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Let H n be the hyperbolic n-space of constant curvature — 1. We identify

H n with the unit ball in the Euclidean n-space R n via the Poincare model, i.e., H n

— {Bn (1), T^rTψ), where ds2 is the Euclidean metric and r is the Euclidean distance

from the origin. The sphere dBn(l) is called the sphere at infinity and denoted by

5 n ~ 1 (oo). It represents the asymptotic classes of geodesies in H n . Let M be an

immersed complete minimal surface in H n . The intersection of the closure of M

in the Euclidean topology with Sn~1(oo) can be seen as the asymptotic boundary

of M. In [1], M.T.Anderson established the general existence theorem of complete

area-minimizing current with prescribed asymptotic boundary, which enclosed the

following result as a special case:

Let C be a smooth closed curve (or more generally, closed 1-current) in

Sn~1(oo), then there is a complete area-minimizing smooth surface M with as-

ymptotic boundary C.

This paper is concerned with the asymptotic behaviour of complete minimal

surfaces in H n . This is partially suggested by the "good' behaviour at infinity

of complete minimal surfaces in R n with finite total Gaussian curvature, namely,

the tangent cone at infinity of a such minimal surface is uniquely a collection of

2-plane with multiplicities (see [2],[3],[5]). But the situation is different in H n . One

of the differences is the above mentioned result of Anderson; another is that the

total Gaussian curvature of complete minimal surface in H n i s infinite ( this can be

seen by the Gauss equation). We will study a class of minimal surfaces in H nwith

minimal area growth ( see §1 of the definition ). We present some geometric de-

scriptions of such surfaces, and find that the "length" of their asymptotic boundary

in 5n~ 1(oo) are finite( see Theorem 3.2 ). A corollary of our theorems is (Corollary

3.3)

Let M be a properly immersed complete and oriented minimal surface in

Hnwith Gaussian curvature K. Suppose M has finite topological type and

JM
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then the asymptotic boundary of M is a rectifiable 1-υarifold with finite mass.

This paper is organized as follows. In sectionl, we introduces some basic

properties of minimal surfaces in H n . In section 2 we present Theorem 2.1 which

establishes a relation between the area growth of a minimal surface in H n and some

weighted L2-norm of its second fundamental form. The corresponding result of

minimal surfaces in Rnwas obtained in a previous paper [2]. In section 3, we

discuss the Euclidean area and boundary structure of a minimal surface in H n .

Since the asymptotic boundary of minimal surface in H n i s not a smooth curve in

general. Some concepts from geometric measure theory should be employed in the

proof of the theorem. We refer to [8] for a reference of definitions and terminology

of geometric measure theory.

Part of this work was finished by the first author in the Graduate School of

Mathematical Science, The University of Tokyo. He would like to thank Professor

OCHIAI Takoshiro and Professor KASUE Atsushi for their sincerely guidance. The

authors would like to thank the referee for many useful comments.

1. Preliminaries

Throughout this paper H n denotes the hyperbolic n-space of constant curva-

ture — 1, and M an oriented and properly immersed complete minimal surface in

H n . We first recall some well-known facts.

Proposition 1.1. ( Monotonicity formula, Theorem 1 of [1]) Let B(t) be the

geodesic ball ofHn centered at a fixed point and radius t, and set M(t) = M Π B(t)

and v(t) = AreaM(ί). Then the function

v(t)

cosh t — 1

is monotone non-decreasing in t, particularly,

v'(t)cosht- v(t)sinht > v'(t).

DEFINITION 1.2. M is said to have minimal area growth if

v{t)
sup — < +oo.

cosh t — 1

The following proposition is a direct consequence of the definitions of the

Hessian and the second fundamental form, for the proof see [6].
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Proposition 1.3. Let A be the second fundamental form of M, p the distance

function ofΈίnfrom a fixed point and V the coυariant derivative of M, then

(V2p){e, e) = coth p{\ - (e, Vp)2) + (A(e, e),VLp),

for any unit tangent vector e of M, where V 1 p is the normal projection of GradMnp

to M.

