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Extensions and Classification of Maps

By Sze~tsen Hu

I. INTRODUCTION

Given two topological spaces X and R, let us consider an arbitra-
rily given map 2) / : XQ —> R defined on a given subset X0 of X. The
problem of determining whether / : X0 -> R can be extended con-
tinuously throughout X, in other words, whether there exists a map
f*:X-+R such that /*|JΓ0=/, is known as the extension 'problem of
maps. The map /* is called an extension of /. Next, let us consider
the totality of the maps of X into R. These maps are divided into
disjoint homotopy classes, those in each class being homotopic to each
other [40] ?). The problem of enumerating these classes by means of
some convenient invariants is known as the classification problem of
maps.

The two problems of maps described above are of extremely great
importance in modern topology. Neither of them has been solved in
general form while a great number of particular results are already
known. A majority of the literatures of these results are provided in
the bibliography given at the end of the paper.

The object of the present work is to give a general investigation
to both problems by considering the singular poly tope °- of the given
space X. The singular polytope P(X) and the related notions are
studied in Chapter II. The general theory of continuous extension is
given in Chapter III and that of homotopy classification in Chapter
IV. One might easily see that the results concerning homotopy and
classification are in a form more satisfactory than those of the exten-
sion problem. By suitable specializations, our theorems will contain a
major portion of the known results. Throughout the paper, we fre-
quently assume the ^-simplicity of the space R in the sense of
Eilenberg

II. THE SINGULAR POLYTOPE OF A SPACE

1. The singular complex S(X)

For the convenience of our investigation given in the sequel, we
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shall briefly recall Eilenberg's definition, [23, p. 420], of the singular
complex S(X) of a topological space X with some modified terminology.

Let

be an ordered geometric m-simplex, i. e. with ordered vertices. Denote
by sr° the face of s opposite the i-th vertex vi9 i. e. 5)

For any two given ordered geometric m-simplices sλ and s2, there is
a unique barycentric map

Bsisz ' Si —* S2

which preserves the order of the vertices.
Let X be a topological space. By a cont^nuo^ιs m-simplex in -X",

we understand a (continuous) map

T: s-*X

of an ordered geometric m-simplex s with values in X.
Two continuous m-simplices

are said to be equivalent (notation : Ty=T^9 if T2BSis2=Tl. The con-
tinuous m-simplices in Jf are thus divided into disjoint equivalence
called the singular m-simplices in X. We shall denote by [T] the
singular simplex which contain the continuous simplex T: s-*X and
call T a representative of [TJ.

We remark that, for a given singular m-sίmplex ξ and a given
ordered geometric m-simplex s, there is a unique continuous m-simplex
T: s-+X such that £=CΓ]

Let Cm(X) be the free abelian group generated by the singular
m-simplices in X. The elements of Cm(X) are called the integral sin-
gular m-chains in X,

Given a continuous m-simplex

T: s-+X, *=Oo, ... ,v»>,

consider the continuous (m— l)-simplices

2*0 : 9™_+χ9 (t=0,... ,w),

defined by the partial maps TΓ°=Γ|s(0. We define the boundary of
the singular m-simplex C?7] to be
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which is clearly independent of the choice of the representative
T: s-»X for the singular m-simplex [TJ. Therefore we get a homo-
morphism

9: Cm(X}-*Cm_,(X}

and we easily verify that 99=0. This boundary operation 9 can be
used to define incidence numbers and leads to a closure finite abstract
complex S{X\ called the singular complex of the space X.

2. The singular polytope4'

For every integer m;>0 and every singular m-simplex ξ£S(X), let
us associate with an open geometric m-cell σξ, called the open singular
m-cell corresponding to the singular m-simplex ξ, which is the in-
terior of some ordered geometric m-simplex s*, i.e.

,, > o> ••• > ™

We assume that no two of these open singular cells have a point in
common. Let each open singular cell σ^ have the euclidean topology
and the affine relation of the geometric simplex sξ.

Now, we are going to define the closed singular m-cells. Let
ξeS(X') be an arbitrary singular m-simplex in X and s be the ordered
geometric m-simplex associated with ξ as above. Then there is a
unique representative

T: s*-+X, βξ=Oo, ... >^>>

of the singular simplex ξ, i.e. [_T'j=ξ. A singular ^-simplex ηeS(X^9

(p<lm), is termed as a face of the singular m-simplex (notation :
η^ξ'), if there exists a p-face <^viQ9... ,vip^> with i0<^...<O"
that the continuous p-simplex

represents η. Define the closed singular m-cell Clσ^ as a set by taking

There is a natural function ^ : s^ -> CZσξ defined as what follows.
For each p-face, (0^p<;m), sf—<^viQ, ... ,wp> of sξ, we define /^ξ on
the interior Int s' of sf to be the unique barycentric map of Int sf
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onto σ-η which preserves the order of vertices, where η=[T\s'^ and
«Ό < ••• < V τhe topology of Clσ, is defined by calling a set M C CV
to be open if its inverse image /^](M)C^^ is open.

Let us denote by P(X) the union of all open singular cells cor-
responding to the singular simplices in X. We define a topology of
P(X) as follows: A set M of P(X) is said to be open if M f\Clσξ is
an open set of Clσ^ for every closed singular cell C7σξ. The topolo-
gical space P(X) thus obtained will be called the singular polytope of
X. It is a polyhedral realisation of the singular complex S(X) how-
ever, it is neither simplicial nor locally finite.

We remark that, for each singular simplex ξ e S(X), the natural
function

described above, is a continuous map of s^ onto C7σξ and μξ |σ-ξ is the
identity map on σξ. Following J. H. C. Whitehead, [73, p. 221], it
will b3 called the characteristic map. for the singular cell σ-ξ.

Obviously, P(X) is a CW-complex in the sense of J. H. C. White-
head, [73, p. 223]. Hence we have the following statements.

(2. 1) The singular polytope P(X) of a topological space X is a
non-metrizable normal Hausdorff space.

(2. 2) A transformation f : P(X) —> R of P(X] into an arbitrary
topological space R is continuous, if and only if the partial transfor-
mation f \Clcry is continuous for each closed singular cell

3. The projection ω : P(-Y) -* X

There is a natural projection ω of P(X) into X described as what
follows. For an arbitrary point p£P(X), let σξ be the (unique) open
singular cell which contains p. Since <rξ is the interior of the associa-
ted ordered geometric simplex sξ, p is a point of sξ. There is a unique
continuous simplex

which represents £, i. e. ξ=[T^]. We define the projection ω : P(X) -> X
by taking

(3. 1) The projection ω : P(X) -* X is a continuous map of P(X)
onto X.

Proof. It is easy to sae that ω is onto. For an arbitrary point
x e X and an ordered geometric simplex s, consider the singular sim-
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plex I represented by the ίrivial continuous simplex T : s-+X defined
by T(s)=x. Then, we have ω(>ξ)=#.

According to (2. 2), to prove the continuity of ω is to prove that
of the partial map ωo=α> | Ciσξ for each closad singular cell C7σ ξ. Let
U(^X be an arbitrary open set, it remains to show that the inverse
image V=ωϊl(U) is an open set of C7σ ξ.

Consider the ordered geometric simplex sξ associated with the sin-
gular simplex ξ. The interior of sξ is σ> There is a unique con-
tinuous simplex Γξ: sξ-+X such that |=[Γp. Remembering the
definition of the characteristic map μ? : sξ -> Cϊσ-ξ in § 2, one can
easily sae that

(3.2) Z

Therefore, /A{1(V3=Γξ~
1(I7). Since Γe is continuous and £7 is open,

μ^(V) is an open sat of sξ. According to the topology of C7σ-ξ, 7 is
an open set of CZ<r. This completes the proof.

4. Pathwise connectedness of X and

We say that two points α?0, &Ί of A" can be connected by a path if
there exists a continuous map f:I-+X of the closed unit segment
/ of real numbers into X such that /(0)=a?0 and /(I)— x^. Such a map
/ is called a pα£/i.

By the path-component Γ(α?0) of J£ containing α^e-ST, we under-
stand the set of all points xeX which can be connected to XQ by a
path. Obviously #0 £ ΓW> and ΓC^ι)=iX^o) if ^i £ Γ(X>) Hence the
S3t Γ=Γ(α?0) does not depend on the choice of the basic point XQ from
Γ and might be called a path-component of -X".

A topological space X is said to be pathwise connected if every
pair of points of X can be connected by a path, or in other words, if
X has only a single path-component.

(4. 1) A topological space X is pathϊϋise connected if and only if
its singular polytope P(X) is so.

Proof. Sufficiency. Let XQ,XI be any pair of points of X. Since
ω maps P(X) onto X, there exists yQ, yτ of P(X) with ω(2/0)=#0 and
ω(y1)=ίt?1. Since P(-X") is, by hypothesis, pathwise connected, there is
a path g : I -> P(JΓ) such that flf(0)=y0 and flf(l)==y!. Then, the path
f=ωg connects XQ and ίtΊ and X is pathwise connected.

Necessity. Assume that X be pathwise connected. In order to
prove the pathwise connectedness of P(X), clearly it needs only to
show that any pair of vertices p0, pλ of P(X} are connected by a closed
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singular 1-cell C7<rξ. Call α;0==ω(^0) and xl=ω(p1^). Since X is pathwise
connected, there 'exists a path T: I-+X such that Γ(0)=tf0 and
Γ(l)=α?!. Since /=<0, 1> is an ordered geometric 1-simplex, T is
a continuous 1-simρlex and represents a singular 1-simρlex ξ=[TΓ\.
Clearly C7σ ξ connects p0 and pλ. This completes the proof.

5. Subspaces and subpolytopes

Let X0 be a subspace6) of X. The singular simplexes of S(X)
represented by the continuous simplexes whose images are contained
in X0 form a closed subcomplex S(X0) ef S(-ϊ). Therefore, the cor-
responding open singular cells of P(X) form a subpolytope P(-Y0) °f
P(X). Here we do not assume the closadness of X0 as a subset of J£
however, the subpolytope P(X0} obtained is closed both as a subcom-
plex and as a subset of the s'ngular poly tope P(X] of X. This might
be one of the advantages in using the singular polytope. Further, the
following statement is obvious :

(5. 1) The projection o>: P(X}-+X maps P(JSΓ0) onto X0.

6. The induced map / # : P'(X)-+P(Y)

In the present section, let X, Y be topological spaces and let
/ : X -»• Y be a continuous map. / induces naturally a map /*': P(X) ->
P(Y) described as follows: For an arbitrary point p^P(X\ let <rξ be
the (unique) open singular cell of P(X} which contains p and let sξ be
the associated ordered geometric simplex. Then p e σξ— Int sξ. There
is a unique continuous simplex Tξ : sξ --> J? which represents ξ, i. e.
f =£2γ]. The continuous simplex fT^ : sξ-+Y represents a singular
simplex η=ζfT^£S(Y). Let ση be the corresponding open singular
cell of P(Γ) and sξ be the associated ordered geometric simplex. Ob-
viously, Sξ and sη are of the same dimension. Let #ξ : sξ — > s. denote
the unique barycentric map of sξ onto sη which preserves the order of
the vertices. Then the map /* is defined by taking

)=£ξ(p) e ση, (p e

(6. 1) /* is continuous.
Proof. According to (2.2), it needs only to prove that the partial

map /o=/* I CZσξ is continuous for an arbitrary closed singular cell Clσ^
of P(^Γ). Remembering the characteristic map μ, : sf — > CZσ ξ, one can
easily see that

(6.2) /#^ = ^yβ.
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Let U be an arbitrary open set of P(Γ) and let F=/f-1(C7)CCf^. It
remains to prove that V is an open set of Clσ^ It follows from (6. 2)
that μl\V)—B^lμ-\U}. Since μn and J?ξ are both continuous, μϊl(V)
is an open set of sξ. Hence, by the topology of CZσ ς, V is an open
set of Ciσ-ξ. This completes the proof.

