<table>
<thead>
<tr>
<th>Title</th>
<th>A necessary and sufficient condition for a kernel to be a weak potential kernel of a recurrent Markov chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ōshima, Yoichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 6(1) P.29–P.37</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1969</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/10624</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/10624</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
A NECESSARY AND SUFFICIENT CONDITION FOR A KERNEL TO BE A WEAK POTENTIAL KERNEL OF A RECURRENT MARKOV CHAIN

YOICHI OSHIMA

(Received December 14, 1968)

1. Introduction

Let \(P \) be an irreducible recurrent transition probability on a denumerable space \(S \) with invariant measure \(\alpha \). Let \(c \) be an arbitrary (but fixed) state of \(S \). Then from the work of Kondo [3] and Orey [8], there exist the class of weak potential kernels \(A(x, y) \) defined by the property that, for every null charge \(f \), \(Af \) is bounded and satisfies the equation

\[
(I - P)Af = f.
\]

Moreover \(Af \) is represented by

\[
Af = ^cGf + 1(f),
\]

where \(f \) is a null charge, \(1(\cdot) \) is an arbitrary linear functional on the space of null charges and \(^cG \) is defined as follow;

\[
\begin{align*}
^cP(x, y) &= \begin{cases}
P(x, y) & x \neq c, \; y \neq c \\
0 & \text{otherwise,}
\end{cases} \\
^cG(x, y) &= \begin{cases}
\sum_{n=0}^\infty ^cP^n(x, y) & x \neq c, \; y \neq c \\
0 & \text{otherwise.}
\end{cases}
\end{align*}
\]

Moreover \(A \) satisfies the following maximum principle [4], [5]:

(RSCM)\(^1\) If \(m \) is a real number and \(f \) is a null charge then the relation that

\[
m \geq Af
\]

on the set \(\{f > 0\} \)

implies that

\[
m - f^- \geq Af \quad \text{everywhere,}
\]

\(^1\) This is the abbreviation of "reinforced semi-complete maximum principle"; this maximum principle corresponds to the semi-complete M.P. as well as the reinforced M.P. (of Meyer) corresponds to the complete M.P.
where \(f^- = (-f) \land 0 \).

In the present paper we are concerned with the following construction problem. Given a positive measure \(\alpha \) and a (not necessarily positive) kernel \(A \) satisfying (RSCM), does there exist an irreducible recurrent transition probability which has \(\alpha \) as its invariant measure, and \(A \) as its weak potential kernel? This is not true in general\(^2\), but as Kondo \([4]\) has proved, it is true if \(\alpha \) is a finite measure. In section 2 we shall introduce another necessary condition for the weak potential kernel \(A \) (referred to as condition (*)). Then we shall prove (theorem 3.1) that, if the pair \((A, \alpha)\) satisfies maximum principle (RSCM) and condition (*), \(A \) is a weak potential kernel of a (unique) recurrent Markov chain with \(\alpha \) as its invariant measure.

I should like to express my hearty gratitude to T. Watanabe for his kind advices.

2. Some potential theory for a kernel \(A \) satisfying (RSCM)

Let \(\alpha \) be a strictly positive measure and \(A \), a kernel on \(S \). A function \(f \) on \(S \) is said to be a null charge with respect to \(\alpha \) if \(\sum \alpha(x) |f(x)| < \infty \) and \(\sum \alpha(x)f(x) = 0 \). Let \(N \) be the space of null charges vanishing outside a finite subset of \(S \). We assume that the kernel \(A \) satisfies condition (RSCM) for \(f^N \). Fix an arbitrary state \(c \) and define

\[
(2.1) \quad \mathcal{G}(x, y) = A(x, y) - A(c, y) - (A(x, c) - A(c, c)) \frac{\alpha(y)}{\alpha(c)}.
\]

If \(A \) is a weak potential kernel then (2.1) is clearly satisfied by taking \(f \) in equation (1.2) as

\[
(2.2) \quad f(x) = \begin{cases} \frac{\alpha(y)}{\alpha(c)} & x = c \\ -1 & x = y \\ 0 & \text{otherwise,} \end{cases}
\]

and calculating \(Af(x) - Af(c) \).

