

Title	On unit-regular rings satisfying s-comparability
Author(s)	Kutami, Mamoru
Citation	Osaka Journal of Mathematics. 1996, 33(4), p. 983-995
Version Type	VoR
URL	https://doi.org/10.18910/10606
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kutami, M.
Osaka J. Math.
33 (1996), 983–995

ON UNIT-REGULAR RINGS SATISFYING S-COMPARABILITY

MAMORU KUTAMI

(Received February 8, 1995)

1. Preliminaries and notations

In [2] and [3], we studied the properties of unit-regular rings satisfying the comparability axiom. In this paper, we shall investigate unit-regular rings satisfying s -comparability which is a generalized notion of the comparability axiom. In section 2, we shall show that these rings have the property (DF), that is, $P \oplus Q$ is directly finite for every two directly finite projective modules P and Q . In section 3, we shall obtain a criterion of direct finiteness of projective modules over these rings (Proposition 4 and Theorem 7). Using this result, we can determine the types of directly finite projective modules and classify the family of all unit-regular rings satisfying s -comparability into three types; Types A, B and C (Theorem 12). In section 4, we shall give the ideal-theoretic characterization for Types A, B and C (Theorems 14, 15 and 16).

Throughout this paper, R is a ring with identity and all modules are unital right R -modules.

NOTATION. If M and N are R -modules, then the notation $N \lesssim M$ (resp. $N \lesssim \bigoplus M$) means that N is isomorphic to a submodule of M (resp. N is isomorphic to a direct summand of M). For a cardinal number α and an R -module M , αM denotes the direct sum of α -copies of M . For a set X , we denote the cardinal number of X by $|X|$. We denote by N_0 the set of all positive integers.

DEFINITION. A ring R is *directly finite* if $xy = 1$ implies $yx = 1$ for all $x, y \in R$. An R -module M is *directly finite* if $\text{End}_R(M)$ is directly finite. A ring R (a module M) is *directly infinite* if it is not directly finite. It is well-known that M is directly finite if and only if M is not isomorphic to a proper direct summand of M itself. A ring R is said to be a *unit-regular* ring if, for each $x \in R$, there exists a unit (i.e. an invertible element) u of R such that $xux = x$. Let s be a positive integer. Then a regular ring R is said to satisfy *s-comparability* provided that for any $x, y \in R$, either $xR \lesssim s(yR)$ or $yR \lesssim s(xR)$. Note that 1-comparability is called *the comparability axiom*.

Now we shall recall some elementary properties (see [2, Lemma 1]).

Let R be a unit-regular ring. Then

- (1) Every finitely generated projective R -module P has the cancellation property, and so P is directly finite.
- (2) For any projective R -module X and any finitely generated projective R -modules Y_1, Y_2, \dots such that $Y_1 \oplus \dots \oplus Y_n \lesssim X$ for all positive integers n , we have that $\bigoplus_{n=1}^{\infty} Y_n \lesssim X$.
- (3) Let P and Q be projective R -modules such that Q is finitely generated. Then $P \oplus Q$ is directly finite if and only if so is P .

All basic results concerning regular rings can be found in a book by K. R. Goodearl [1].

2. The property (DF)

Lemma 1. *Let R be a unit-regular ring, and P be a projective R -module with a cyclic decomposition $P = \bigoplus_{i \in I} P_i$. Then the following conditions (a)~(c) are equivalent:*

- (a) P is directly infinite.
- (b) There exists a nonzero principal right ideal X of R such that $X \lesssim \bigoplus_{i \in I - \{i_1, \dots, i_n\}} P_i$ for every finite subset $\{i_1, \dots, i_n\}$ of I .
- (c) There exists a nonzero principal right ideal X of R such that $\aleph_0 X \lesssim \bigoplus P_i$.

Proof. (b) \Rightarrow (c) \Rightarrow (a) are clear. We will show (a) \Rightarrow (b). Suppose P is directly infinite. Then there exists a nonzero module Y such that $P \simeq P \oplus Y$, and so we can take a nonzero principal right ideal X of R such that $X \lesssim Y$ and $X \lesssim P_{n(1)} \oplus \dots \oplus P_{m(1)}$ for some finite subset $\{n(1), \dots, m(1)\}$ of I . Put $I' = I - \{i_1, \dots, i_n\}$. Using that $P \simeq P \oplus Y$, we have that

$$\begin{aligned} & (P_{n(1)} \oplus \dots \oplus P_{m(1)}) \oplus (P_{i_1} \oplus \dots \oplus P_{i_n}) \oplus (\bigoplus_{i \in I, P_i} P_i) \\ & \simeq (P_{n(1)} \oplus \dots \oplus P_{m(1)}) \oplus (P_{i_1} \oplus \dots \oplus P_{i_n}) \oplus (\bigoplus_{i \in I, P_i} P_i) \oplus Y. \end{aligned}$$

Noting that every finitely generated projective module has the cancellation property, we see that $\bigoplus_{i \in I, P_i} P_i \simeq (\bigoplus_{i \in I, P_i} P_i) \oplus Y$, and so $X \lesssim Y \lesssim \bigoplus_{i \in I, P_i} P_i$ as desired.

Proposition 2. *Let R be a unit-regular ring satisfying s-comparability, and P be a projective R -module. Then P is directly finite if and only if so is nP for every positive integer n .*

Proof. “If part” is clear. We will show “Only if part”. It is sufficient to prove that if $2P$ is directly infinite, then so is P . Let $P \simeq \bigoplus_{i \in I} P_i$ be a principal

right ideal decomposition for P . Assume that $2P$ is directly infinite. From Lemma 1, there exists a nonzero principal right ideal X of R such that

$$X \lesssim (P_{n(1)} \oplus P_{n(1)+1}) \oplus \cdots \oplus (P_{m(1)} \oplus P_{m(1)+1}),$$

$$X \lesssim (P_{n(2)} \oplus P_{n(2)+1}) \oplus \cdots \oplus (P_{m(2)} \oplus P_{m(2)+1}),$$

.....

for some sequence $n(1) = n(1) + 1 < m(1) = m(1) + 1 < n(2) = n(2) + 1 < m(2) = m(2) + 1 < \dots$ of I , and so $P_{n(i)} = P_{n(i)+1}$ and $P_{m(i)} = P_{m(i)+1}$ for every positive integer i . We shall argue in steps (I), (II) and (III).