Now let us consider the following diagram of maps:

Γ' t {'Y . >. γ
Vx r JL

The following commutativity relation is an immediate consequence of
the definition of /*:

(6. 3) * fωx = ω¥f

Let XQ d X and Γ0 C ^ be subspaces, then the following state-
ment is obvious:

(6,4) 7,

7. The barycentric subdivisions of P(ΛΓ)

For each singular simplex ξ € S(X), let us denote by s^ the
centric first derived, [54, p. 3J, of the ordered geometric simplex «„
associated with ^. Since the characteristic map /*ξ: sξ -> (7iσξ reduces
to the identity map if it is restricted within the interior σξ of sξ, μ,f

induces a simplicial subdivision of σ\ into /^(Int βp , named the bary^
centric first derived σ^ of <rξ, which is a finite set of open geometric
simplices. If we replace each open singular cell <rξ by its barycentric
first derived σ^, we obtain a subdivision of P(X)9 called the first bary-
centric subdivision P'(X) of P(X).

More generally, let us denote by s^ the barycentric n-th derived,
[54, p. 3J, of sf. Then the characteristic map μξ induces a simplicial
subdivision of <τξ into μξ(Int 4W))» called the barycentric n-th derived
<r£n) of σ,. If we replace each open singular cell <r? by its barycentric? ^ *»
7i-th derived σ ίwj, we obtain the %-£/& barycentric subdivision P'n\X) of
the singular pυlytope P(X) of ^Γ. It is clear that the characteristic
map μ, of s, onto <7ί<rξ maps each open simplex of s^n) barycentrically
onto some open simplex of PW(X).

By a simplicial poly tope P, we understand the union of a collection
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of closed geometric simplices \sa\, where a runs over a certain ab-
stract set A, such that (i) every face of an arbitrary simplex sa of
the collection belongs to the collection and (ii) the intersection saf\sίί

of any two simplices of the collection is either vacuous or a face on
both of them, with the topology defined as follows: A set M c^ P is
said to be open if and only if, for each closed geometric simplex sa of
the collection, M f\sa is an open set of sa in its euclidean topology.
Simplicial polytopes are called topological polyhedra by J. H. C. White-
h-ad, [72, p. 316].

(7.1) For each n^>2, the n-th barycentric subdivision P(n\X} of the
singular polytope P(X) of X is a, simplicial polytope.

Proof. If, for every closed singular cell Clσξ, the finite subpoly-
tope Clσ^[\P:n\X} of P(n\X) is simplicial, then clearly so is PW(Z).
It is classical that Clσ^[\P^n\X) is simplicial if w>2. Hence (7.1) is
proved.

8. The injection j: X-+P(X}

Throughout the present section, we assume that X be a simplicial
polytope and X0 be a closed subpolytope of X. Let the vertices of X
be partially ordered in such a way that those of every closed simplex
of X are ordered. If such a partial ordering has been given, then
each closed simplex of X becomes an ordered geometric simplex. Then
we may define a natural map j: X -* P(X), called the injection of the
simplicial polytope X into its s'.ngular polytope P(X) associated with
the given partial ordering, which will be described as follows.

Let s ba an arbitrary closed simplex of X. Then the identity
map on s defines. a continuous simplex T: s-*X and represents a
singular simplex £=<ΓD of X. Let Sξ be the ordered geometric sim-
plex associated with ξ and crξ its interior. Then, we define the map

: X-+P(X) by taking

j'(a?)=/*ξJS,(aO, (* e Int s< -Y),

where Bg denotes the barycentric map of s onto s? preserving the order
of vertices and μξ denotes the characteristic map of sξ onto CZσξ.

(8.1) The infection j: X -> P(X} is a homeomorphism of X onto a
closed subpolytope f(X) of P(X) with the property that ωj is the identity
map on X.

Proof. To show the continuity of the injection /, it nqeds only
to prove that of the partial map j\s for any closed simplex s of X.
It is easily verified that j\s=μιBs. Since both Bs and μ, are con-
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tinuous, so is j\s. This proves that j is a continuous map. Since
the image of each closed simplex s of X is a closed singular cell C7<rξ

of P(X}9 the image j ( X } is a closed subcomplex and hence a closed
subpolytope of P(X). Since the continuous simplex T: s-*X in the
definition of j is defined by the identity map on s, it is obvious that
α>y is the identity map on X. This shows that j~l=ω\ί(X) and hence
j is a homeomorphism of X onto (-ϊ). Q. E. D.

The following statement is obvious :
(8. 2) y maps J£0 iwίo

III. THE GENERAL THEORY OF CONTINUOUS EXTENSION

Throughout the present chapter, we assume that R be a pathwise
connected topological space and (-Ϊ,-3Γ0) a given pair, i.e. a topological
space X and a subspace X0(^X which need not be closed. We shall
use the following abridged notations :

As usual, we denote by Pn the ^-dimensional skeleton of P, i. e.
the set of all open singular cells with dimensions not exceeding n.
Further, let

Remembering the projection ω : P-*X, we denote the partial map
on P0 onto X0 by ω0=ω|P0.

Hereafter, a map will understand to be a continuous map and an
extension means a continuous extension.

9. w-Extensibility
A map / : X0—>R is said to be n-extensible with respect to X, if

the map /ω0: PQ-»R has an extension φ : Pn -* R. Since R is path-
wise connected, the following assertion is obvious.

(9.1) Every map f : X0-+R is 1-extensible with respect to X.
For a given map / : X0 —»R, the least upper bound of the set of

integers n such that / is ^-extensible with respect to X is called the
extension index of / with respect to X.

(9.2) Homotopic maps have the same extension index.
Proof. Suppose that /, g: X0 -> R be any two homotopic maps

and that / be ^-extensible with respect to X. It needs only to show
that g is also ti-extensible with respect to X. Since f^g, we have
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Since /α>0 has an extension over P", it follows from the
homotopy extension property of the CW-complexes, [73. p. 228} that

gωQ has also an extension over P*. This completes the proof.
(9.3) Let K: (M,M0Y-»(X,X0) be a, map of a pair (M, Af 0) into

( X , X o ) and let κQ=^κ\M0. If a map f : X0-*R is n-extensίble with
respect to X, then the map fκ0 : M0 -—> R is n-extensible with respect
to M.

Proof. According to § 6, the map K induces a map «# : P(M) — >
P(X}. Let *ξ=κ*\P(M0). It is obvious that *# maps P"(M) into Pn(X).
Since / is n-extensible with respect to X, the map fωXo has an ex-
tension φ over P\X). Then, the map fωxκ$ will have φκ% over P\M}
as an extension. According to (6. 3), we have fκQωM==^fωx^. Hence
fκ0 is ^-extensible with respect to M. This completes the prcof .

(9. 4) A necessary and sufficient condition for a map f : X0 -> R to
be n-extensίble with respect to X is that, for an arbitrary map K :
(M, MO) ->(-X", XQ} of a sίmplicial poly tope M and a closed subpolytope
MQ(^M, the map f κ 0 , where KO~K\MQ, can be extended over Mn=
M.\JM\

Proof. Necessity. Assume that / be n-extensible with respect to

X. Then, there is an extension φ : Pn(X) — » R of the map fωχ0=
fωx\P(Xo). The map * induces a map *#: P(M)-*P(X) which clearly

maps jP"(Λf ) into P\X}. Since M is a simplicial polytope and M0<^M
is a closed subpolytope, therδ is an injection / : M -> P(M) which

maps Mn into Pn(M). By (6. 3) and (8. 1), we have

Hence, the map fκQ=fκ\MQ has an extension φ*=φκ$j\Mn over Mn.
This proves the necessity.

Sufficiency. Assume that the condition holds. Let Q and Q0 c^ Q
denote th^ second barycentric subdivision of P=P(-Ϊ) and P0— P(XQ}.
According to (7. 1), Q is a simplicial polytope and Q0 is a closed sub-
polytope of Q. As a topological space and a subspace, we have P=Q
and PO=QO Now, since the projection ω : P-*X maps the pair
(Q, QO) into (X, XQ), it follows from our condition that the map /ω0=
/ω|Q0 has an extension φ* : Qn-»R, where Qn=QQ \J Qn. Since Pl C
Qn, we may take ψ=φ*|PΛ. This proves that / is n-extensible with
respect to X and thus completes the proof.

(9. 5) // X is a simplicial polytope and X0 a closed subpolytope of
X, then a necessary and sufficient condition for a map f : X0 — > R to
be n-extensible with respect to X is that f has an extension •/* : X" ->β
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over Xn=XQ\JXn.
Proof. Necessity. Assume / : XQ —»R to be ^-extensible with

respect to X. Then, by definition, the map /ω0: P0 -> R has an ex-
tension φ: P* ->β. Since X is a simplicial polytope and X0 a closed
subpolytope of X, it follows from (8.1) that there exists an injection
/ : X-+P which clearly maps Xn into Pn. According to (8 1), we
have fωί\X0=f. Therefore, / has an extension φj\Xn=f*. This
proves the necessity of the condition.

Sufficiency. Assume the existence of an extension /*: Xn-*R of
the given map /. Since both X and P are CW-complexes, [73, p. 223],
it follows from a cellular approximation theorem of J. H. C. White-
head, [73, p. 229], that there exists a homotopy ht: P->X (O^ί^l)
such that A0=ω and h1(P^C^Xn for each n. Clearly we may choose
ht in such a way that /Zf(JP0)C-Xo f°Γ each 0<1£<11. Now, //Z^PO has
an extension f^h^P* therefore, it follows from a homotopy extension
theorem of J. H. C. Whitehead, [73, p. 228], that the map fω0=fh0\P0

has also an extension over Pn. This completes the proof.

10. Extensibility

A map / : XQ -> R is said to be extensible over X, if there exists
an extension /*: X-+R of /, i.e. f=f*\XQ. The following assertion
is immediate :

(10.1) The extensibility of a map f:X0-+R over X implies the
n-extensϊbiUty of f with respect to X for every positive n.

In the remainder of the present section, we are going to study
the converse of (10.1).

We recall the notion of the homotopy extension property, [40,
p. 992], as follows: X0 is said to have the homotopy extension pro-
perty in X relative to R, if any partial, homotopy f t : X0-+R
(0<l£<:i) of an arbitrary map / 0 : X" -> R has an extension f f : X-+R
(0<lί<;i) such that /0*==/o In particular, for the following three im-
portant special cases, X0 has the homotopy extension property in X
relative to R:- (i) if X is a CW-complex and XQ a closed subcomplex
of X, [73, p. 228] (ii) if both X and X0 are absolute neighborhood
retracts and X0 is closed in X, [39] (iii) if R is an absolute neigh-
borhood retract and XQ a closed subspace of a metric space X, [49,
p. 86, Boisuk's Theorem].

Following J. H. C. Whitehead, [73, p. 214], we say that a pair
(Λf,Af 0 ) dominates a pair (X9XQ}9 if there are two maps
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ξ : (X, *0) -* (M, Mo), η : (M, M0) -> (*, X0),

and a homotopy λ, : (X)XQ}-^(X,XQ)9 (0<1£<;1), such that \0=ηξ and
λi is the identity map on X.