From definition (2.1) \(\mathcal{G}(c, x) = \mathcal{G}(x, c) = 0 \) for every \(x \in S \).

Lemma 2.1 For arbitrary elements \(x, y \) in \(S \) which are different from \(c \)

\[
I(x, y) \preceq \mathcal{G}(x, y) \preceq \mathcal{G}(y, y).
\]

Proof. By taking \(f \) as (2.2) we have

\[
Af(c) = A(c, c) \frac{\alpha(y)}{\alpha(c)} - A(c, y)
\]

\(^2\) A counter example was given by Kondo and T. Watanabe.
\[Af(y) = A(y, c) \frac{\alpha(y)}{\alpha(c)} - A(y, y). \]

Hence, if we write \(f^+ = f \lor 0, f^- = (-f) \lor 0 \), by (RSCM)

\[A(y, c) \frac{\alpha(y)}{\alpha(c)} - A(y, y) + f^+(x) \leq Af(x) \leq A(c, c) \frac{\alpha(y)}{\alpha(c)} - A(c, y) - f^-(x), \]

so that

\[(2.3) \quad A(y, c) \frac{\alpha(y)}{\alpha(c)} - A(y, y) \leq A(x, c) \frac{\alpha(y)}{\alpha(c)} - A(x, y) \]

\[\leq A(c, c) \frac{\alpha(y)}{\alpha(c)} - A(c, y) - I(x, y), \]

which proves the lemma.

Corollary. For every \(x \in S \) there exists a constant \(C \) such that

\[^cG(x, y) \leq C \cdot \alpha(y) \quad \text{for every } y \in S. \]

Proof. Exchanging \(c \) and \(x \) in the second inequality in (2.3), it follows that

\[^cG(x, y) = A(x, y) - A(c, y) - (A(x, c) - A(c, c)) \frac{\alpha(y)}{\alpha(c)} \]

\[\leq \left(- \frac{A(x, c)}{\alpha(c)} - \frac{A(c, c)}{\alpha(x)} + \frac{A(c, c)}{\alpha(c)} + \frac{A(x, x)}{\alpha(x)} \right) \alpha(y). \]

Let \(^cS \) be the set \(S - \{c\} \), and \(^cM \) be the space of all functions on \(^cS \) vanishing outside a finite subset of \(^cS \). Let \(^cM^+ \) be the space of all non-negative functions in \(^cM \).

Theorem 2.1. The kernel \(^cG \) satisfies the reinforced maximum principle [7]:

(RM) If \(a \) is a non-negative constant and if \(^c f \) and \(^c g \) are two elements of \(^cM^+ \), then the relation that

\[(2.5) \quad a + ^cG \cdot \overline{f} - ^cG \cdot \overline{g} \geq ^cG \cdot \overline{g} \]

on the set \(\{^c g > 0\} \) implies that

\[(2.6) \quad a + ^cG \cdot \overline{f} - ^cG \cdot \overline{g} \geq ^cG \cdot \overline{g} \quad \text{everywhere on } ^cS. \]

Proof. Let \(f \) be the function on \(S \) such that \(f \in N \) and \(f \mid _S = ^c f \). Such \(f \) is obviously unique. The function \(g \in N \) is defined similarly. Then inequality (2.5) implies that

\[a + A(g - f)(c) \geq A(g - f) \quad \text{on the set } \{g - f > 0\}. \]

For, since \(^c f \) and \(^c g \) are non-negative, the set \(\{g - f > 0\} \) is contained in the union of \(c \) and \(\{^c g > 0\} \). Hence by (RSCM)
32 Y. OSHIMA

\[a + A(g-f)(c)-(g-f) \geq A(g-f) \] everywhere.