The restriction of distance p on M is smooth. By Sard's theorem, for almost all

t > 0, M(t) is a compact surface with boundary dM(t) being an immersed closed

curve. Denote the geodesic curvature of dM(t) by k^. Then the Gauss-Bonnet

formula is

(1.1) / * * + / K = 2πχ(M(t)),
JdM{t) JM(t)

where A" is the Gaussian curvature of M, and χ(M(t)) is the Euler characteristic

. Sub;

)M(t) I

of M(t). Substituting the Gauss equation K — — 1 — \\A\2 into (1.1), and putting

R{t)=fM(t)\A\2, then

(1.2) v(t) + lR{t) + 2πχ(M(t))= ί k\.
Δ JdM(t)dM(t)

Suppose e is tangent to dM(t). Then, r̂ A- being normal to dM(t) in M, the

expression of fc* is

(1-3)

where the last equality is followed by Proposition 1.2.

By the co-area formula (see [8]), v'{t) = JdM(t) WP\' Substituting (1.3) into

(1.2), we obtain

Proposition 1.4. For almost all t > 0,

v{t) + l-R(t) + 2πχ(Af (*)) = v'(t) cotht - /
2 JddM{t)
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2. Area growth estimate

In this section we prove the following theorem, which is analogous to Theorem

1 of [2].

Theorem 2.1. Let M be a properly immersed complete minimal surface in

H n . Suppose M is of finite topological type. Then M has minimal area growth if

and only if

ί e-
p^\A\2(x)dx<+oc,

JM

where A is the second fundamental form of M and p is the distance function o / H n

to a fixed point.

Lemma 2.2. For t>s>to>0,

JM(t)-M(to) C O s h P L(s)-M{t0)
 C O s h P =

cosh t cosh s

Γ l + |V1/9|2sinh2/? f* sinhί 0 sinhu Γ

JM{t)-M(s) cosh p Js cosh u JdM(t0)

Proof. By the minimality of M and Proposition 1.3, we observe that

where Δ is the Laplacian of M. It yields

(2.1) Δcosh/) = 2 cosh/).

Integrating (2.1) over M(t) — M(t0) and by using Green's formula, we have

(2.2) 2 / cosh/)= / |V/)|sinh/)- / \Vρ\sinhp.
JM(t)-M(t0) JdM(t) JdM(t0)

The co-area formula ([8]) leads

d_ ffM(t)-M(t0)
coshP\

dt \ cosh2* J

= o— I cosh* / p — 2sinh* / cosh/)
cosh * \ JdM(t) I V/)| JM(t)-M(t0) J

ί |VPΛ
JdM{tQ) J

cosh * \JdM(t)

vί/
* V J a A f ( t ) \vp\ JdM(t0)

1 I ,9 2 x f

j -(1 + V p\ sinh *) + sinh*o sinh* /
\vp\ Jd
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The lemma is then proved by integrating (2.3) from s to ί and the co-area formula.

Proof of Theorem 2.1. By the co-area formula,

/ e~p\A\2= f e-sR'{s)ds
/o Λ\ JMU) JO
( 2 4 ) rt

e-sR(s)ds.
Jo

We rewrite Proposition 1.4 as

v'(t) cosht — v(t) s inht 1 . ,

, , 5 ) ^ = 5 < < )

From now on, d(i = 1, 2, •) will be denoted as constants independent of t.