Let <7 denote the class of all pairs (-X,-X?0) each of which is domi-
nated by a simplicίal pair (Λf, Λf0), i.e. Λf being a simplicial polytope
and Af0 a closed subpolytope of M. For each pair (X,X0) of C, we
shall use Δ(J?,Z0) to denote the minimum value of dim(Jlf\Λf0) for
all simplicial pairs (M,Af0) dominating (-Y,-Y0). Let <70 denote the
subclass of C consisting of all pairs (X,X0) of C such that 'Δ(-X",JC0)
be finite. In particular, <70 contains the following important sub-
classes, where (X,X0) satisfies one of the following conditions: (i)
(X,Xo} is a simplicial pair with a finite dim(J£\^0) (ii) X and XQ

are compact absolute neighborhood retracts; and (iii) X and X0 are
absolute neighborhood retracts of finite dimensions and X0 is closed
in X.

(10. 2) Let (X, XQ) be a pair of CQ such that XQ is closed in X and
has the homotopy extension property in X relative to R, and let n=
Δ(-X", -X"0). Then, the n-extensibility of a map f : X0—>R with respect
to X implies the extensibility of f over X.

Proof. Let (M, M0) be a simplicial pair with dim(M\M0)=n which
dominates (X,X0). Let ξ, η, and λ, be the maps and the homotopy
given in the above definition of a dominating pairs. Since
cϋm(Λf\Λf0)=w, we have ΛP=M. If / : XQ-*R is ^-extensible with
respect to X, then it follows from (9.4) that the map f η \ M Q has an
extension g:M-»R. Hence, the map fηξ\X0 has an extension
gξ : X-^>R. Since ηξ\X0 is homotopic with the identity by the homo-
topy \t\X0, it follows from the homotopy extension property that /
has an extension /* : X -> R. This completes the proof.

11. Algebraic condition for 2-extensibility

Let f : XQ — » R be a given map and assume that both X and X0

be pathwise connected. Choose a fixed point x0 e X0 and call r0=
/(#0)eβ. Throughout the present section, let us use the following
notations

for the fundamental groups of X, X0, R with basic points x0, x0, r0

respectively. The given map / induces a homomorphism

/*: ^(X^x^-^π^R.r^
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as follows : Let β e F0 be an arbitrary element represented by a closed
path <r:I-*XQ with <r(0)=#0=<r(l). Then /*(e) is the element of G
represented by the closed path fσ : I -* R.

In particular, the identity map ι : X0 -> X on X0 induces a homo-
morphism

A homomorphism fc : F0 -> G is said to be extensible with respect
to ^Γ, if 'there exists a homomorphism h: F -*G such that k=hι*.

(11.1) ΓAe racφ f:X0-+R is 2-extensible with respect to X, if
and only if its induced homomorphism /* : τeι(X09 a?0) — * **ι(R, r0) is e#-
tensible ϊυith respect to X.

Proof. Necessity. Assume that / be 2-extensible with respect to

X. Then, the map fω0 : P0.-+R has an extension φ: P2-»R.
We are going to construct a homomorphism h : F — » G depending

only on φ. Let eeF be an arbitrary element represented by a path
T: I-+X with Γ(0)=α?0=T(l). Since the closed unit segment 1=
<^0, 1> is an ordered geometric 1-simplex, the path T is a continuous
1-simplex in ^Γ and hence represents a singular 1-simρlex ξ—[T~}.
Let sξ denote the ordered geometric 1-simρlex associated with ξ whose
interior is the open singular cell σ,. Let B»\ /->&> denote the bary-ζ •» ^
centric map of / onto sξ preserving the order of the vertices. Using
the characteristic map μξ : sξ -> Ciσ-ξ, we define a path r : I -*R by
taking τ=φμ^Bv Clearly T(0)=r0=τ(l), and hence T represents an
element h(e}ζ.G.

The element h(e) does not depend on the choice of the represent-
ative path T : I — » X for e. In fact, let Tf : I -+X be another re-
presentatrve path of e with Γ'(0)=αr0=ϊτ/(l). Take an ordered
geometric 2-simplex s= < 0̂>

 vι> V2> Let J5,-, (i=l, 2), denote the
barycentric map of 7=<0, 1> onto s,= <τ;0, ̂ > preserving the order
of vertices. Call s3=<Ίjly v2>. Define a map ^:3s-^^ on the
boundary sphere ds of s by taking

JBΓ^) (ye s^

Since the paths T and Tr represent the same element eeF and since
g(s3)=x0, the map g has an extension 0* : s-»JΓ. Since s is an
ordered geometric 2-simρlex, 0* is a continuous 2 -simplex in X and
hence represents a singular 2-simplex ^=C0*D Let sη be the ordered
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geometric 2 -simplex associated with η whose interior is the open sin-
gular 2-cell σ η. Let fiη : s-»sn denote the barycentric map of s onto
βη preserving the order of vertices. Consider the map

ψ=φμrlBr{ '. S — » R,

where μη: sη-»CZσ η is the characteristic map for the singular simplex
??. It is clear that τ=ψβ1 and τ'=ψB2. Since 0(s3)=α?0, we obtain

Therefore, we have

Since ψ is defined throughout s, r and T' represent the same element
A(β) 6 (?. This proves that Λ(e) does not depend on the choice of the
representative path T: I-^X for eeF.

Next, let us show that the correspondence e -> h(e) defines a homo-
morphism h:F-+G. Suppose et eF, (i=l, 2, 3), to be arbitrary ele-
ments such that e2=e1es . Choose representative path T , : / — »-Y,
(i=l, 2, 3), for e^ with T,(0)===a?0==T,(l). Take an ordered geometric
2-simplex s= <j>0, vl9 v^> and call

Let β, : / -> s?, (i=l, 2, 3), denote the barycentric map of I onto s,
preserving the order of vertices. Define a map g: 3s-+X on the
boundary sphere 3s of s by taking flF|8<=ϊτ

<JBr1 on each st, . (i==l, 2, 3).
It follows from e2==e1e3 that g has an extension g* : s -» JY". 5* is a
continuous 2-simplex in X and hence represents a singular 2-simp!ex
77=Cff*D As before, we obtain a map

It is easy to see that ψ Bί : 7->β represents the element Λ(e,) of G
for each i=l, 2, 3. Since ψ is defined throughout s, we have Λ(e2)=
h(e^h(e3}. This proves that A is a homomorphism.

Last, let us show that /*=λ**. Let e G F0 be an arbitrary element
represented by a path- Γ: 7->JF0

 with 3P(0)=a?0=7t(l). Then, the
element **(e)6F is represented by the same path T. Denote by
ξ=[Ύ^eS(χ^. Then, by construction, the element /u*(e)eG is re-
presented by the path

Since T(/)C^o. we have /*,£,,(/) C/V Hence, we obtain
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This shows that -/*(e)=λι*(β) and completes the proof of the necessity.
Sufficiency. Assume /* to be extensible with respect to X. Then,

there exists a homomorphism h : F -> C such that f*=hι*.
By means of the homotopy extension property of P0 in P and the

pathwise connectedness of XQ and X, one might easily prove the exist-
ence of a homotopy

V. (P,p0)-*(;r,*0), (O^t^i),

such that δ0=ω and δx maps every vertex of P at α?0."
Let σ ξ be an arbitrary open singular 1-cell contained in P0 and sξ

the ordered geometric 1-simplex associated with ξ. Denote by
/?£.: 7->sξ the barycentric map of I onto sξ which preserves the order
of vertices. The map

is a path in X0 with 0ξ(0)=#0=0ξ(l). It represents an element e0eFQ

and an element e==ι*(e0)eF. Hence, the path fθ^fδ^B^: I^R is
a representative of the element f*(e0y=h(e).

Now, we are going to construct an extension ψ* : P2-*R of the
partial map /δ^Po by the methods described as what follows.

First, let <rξ be an arbitrary open singular 1-cell contained in
P\P0 and si the ordered geometric 1-simρlex associated with ξ. The
path 8ιμξBt : I — * X represents an element e^ e F. Choose a path
T ' J-»jR with τί(0)=r0=rP(l) which represents the element h(e3)£G.

ζ s •» _

Since ^ is the interior of sξ, we may define a map ψ : P1 -> 7? by

The continuity of ψ is verified by the fact that Sλ maps every vertex
of P at x0eX0.

Next, let σ η be an arbitrary open singular 2 -cell contained in
P\P0 and sη= <v0>

 vι> va> the ordered geometric 2-simplex associated
with 77 whose interior is σ> Denote by

the three ordered sides of sη. Let Bt : I -» e£, (f=l, 2, 3), denote the
barycentric maps of / onto st preserving the order of vertices. Let
^€F, (i=l, 2, 3), be the elements represented by the paths SlμnBt:
I-*X. Since δ^η is defined throughout sη, we have e2=e1e3. It
follows from the construction of ψ* that the paths ψ/AηJ5ί : 7 -> /2 re-
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present the elements A(et) e G, (i=l, 2, 3). Since h is a homomorphism,
£2=6^3 implies.. A(e2)=A(β1)^(«3). Hence, the map ψy*η|3βη can be ex-
tended into the interior <τη of sη. Choose an extension .ψrη : sη->/2 of

/ψy*η|3sη for each σ-ηC^P2\Po Then the required map ψ* : P2~-+R is
given by

The continuity of ψ * is easily verified by the fact that ψ *^η=ψη on
Sη.

Since /δι|P0 *s homotopic with /ω0, it follows from the homotopy
extension property of P0 in P relative to R that /ω0 has an extension
φ : P2 — > R. Hence, / is 2-extensible with respect to X and our proof
is complete.

12. Obstruction cocycles cn + \φ}

In the present section, we are concerned with the task to establish
the theorems of Eilenberg, [19], for the singular polytope P and its
closed subpolytope P0. With a purpose to simplify the arguments,
we assume an additional condition that R be n-simpla in the sense of
Eilenberg C17J, where ίdl is a given integer. Let us denote by
ι*n=rtn(R} the n-th homotopy group of R.

Let φ: P*-+R be a given map. φ defines an O-f-l)-dimensional
singular cochain cw+1(</>) of X with coefficients in πn as follows: Let
ξ eS(X) be an arbitrary singular O + l)-simplex. Let sξ be the ordered
geometric (^-ί-l)-simplex associated with ξ whose interior is the open
singular cell <rξ. The characteristic map /^ : sξ -̂  C7<rξ maps the bound-

ary sphere 3sξ of sξ into Pn. Since the sphere 3sξ has been orientόd
by the order of the vertices, the map φμ^\3s^ determines an element
cξ of the homotopy group τrn=τrn(R) since R is n-simple. The cor-
respondence f->c ξ defines (n-f-l)-dimensional singular cochain cW f l(</>)
of X with coefficients in πn.

(12.1) cn+\φ} is at singular cocycle of X modulo X0, called the
obstruction cocycle of φ.

Proof. Let η€S(X} be an arbitrary singular (rc-f-2')-simplex. To
show that cn+1(φ) is a singular cocycle, it suffices to prove that
ScWi 1(φ) ί7=0. Let sη be the ordered geometric (w + 2)-simρlex associa-
ted with η and μ^ : sη-*Ciση the characteristic map for η. Denote
by Sηz the ^-dimensional skeleton of sη and consider the map Θ : s^-*R
defined by θ=φμn\s*. According to Eilenberg, [19, p. 237], Θ deter-
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mines a cocycle 'cn+1(0) of sη. Let s be an arbitrary (n 4-1)- face of *η,
then μη maps the interior of s onto some open singular (w-f-l)-cell <rξ

of P. It is easy to see that

Hence, it follows that

This proves that cn h l(φ) is a singular cocycle.
Next, let ξ be an arbitrary singular O + )-simplex contained in

S(JC0). Since μ? maps s? onto Clσ^ζ^PQ9 φμf is defined over sξ. There-
fore, .c*+1(φ) f==cξ==0. This proves that cn+1(φ) is a singular cocycle
of r modulo X0. Q. E. D.

