyclic decomposition P=@® P; such that P satisfies the condition (%),
[P, ]=[P,]="-- and that ®> ,P;<StP, for some positive integer t.

Proof. (a)=>(b). Let R be of Type A. It is clear from the Note following
Theorem 12 that Soc(R)=0. Then there exists a countably generated directly
finite projective R-module P with the properties (#) and (A). Put P;~x;R for
some x;eR. If I,(R)=0, then there exists a nonzero ideal X of R such that
Xs5Z%, =%, ,, = and so we can take a nonzero element x in X, hence
xRZ ¥y (xR)<5(x,,R) for each m (=n) from Lemma 13 and 8,(xR)<@® S5P.
Therefore §P is directly infinite, hence so is P which contradicts the direct finiteness
of P. Thus (b) holds.

(b)=(c). Assume (b), and so there exists a nonzero element x; in I,(R) such
that X, =I,(R). Using that Soc(R)=0, we can take nonzero elements y, and z,
in R such that x, R=y R®z,R and y,R<s(z,R). From this, there exists a nonzero
cyclic submodule x,R of y,R which is subisomorphic to z;R such that
2(x,R)<SxR. Noting that Soc(R)=0 again, we apply the above discussion to
x,R. Continuing this procedure, we obtain a nonzero submodule x,,,R of y,R
such that 2(x,,R)<Sx,R for n=1,2,---. Put P=@®2 ,x;R. We claim that P is
a desired one. Since X, is the smallest ideal of R, £, =X =---, and so
[x;R]=[x,R]=---. For each nonzero ye R, assume that yR <5(x;R) for each ieJ,
where J is an infinite set {j,j,,--} of positive integers. Then £, <X =X  and
so X,=X, . We can take positive integers h, ¢t and m such that t5< 2" and
2"(x;, R) S xRS H(yR) S 15(x;, R)<2"(x; R), which is a contradiction. Thus (%)
holds. It is clear that @2 ,x;R<x;R. Therefore (c) holds. The implication
(c)=>(a) is clear by Theorem 12.

Theorem 15. Let R be a unit-regular ring satisfying s-comparability. Then
the following conditions (a)~(c) are equivalent:

(a) R is of Type B.

(b) Soc(R)=0, Io(R)=0 and L,(R) has a cofinal subfamily.

() There exists a countably generated directly finite projective R-module with
a cyclic decomposition P= @ P; such that P has (%) and [Pl]g[Pz];

Proof. (a)=>(b). If (a) holds, it is clear that Soc(R)=0. Then there exists
a countably generated directly finite projective module P wihch has the properties
() and (B). Put P,~x;R for some x;e R. Then nX, =0. If not, there exists an
nonzero element x,eNX,,, and so in‘;_):xl,z; -2 X, by the condition (B) for
P and Lemma 13. Hence we see from Lemma 13(c) that xo,R<@® $(x;,R) for
Jj=12,--- and Ro(xoR)S® 5(x;, R®x;,R®--)<S@® 5P. Therefore 5P is directly
infinite and P is directly infinite which is a contradiction. Thus I(R)=0 and
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{Z,,} is a cofinal subfamily of L,(R) from the linearly orderedness of L,(R).

(b)=>(c). If (b) holds, then there exists a cofinal subfamily {I;};2, of L,(R)
such that Lizhz - We can take an element x;el;—1;,,, and so I,=2X, =21,
by the linearly orderedness of L,(R). Then we see that £, 2%, 2 and {Z,}
is a cofinal subfamily of L,(R). Put P=®2 ;x;R. We claim that P is a desired
one. It is clear that [x;R]Z[x,R] Z If P does not satisfy (x), there exists a
nonzero xy€ R such that x,R <35(x;R) for ieJ, where J is an infinite set of positive
integers, and X, =X  for ieJ. We see taht £, =0 (i.e. x,=0) by using that {Z_}
is a cofinal subfamily, which contradicts that x,#0. Therefore (c) holds. The
implication (c) = (a) is clear.

As a direct result from the above Theorems 14 and 15, we have the following.

Theorem 16. Let R be a unit-regular ring satisfying s-comparability. Then
the following conditions (a) and (b) are equivalent:

(a) R is of Type C.

(b) Soc(R)#0, or I,(R)=0 and L,(R) has no cofinal subfamily of L,(R).
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