Step (I). Noting that $X \lesssim (P_{n(1)} \oplus P_{n(1)+1}) \oplus \cdots \oplus (P_{m(1)} \oplus P_{m(1)+1})$, we have a decomposition $X = \bigoplus_{i_1} x_{i_1} R$ such that $x_{i_1} R \lesssim P_{i_1}$ for each $i_1 = n(1), n(1) + 1, \dots, m(1), m(1) + 1$ by [1, Lemma 2.7]. Using that $X \lesssim (P_{n(2)} \oplus P_{n(2)+1}) \oplus \cdots \oplus (P_{m(2)} \oplus P_{m(2)+1})$, we have a decomposition

$$X \simeq (x_{n(2)} R \oplus x_{n(2)+1} R) \oplus \cdots \oplus (x_{m(2)} R \oplus x_{m(2)+1} R)$$

for some $x_{i_2} R < \bigoplus P_{i_2}$, where $i_2 = n(2), n(2) + 1, \dots, m(2), m(2) + 1$ and

$$x_{i_1} R \simeq \bigoplus_{i_2} x_{i_2, i_1} R$$

for some $x_{i_2, i_1} R \leq x_{i_2} R < \bigoplus P_{i_2}$ by [1, Corollary 2.9].

Therefore there exists a decomposition

$$X = \bigoplus_{i_1, i_2} x_{i_1 i_2} R$$

such that

$$\begin{aligned} x_{i_2, i_1} R &\simeq x_{i_1 i_2} R \leq x_{i_1} R \quad \text{and} \\ 2(x_{i_1 i_2} R) &\simeq x_{i_1 i_2} R \oplus x_{i_2, i_1} R \lesssim P_{i_1} \oplus P_{i_2} \\ &\leq (P_{n(1)} \oplus \cdots \oplus P_{m(1)}) \oplus (P_{n(2)} \oplus \cdots \oplus P_{m(2)}) \quad (\leq P). \end{aligned}$$

Next, noting that $X \lesssim (P_{n(3)} \oplus P_{n(3)+1}) \oplus \cdots \oplus (P_{m(3)} \oplus P_{m(3)+1})$, we have decompositions

$$\begin{aligned} X &= \bigoplus_{i_1, i_2} x_{i_1 i_2} R \\ &\simeq (x_{n(3)} R \oplus x_{n(3)+1} R) \oplus \cdots \oplus (x_{m(3)} R \oplus x_{m(3)+1} R) \end{aligned}$$

for some $x_{i_3} R < \bigoplus P_{i_3}$, where $i_3 = n(3), n(3) + 1, \dots, m(3), m(3) + 1$ and

$$X_{i_1 i_2} R \simeq \bigoplus_{i_3} x_{i_3, i_1 i_2} R$$

for some $x_{i_3, i_1 i_2} R \leq x_{i_3} R < \bigoplus P_{i_3}$. Therefore there exists a decomposition

$$x_{i_1} x_{i_2} R = \bigoplus_{i_3} x_{i_1 i_2 i_3} R$$

such that

$$x_{i_1 i_2 i_3} R \simeq x_{i_3, i_1 i_2} R$$

and hence

$$X = \bigoplus_{i_1, i_2} x_{i_1 i_2} R = \bigoplus_{i_1, i_2, i_3} x_{i_1 i_2 i_3} R$$

such that

$$\begin{aligned} 3(x_{i_1 i_2 i_3} R) &\leq 2(x_{i_1 i_2 i_3} R) \oplus x_{i_1 i_2 i_3} R \leq 2(x_{i_1 i_2} R) \oplus x_{i_3, i_1 i_2} R \\ &\leq P_{i_1} \oplus P_{i_2} \oplus P_{i_3} \\ &\leq (P_{n(1)} \oplus \cdots \oplus P_{m(1)}) \oplus (P_{n(2)} \oplus \cdots \oplus P_{m(2)}) \oplus (P_{n(3)} \oplus \cdots \oplus P_{m(3)}) \ (\leq P). \end{aligned}$$

Continuing this procedure, we have a decomposition

$$X = \bigoplus_{i_1, i_2, \dots, i_s} x_{i_1 i_2 \dots i_s} R$$

such that

$$\begin{aligned} s(x_{i_1 i_2 \dots i_s} R) \\ \leq (P_{n(1)} \oplus \cdots \oplus P_{m(1)}) \oplus \cdots \oplus (P_{n(s)} \oplus \cdots \oplus P_{m(s)}) \ (\leq P) \end{aligned}$$

for each i_1, i_2, \dots, i_s .