Now, let φ,ψ : P^-*R be two maps such that φ|F1-1=ψ|F1-1.
φ and ψ> determine an ^-dimensional singular cochain dn(φ, ψ ) de-
scribed as follows : Let f e S(ΛΓ) ba an arbitrary singular w-simplex.
Obviously, the characteristic map μξ : sξ -* Clσ^ maps the boundary
sphere 9sξ of 5ξ into Pn~l. Hence the maps φμξ and ψ /*ξ of sξ into R
agree on 9sξ. We define a map θ. on the boundary sphert

of s x / with values in R by taking

'(y£sξ> t

(v e άe, t

The sphere 3(sξx7) may be oriented in such a way that s ξ xO lies
negatively and s ξ xl positively on 3(βξxJ). Then the map 0? deter-
mines an element d^ e πn since R is ?^-simple. The association ξ -> ώξ

defines an ^-dimensional singular cochain rfw(φ, ψ ).
(12. 2) cP(φ, ψ ) is α singular cochain of X modulo X0, satisfying

Proof. That dn(φ,γ) ξ—Q for every singular ?^-simplex £ con-
tained in S(-XΌ) is easily verified by means of the fact that the maps
φ and *ψ> agree on P0

To prove the equality, let ηeS(X) be an arbitrary singular
-simplex. It suffices to prove that

(i) Sdn(φ,γ) η==Cn
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Let sη be the ordered geometric (M-fl)-simpl ex associated with η, and
denote by s the ^-dimensional skeleton of s^. Consider the maps

They determine two cόcycles cw+1(/) and cn+1(g} of sη with coefficients
in ?rn. Since / and g agree on the (n— l)-dimensional skeleton sjj-1,
they determine an ^-dimensional cochain cΓ(f, g) of #η with coefficients
in πn such that

according to Eilenberg, [19, p. 237], with an obvious minor modifi-
cation. It is easy to verify that

This proves our equality (i) and completes the proof.
(12. 3) For an arbitrary singular n-cochain cΓ of X modulo X0

with coefficients in πn and an arbitrary map φ: Pn — > R, there is a map
i/r: Pn-»R such that φ\Pn~l^^r\Pn-1 and dn(φ,γ)=dn.

Proof. Since dn is a singular %-cochain of X modulo X0, dn ξ=Q
for every ξeS(X0). Now, let ηζS(X) be an arbitrary ^-simplex not
in S(X0) and sη the ordered geometric n-simplex associated with η
whose interior is the open singulai cell <rη. Call d^=dn^eπn. Con-
sider the map /η==φ^η : s^ — > R. There is a map g^ : s^-^R such that
/η I a5η=^η 1 35η, and the maps /η,gfη determine the element dη. Define

a map ψ : Pn -> R by taking

The continuity and the relation cP(</>, ψO— cP are immediate conse-
quences of the construction. This completes the proof.

As a direct consequence of (12. 2) and (12. 3), we state the follow-
ing existence theorem :

(12,4) For a given map φ: Pn-*R and any cocycle cn + l ~cw+ *(</>)
modulo XQ, there exists a map ψ : P* — >β such that φ\Pn~1=ψ\Pn~1

and cn+l(^=cn + l.
With the same proof of Eilenberg, [19, p. 2391, the following First

Extension Theorem of Eilenberg can be proved.

(12. 5) For a given map φ: Pn — > R, we have :-
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(i) cn + 1(φ)=0 if and only if there is a map φ* : Pn^l-*R such
that φ*\Pn=φ. - . . :

(ii) c**\φ} ~ 0 modulo XQ if and only if there is a map φ* : Tn -1—>R
such that φ*\Pn-l=φ\Pn-\

13. Obstruction sets

In the present section, let n^l be a given integer. Assume that
R be ^-simple and denote by πn=πn(R} the n-th homotopy group of
R. Denote by Hn*\X, XQ, πn} the (w + l)-dimensional singular coho-
mology group of X modulo X0 with πn as the coefficient group.

Let f : X Q ->β be a given map. We are going tq define the (w-f-1)
-dimensional obstruction set Ώn + 1 ( f ) ζ ^ H " + l(X,X0,πn)όί the map /
with respect to X. If / is not ^-extensible with respect to X, we
define Ω,n+l(f) to be the vacuous set. Now suppose / to be rc-exten-
sible with respect to X. Then there exists an extension φ: Pn-»R
of the partial map /ω0: P0 -> R. The obstruction cocycle cw+1(φ)
represents an element γw+1(φ) of the cohomology group Hn*\X, X0, πn\
called an (n + l)-dimensional obstruction element of /. Ow+1(/) is defined
to be the set of all O-hlj-dimensional obstruction elements of /.

(13. 1) Homotopίc maps have the same (n + Y)-dimensional obstruc-
tion set.

Proof. Assume that /, g: X0 -> R be two homotopic maps. It
follows from. (9. 2) that our assertion is true if one and hence both Of
the maps are not ^-extensible with respect to X. On the other hand,

let γw+1(φ) be an arbitrary element of Ω,n+l(f}, where φ: ?"->/? is an
extension of f,ωQ Since f~g, we have fω0-gωϋ. Hence it follows
from the homotopy extension property of P0 in jP relative to R that
gω0 has an extension ψ: Pn —>β which is homotopic with φ. Then

7n+1(0)=7n+1(ψl)^ί2>l*1(^) This proves that-Ώn t l(/)Cθn^(ff); Simi-
larly, one may prove that ίT+1(/) ^Ωw+1(flf). Q. E. D.

(13.2) A map f:^X0-+R is n-extensίble with respect to X if and
only if O W H l (/) is non-empty.

(13.3) FUNDAMENTAL EXTENSION LEMMA. A map f : XQ ->β is
(n + l)-extensible with respect to X if and only if ίln + 1(/) contains the
zero element of Hn*l(X,X0,πn}.

Proof. Necessity. Suppose f:X0-+R to be (n+ϊ)-extensible with
respect to X. Then the map fω0 has an extension φ*: Pn+l-*R.
Let φ=φ*\Pn. According to (ϊ) of (12. 5), we have cw+1(φ)=0. Hence
ί2w+1(/) contains the zero element j*+l(φyoί H*+1(X,X°,7rnJ.'
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Sufficiecy. Suppose that i2Mfl(/) contains the zero element of
Hn+\X,9 XQ, 7rn). There exists an extension φ : Pn — > R of /ω0 such that

cn + \φ) ~ 0. According to (ii) of (12. 5), there exists a map φ* : P^1 -+

R such that φ*\Pn-l=φ\Pn-*. Since φ*|P0=/ω0, / is (n + l)-exten~
sible with respect to X. This completes the proof.

(13.4) Let κ\ (M,MO)-*(X,XQ) be a map of a pair (M, Af 0) into
(X,X0) and *r0=/e|M0. Then, for an arbitrary map f:X0-+R,
Γ2w+1(//t:0) contains the image /e*(ίlw+1(/)) under the induced homomor-
phίsm

'#* : H* + *(X, X>0, πn} -> H»*\M, M0, *-„).

Proof. The assertion is obviously true if / is not ^-extensible
with respect to X. Assume that / be ^-extensible with respect to X and

7n + l(Φ) be an arbitrary element of ί2w^(/) where φ: Pn(X}-»R is an
extension of the map fωχ0 According to (6. 1) and (6.4), the map K
induces a map

) -, (P(X\

which maps Pn(M} into Pn(X}. Consider the map ^=φ^\Pn(M\' ' By
means of (6.3), we have

ψ I P(M0}=fωXoιc* I P(MQ]=fκ0ωMo.

Hence, ψ is an extension of //c0ω^ and determines an (w-hl)-dimen-
sional obstruction element γ7ί"1(ψ>)eί2n^1(/Λ:0). Since we have obviously
that 7*+l(γ)=«*(yn+l(φ», if follows that "Ωn+l(f*0)> ^(ΩM + 1(/)). This
completes the proof.

Throughout the remainder of the section, we shall assume further
that X be a locally finite simplicial poly tope, i.e. a locally finite poly-
hedron with a fixed simplicial triangulation K, and XQ be a closed
subpolytope of K, i. e. X0 f\ K is a closed subcomplex K0 of K. We
shall denote by Hn'l(K,KQ,π:n} the (n-fl)-dimensional cohomology
group of the simplicial complex K modulo K0 by using the (infinite)
cochains with coefficients in τrn—7rn(R}, while Hn+l(X,XQ,πn} is still
used to denote the singular cohomology group.

For a given map /: X0-+R, we are going to define the obstruc-
tion set Ω,n^(f9K) o f / in Hn+1(K, KQ, πn\ Iff is not ^-extensible
with respect to X, we define ίlw+1(/, K} to be the vacuous set of
Hn+\K,K.Q,7tn}. Now suppose / to be ^-extensible with respect to X.
It follows from (9.5) that there exists an extension /* : Kn-+R of /
over Kn=KQ \JK\ According to Eilenberg, [19, p. 239J, /* determines
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a cocycle cw+1(/*) in K*=K\KQ and hence an element 7W+1(/*) of
H"+1(K,KQ,7rn), called an obstruction element of / in Hn^l(K9KQ97tn).
Ωn+l(f,K) is defined to be the set of all obstruction elements of / in
H»+\K,K»πn).

For a fixed partial order of the vertices of K, there is an injec-
tion j : X -> P(X), (see § 8). It is obvious from the construction of
i that j maps the complex K isomorphically onto a closed subcomplex
ί(K} of P(X). Further, it is clear that j(KQ)^P(XQ). According to
the invariance theorem, [23, pp. 418, 422Q, this simplicial map / in-
duces an onto isomorphism :

The following theorem proves the topological invariance of the
obstruction set Ω*+l(f,K).

(13.5) On+1(/,ίΓ)=ί*β"+1(/).
Proof. First, let yn+l(φ} be an arbitrary element of Ow κ l(/) where

φ: P*->/2 is an extension of /α>0. Since / maps Kn into Pw, we may
define a map /*: Kn-*R by taking f*=φj\Kn. Since α>; is the iden-
tity map on Xy we have /*|X0=/. Obviously, 7nι'1(/*)=/*'yfl*1(Φ).
Hence j*Ώ,n+l(f) is contained in ίlw + 1(ΛJ^)

Next, let γ7"1^) be an arbitrary element of OΛi l(/, #) where
/* : Kn -+R is an extension of /. It follows from a cellular approxi-
mation theorem of J. H. C. Whitehead, £73, p. 229J, that there exists
a homotopy ht : P -*X (0<ί^l) such that hQ=ω,hl(Pn)(^Kn

9 and
ht(y}—ω(y} for each y e J(UL) and each O^t^l. We may obviously
assume that ht(P^<^XQ for every Q<t<l. Define a map -f : Pn-+R
by taking ψ.=/*A1|p

Λ. Since ψ has a partial homotopy ψ> t: i(Kn)\J
P0->R (O^ί^l) defined by

it follows from the homotopy extension property of j(Kn}\J PQ in P*
relative to R, [73, p. 2281, that ψv has an extension ψ/: Pn-+R
(O^ί^l) such that ψ^ .̂ Let φ=ψϋ*. Since Λ0=ω, we have φ|P0=
/ω0 and φj(x}=f*(xϊ for each α?€£". Hence γw + 1(φ)€Ωw + 1(/) and

(φ)β This completes the proof.