Since the function \((g-f)^{\ast}\) is equal to \(\epsilon f\) on \(\epsilon S \cap \{g=0\}\), the above inequality, combined with (2.5), proves the theorem.

A non-negative function \(\epsilon h\) on \(\epsilon S\) is said to be quasi-excessive\(^3\) if, for every \(\epsilon g \in \epsilon M\), the inequality

\[\epsilon h \geq \epsilon G^c g \] on the set \(\{\epsilon g > 0\}\)

implies that

\[\epsilon h - \epsilon g \geq \epsilon G^c g \] everywhere.

Moreover Meyer introduced the notion of the pseudo-réduite \(\epsilon H^c G^c h\) for every quasi-excessive function \(\epsilon h\) and every subset \(E\) of \(\epsilon S\). This function \(\epsilon H^c G^c h\) satisfies the following four conditions.

(2.7) \(\epsilon H^c G^c h\) is quasi-excessive.

(2.8) \(\epsilon H^c G^c h \leq \epsilon h\) on \(\epsilon S\) and \(\epsilon H^c G^c h = \epsilon h\) on \(E\).

(2.9) If \(\epsilon h_1\) and \(\epsilon h_2\) are two quasi-excessive functions such that \(\epsilon h_1 \leq \epsilon h_2\) on \(E\), then \(\epsilon H^c G^c h_1 \leq \epsilon H^c G^c h_2\).

(2.10) If \(\epsilon f \in \epsilon M^+\) vanishes outside of \(E\) then \(\epsilon H^c G^c f = \epsilon G^c f\).

For example, the function \(\epsilon G^c f\), \(\epsilon f \in \epsilon M^+\), and every positive constant are quasi-excessive ([7] see also [5]).

Now we introduce a condition.

Condition (*): There exists a sequence of finite sets \(\{\epsilon E_n\}_{n=1,2,\ldots}\) increasing to \(\epsilon S\) such that \(\epsilon c \in \epsilon E_n\) for each \(n\), and a sequence \(\{\epsilon h_n\}_{n=1,2,\ldots}\) of function on \(\epsilon S\) satisfying the following conditions.

(i) \(0 \leq \epsilon h_n \leq 1\), \(\epsilon h_n(c) = 0\), \(\epsilon h_n = 1\) on \(\epsilon F_n = \epsilon S - \epsilon E_n\), and \(\lim \epsilon h_n = 0\).

(ii) For every \(\epsilon f \in \epsilon N\) and every real number \(m \geq Af(c)\) the relation that

\[m + \epsilon h_n \geq Af \] on the set \(\{\epsilon f > 0\}\),

implies that

\[m + \epsilon h_n - f \geq Af \] everywhere on \(\epsilon S\).

In section 3 we shall show that if \(A\) is a weak potential kernel of an irreducible recurrent Markov chain, it satisfies condition (*).

Theorem 2.2 Condition (*) is equivalent to the condition that, there exists a sequence of finite sets \(\{\epsilon E_n\}_{n=1,2,\ldots}\) increasing to \(\epsilon S\) such that

\[\lim \epsilon H_{S - \epsilon E_n} 1 = 0 . \] (2.11)

Proof. Suppose that condition (*) holds and let \(\epsilon h_n\) be the restriction of \(\epsilon h\) to \(\epsilon S\) and \(\epsilon E_n = \epsilon S \cap \epsilon E_n\). Obviously \(\epsilon S - \epsilon E_n = \epsilon F_n\), \(0 \leq \epsilon h_n \leq 1\), and \(\epsilon h_n = 1\) on \(\epsilon F_n\). It then follows that \(\epsilon h_n\) is a quasi-excessive function for every \(n\). In fact,