Step (II). Noting that $X \leq (P_{n(s+1)} \oplus P_{n(s+1)+1}) \oplus \cdots \oplus (P_{m(s+1)} \oplus P_{m(s+1)+1})$, we may assume with no loss of generality that $X \leq P_{n(s+1)} \oplus P_{n(s+1)+1}$, and so $X \simeq x_{n(s+1)} R \oplus x_{n(s+1)+1} R$ for some $x_{n(s+1)} R < \bigoplus P_{n(s+1)}$ and $x_{n(s+1)+1} R < \bigoplus P_{n(s+1)+1}$. We put $w_{n(s+1)} R = x_{n(s+1)} R \cap x_{n(s+1)+1} R$ in R , and so there exist principal right ideals $y_{n(s+1)} R$ and $y_{n(s+1)+1} R$ of R such that

$$\begin{aligned} x_{n(s+1)} R &= w_{n(s+1)} R \oplus y_{n(s+1)} R, \\ x_{n(s+1)+1} R &= x_{n(s+1)} R \oplus y_{n(s+1)+1} R \quad \text{and} \\ w_{n(s+1)} R \oplus y_{n(s+1)} R \oplus y_{n(s+1)+1} R &\leq P_{n(s+1)}. \end{aligned}$$

Therefore,

$$\begin{aligned} X &\simeq x_{n(s+1)} R \oplus x_{n(s+1)+1} R \\ &\simeq (w_{n(s+1)} R \oplus y_{n(s+1)} R \oplus y_{n(s+1)+1} R) \oplus w_{n(s+1)} R \\ &\leq P_{n(s+1)} \oplus w_{n(s+1)} R. \end{aligned}$$

We can take a direct summand z_1R of X such that $z_1R \simeq w_{n(s+1)}R$. Next, noting that $w_{n(s+1)}R \lesssim X \lesssim (P_{n(s+2)} \oplus P_{n(s+2)+1}) \oplus \cdots \oplus (P_{m(s+2)} \oplus P_{m(s+2)+1})$, we have that $w_{n(s+1)}R \simeq (x_{n(s+2)}R \oplus x_{n(s+2)+1}R) \oplus \cdots \oplus (x_{m(s+2)}R \oplus x_{m(s+2)+1}R)$ for some $x_{n(s+2)}R < \oplus P_{n(s+2)}$, $x_{n(s+2)+1}R < \oplus P_{n(s+2)+1}, \dots, x_{m(s+2)}R < \oplus P_{m(s+2)}$ and $x_{m(s+2)+1}R < \oplus P_{m(s+2)+1}$. We put $w_iR = x_iR \cap x_{i+1}R$ in R for each $i = n(s+2), \dots, m(s+2)$, from which we have decompositions

$$x_iR = w_iR \oplus y_iR,$$

$$x_{i+1}R = w_iR \oplus y_{i+1}R \quad \text{for some } y_iR < \oplus x_iR \quad \text{and} \quad y_{i+1}R < \oplus x_{i+1}R$$

and

$$x_iR \oplus x_{i+1}R \simeq (w_iR \oplus y_iR \oplus y_{i+1}R) \oplus w_iR \lesssim P_i \oplus w_iR$$

for each $i = n(s+2), \dots, m(s+2)$. Therefore $w_{n(s+1)}R \lesssim (P_{n(s+2)} \oplus \cdots \oplus P_{m(s+2)}) \oplus (w_{n(s+2)}R \oplus \cdots \oplus w_{m(s+2)}R)$ and $2(w_{n(s+2)}R \oplus \cdots \oplus w_{m(s+2)}R) \lesssim w_{n(s+1)}R$. We can take a direct summand z_2R of $w_{n(s+1)}R$ such that $z_2R \simeq w_{n(s+2)}R \oplus \cdots \oplus w_{m(s+2)}R$, and hence

$$X \lesssim (P_{n(s+1)} \oplus \cdots \oplus P_{m(s+1)}) \oplus (P_{n(s+2)} \oplus \cdots \oplus P_{m(s+2)}) \oplus z_2R$$

and

$$2(z_2R) \lesssim w_{n(s+1)}R \simeq z_1R.$$

Continuing this procedure, we can take a family $\{z_kR\}_{k=1}^{\infty}$ of principal right ideals of R such that

$$X \lesssim (P_{n(s+1)} \oplus \cdots \oplus P_{m(s+1)}) \oplus \cdots \oplus (P_{n(s+k)} \oplus \cdots \oplus P_{m(s+k)}) \oplus z_kR,$$

$X \geq z_1R \gtrsim z_2R \gtrsim \cdots$, and that

$2(z_{k+1}R) \lesssim z_kR$ for each positive integer k .

Step (III). We claim that $z_kR \lesssim (P_{n(1)} \oplus \cdots \oplus P_{m(1)}) \oplus \cdots \oplus (P_{n(s)} \oplus \cdots \oplus P_{m(s)})$ for some positive integer k . We assume that $z_kR \not\lesssim (x_{i_1 i_2 \dots i_s}R)$ for all i_1, i_2, \dots, i_s and k , and so $z_kR \neq 0$. Using that R satisfies s -comparability, $x_{i_1 i_2 \dots i_s}R \lesssim s(z_kR)$, and so we have that $X = x_{i_1, i_2, \dots, i_s}x_{i_1 i_2 \dots i_s}R \lesssim s^l(z_kR) \not\leq (s^l+1)(z_kR) \lesssim X$ for some positive integer l and k' by step (II), which contradicts the direct finiteness of X . Hence there exist positive integers i_1, \dots, i_s and k such that $z_kR \lesssim (x_{i_1 i_2 \dots i_s}R) \lesssim (P_{n(1)} \oplus \cdots \oplus P_{m(1)}) \oplus \cdots \oplus (P_{n(s)} \oplus \cdots \oplus P_{m(s)})$ by step (I).

Combining steps (II) and (III), we see that $X \lesssim (P_{n(s+1)} \oplus \cdots \oplus P_{m(s+1)}) \oplus \cdots \oplus (P_{n(s+k)} \oplus \cdots \oplus P_{m(s+k)}) \oplus z_kR \lesssim (P_{n(1)} \oplus \cdots \oplus P_{m(1)}) \oplus \cdots \oplus (P_{n(s+k)} \oplus \cdots \oplus P_{m(s+k)}) (\leq P)$. Similarly, we apply the above discussion for $I - \{n(1), n(1)+1, \dots, m(s+k), m(s+k)+1\}$. Continuing this procedure, we have that $\aleph_0 X \lesssim \oplus P$, from which P is directly infinite. Therefore the proof of the proposition is complete.