14. General extension theorem

The following theorem can be easily proved by the recurrent ap-
plications of (13. 2) and (13. 3).
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(14.1) If: R-.far-simple, and Hr*l(X^XQ, τrr(Λ))==0 for each r such
that n<r<(jn, then the ^extensibility of a map f : XQ-*R with respect
to X implies its m-extensibility with respect to X.

For the remainder of the present section, let (X, X0) be a pair of
CQ such that XQ is closed in X and has the homotopy extension pro-
perty in X relative to R, and let m= Δ(Z, X0\ Combining (10.2) and
(14.1), we obtain the following assertion.

(14.2) // R is r-simple and Hr+1(X,X0,π:r(R^=Q for each r such
that n<r <^m, then the n-extensibility of a map f : X0 —> R with respect
to X implies its extensibility over X.

In particular, if we take n=I or 2, we deduce the following two
corollaries of (14. -2) by means of (9.1) and (11.1) respectively.

(14.3) // R is r-simple and Hr+l(X,X:0,τrr(R^=Q for each r such
that l<r<^m, then every map f : X0 —> R is extensible over X.

(14.4) Assume that X and X0 be pathwise connected. If R is r
-simple and Hr+l(X9XQ)τtr(R}}=0 for each r such that 2<r<^m9 then
a necessary and sufficient condition for a map f: X0 —> R to be exten-
sible over X is that its induced homomorphism /* : τr1(-X"0, #0)—>τtι(R, r0)
is extensible with respect to X, where xQ£XQ and r0=/(#0).

Setting R=X0, we obtain a sufficient condition for retraction as
follows. Let (X, X0) be a pathwise connected pair of C0 such that X0

is closed in X and has the homotopy extension property in X relative
to XQ, and let m=Δ(X,XQ}.

(14.5) Assume that XQ be r-simple and Hr+l(X, X0, ?r^.3f0))=() for
each r such that 2<^r<^m, then XQ is a retract of X if and only if
there exists a homomorphism h'.π^X.x^-^π ^XQyXo) such that hi* is
the identity automorphism on τtλ(XQ9xQ\ where x0£X0 and
t,* : TT^XQ, x0) —> πλ(X, XQ) denotes the homomorphism induced by the
identity map ι: XQ —> X.

IV. THE GENERAL THEORY OF HOMOTOPY CLASSIFICATION

Throughout the present chapter, we shall assume the same assump-
tions as given at the beginning of Chapter III.

15. n-Homotopy

Two maps / , g : X-^R with f\X0—g\X0 are said to be n-homoto-
pic relative to XQ, provided that the maps fω,gω: P —> R are ^-homo-

topic relative to Pd> i e there exists a homotopy ht: P* -̂  R (Q^ί^l)
such that hQ=fω\P", hl=gω\Pn

> and fω\PQ=hs PQ=:gω\PQ for every
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Since R is pathwise connected, the following .assertion is
obvious.

(15.1) Every pair of maps f,g\X-*R with f\X0=g\X0 are 0
-homotopic with respect to X0. . _ :

For a given pair of maps f , g : X-+R with f\XQ=g\X0, the least
upper bound of the set of integers n such that / and g are n-homoto-
pic relative to XQ is called the homotopy index of the pair (/, g} rela-
tive to X0. Two pairs (/, g} and (/',0') are said to be homotopic
relative to X0, if f s * f and g^g1 relative to X0.

(15. 2) Homotopic pairs have the same homotopy index.
Proof. Suppose that (/, g) and (/', g') be two homotopic pairs of

maps relative to X0 and that / and g be n-homotopic relative to X0.
It needs only to show that /' and gf are also n-homotopic relative to
-Xo Since f=*fr zndg^g' relative to XΌ, we have fω^f'ω and gω^g'ω
relative to P0. Hence

fω\PΛ'^fω\Pn^ω\PΛ^ω\Pn'

relative to P0. This proves that "/' and .a''are n-homotopic relative
to X9. Q.E.D.

(15.3) Let κ\ (M,AΓ0)-*(JΓ,^0)
 be a map of a pair (Λf,'Af0) into

(X,X0}. If the maps f , g : X-+R with f\X0=g\X0 are n-homotopic
relative to X0, then the maps ftc, gκ\ M —»R are n-homotopic relative
to M0.

Proof. According to § 6, the map K induces a map *$: P(Af) —>
P(X). Obviously κ* maps P(M0) into P(X0) and P\M} into P\X\

Since / and g are n-homotopic relative to XQ, the maps fωz\Pn(X)
and gωx\P\X} are homotopic relative to P(-X"0). Therefore, the maps

fωxκfr\P\M) and gωxκft\P\M) are homotopic relative to P(Ar0) . In

accordance with (6. 3), we have ωjr/κ^=?/k;ύ>jr, Hence the maps fκωM\P\M)
tttiSί gιcωM\P*(M) are homotopic relative to P(Af0). By definition, this
implies that the maps f/c and gic are n-homotopic relative to M0.
Q.E.D.

The following theorem proves the equivalence of our definition of
n-homotopy with that of R. H. Fox, [26, p. 49].

(15. 4) A necessary and sufficient condition for two maps f, g : X —>
R with i\X^= g\X^ to be n-homotopic relative to X0 is that, for an
arbitrary map K :(M, M0)-*(-Y, -Y0) of a simplicial poly tope M and a
closed subcomplex M0ζ^M, the maps f κ \ M n and g/c\MH are homotopic

relative to M0, where Mn=M0 \J M*.
Proof. Necessity. Assume that / and g be n-homotopic relative
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to XQ. Then we have

relative to P(-Y0)
 The maP * induces a map *#: P(Λf)-*P(-X) which

clearly maps P(M0) into P(J£0) and P^AΓ) into P%Y). Since M is a
simplicial polytope and M0ζ^M is a closed subpolytope, there is an

injection : Jf->P(Λf) which maps M0 into P(M0) and Mn into P"(M).
By (6. 3) and (8. 1), we have

Hence we obtain

relative to Λf0. This proves the necessity.
Sufficiency. Assume that the condition holds. Let Q and Q0(^Q

denote the second barycentric subdivision of P=P(X} and P0=P(Z0).
According to (7. 1), Q is a simplicial polytope and Q0 is a closed sub-
polytope of Q. As a topological space and a subspace, we have P=Q
and P0=Q0. Now, since the projection ω: P-*X maps (Q, Q0) into

(X, XQ}, it follows from our condition that fω\Qn^gω\Qn relative to

Q0, where Q"=Q0 \J Q\ Since Pa C Q .% this proves that / and g are
?&-homotopic relative to X0. Q. E. D.

(15.5) // X is a simplicial polytope and X0 a closed subpolytope of
X, then a necessary and sufficient condition for two maps f , g \ X — > R
with f\X:Q=g\XQ to be n-homotopίc relative to X0 is that f\Xn^g Xn

relative to X0, where Xn=X0 \J Xn.
Proof. Necessity. Assume that / and g be n-homotopic to XQ.

Then, by definition, fω\P"^gω\P* relative to P0. Since X is a simpli-
cial polytope and X0 a closed subpolytope of X, it follows from (8. 1)
that there exists an injection : X-*P which clearly maps X0 into

PO and X" into P*. According to (8. 1), we have fωj=f and gωj=g.
Hence f\Xn^g\Xn relative to X0. This proves the necessity of the
condition.

Sufficiency. Assume that f\Xn^g\Xn relative to X0. Then, by
definition, there is a homotopy ht: Xn-+R (O^ί^l) such that hQ=f,
hi—g, and ht(x)==f(x} f or eacn xζX0 and each O^ί^l. Since both X
and P are CW-complexes, [73, p. 223J, it follows from a cellular ap-
proximation theorem of J. H. C. Whitehead, [73, p. 229J, that there is
a homotopy φt: P-»X (O^ί^l) such that φ0^ω and φι(P*)C*Λ ίor

each n. Clearly we may choose φt in such a way that
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for every Q<t<l. Let / denote the closed interval of real numbers
between 0 and 1. Define a map F: PnxI-»R by taking

F(P, *)= .) A^.iΦiCp) (p e PV
1 0Φ3-M (P 6 P»,

It is easily verified that, for each p e P0 and each t e /, we have
> ty—F(p, 1— t). Consider the closed subset

Γ=KP» x 0) v/ (PO x /) \j (pn x i)
of the topological product P"x/. Define a homotopy FΓ:

^l) as follows :

Fτ=F on (P l ixO)\J(P I lxl);

Since Fo^FIT7, it follows from a homotopy extension theorem of
J. H. C. Whitehead, [73, p. 228J, that the homotopy Fτ has an exten-
sion Hτ: P*xI^R (O^r^l) such that HQ=F. Define a homotopy
kt : P»-+R (O^ί^l) by taking

=^ff x(p, t), (

Then fc0=/ct>|P\ kl=gω\Pfl, and kί(p}=fω(p^) for each p£PQ and every
0<1£<:1. Hence, / and g are ^-homotopic relative to X0. Q. E. D.

16. Homotopy

We recall the definition of homotopy relative to X0 as follows:
Two maps /, g : X-+R with f \ XQ=g \ X0 are said to be homotopic
relative to X0, if there exists a homotopy ht: X-+R (0<£<ll) such
that hϋ=f, hl=g, and ht(x}=f(x) for each # G XQ and each 0<1£<:1.
The following assertion is clear.

(16.1) If two maps f , g : X-*R with f\X0=g\X0 are homotopic
relative to XQ9 then they are n-homotopic relative to XQ for every n.

In the remainder of the section, we shall return to the notations
converse of (16.1). Let (X,X0) be a pair of C0 and n=Δ(3Γ, Z0). In
case that X0 is non-empty, we shall further assume that X0 is closed
in X and that the closed subset
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of the topological product Xxl has the homotopy extension property
in Xxl relative to R, where / denotes the closed unit interval of r$al
numbers.

(16.2) // two maps f,g: X-»R with f\XQ=g\X0 are n-homotopic
relative to X0, then they are homotopic relative to X0.

Proof. Let (Λf, M0) be a simplicial pair with dim(M\MQ}=n
which dominates (X, Jf0). By definition, there are maps

ξ:(X,X0)-+ (M, Λf 0), η:(M; AΓ0) -> (X, XQ\

and a homotopy λ, : (X, X0) -> (X, X0\ (0^£<1), such that \*=ηξ and

λl is the identity map on X. Since dim(M\M0)=n, we have M"=M<.
By our hypothesis, / and g are n-homotopic relative to Xfo hence it
follows from (15. 4) that iη and gη are homotopic relative to M0.
Therefore, fηξ^gηξ relative to XQ. The homotopy t proves that
fηξ~f and gηξ^g. Hence f^g. This proves the case that X0 is
empty. Now assume that X0 is non-empty. Since fη^gη relative to
MQ, there is a homotopy μt: M-+R (0<i£<:l) such that μQ=fη, μι=
gη, and μt\MQ=fη\MQ for every 0 ί̂<:i. Define a map F :' Xxl -^R
by taking

It is easily verified that, for each xeX0 and each ίe/, we have
F(a?,ί)=F(a?,l-ί). Define a homotopy ^Γ : T .-> R (O^r <1) as
follows :

=F on

Since F0=F|Γ, it follows from the homotopy extension property of T
in Xxl relative to R that the homotopy Fτ has an extension Hτ:
XxI-^R (O^r^l) such that HQ=F. Define a homotopy ht : Jr -> 72

l) by taking

Then Λ0=/, /?!=#, and A, | Λ"0=:/ 1 ̂ 0 for each O^ί^l. Hence, /and
are homotopic relative to XQ. Q. E.D:

17. Algebraic condition for 1-homotopy
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Throughout the present section, let us assume that both X and XQ

are pathwise connected.
First, let us consider the case that X0 is non-empty. Let /, g :

X-*R be two given maps with f\X0—g\X0. Choose a fixed point
xQ e X0 and call r0==/(#0)=</(α;0). Consider the fundamental groups
ττι(X, XQ) and τcι(R, r0) of the spaces X and R with basic points XQ and
r0 respectively. The given maps / and g induce homomorphisms

/*, 0* : π,(X , a?0) -* ̂ (β, r0).