\[^3\) This definition is slightly different from Meyer's one; this is the discrete version of Meyer's,
let \(f \) be in \(\mathcal{M} \) and \(f \), the extension of \(f \) to \(S \) such that \(f \in \mathcal{N} \). If
\[
\mathcal{C} h_n \geq \mathcal{C} G f \quad \text{on the set } \{ f > 0 \}
\]
then
\[
h_n + Af(c) \geq Af \quad \text{on the set } \{ f > 0 \},
\]
since \(\{ f > 0 \} \) is contained in \(\{ f > 0 \} \cup \{ c \} \). Hence from condition \((*)\),
\[
h_n + Af(c) - f \geq Af \quad \text{everywhere on } \mathcal{C} S,
\]
that is,
\[
\mathcal{C} h_n - f \geq \mathcal{C} G f \quad \text{everywhere on } \mathcal{C} S.
\]
Since \(\mathcal{C} H_{F_n} \cdot 1 \leq \mathcal{C} h_n \) by definition,
\[
\lim \mathcal{C} H_{F_n} \cdot 1 = 0.
\]
Conversely, if \((2.11)\) holds, set \(\mathcal{E} E_n \cup \{ c \} = E_n, \ F_n = S - E_n \) and
\[
h_n = \begin{cases} \mathcal{C} H_{F_n} \cdot 1 & \text{on } \mathcal{C} S \\ 0 & \text{at } c. \end{cases}
\]
It is enough to show the property \((ii)\) of condition \((*)\). Suppose that, for some \(f \in \mathcal{N} \) and some real number \(m (\geq Af(c)) \)
\[
m + h_n \geq Af \quad \text{on } \{ f > 0 \}.
\]
Then one has
\[
m - Af(c) + \mathcal{C} H_{F_n} \cdot 1 \geq \mathcal{C} G f \quad \text{on } \{ f > 0 \},
\]
where \(f \) is the restriction of \(f \) to \(\mathcal{C} S \). The fact that \(m - Af(c) + \mathcal{C} H_{F_n} \cdot 1 \) is a quasi-

Note. If \(\alpha \) is a finite measure, then condition \((*)\) is satisfied.

Let \(I_F \) be the indicator function of a set \(F \), then from lemma 2.1 \(\mathcal{C} GI_F \geq 1 \) on \(F \). Hence from \((2.8)\) and \((2.9)\) \(\mathcal{C} H_{F} \cdot 1 \leq \mathcal{C} GI_F \). Hence if \(F_n \) decrease to empty
set, inequality
\[
\mathcal{C} H_{F_n} \cdot 1(x) \leq \mathcal{C} GI_{F_n}(x) \leq \sum_{y \in F_n} C \cdot \alpha(y),
\]
implies that
\[
\lim \mathcal{C} H_{F_n} \cdot 1(x) = 0.
\]
Where the second inequality follows from the corollary of lemma 2.1.

3. Main result

Let \(A \) be a weak potential kernel of an irreducible recurrent transition
probability P with invariant measure α. We shall now prove that A satisfies condition (*) of section 2.

Define cP and cG as (1.3) and (1.4) respectively. Let cH_F be the réduit defined by cP. Since $^cH_F\cdot 1$ is the pseudo-réduit associated with the above cG (see [5] P. 37, theorem 1.3), it is enough to show that for a sequence of finite sets $\{E_n\}_{n=1}^{\infty}$ increasing to cS, $\lim^cH_{F_n}\cdot 1=0 \ (F_n=^cS-E_n)$ by theorem 2.2. One can easily see that the function $^c\eta(x)=\lim^cH_{F_n}\cdot 1(x)$ is an invariant function for cP (i.e. $^cP^c\eta=^c\eta$) and bounded by 1. On the other hand,

$$1 = {^cG}(1-^cP\cdot 1)(x) + \lim^cP^n\cdot 1(x)$$

implies that 1 is a potential of non-gengative function (where $\sigma_{(c)}$ is the hitting time of the Markov chain with transition probability P). Hence $^c\eta$ is also a potential. The fact that $^c\eta$ is an invariant function and also a potential shows that $^c\eta=0$.