Theorem 3. *Let R be a unit-regular ring satisfying s -comparability. Then R has the property (DF), that is, $P \oplus Q$ is directly finite for every two directly finite projective R -modules P and Q .*

Proof. Let $P = \bigoplus_{i \in I} P_i$ and $Q = \bigoplus_{i \in I}$, Q_i be cyclic decompositions of P and Q . Assume that $P \oplus Q$ is directly infinite. We may assume, without loss of generality, that $I = I'$ and $|I| = \infty$ by the elementary properties (1) and (3). From Lemma 1, there exist a nonzero principal right ideal X of R and a sequence $n(1) < \dots < m(1) < n(2) < \dots < m(2) < \dots$ of I such that

$$\begin{aligned} X &\lesssim (P_{n(1)} \oplus Q_{n(1)}) \oplus \dots \oplus (P_{m(1)} \oplus Q_{m(1)}), \\ X &\lesssim (P_{n(2)} \oplus Q_{n(2)}) \oplus \dots \oplus (P_{m(2)} \oplus Q_{m(2)}), \\ &\dots, \end{aligned}$$

from which we have a decomposition $X = p_i R \oplus q_i R$ for each positive integer i such that $p_i R \lesssim P_{n(i)} \oplus \dots \oplus P_{m(i)}$ and $q_i R \lesssim Q_{n(i)} \oplus \dots \oplus Q_{m(i)}$. Set $J = \{i \in N_0 \mid p_i R \lesssim s(q_i R)\}$. If $|J| = \infty$, then $X = p_i R \oplus q_i R \lesssim (s+1)q_i R$ for all $i \in J$, and so $\aleph_0 X \simeq |J|X \lesssim \bigoplus (s+1)(\bigoplus_{i \in J} q_i R) \lesssim \bigoplus (s+1)Q$. Therefore $(s+1)Q$ is directly infinite, and so is Q by Proposition 2. Otherwise $|J| < \infty$. We see that $|J'| = \infty$, where $J' = N_0 - J$. Then $q_i R \lesssim s(p_i R)$ for all $i \in J'$, and so $X = p_i R \oplus q_i R \lesssim (s+1)(p_i R)$, hence $\aleph_0 X \lesssim \bigoplus_{i \in J'} (s+1)(p_i R) \lesssim \bigoplus (s+1)P$. Therefore $(s+1)P$ is directly infinite, and so is P . Thus the theorem is proved.

3. Directly finite projective modules

In this section, we shall determine the types of directly finite projective modules.

Proposition 4. *Let R be a unit-regular ring satisfying s -comparability, and P be a non-finitely and non-countably generated projective R -module with a cyclic decomposition $P = \bigoplus_{i \in I} P_i$, where $|I| > \aleph_0$. Then P is directly infinite.*

Proof. For each $i \in I$, put $I_i = \{j \in I \mid P_i \lesssim sP_j\}$. If $|I_i| \geq \aleph_0$ for some $i \in I$, then we see that $\aleph_0 P_i \lesssim \bigoplus (\bigoplus_{i \in I_i} sP_j) < \bigoplus sP$, from which sP is directly infinite, hence so is P from Proposition 2. Thus we may assume that $|I_i|$ is finite for all $i \in I$. We can take $i_1 \in I$, $i_2 \in I - I_{i_1}$, $i_3 \in I - (I_{i_1} \cup I_{i_2})$ and so on. By the calculation of cardinal numbers, we see that $I - (I_{i_1} \cup I_{i_2} \cup \dots)$ is a nonempty set, and so there exists $i_0 \in I - (I_{i_1} \cup I_{i_2} \cup \dots)$. Nothing that $i_0 \notin I_{i_1} \cup I_{i_2} \cup \dots$ and that R satisfies s -comparability, we see that $P_{i_0} \lesssim sP_i$ for each $i = i_1, i_2, \dots$. Hence $\aleph_0 P_{i_0} \lesssim \bigoplus s(P_{i_1} \oplus P_{i_2} \oplus \dots) < \bigoplus sP$. Thus sP is directly infinite, hence so is P as desired.

NOTE. Let R be a unit-regular ring satisfying s -comparability. Then we see that every directly finite projective R -module is finitely generated or countably

generated from the above proposition.

Lemma 5. *Let R be a unit-regular ring satisfying s -comparability, and let P_1, P_2, \dots, P_n be cyclic projective R -modules, where $n \geq 2$. Then there is a set $\{i_1, i_2, \dots, i_n\} = \{1, 2, \dots, n\}$ such that $sP_{i_1} \gtrsim P_{i_2}$, $s^2P_{i_1} \gtrsim P_{i_3}$, \dots and $s^{n-1}P_{i_1} \gtrsim P_{i_n}$.*

Proof. We shall prove this lemma by the induction on n (≥ 2). For cyclic projective modules P_1 and P_2 , we have that $sP_1 \gtrsim P_2$ or $sP_2 \gtrsim P_1$, and so the lemma holds when $n=2$. Assume that $sP_{i_1} \gtrsim P_{i_2}, \dots$ and $s^{n-1}P_{i_1} \gtrsim P_{i_n}$. For P_{i_1} and P_{n+1} , we have that $sP_{i_1} \gtrsim P_{n+1}$ or $sP_{n+1} \gtrsim P_{i_1}$. In the first case, $s^n P_{i_1} \gtrsim sP_{i_1} \gtrsim P_{n+1}$, hence we can take $i_{n+1} = n+1$. In the second case, we see that

$$\begin{aligned} sP_{n+1} &\gtrsim P_{i_1}, \\ s^2P_{n+1} &\gtrsim sP_{i_1} \gtrsim P_{i_2}, \\ &\dots \\ s^n P_{n+1} &\gtrsim s^{n-1}P_{i_1} \gtrsim P_{i_n}, \end{aligned}$$

from which we can take $j_1 = n+1$, $j_2 = i_1, \dots$ and $j_{n+1} = i_n$, and so $\{j_1, \dots, j_{n+1}\} = \{1, \dots, n+1\}$. Therefore the induction argument works.