(17.1) Two maps f,g:X-*R with f\X0=gX0 are 1-homotopic
relative to X0, if and only if their induced homomorphisms /*=(/*.

Proof. Necessity. Assume that f and g be ί-homotopic relative
to X0. Then the maps f ω \ P l and srωjP1 are homotopic relative to P0,
i.e. there is a homotopy ht : P1 -> 7? (0<lί<:l) such that Λ'^/ωlP1,

AI— flMJP1, and Λί|P0=/ω|P0 for each 0^ί<l; Let e^π^X.x^ be an
arbitrary element represented by a path T: Ί-*χ with T(0)=a;0=Γ(l).
Since the closed unit interval / is an ordered geometric 1-simplex, the
path T is a continuous 1- simplex in X and hence represents a singular
1 -simplex ?=C^D Let sξ denote the ordered geometric 1 -simplex
associated with ξ whose interior is the open singular cell <rξ. Let
B>: I-+S, denote the barycentric map of / onto s, which preserves' «» ?
the order of vertices. Using the characteristic map μ ξ: s ξ— >Ciσξ, we
clearly have T=ωμξJSξ. Define a homotopy φτ: I-+R (0<:τ<l) by
taking φτ=hτμ,Bf for each 0^τ<l. Then we have :

Hence f*(e)=g*(e}. This proves the necessity of the condition.
Sufficiency. Assume that /*=£*. Consider the projection

<*>"< (P,P0)-*(X,X0). Since both X aud X0 are pathwise connected,
one can easily show, by means of the homotopy extension property,
that there exists a homotopy

St: (P,P0)->(*,χ0), (O^ί^l),

such that δ0=ω and Si maps every vertex of P at XQ. We are going
to construct a homotopy φc: P

l-»R (O^ί^l) as follows: Let <τ ξ be
an arbitrary open singular 1-cell contained in P\P0 and sξ the ordered
geometric 1-simρlex associated with ξ. The path S^B'^ : Ί-*X re-
presents an element eξ e π^X, x0}. Since /*(βξ)= g*(e£,' there is a
homotopy 0/: I-^R (O^ί^l) such that θ^f^μ^B^ Ol=gδlμ^) and
^(0)=r0=6>c(l) for each O^t^l. The homotopy φ£ is given by
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/«I(P)
ξ C Pl\P0),

for every 0<lί<ll. The continuity of the homotopy ψc is verified by
the fact that §! maps every vertex of P at xQ. φt has the following
properties :

Define a map F: PlxI-+R by taking

It is easily verified that, for each pePQ and each ίe/, we have
F(p,t)=F(p,l—t). By an argument used in the sufficiency proof of
(15.5), one can prove that the maps fω\Pl and gω\Pl are homotopic
relative to P0. Hence, / and g are 1-homotoρic relative to X0.
Q.E.D.

Throughout the remainder of the section, we shall assume that
X0 be the vacuous set. Let /, g: X-+R be two given maps. Choose
a point x0 € X and call r0=/(#0) and rl=^g(x0}. Let us use the follow-
ing notations :

G=πλ(X, XQ\ G0=τr1(/iϊ, r0), Gl=τrl(R9 rj.

The given maps /, g : X -+R induce homomorphisms

/*: G->G0, 0*: G->G l β

It is well-known that evei/y path σ : / -> β joining r0 to rx induces
an isomorphism σ * : GQ^G1 of G0 onto Gj which depends only on
the homotopy class of <τ leaving extremities fixed. -,

(17.2) Two maps f , g : X-+R are 1-homotopic if and only if there
exists a path σ\ I — > R, joining r0=f(x0) to rl=g(x0')f such that cr*/*=0*.

Proof. Necessity. Assume that / and g be 1-homotopic. Then
there is a homotopy ht : P1-*R (0<,£<:l) such that hύ=fω\Pl and
hl=g(ύ\Pl. The point x0 determines a vertex p0 of P. Define a path
σ : I-^R by taking <τ(t*)~ht(p0} for every O^ί^l. Let e e G be an
arbitrary element represented by a path T : I -» X with T(Q)=Xr0=
T(l). Γ is a continuous 1-simρlex in X and represents a singular
1-simplex ί=C^D Define a homotopy φτ : I-+R (0^τ<l) by -taking

for each O^r^l. Then we have
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Φ*=fT, φ!=flrΓ, £r(0)=d<τ)==0r(lV. (O^r^l).

Hence σ*/*(β)=0*(e). This proves the necessity.
Sufficiency. Assume that there exists a path σ : I -> # joining r0

to rx such that <r*/*==g*. As in the sufficiency proof of (17. 1), there
is a homotopy δf : P-*X (O^ί^l) such that δ0=ω and δx maps every
vertex of P at #0. Construct a homotopy φt : Pl -> R (0<Iί_<l) as
follows: Let σξ be. an arbitrary open singular 1-cell of P. The path
διyuξβξ: /-*^Γ represents an element e ξβG. Since σ*f*(eξ)—g*(e^,
there' is a homotopy θe: I-*R (O^ί^l) such that 00=fS^B^ θl=
gSιμξBv and (9ί(0)=σ(ί)=^(l) for each 0<^1. The homotopy φt is
given by

for every O^ί^l. Then we have φ^fS^P1 and φ^gS^P1. Hence

This proves that / and g are 1-homotopic. Q. E. D.
Two homomorphisms h, k : G — > // of a group G into a group H

are said to be equivalent, provided that there exists an element w £H
such that k(e)=w~lh(e}w for every element eeG. The following
assertion is an immediate corollary of (17.2).

(17. 3) Two maps f, g : X -> R with f(xQ)= rQ=g(x0') are ~L-homotopic,
if and only if their induced homomorphisms /*, g* : π^X, ίc0) — > π^R, r0)
are equivalent.

18. Deviation cocycles dn(φ, ψ , ̂ )

As in §12, with a purpose to simplify the arguments, we shall
assume that R be %-si mple in the sense of Eilenberg [17J where nl>l
is a given integer. Denote by τrn==πrn(Λ) the w-th homotopy group of
R.

Let φ,ψ : P-^β be two maps with <£|P0=^|P0 and θt: Pn~l-+R
(Q<t<l} be a homotopy such that θQ=φ\Pn~\ θl=^\Pk-l

9 and θt\PQ=
φ|P0 for every O^t^l. The triple (φ, ψ, ̂ ) defines an ^-dimensional
singular cochain dn(φ,ψ,θt} of J? with coefficients in πn as follows:
Let f e S(X) be an arbitrary singular ^-simplex. Let sξ be the ordered
geometric ^-simplex associated with ξ whose interior is the open sin-
gular cell a-,. The characteristic map μξ : s^ -> CZσξ maps the boundary

sphere ds, onto P^1. We define a map Dξ on the boundary sphere
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3(Sξ x J)=(βξ x 0) \J (3sξ x 7) \J (βξ x 1)

of βξxl with values in β by taking

, t>=
*=1.)

The sphere a(sξx/) may be oriented on such a way that s ξ xO lies
negatively and s ξxl positively on 8(sξx/). Then the map Z)ξ deter-
mines an element d ξe?rw -since β is n-simple. The association f ~* d.ζ

defines -an ^-dimensional singular ccchain cP(φ, ^>, 0J.
(18. 1) dn(φ,ψ, θt) is a singular cocycle of X modulo X0, called the

deviation cocycle of the triple (φ,ψ,θt}.
Proof. Let η £ S(X) be an arbitrary singular (^+l)-simpl ex. To

show that dn(φ,^yθe} is a singular cocycle, it suffices to prove that
δdn(φ, ψ , 0t) 9=(). Let sη denote the ordered geometric (^-f-l)-simplex
associated with η and μΆ : sη .-> Cίσ η the characteristic map for ?/.
Denote by s^~l the (w— l)-dimensional skeleton of sη and consider the
maps f=φμrt, flf=^η, and the homotopy ht=θ,μ^ | s '̂1. Since Λ0=/ j ̂  x

and /*!— flf'l'^-1, it follows from the corresponding theorem for finite
complex that the triple (f,g,ht} determines a cocycle dn(f,g,he) of sη.
Let s be an arbitrary w-face of sη, then μΛ maps the interior of s
onto some open singular w-cell σξ of P. It is easy to see that

Hence it follows that

δd*(φ, γ, Θtϊ*η=Un(f, g, At).-βη=0,

This proves that dn'(φ, f , θe} is a singular cocycle.
Next, let ξ be an arbitrary singular ^-simplex contained in S(JP0 ).

Since /Λξ maps 5ξ onto Clσξζ~PQ, the map Dξ can be defined through-
out sξ x/. Therefore, c?n(φ, ψ>, 0,).f =dξ=0. This proves that drt(φ, ̂ , ίj
is a singular cocycle of "X ^modulo X^ Q. E. D.

By means of the methods analogous to those used in § 12, one
can prove the following assertions.

(18. 2) For a given triple (φ, ψ>, θt) and any dn~~dn(φ, ψ, #,) modulo
'X-Q, there exists a homotopy ρt : Pn~l-+R (0<;£<;l) such that p0=φ\Pn~l,
p^\P»-\ p,|P*-»=0,|F -» for each O^ί^l, and dn(φ,ψ, pt}=dn.

(18.3) For a given triple (φ, ψ, θt\ we have'.

(i) d\φ, T/r, ^)— 0 ^7 αnrf o^% i/ there is a homotopy θ**
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such that θ0*=φ\P*, θ*=ψ\P\ and θ*\P«-^θt for each

(ii) dn(φ, Λ/Γ, 0,) ~ 0 modulo X0 if and only if there is a homotopy
β**'JPn-+R (O^^l) such that'.θύ*=φ\P , θ^=^\p\ and θt*\Pn~*=
θt P^-2 for each θ^ί^l.

19. The group W\X, X0, /)

Let / : X -* R be a given map. We are going to construct for
each integer n^Δ. a group Wn(X, XQ, /) as what follows.