If JM e-f>W\A\2(x)dx < +oc, by (2.5) we have

Jdidt cosht -= cosh2ί V2 v ' - — - V JdM{t) |Vp| cosh2t

Integrating (2.6) from 0 to t and by the co-area formula,

v(t) fι 1 f

(2.7) —K-τ- <2 I {-R(s)+2πχ(M(s))e-sds+ I
cosht JQ 2 J Λ

M(t) cosn p

Since χ(M(ΐ)) < 1, by using the Schwarz inequality, (2.7) and the hypothesis, we

have

v(t) if \A\2 V
c o s h t - X \JM{t) cosh pi \JM{t) cosh3p

Ci + C2 " n ί ;

 2 (by Lemma 2.2)
V cosh t )

-VV
cosh t J

Thus by the monotonicity of ̂ ^ we see either sup —^ < C\ or, when / is large

enough, C\ < ££L, so

<( Ϋ { c
coshί "" \cosh// \cosht

{
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It follows

this proves that M has minimal area growth.

Conversely, when sup Jo^t < oo, it suffices to show Jo°° e~tR(t)dt < +00.

Indeed, this implies that there is a sequence {ti} tending to infinity such that

e~tιR(ti) —> 0 as i -> 00, taking t = U in (2.4) then letting i tending to infinity,

the theorem follows.

we derive from (2.5) that

(2.9)
v ; 22 sinhί dt\coshtJJdM{t)

and we integrate above inequality from 0 to t. Then, since the integrals of the first

two terms in the right hand side of (2.9) is bounded above, we have

\ [te-sR(s)ds<C3+ ί
1 JO JMlM{t)

(2.10) < C
y JM(ί) ^Λ

Mt

where the last inequality is followed by Lemma 2.2. For the convenience we set

f(t) = ί e-sR{s)ds.

Jo

Combining (2.10) with (2.4) we obtain

I
V̂  J-J-J o/v^j _ ^ 3 ' ^ 4 V JV1) ~r / V')'

2

We claim that either of the following holds:

(a): /0°° e-tRtydt - sup/(ΐ) < 2C3,

(b): there is a sequence {ti} tending to infinity such that f'(ti) < /(£;),

otherwise, there is a to sufficient large such that f(t) < f (t) and f(t) > 2C3 when

t >tQ, then by (2.11)

(f(t) -
integrating this from £Q to ί, we get

f(t)-2C3
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which contradicts with the fact that t is unbounded.

It remains to prove the theorem when (b) holds. Taking t = ti in (2.11), one

has

(2.12)

If f(U) —>• oc as i -» oo, then dividing (2.12) by f(ti) and letting i —>- co would

lead to an obvious contradiction. Hence sup/(t) = sup/(ί, ) < oo and the theorem

follows.

3. Boundary behaviour of minimal surfaces

We regard H n as the Poincare model, that is H n = (Bn (1), ds2

H), where Bn(l)

is the unit ball of R n and ds2

H = tl_?r2\*ds\ with r being the Euclidean distance

function from the origin. Here and after, the subscripts H and E indicate, re-

spectively, the notations with respect to the hyperbolic metric and the Euclidean

metric.

Theorem 3.1. Suppose M H-> (Bn(l),dsH) is a properly immersed complete

minimal surface, //sup v

c^\ < oo then AreaE(M) < oo.

Proof. For p E M, the orthonormal basis β\, e^{ or t\, e^) of TpM with respect

to the Euclidean metric (or the hyperbolic metric) is related by

ΛP)C
e t , % — i , z .

Since r = tanh | , we have

2

(3.1)
* = 1 v ;

2
2= (1 -hcoshp)

= (1+cosh p)VHp(p).
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It follows | V β r | £ — \VHρ\H. Then the co-area formula yields

1

Jd

(3.2) = ί
Jd

"j j tloff

d(MnBH(t)) \VHP\H

1 2

— tanh 7r

— (cosh/ + I)ΐ4(tanh - ) ,

hence, by Proposition 1.1 we have

/

CO 7

a „ Vτj
— (
dt cos
cosh t

(3.3) ί0 0 (1 + coshί) 2

= /
Jo

cosh t

t
- )

= AreaB(M).

This completes the proof.

Next we discuss the boundary behaviour of minimal surfaces. Following An-

derson [1], the asymptotic boundary dM of a complete minimal surface M in H n i s

defined by

dM = closure(M) Π S^ '^oo) ,

where the closure is taken in the Euclidean topology. When M is properly im-

mersed, then dM is just the boundary of M in the Euclidean space Rn.