Lemma 6. *Let R be a unit-regular ring satisfying s -comparability. Let P_1, P_2, \dots, P_n and X be cyclic projective R -modules such that $X \not\leq s(P_1 \oplus \dots \oplus P_n)$. Then $P_1 \oplus \dots \oplus P_n \lesssim \bar{s}X$, where $\bar{s} = s^0 + s^1 + \dots + s^{n-1}$.*

Proof. Assume that $X \not\leq s(P_1 \oplus \dots \oplus P_n)$. Then we see that $P_1 \lesssim sX$ by the s -comparability and $X \not\leq sP_1$. Then we have decompositions

$$X = X_{11} \oplus X_{11}^* = X_{12} \oplus X_{12}^* = \dots = X_{1s} \oplus X_{1s}^*$$

such that

$$X_{11} \oplus \dots \oplus X_{1s} \simeq P_1.$$

From Lemma 5, we may assume that $sX_{11} \gtrsim X_{12}$, $s^2X_{11} \gtrsim X_{13}$, \dots and $s^{n-1}X_{11} \gtrsim X_{1s}$, from which $P_1 \lesssim \bar{s}X_{11}$. Note that $X_{11}^* \not\leq sP_2$. If not, we see that $X = X_{11} \oplus X_{11}^* \lesssim P_1 \oplus sP_2 \lesssim s(P_1 \oplus P_2)$, which contradicts the assumption. Hence we have that $P_2 \lesssim sX_{11}^*$, and that

$$P_1 \oplus P_2 \lesssim \bar{s}X_{11} \oplus sX_{11}^* \leq \bar{s}(X_{11} \oplus X_{11}^*) \leq \bar{s}X.$$

Noting that $P_2 \lesssim \bar{s}X_{11}^*$, we have decompositions

$$X_{11}^* = X_{21} \oplus X_{21}^* = X_{22} \oplus X_{22}^* = \dots = X_{2s} \oplus X_{2s}^*$$

such that

$$X_{21} \oplus \cdots \oplus X_{2s} \simeq P_2.$$

From Lemma 5, we may assume that $sX_{21} \gtrsim X_{22}$, $s^2X_{21} \gtrsim X_{23}, \dots$, and $s^{s-1}X_{21} \gtrsim X_{2s}$. Hence $P_2 \lesssim \bar{s}X_{21}$. Note that $X_{21}^* \not\lesssim sP_3$. If not,

$$X = X_{11} \oplus X_{11}^* = X_{11} \oplus (X_{21} \oplus X_{21}^*) \lesssim P_1 \oplus P_2 \oplus sP_3 \leq s(P_1 \oplus P_2 \oplus P_3),$$

which contradicts the assumption. Then $P_3 \lesssim \bar{s}X_{21}^*$, and so $P_1 \oplus P_2 \oplus P_3 \lesssim \bar{s}X_{11} \oplus (\bar{s}X_{21} \oplus \bar{s}X_{21}^*) \leq \bar{s}(X_{11} \oplus X_{11}^*) \leq \bar{s}X$. Continuing this procedure, we see that $P_1 \oplus \cdots \oplus P_n \simeq \bar{s}X$.

Henceforth we put $\bar{s} = s^0 + s^1 + \cdots + s^{s-1}$ for s .

Theorem 7. *Let R be a unit-regular ring satisfying s -comparability, and let P be a countably generated projective R -module with a cyclic decomposition $P = \bigoplus_{i=1}^{\infty} P_i$. Then P is directly finite if and only if, for each nonzero cyclic projective R -module X there exist positive integers n and t such that $\bigoplus_{i=n}^{\infty} P_i \lesssim tX$.*

Proof. “Only if part”. Assume that P is directly finite, hence so is sP . From Lemma 1, we see that, for each nonzero cyclic projective module X there exists a positive integer n such that $X \not\lesssim s(P_n \oplus P_{n+1} \oplus \cdots)$. We see that $P_n \oplus P_{n+1} \oplus \cdots \lesssim \bar{s}X$ from Lemma 6 and the elementary property (2).

“If part”. Assume that for each nonzero cyclic projective module X there exist positive integers n and t such that $\bigoplus_{i=n}^{\infty} P_i \lesssim tX$, and that P is directly infinite. There exists a nonzero principal right ideal Y of R such that $Y \lesssim \bigoplus_{I-\{i_1, \dots, i_n\}} P_i$ for every finite subset $\{i_1, \dots, i_n\}$ of I from Lemma 1, and we can take positive integers n and t such that $\bigoplus_{i=n}^{\infty} P_i \lesssim tY$. Then we see that

$$tY \lesssim \aleph_0 Y \lesssim (\bigoplus_{i=n}^{\infty} P_i) \lesssim tY,$$

which contradicts the direct finiteness of tY .

Corollary 8. *Let R be a simple unit-regular ring satisfying s -comparability, and let P be a countably generated projective R -module with a cyclic decomposition $P = \bigoplus_{i=1}^{\infty} P_i$. Then the following conditions (a)~(c) are equivalent:*

- (a) P is directly finite.
- (b) There exist positive integers n and t such that $\bigoplus_{i=n}^{\infty} P_i \lesssim tR$.
- (c) $P \lesssim t'R$ for some positive integer t' .

Proof. Note that R is simple. Then for each nonzero principal right ideal X of R , there exist positive integers t_1 and t_2 such that $X \lesssim t_1 R$ and $R \lesssim t_2 X$ by

[1, Corollary 2.23]. Combining this result with Theorem 7, we see that this corollary holds.

NOTE. It is known from [4] that simple directly finite regular rings satisfying s -comparability are unit-regular.