Let us denote by Vn the totality of the maps F: Pn-*xi~+R
such that:

F(p, 0)— fω(p}=F(p, 1),

Two maps F, G e V" are said to be equivalent, if there is a homotopy

#r: P*~lxI-*R (O^r^l) such that #0=^ ^ϊ=G, and J?ΓeFw for
each 0^τ<:l. This equivalence relation divides the maps of V* into
disjoint classes. We shall denote by the symbol Wn(X', X0, /) the
totality of these classes and by ζF'] the class which contains the map

eVn.
For any two given maps F9GeVn, we define a map F G:

R by taking

Obviously F G is a map in FΛ and the class C^ ^D depends only on
the classes [FJ and [G3 Therefore, we may define a multiplication
in .JΓ Gy, -XΌ, /) by taking C^> L^=ΐ,F G> Let ί7 denote the map in
P1 defined by E(p, t)=/ω(p) for every peP*'1 and ί€/. For each
FeFΛ, we defino a map F-1 GF Λ by setting (ί1-1)(p,ί)=F(p, 1-ί) for

each peP" - 1 and ί€/. The following theorem is obvious.
(19.1) The elements of Wn(X,XQ,f} form a group with the multi-

plication defined above as the group operation. The neutral element of
Wn(X,XQ,f} is the class [E~] and the inverse of the class C^3 is the
class C^"1!)-

Let * : (M, Λfβ) -* (X, XQ) be a map of a pair (M, ΛΓ0) into (X, JΓ0).
According to § 6, the map K induces a map *# : P(M) -» P(X) which
maps P(M5) into P(^0) and P\M) into P~(^) for each n^O. For every
integer n^l and aίiy given map f:X-+R, κ# determines, in an ob-
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vious way, an induced homomorphism

(19. 2) ** : W\X, XQ, /) - W\M, M0, /*).

Now assume that X be a simplicial poly tope with a fixed triaii-
gulation K and J¥*0 be a closed subpolytope of K, i.e. X0f\K is a
closed subcomplex <RΓ0 of K. For a given map / : X-+R, let us con-
sider the maps φ: Kn~lxI->R such that:

φ(x, 0)=/(a?)=φ(*, 1), (α? G π^1)

By the method used at the beginning of the section, one can define a
group which will be denoted by Wn(K, K0, /).

For a fixed partial order of the vertices of K, there is an injec-
tion / : X-+P(X\ (see §8). It is obvious from the construction of

that maps the complex K isomorphically onto a closed subcomplex
j(K) of P(X} and that ωj is the identity map on X. Further, it is
also clear that ;'(#0) d J°CXΌ) The injection determines an induced
homomorphism

(19. 3) * : Wn(X, X0, /) .-+ Wn(K, K,, /)

for each integer n^l and any map f:X-*R as follows: If an
element a e Wn(X, XQ, /) is represented by a map F 6 F", then the
element /*(α) e TFW(X J5Γ 0, /) is represented by the map φ : Kn~l x/ -» R
defined by φ(x,f)=F(j(x\ΐ) for each # eJt"-1 and ίe/.

(19. 4) * maps Wn(X, X0, /) onto Wn(K, KQ9 /).

Proof. Let βeWn(K,K0,f) be an arbitrary element represented
by; a map φ: JK

w"1x/->J?. It follows from a cellular approximation
theorem of J. H. G. Whitehead, [73, p. 229J, that there exists a homo-
topy ht\ P-*X (O^t^l) such that Λ0=ω, A/P^^C^"1. and AXp)=
ω(p) for each p €?"(£) and each O^t^L Define a map Φ: Pn~lxl
-+R by taking

\ t

Let T=(P^1xO)Vy(P0><^)W(Λ^"1)x^)Vy(^"1><l) and define a
homotopy ΦΓ : T -> β (O^ί^l) by taking

ΦΓ(p, t)=φ(AΓ(p), t), (ftί)GΓ.

Since Φi^φir, Φr has an extension Φr*: Pn-lxI->R (O^ί^l) such
that Φ^=Φ. Call F=Φ0*. Then we have F e F71 and $>, t}=F(j(x\ t)
for each αeJf"--1 and ίe/. Let α=OT e TF^J?, X»f\ then /3=^(cc).
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Hence * is onto. Q. E. D.

20. The homomorphisms kn

Throughout the present section, we assume that R be n-sjmple,
where ri^l is a given integer. We. shall construct a homomorphism
kn of W n(X, XQ, /) into the ^-dimensional singular cohomol ogy group
Hn(X, %0, πn} of X modulo X0 with coefficients in *n—7t£R).

Let a e Wn(X, XQ, /) be an arbitrary element represented by a map
F: P*-lxl-+R in F*. Let φ— fω and define a homotopy θt: Pn~1-+R
(O^ί^l) by taking θt(p}=F(p,t} for each peP8-1 and O^ί^l. Then
we obtain a triple (φ, φ, 0t). The deviation cocycle dn(φ, φ, θt\ which
depends only on the class a=[F^\, represents an element kn(a}^Hn

(X, X0, τrn). The following theorem is obvious.

(20. 1) The correspondence a — * fc(α) define a homomorphism

kn: Wn(X, XQ, f}-*H\Xt, X0, πn\

Let Jnr=Jn

r(X, XQ9 τrw) denote the image of if "(^r, J£0, /) under the

homomυrphism. Jn

τ is a subgroup Hn(X, X0, τrw). We denote the

quotient group by

Qn

r=Qn

f(X, XQ, τrnϊ=Hn(X, X0, πn

(20. 0) The subgroup Jn

r (and hence the quotient group <?£) depends
only on the (n—1}- homotopy class of f relative to XQf

Proof. Let g : X-+R be any map such that f\XQ=g\XQ and /, g
are (n— l)-homotopic relative to X0. Then there exists a homotopy
Xt : P*~l-*R (O^t^l) such that X^φlP*-1, Xf=*γ\P*-\ and Xt\P0=Φ
\P0 for each O^ί^l, where φ=fω and ψ=gω. Because of symmetry,

it needs only to prove that //C«C As before, for an arbitrary element
α=OT of W\X, X0, /), the element kn(a) € Hn(X, XQ, πn} is represent-
ed by the deviatioίi cocycle dn(φ, φ, θt). Define a bomotopy pt : Pn~l

->β (O^ί^l) by taking

-1, 2/3<:*<:i).

Then Po=\Pn-l=Pl and ft|P0=tl^o f<* every O^ί^l. It is obvious
that
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dn(^r, γ> pt}=-dn(φ, ψ , Xt) + d»(φ, φ, θt)+d*(φ, ̂  %,)=«ΓCΦ, φ, θά

Define a map G: P*-lxI-*R by setting G(p, t}=pί(p') for each pe
P1-1 and tel. Call β==^G^^Wn(X9 XQ, g}. Then the element kn(β}

eJl is represented by ώn(ψ, ψ>, />,). This -proves &„(«)==&„(#)€/*.

Hence j cC Q.E.D.
Let * : (M , M0) -> (J£, JSΌ) be a map of a pair (M, M0) into the

pair (X, X0) [and f:X-+R be a map. In the following rectangle of
homomorphisms

W\X, X0, f } ~ W n ( M , M0, /)

H\X, XQ9 π J —> HW(M, M0, 7τJ
/e*

we have obviously the following commutativity relation :

(20. 3) knκ* = «*fcΛ.

For the remainder of the section, we assume that X be a locally
finite simplicial polytope with a fixed triangulation K and X0 be a
closed subpolytope of K, i. e. X0Γ\K is a closed subcomplex K0 of ίC.

In an obviously analogous way, we may define the homomorphisms :

(20.4) kΛ: W\K9 KQ, n-+H*(K, K0, πn\

where Hn(K, KQ9 πn} denotes the ?z-dimensional cohomology group of
the simplicial complex K modulo K0 with coefficients in πn=τrn(R).

The image of kn is denoted by Jn

f(K, K0, ?rw) and the quotient group
by

Q\K, KQ, πnϊ=Hn(K, KQ, τtn)/J(K, KQ, 7Γ.J.

For a fixed partial order of the vertices of K, there is an injection
/ : X-+P(X}. According to the invariance theorem, induces an iso-
morphism /* of Hn(X, X0, τrw) onto Hn(K, KQ, πn\ In accordance
with (19.3) and (19.4), induces a homorphism * of Wn(X, XQ, /)
onto Wn(K, KQ, /). In the following rectangle of homomorphisms

Λ'H^
Wn(X, X0,n—"W(K,K0, /)

Hn{X, XQ, τrn) — > Hn(K, K0, τrnj,

one can easily see the following commutativity theorem.
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(20.5) Aw* = /**»•

The following theorem is an immediate consequence of (19. 4),
(20. 4), and the fact that ;"* maps H*(X, XQ, πn} isomorphically onto
Hn(K, KQ, πn}.

(20. 6) * maps Jn

f(X, X0, τr») isomorphyically onto Jn

f(K, K0t ?r).

This indicates the topological invariance of Jn

f(K, K0, πn} and

hence of Qn

f(K, K0, πn\

21. Deviation sets

In the present section, we assume that R be ^-simple, where n^l
is a given integer.

Let /, g: X-^R be two given maps such that f\X0=g\XQ. We
are going to define the n-dimensional deviation set Δw(/, g)ζ^Hn(X,X>0,
πn) of the pair of maps (/, 0) relative to X0. If / : nd g are not
(n— l)-homotopic relative to X0, we define Δw(/, g) to be the vacuous
set. Now suppose that / and g be (n— l)-homotopic relative to XQ.
Then there is a homotopy θe: P^-^Rtf^t^l} such that θQ=φ\Pn~\
θl=^\Pn l

9 and θc |P0=φ|P0 for every O^ί^l, where θ=fω and ty=gω.
The deviation cocycle dn(φ, ψ>, θt} represents an element δn(φ, ι/r, θt)
of the eingular cohomology group Hn(X, X0, τrw), called an n- dimen-
sional deviation element of / and g. Δw(/, g) is defined to be the set
of all n-dimensional deviation elements of / and g.

(21. 1) Homotopίc pairs have the same n-dimensional deviation set.
Proof. Suppose that (/, g} and (/', #') be two homotopic pairs of

maps relative to XQ. It follows from (15.2) that our assertion is true
if one and hence both of the pairs are not (n— l)-homotopic relative
to X0. On the other hand, let 8n(φ, ty, Θ6} be an arbitrary element of
ΔW(Λ g}, where φ=/ω, ψ=gω, and θt: P

/>~1->β(0^^1) is a homotopy
such that θQ=φ\Ptl~l

9 Θ1=^\P^~1

9 and θe\P0=φ\PQ for each 0^£<1.
Since f^f and g^gf relative to X0, there are homotopies ft, gt : X-»
β(O^ί^l) such that /0=/, /1==Λ g0=g, g^g' and ft\Xf=f\X0=g\XQ

=gt \X0 for each 0<t<Ll. Call φ'—f'ω and ψ'=g'ω. Define homotopies
at, βt: P

n-l-+R(Q^t<l} by taking

According 'to (i) of (18.3), we have

dn(φ, φf, αf>=0,
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Define a homotopy β\\ Pn~1^R(Q<t<l) by taking

Obviously we have

' φ, ψ ,

Therefore, cP(φ', '̂, θt}=dn(φ, ψ, θt) and the element δn(φ, ψ , 0,) is in
Δn(Λ fif?). This proves that Δ*(/, ΛCΔ'C/', £f') Similarly, one can
show that Δ-CΛ fff)CΔ"(Λ fl)- Hence Δw(/, flr)=Δw(/', ^O Q.E.D.

The following assertion is obvious.
(21.2) Γ^o maps f, g : X-+R with f\X^g\X^ cure (n—l)-homotopic

relative to X0 if and only if Δn(/, ^r) is non-empty.
The above statement is strengthened as follows :
(21.3) Two maps f, g: X->R with f\X0=g\X'0 are (n-~l)-homoto-

pic relative to XQ if and only if Δw(/, g } is a cόset of J n

r ( X , X0, τtn) in
Hn(X, XQ9 τΐn}.