The main result of the present paper is this.

Theorem 3.1. Given a positive measure α and a kernel A satisfying maximum principle (RSCM) and condition (*), there exists a unique irreducible recurrent transition probability P which has α as its invariant measure, and A as its weak potential kernel.

Uniqueness was proved by Kondō [4]. We shall divide the proof of existence into several lemmas. In the following we shall use the notation of section 2 with no further reference.

Lemma 3.1. There exists a sub-Markov transition probability $^cP(x, y)$ on cS such that

$$^cG(x, y) = \sum_{n=0}^{\infty}^cP^n(x, y) \quad \text{for every } x, y \text{ in } ^cS.$$

Lemma 3.2. For every $y \in ^cS$, $\sum_{x \in ^cF} \alpha(x)^cP(x, y) \leq \alpha(y)$.

Proof. To the contrary, suppose that there exists some state $y \in ^cS$ such that

$$\sum_{x \in ^cF} \alpha(x)^cP(x, y) - \alpha(y) > 0.$$

Then there exists a finite subset F of cS containing y and satisfying

$$\sum_{x \in F} \alpha(x)^cP(x, y) - \alpha(y) = a > 0.$$

Define a function $f \in N$ by
WEAK POTENTIAL KERNEL OF A RECURRENT MARKOV CHAIN

\[
f(x) = \begin{cases}
 \varepsilon P(x, y) - I(x, y) & x \in F \\
 -\frac{a}{\alpha(c)} & x = c \\
 0 & \text{otherwise.}
\end{cases}
\]

Since \(A\phi + f^- \) attains its maximum on the set \(\{f > 0\} \) and since \(f(c) < 0 \), there exists a state \(x_0 \in F \) such that,

\[A\phi(x_0) \geq A\phi + f^- \quad \text{everywhere on } S. \]

In particular,

\[A\phi(x_0) \geq A\phi(c) - \frac{a}{\alpha(c)}. \]

Hence,

\[0 > -\frac{a}{\alpha(c)} \geq A\phi(c) - A\phi(x_0) = \varepsilon G(-\varepsilon f)(x_0), \]

where \(\varepsilon f \) is the restriction of \(f \) to \(\varepsilon S \). On the other hand,

\[
\varepsilon G(-\varepsilon f)(x_0) = \varepsilon G(x_o, y) - \sum_{x \in F} \varepsilon G(x_o, z)^\varepsilon P(z, y) \\
\geq \varepsilon G(x_o, y) - (\varepsilon G(x_o, y) - I(x_o, y)) = I(x_o, y) \geq 0.
\]

This lead us to a contradiction.

Lemma 3.3. \(\varepsilon G(1 - \varepsilon P \cdot 1) = 1 \) on \(\varepsilon S \).

Proof. For any positive integer \(n \), we have

\[1 = \sum_{k=0}^n \varepsilon P^k(1 - \varepsilon P \cdot 1)(x) + \varepsilon P^{n+1} \cdot 1(x). \]

Passing to the limit we obtain

\[1 = \varepsilon G(1 - \varepsilon P \cdot 1)(x) + r(x), \]

where \(r(x) = \lim \varepsilon P^{n+1} \cdot 1(x) \). It remains to show that \(r(x) = 0 \). From condition (*) for arbitrary \(\varepsilon > 0 \) there exists a number \(M \) such that for any integer \(m \geq M \),

\[\varepsilon H_{F_m} \cdot 1(x) < \varepsilon. \]

Hence

\[\sum_{x \in \varepsilon} \varepsilon P^{n+1}(x, y) = \varepsilon P^{n+1} I_{F_m} + \varepsilon P^{n+1} I_{E_m}(x) \leq \varepsilon H_{F_m} \cdot 1(x) + \varepsilon P^{n+1} I_{E_m}(x), \]

where \(I_F \) is the indicator function of \(F \). Tending \(n \) to infinity we obtain \(r(x) \leq \varepsilon \).