DEFINITION. Let R be a unit-regular ring satisfying s -comparability. Let $\text{CP}(R)$ be the family of cyclic projective R -modules. For elements A and B in $\text{CP}(R)$, we define the relation “ \sim ” as follows: $A \sim B$ provided that $A \lesssim t_1 B$ and that $B \lesssim t_2 A$ for some positive integers t_1 and t_2 . It is clear that the relation “ \sim ” is an equivalence relation. Put $[A] = \{B \in \text{CP}(R) \mid A \sim B\}$ for each $A \in \text{CP}(R)$. We see that $(\{[A] \mid B \in \text{CP}(R)\}, \leq)$ is a linearly ordered set, where $[A] \leq [B]$ means that $B \lesssim tA$ for some positive integer t . Note that this definition is well-defined. We define $[A] \not\leq [B]$ if $[A] \geq [B]$ and $[A] \neq [B]$, and this is equivalent to saying that $\aleph_0 B \not\lesssim \bar{s}A$ by the following Lemma 9.

Lemma 9. *Let R be a unit-regular ring satisfying s -comparability, and let A and B be elements in $\text{CP}(R)$. Then $A \lesssim tB$ for some positive integer t if and only if $\aleph_0 B \not\lesssim \bar{s}A$.*

Proof. “If part”. Assume that $\aleph_0 B \not\lesssim \bar{s}A$. If $A \not\lesssim tB$ for all positive integers t , we see that $A \not\lesssim s(tB)$ and so $tB \not\lesssim \bar{s}A$ for all t from Lemma 6, hence $\aleph_0 B \not\lesssim \bar{s}A$ which contradicts the assumption.

“Only if part”. Assume that $A \lesssim tB$ for some positive integer t . If $\aleph_0 B \not\lesssim \bar{s}A$, we see that $\bar{s}tB \not\lesssim \aleph_0 B \not\lesssim \bar{s}A \not\lesssim \bar{s}tB$, which contradicts the direct finiteness of $\bar{s}tB$.

Let R be a unit-regular ring satisfying s -comparability. For a countably generated projective R -module P with a cyclic decomposition $P = \bigoplus_{i=1}^{\infty} P_i$, we consider the following three conditions $(*)$, (A) and (B) in order to investigate the direct finiteness of P :

(*) For each nonzero cyclic projective R -module X , $\{i \in N_0 \mid X \lesssim \bar{s}P_i\}$ is a finite set.

(A) (i) $[P_n] = [P_{n+1}] = \dots$ for some positive integer n .
(ii) $\bigoplus_{i=n+1}^{\infty} P_i \lesssim tP_n$ for some positive integer t .

(B) There exists a sequence $i_1 < i_2 < \dots$ of positive integers such that $[P_{i_1}] = [P_{i_1+1}] = \dots \not\geq [P_{i_2}] = [P_{i_2+1}] = \dots \not\geq [P_{i_3}] = [P_{i_3+1}] = \dots$

NOTES 1. If $(*)$ holds, then $\{i \in N_0 \mid X \lesssim \bar{s}P_i\}$ is a finite set for each nonzero cyclic projective R -module X .

2. If P is directly finite then P has the property $(*)$. Because if P does not have $(*)$, then $\aleph_0 X \lesssim \bigoplus \bar{s}P$ and so $\bar{s}P$ is directly infinite, hence so is P .

3. For a countably generated projective R -module P with a cyclic decomposition $P = \bigoplus_{i=1}^{\infty} P_i$ such that P has $(*)$, we see that either condition (A)(i) or (B) holds, but not both, by a linearly orderedness of $(\{[A] \mid A \in \text{CP}(R)\}, \leq)$.

Proposition 10. *Let R be a unit-regular ring satisfying s -comparability, and P be a countably generated projective R -module with a cyclic decomposition $P = \bigoplus_{i=1}^{\infty} P_i$ such that P has $(*)$ and (A)(i). Then P is directly finite if and only if (A)(ii) holds.*

Proof. “If part”. Assume that (A)(ii) holds. For each nonzero cyclic projective module X , there exists a positive integer m ($\geq n+1$) such that $P_m \lesssim sX$ from the condition $(*)$ and Note 1 above. Thus, using the condition (A)(i), we have that $\bigoplus_{i=n+1}^{\infty} P_i \lesssim tP_n \lesssim t'P_m \lesssim st'X$ for some t' . By Theorem 7, P is directly finite.

“Only if part”. Assume that P is directly finite. By Theorem 7, there exist positive integers k and t such that $\bigoplus_{i=k}^{\infty} P_i \lesssim tP_n$. We may assume $n+1 < k$. Then $\bigoplus_{i=n+1}^{\infty} P_i = (P_{n+1} \oplus \cdots \oplus P_{k-1}) \oplus (\bigoplus_{i=k}^{\infty} P_i) \lesssim (P_{n+1} \oplus \cdots \oplus P_{k-1}) \oplus tP_n \lesssim t'P_n$ for some t' usig the condition (A)(i). Therefore (A)(ii) holds.

Proposition 11. *Let R be a unit-regular ring satisfying s -comparability, and P be a countably generated projective R -module with a cyclic decomposition $P = \bigoplus_{i=1}^{\infty} P_i$ such that P has $(*)$ and (B). Then P is directly finite.*

Proof. Assume that P is directly infinite and $P = \bigoplus_{i=1}^{\infty} P_i$ has $(*)$ and (B). Then there exists a sequence $n(1) < m(1) < n(2) < m(2) < \cdots$ of positive integers such that

$$\begin{aligned} X &\lesssim P_{n(1)} \oplus \cdots \oplus P_{m(1)}, \\ X &\lesssim P_{n(2)} \oplus \cdots \oplus P_{m(2)}, \\ &\dots, \end{aligned}$$

for some nonzero cyclic projective module X , and that $X \not\lesssim sP_{i_n}$ for some i_n , and that $[P_{i_n}] \not\leq [P_{i_{n+1}}] \not\leq \cdots$ by $(*)$ and (B). We take a positive integer $n(t+1)$ with $i_n < i_{n+1} < n(t+1)$. Then $s\bar{s}X \lesssim (P_{n(t+1)} \oplus \cdots \oplus P_{m(t+1)}) \oplus \cdots \oplus (P_{n(t+s\bar{s})} \oplus \cdots \oplus P_{m(t+s\bar{s})}) \lesssim \aleph_0 P_{i_{n+1}} \lesssim \bar{s}P_{i_n} \lesssim s\bar{s}X$, which contradicts the direct finiteness of $s\bar{s}X$.