T h e o r e m 3.2. Let M be an immersed complete minimal surface in Hnwith

minimal area growth and finite topological type. Then the asymptotic boundary dM

of M is a rectifiable 1-varifold with finite mass when dM is considered as a subset

o/5n~1(cχD) C Rn.

Proof.We claim that M is properly immersed, which can be proved in the

same way as the proof of Lemma 3 in [2]. Hence the boundary dM(t) of M(t) =

M Π BH(t) is a smooth closed curve, for almost all ί > 0. Since

\engthE(dM(t)) = [
JdM(t)

By the minimal growth of the area, there is a sequence {£,-} tending to infinity such

that
l +u (ΛΛΛ(+ \\ lengthy(5M(^))

sup lengthy(dM(U)) = sup — u ^ , \ < oo.
cosh if + 1
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By the compactness theorem of current (Theorem 27.3 of [8]), there is a subse-

quence of {dM(ti)}, denoted again by {<9M(̂  )}, converges to an integer multiplic-

ity 1-current as currents in Rn. If we regard dM(ti) as a rectifiable 1-varifold in

Bn(l) C Rn, then {dM(ti)} also converges to a rectifiable 1-varifold V with integer

multiplicity.

Suppose V = t>(Σ,#), where Σ = support(V) and θ is the multiplicity function

of V. It is obvious that Σ C ΘM. In the following we show actually V = t>(<9M, 0),

then the theorem follows.

Denote Ή1 the 1-dimensional Hausdorff measure of Rn, and μv the weight

measure of V. By the convergence,

as the Radon measures. Suppose p G dM — Σ φ φ, there is a neighbourhood O

of p in Rnsuch that Σ Π O — φ. We can choose O to be a ball in Rnsuch that

dO Π Bn{l) is a hyperplane of H n . Then

(3.4) lengthβ(O Π ΘM{U)) =^{0 0 ΘM(ti)) -> μv(BE{p, c)) = 0.

Since M has finite topological type, p represents an end V of M, which is

topologically an annulus. Let d — V Π O Π dM(ti). If C2 is not a closed curve,

taking p? G Cj such that pi —>• p, then

lengthy(C«) > distE(pf,5O) > distε(p, dO) — distB(pt ,p).

This implies by (3.4) that C, is a closed curve when i is sufficiently large. By the

convex hull property of minimal surface in Hn (Lemma 5 of [1]), when i > io,

V(ti):=Vn(M(ti)-M(tio))cO.

Applying Lemma 2.2 to V{t{),

-ds%.ί , . 2 ,2 /" !
/ cosh />α5H > cosn t, / — a

Jv(ti) Jv(ti) c o s n P

Now (2.2) implies

lengthy (coβhΐ,-
1 f

- /
ίj Jv(ti)

( θ cosh3/)

which contradicts (3.4). This completes the proof of the theorem.
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Corollary 3.3. Let M be a properly immersed complete and oriented minimal

surface in Hnwith Gaussian curvature K. Suppose M has finite topological type

and

- ί (l + tf)<+oo,
JM

then the asymptotic boundary of M is a rectifiable l-υarifold with finite mass.

Proof. By the hypothesis and the Gauss equation,

LM

Therefore the corollary is followed by Theorem 2.2 and Theorem 3.2.

REMARK 3.4. 1. Let M be a properly immersed complete minimal surface

in H n with minimal area growth and finite topological type. By Theorem 3.1, M

is a 2-current with finite mass when M is considered as a current in R n . Then

Theorem 3.2 implies readily that asymptotic boundary dM coincides with the

boundary current of M in R n , which generalizes Proposition 6 of [1].

2: It would be an interesting question whether the following equality holds for

the properly immersed complete minimal surfaces in H n with minimal area growth:

sup \H"' = / θdTί1 (mass of V).
c o s h t - 1 JdM
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