Lemma 3.4. \(\sum_{x \in \varepsilon} \alpha(x)(1 - \varepsilon P \cdot 1)(x) \leq \alpha(c) \).

Proof. Let \(F \) be an arbitrary finite subset of \(\varepsilon S \), and define
As noted in the proof of lemma 3.2, there exists a state \(x_0 \in F \) such that
\[
Af(x_0) \geq Af + f^-
\]
on \(S \).

In particular,
\[
\mathcal{C}G f(x_0) = Af(x_0) - Af(c) \geq f^-(c) = \sum_{y \in F} \alpha(y)(1 - \mathcal{C}P \cdot 1(y))/\alpha(c),
\]
and by lemma 3.3, the left side of the above inequality is bounded by 1.

Now we can define the desired transition probability \(P \).

\[
P(x, y) = \begin{cases}
\mathcal{C}P(x, y) & x \neq c, y \neq c \\
1 - \mathcal{C}P \cdot 1(x) & x \neq c, y = c \\
(\alpha(y) - \alpha^c P(y))/\alpha(c) & x = c, y \neq c \\
1 - \sum_{z \neq c} P(c, z) & x = c, y = c.
\end{cases}
\]

From lemmas 3.2 and 3.4, \(P \) is a transition probability on \(S \).

Lemma 3.5. \(\alpha P = \alpha \) and \((I - P)Af = f \) for any \(f \in N \).

Proof. If \(x \neq c \), then
\[
\alpha P(x) = \sum_{y \neq c} \alpha(y)\mathcal{C}P(y, x) + \alpha(x) - \alpha^c P(x) = \alpha(x)
\]
and
\[
(I - P)Af(x) = (I - P)(Af(c) + \mathcal{C}f)(x) = f(x).
\]

By the same argument for \(x = c \), lemma follows.

Lemma 3.6. The transition probability \(P \) is recurrent and irreducible.

Proof. Let \(\sigma_{(x)} \) be the hitting time for \(x \) of the Markov chain with transition probability \(P \). Then for every \(x \neq c \),
\[
P_x[\sigma_{(x)} < \infty] = \sum_{y \neq c} \mathcal{C}G(x, y)P(y, c) = \mathcal{C}G(1 - \mathcal{C}P \cdot 1) (x) = 1,
\]
by lemma 3.3. Hence,
\[
P_c[\sigma^+_c < \infty] = \sum_{x \in S} P(c, x)P_x[\sigma_{(x)} < \infty] = 1,
\]
where \(\sigma^+_c \) is the positive hitting time for state \(c \). Thus \(c \) is a recurrent state for \(P \) and hence also for \(\hat{P} \), where \(\hat{P} \) is defined by,
\[
\hat{P}(x, y) = \frac{\alpha(y)}{\alpha(x)} P(y, x).
\]
Moreover,
\[
\hat{P}^n(x, c) = \frac{\alpha(x)}{\alpha(c)} P^n(x, c), \text{ and } P_x[\sigma_{\{c\}} < \infty] = 1,
\]
shows that
\[
\hat{P}_x[\sigma_{\{x\}} < \infty] > 0 \text{ for all } x \in S.
\]
Hence \(x\) is a recurrent state for \(\hat{P}\) and hence for \(P\). Since \(x\) is recurrent and \(P_x[\sigma_{\{x\}} < \infty] = 1\), it follows that \(P_x[\sigma_{\{x\}} < \infty] = 1\) for all \(x \in S\). Irreducibility follows from the fact that, \(P_x[\sigma_{\{c\}} < \infty] = 1\) and \(P_x[\sigma_{\{y\}} < \infty] = 1\) for every \(x, y\) in \(S\).

OSAKA CITY UNIVERSITY

Bibliography