Therefore we have the following theorem from Propositions 4, 10 and 11.

Theorem 12. *Unit-regular rings R satisfying s -comparability are of the following three types A, B and C, and exclusively:*

Type A. *There exists a countably generated directly finite projective R -module P with a cyclic decomposition $P = \bigoplus_{i=1}^{\infty} P_i$ such that P has $(*)$ and (A), and every countably generated directly finite projective R -module has $(*)$ and (A) for some cyclic decomposition.*

Type B. *There exists a countably generated directly finite projective R -module P with a cyclic decomposition $P = \bigoplus_{i=1}^{\infty} P_i$ such that P has $(*)$ and (B), and every*

countably generated directly finite projective R -module has $(*)$ and (B) for some cyclic decomposition.

Type C. All directly finite projective R -modules are finitely generated.

Proof. It is sufficient to prove that Types A and B are independent. For a unit-regular ring R satisfying s -comparability, there exist countably generated projective R -modules P and Q with cyclic decompositions $P = \bigoplus_{i=1}^{\infty} P_i$ and $Q = \bigoplus_{i=1}^{\infty} Q_i$ such that P has $(*)$ and (A) and that Q has $(*)$ and (B). Then $P_n \not\leq sQ_{i_k}$ for some i_k by $(*)$, and so $Q_{i_k} \not\leq sP_n$. Similarly, $P_m \not\leq sQ_{i_{k+1}}$ for some m ($\geq n$). Then $[P_n] = [P_m]$ and $[P_n] \geq [Q_{i_k}] \not\geq [Q_{i_{k+1}}] \geq [P_m]$, which contradicts the property of the order " \geq ".

NOTE. It is clear from the condition $(*)$ that every unit-regular ring satisfying s -comparability with $\text{Soc}(R) \neq 0$ is of Type C.

4. Types A, B and C

In this section, we shall give an ideal-theoretic characterization of Types A, B and C. Some results in this section are similar to the ones of [3]. But our proofs require something extra from [3].

Let R be a unit-regular ring satisfying s -comparability. We denote the family of all ideals of R by $L_2(R)$. Then $L_2(R)$ is a linearly ordered set under inclusion by the proof of [1, Proposition 8.5]. We put $I_0(R) = \cap\{I \mid 0 \neq I \in L_2(R)\}$.

DEFINITION. A subfamily $\{I_i\}_{i=1}^{\infty}$ of $L_2(R)$ is said to be a cofinal subfamily of $L_2(R)$ if all I_i are nonzero, $I_1 \not\leq I_2 \not\geq \dots$, and if for each nonzero X in $L_2(R)$ there exists a positive integer n such that $X \geq I_n$.

For an element a of a ring R , we put $\Sigma_a = \Sigma\{xR \mid x \in R \text{ and } xR \leq aR\}$.

Lemma 13. Let R be a unit-regular ring satisfying s -comparability.

- (a) For each $a \in R$, Σ_a is the smallest ideal of R containing a , and hence $\Sigma_a = RaR$.
- (b) For each $a, b \in R$, $\Sigma_a \leq \Sigma_b$ if and only if $aR \leq t(bR)$ for some positive integer t .
- (c) For $a, b \in R$, $\Sigma_a \not\leq \Sigma_b$ if and only if $\text{S}_0(aR) \not\leq \text{S}(bR)$. Therefore we see that $\Sigma_a = \Sigma_b$ if and only if $[aR] = [bR]$, and $\Sigma_a \not\leq \Sigma_b$ if and only if $[aR] \not\leq [bR]$.

Proof. See the proof of [3, Lemma 3.2] and Lemma 6.

Theorem 14. Let R be a unit-regular ring satisfying s -comparability. Then the following conditions (a)~(c) are equivalent:

- (a) R is of Type A.

- (b) $\text{Soc}(R)=0$ and $I_0(R)\neq 0$.
- (c) There exists a countably generated directly finite projective R -module P with a cyclic decomposition $P=\bigoplus_{i=1}^{\infty} P_i$ such that P satisfies the condition (*), $[P_1]=[P_2]=\cdots$ and that $\bigoplus_{i=2}^{\infty} P_i \lesssim tP_1$ for some positive integer t .

Proof. (a) \Rightarrow (b). Let R be of Type A. It is clear from the Note following Theorem 12 that $\text{Soc}(R)=0$. Then there exists a countably generated directly finite projective R -module P with the properties (*) and (A). Put $P_i \simeq x_i R$ for some $x_i \in R$. If $I_0(R)=0$, then there exists a nonzero ideal X of R such that $X \not\leq \Sigma_{x_n} = \Sigma_{x_{n+1}} = \cdots$, and so we can take a nonzero element x in X , hence $xR \leq \aleph_0(xR) \lesssim \bar{s}(x_m R)$ for each m ($\geq n$) from Lemma 13 and $\aleph_0(xR) < \bigoplus \bar{s}P$. Therefore $\bar{s}P$ is directly infinite, hence so is P which contradicts the direct finiteness of P . Thus (b) holds.

(b) \Rightarrow (c). Assume (b), and so there exists a nonzero element x_1 in $I_0(R)$ such that $\Sigma_{x_1} = I_0(R)$. Using that $\text{Soc}(R)=0$, we can take nonzero elements y_1 and z_1 in R such that $x_1 R = y_1 R \oplus z_1 R$ and $y_1 R \lesssim s(z_1 R)$. From this, there exists a nonzero cyclic submodule $x_2 R$ of $y_1 R$ which is subisomorphic to $z_1 R$ such that $2(x_2 R) \lesssim x_1 R$. Noting that $\text{Soc}(R)=0$ again, we apply the above discussion to $x_2 R$. Continuing this procedure, we obtain a nonzero submodule $x_{n+1} R$ of $y_n R$ such that $2(x_{n+1} R) \lesssim x_n R$ for $n=1, 2, \dots$. Put $P = \bigoplus_{i=1}^{\infty} x_i R$. We claim that P is a desired one. Since Σ_{x_1} is the smallest ideal of R , $\Sigma_{x_1} = \Sigma_{x_2} = \cdots$, and so $[x_1 R] = [x_2 R] = \cdots$. For each nonzero $y \in R$, assume that $yR \lesssim \bar{s}(x_i R)$ for each $i \in J$, where J is an infinite set $\{j_1, j_2, \dots\}$ of positive integers. Then $\Sigma_y \leq \Sigma_{x_i} = \Sigma_{x_1}$ and so $\Sigma_y = \Sigma_{x_1}$. We can take positive integers h , t and m such that $t\bar{s} \leq 2^h$ and $2^h(x_{j_m} R) \lesssim x_1 R \lesssim t(yR) \lesssim t\bar{s}(x_{j_m} R) \leq 2^h(x_{j_m} R)$, which is a contradiction. Thus (*) holds. It is clear that $\bigoplus_{i=2}^{\infty} x_i R \lesssim x_1 R$. Therefore (c) holds. The implication (c) \Rightarrow (a) is clear by Theorem 12.

Theorem 15. *Let R be a unit-regular ring satisfying s-comparability. Then the following conditions (a)~(c) are equivalent:*

- (a) R is of Type B.
- (b) $\text{Soc}(R)=0$, $I_0(R)=0$ and $L_2(R)$ has a cofinal subfamily.
- (c) There exists a countably generated directly finite projective R -module with a cyclic decomposition $P=\bigoplus_{i=1}^{\infty} P_i$ such that P has (*) and $[P_1] \not\geq [P_2] \not\leq \cdots$.

Proof. (a) \Rightarrow (b). If (a) holds, it is clear that $\text{Soc}(R)=0$. Then there exists a countably generated directly finite projective module P which has the properties (*) and (B). Put $P_i \simeq x_i R$ for some $x_i \in R$. Then $\cap \Sigma_{x_i} = 0$. If not, there exists a nonzero element $x_0 \in \cap \Sigma_{x_i}$, and so $\Sigma_{x_{i_1}} \not\geq \Sigma_{x_{i_2}} \not\geq \cdots \not\geq \Sigma_{x_0}$ by the condition (B) for P and Lemma 13. Hence we see from Lemma 13(c) that $x_0 R \lesssim \bigoplus \bar{s}(x_{i_j} R)$ for $j=1, 2, \dots$ and $\aleph_0(x_0 R) \lesssim \bigoplus \bar{s}(x_{i_1} R \oplus x_{i_2} R \oplus \cdots) \lesssim \bigoplus \bar{s}P$. Therefore $\bar{s}P$ is directly infinite and P is directly infinite which is a contradiction. Thus $I_0(R)=0$ and

$\{\Sigma_{x_i}\}$ is a cofinal subfamily of $L_2(R)$ from the linearly orderedness of $L_2(R)$.

(b) \Rightarrow (c). If (b) holds, then there exists a cofinal subfamily $\{I_i\}_{i=1}^\infty$ of $L_2(R)$ such that $I_1 \not\geq I_2 \not\geq \dots$. We can take an element $x_i \in I_i - I_{i+1}$, and so $I_i \geq \Sigma_{x_i} \not\geq I_{i+1}$ by the linearly orderedness of $L_2(R)$. Then we see that $\Sigma_{x_1} \not\geq \Sigma_{x_2} \not\geq \dots$ and $\{\Sigma_{x_i}\}$ is a cofinal subfamily of $L_2(R)$. Put $P = \bigoplus_{i=1}^\infty x_i R$. We claim that P is a desired one. It is clear that $[x_1 R] \not\geq [x_2 R] \not\geq \dots$. If P does not satisfy (*), there exists a nonzero $x_0 \in R$ such that $x_0 R \not\lesssim \tilde{s}(x_i R)$ for $i \in J$, where J is an infinite set of positive integers, and $\Sigma_{x_i} \geq \Sigma_{x_0}$ for $i \in J$. We see that $\Sigma_{x_0} = 0$ (i.e. $x_0 = 0$) by using that $\{\Sigma_{x_i}\}$ is a cofinal subfamily, which contradicts that $x_0 \neq 0$. Therefore (c) holds. The implication (c) \Rightarrow (a) is clear.

As a direct result from the above Theorems 14 and 15, we have the following.

Theorem 16. *Let R be a unit-regular ring satisfying s-comparability. Then the following conditions (a) and (b) are equivalent:*

- (a) R is of Type C.
- (b) $\text{Soc}(R) \neq 0$, or $I_0(R) = 0$ and $L_2(R)$ has no cofinal subfamily of $L_2(R)$.

References

- [1] K.R. Goodearl: *Von Neumann regular rings*, Kreiger, Florida, 1991.
- [2] M. Kutami: *On projective modules over directly finite regular rings satisfying the comparability axiom*, Osaka J. Math. **22** (1985), 671–677.
- [3] M. Kutami and K. Oshiro: *On projective modules over directly finite regular rings satisfying the comparability axiom II*, Osaka J. Math. **24** (1987), 465–473.
- [4] K.C. O'Meara: *Simple regular rings satisfying weak comparability*, J. Algebra **141** (1991), 162–186.

Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi 753, Japan