Proof. Because of (21.2), it needs only to prove th£ necessity.
Suppose / and g to be (n--l)-homotopic relative to X^ Call φ=fω
and ψ=5rω. Let Sn(φ, ψ , ac) and 8* (φ, ψ , βi) be any two deviatiόiί
elements of / and g. Define a map F: Pn-1xI-*R by taking

F( K=
'

Evidently F € FΛ. F represents an element w of the group
/). If follows from the definition of jP that

Since kn(w}ζjn

f, this proves that Δw(/, #) is contained in the ccset

Conversely, let w^CF] be an arbitrary element of Wn(X, XQ, /).
Define a homotopy θt:P"-l-+R(Q^t£l) by setting θt(p)=F(p, t) for
every p£Pn~l and O^ί^l. Then kn(w}=δn(φ, φ, θt). Define a homo-

topy ft: P -WΛCO^ί^l) by taking

«»-!(?)
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Then we have δ*(φ, ψ, βt^kn(w} + δn(φ, ψ>, αt). Hence every element

of the cosat δw(φ, ψ>, at}+Jn

f is in Δw(/, 0). This completes the proof

that Δ"(Λ ^) is a coset of /* in H*(X, X0, nn\ Q. E. D.
(21. 4) FUNDAMENTAL HOMOTOPY LEMMA. Two maps f, g : X-+R

with f\Xo=g\X0 are n-homotopic relative to XQ9 if and only if Δn(/, g")

=/ίXAr, X'0, Tin).

Proof. Necessity. Suppose that / and g be n-homotopic relative

to XQ. Call φ=fω and ψ=#ω. Then there exists a hόmotopy a*: P

such that al=φ\P*> a?==^|P, and a* \PQ=Φ\P0

 f°r each

Call at=a*\Pn-1. According to (i) of (18.3), we have dn(φ,
and hence δn(φ, ψ>, α4)==0. This implies that Δw(/, ^r) con-

tains the zero element of H\X, X0, πn\ By (21.3), we have Δw(/, g)

Sufficiency. Suppose that Δ"(/, g}=jn

f(X, X0, πn\ Then Δw(/, ^)
contains the zero element of Hn(X, X0, τtn}. Hence there is a homoto-

py ctt : P*~l-*R (O^ί^l) such that &Q=φ\Pn-1, ct^ψlP*-1, at\PQ=φ\PQ

for each O^ύ^l, and δXφ, ψ , a^=Q. This implies that dn(Φ, f , αt)
•̂0 modulo -X"0. It follows from (ii) of (18.3) that / and g are n-
homotopic relative to X0. Q. E. D.

(21. 5) Let K : (M, MQ}-+(X, XQ} be a map of a pair (M, M0) into
(%, X0J, and /, g : X— >& be any two given maps with /|-Y0=#|-X"0.
Then Δn(f/c, g/c.} contains the image /e*(Δ r a(/, ^r)) under the induced
homomorphism

K*: H»(X,XQ, πn}-*H»(M, M0, *„).

Proof. The assertion is obviously true if / and g are not (n— 1)
-homotopic relative to Xύ. Assume that / and g be (n— l)-homotoρίc
relative to X0 and δn(φ, ψ, at} be an arbitfaίry demerit of Δw(/, g}

where φ=fωz, ^r=gωγ, and at : P*-\X)-+R (0<t<l) is a homotopy

such that a0=φ\I»-*(X), al=γ\P*-i(Xϊ, and atP(X0y=φ\P(XJ for
every O^ί^l. According to (6.1) and (6.4), the map K induces a
map

which maps .P*~l(M) into P"-1^). Call φf=φ«#5 ψ'=±=ψ Λ#, and
l). By means of (6. 3), we have

The triple (φf, ψ'9 a^ determines an element δn(φ', ψf, at} of Δw(//c,
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Since we have obviously

it follows that Δ"(/*, f^D^CA'CA 0)). Q. E. D.
Taking f=g, we obtain the following corollary of (21. 5).
(21. 6) For any given maps K : (M, M0)->(-X", -Ϊ0) and f : X-+R, we

always have

, X0, 7

Hence the map K. induces a homomorphism

*P : Qn

f(X, XQ, πn} -> Q,K(M, M0, πn\

Once more, let X bs a locally finite simplicial polytope and X0 be

a closed subpolytope of X with a given triangulation K of X such

that X0f\K=K0 is a closed subcomplex of #. For any two maps

/, g : X-+R with f\X0=g\XQ, we can define their deviation set Δw(/, g,

K) in Hn(K, KQ, τrw) as follows. If / and g are not (n— l)-hόmotopic

relative XQ, we define Δw(/, 5, X) to be the vacuous set of Hn(K, K0,

πj. Now suppose / and g to be (n— l)-homotoρic relative to X0. It

follows from (15. 5) that there exists a homotopy ht : Kn~l-*R 0(^ί<l)
such that h0=f\Kn~\ h1=g\Kn~l

f and he\K0=f\K0 for each O^ί^l.

The triple (/, g, ht} determines, in an obvious way, a cocycle dn(f, g,
he} of K modulo KQ with coefficients in πn. dn(f, g, h(} represents an

element Sn(f, g, ht) of Hn(K, K0, πn\ called a deviation element of
(A g) in Hn(K, KQ, πn\ Δ*(/, g, K} is defined to be the set of all
deviation elements of •(/,.£) in Hn(K, KQ, π-n).

Analogous to (21. 3) and (21. 4), one can easily prove the following
assertion.

(21. 7) // two maps f , g : X-+R with f\X0=g\X0 are (n—l)-fιomoto-

pic relative to X0, then Δw(/, g, K) is a coset of Jn

f(K, KQ, πn} in Hn(K,
KO> τrw) / and g are n-homotopic relative to X0 if and only if Δw(/,

g, K)=J](K9 K0, πn}.
For a fixed partial order of the vertices of K, there in an injection

i: X-^P(X'). j induces an isomorphism /* of Hn(X, X0, πn} onto Hn

(K, K0, πn\ According to (20. 6), /* maps Jn

f(X, X0, πn} onto
KQ, πn\ One can also easily prove the following assertion.

(21.8.) Δ"(Λ jF, #) = /*Δ*(/, g\



S. Hϋ 203

22. General homotopy theorems

The following main homotopy theorem is an immediate consequen-
ce of (21.3) and (21. 4).

(22. 1) // R is n-simple, then (my two maps f, g : X-+R with f \ X Q

—#|^o which are (n — l)-homotopic relative to X0 determine a unique

element Xn(f, g} of Q^X, X0, πn), called the n-dimensional characteris-
tic element of (f, g). Xn(f, (j)=0 if and only if f and g are n-homotopic
relative to XQ.

By the recurrent application of (22.1), we obtain the following
theorem.

(22. 2) Let f : X-*R be a given map. If R is r-sίmple and Qn

f(X,
X0, πr}=Q for each r such that n<j <Lm, then the n-homotopy relative
to X0 of two maps f , g: X-»R with f\XQ=g\XQ implies that they are
m-homotopic relative to X0.

For the remainder of the present section,; let (X, X0} be a pair of
C0 and m=Δ(X, XQ}. In case that XQ is non-empty, we assume that
X0 is closed in X and that (Xxty\J(XQxI)\J (Xxl) has the homo-
topy extension property in Xxl relative to R. Combining (16.2) and
(22.2), we obtain the following assertion.

(22.3) Let f : X—>β be a given map. If R is r-simple and Qr

f(X,
XQ9 τzv)=0 for each r such that n<^r<,m, then the n-homotopy relative
to X0 of two maps f, g: X-+R with f\XQ=g\X0 implies that they are
homotopic relative to XQ.

In particular, if we take n~0 or 1, we deduce the following corol-
laries of (22.3) by means of (15.1), (17.1) and (17.2).

(22.4) Let f : X-*R be a given map. If R is r-simple and Qr

f(X9

XQ9 τrr)=0 for each r such that l<:r<lm, then every map g : X-+R with
f I X0=g I X Q is homotopic with f relative to XQ.

(22. 5) Assume that X and XQ be pathwise connected, X0 be non-

empty, and f : X-+R be a given map. If R is r-simple and Qr

f(X, X0, πr)
^=0 for each r such that 2<lr<Im, then a necessary and sufficient con-
dition for a map g: X-»R with f\X0=g\X0 to be homotopic with f re-
lative to X0 is that f*=g*> where /*, g*: π^X, x^π^R, r0) are
the homomorphisms induced by f, g respectively, xQ€X0, rQ—f(x^.

(22.6) Assume that X be pathwise connected, X0 be empty, x0£X,

and f : X-+R be a given map. If R is r-simple and Qr
f(X, τrr) = 0 for

each r such that 2<>r<Lm, then a necessary and sufficient condition
for a map g : X-+R to be homotopic with f is the existence of a path

σ /__># joining /(#0) to g(x0) such that σ*f*=g*, where



204 Extension and Classification of Maps

are the induced homomorphisms and σ* denotes the isomorphism of πτ

(R, /(α?0)) onto πλ(R, #(#0)) determined by the path σ,
If we assume X to be pathwise connected, X0 to be vacuous, and

R=X, (22.4) implies the following assertion.
(22. 7) The following statements are equivalent:
( i ) X is contractίble to a point.

(iii) X is r-simple and Hr(X, π>(-Y))=0 for each l<r<Lm.

(iv) X is r-simple and Q^X, π>(-Y))=0 for each l<r<m, where
i: X-^X denotes the identity map.

23. Classification theorems

Throughout the present section, let / : X-*R be a given map. Let
us denote by M=M(X, XQ, R, /) the totality of the maps g : X-*R

such that /1 X0=g \ XQ. The maps of M are divided into disjoint homo-

topy classes relative to XQ. The classification problem is to enumerate
these classes by means of some convenient invariants.

The relation of n-homotopy relative to XQ among the maps M

divides M into disjoint n-homotopy classes relative to X0. For each

nl>l, every (n—l)-homotoρy class relative to X0 of Λf contains a cer-

tain collection of n-homotopy classes relative to X0. Theoretically,
the classification problem could be considered as solved, if there is a
definite way to count the n-homotopy classes contained in a given
(n—l)-homotopy class by means of the elements of some cohomology
invariant.

In the sequel, let Θ be a given (n—l)-homotoρy class relative to
XQ of the maps M, We are going to give a method to enumerate the
n-homotopy classes relative to X0 of the maps of M, which are con-

tained in Θ. We assume that n be a given positive integer and R be
n-simple.

According to (20.2), the (n-l)-homotopy class Θ relative tυ XQ

determines a subgroup Jn

ΰ(X, X0, πn) of the singular cohomology group
H\X, XQ, πn) and hence the quotient group:

Q<t(X, X0, πn}=Hn(X, XQ, πn}/J^(X, X0, πn}.

Now let us cooose a map g : X-+R from the class Θ as our referen-
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ce map. According to (22.1), every map heθ determines a charac-

teristic element Xn(g, h) of the group Ql(X, X0, πn\ An element a €
Qn(X, XQ, τcn} is said to be g-admissble if there is a map h 6 θ such

that X*(g, h}=a. The ^-admissible elements of Qn

Q(X, XQ, πn} form a

set An

g, called the g-admίssible set. The following lemma is clear.
(23. 1) For any two maps g, h : X—*R of the (n—Y)-homotopy class

θ relative to X0, A™ is the image of A9^ under the translation deter-
mined by their characteristic element Xn(g, h\ i.e.

(22. 2) CLASSIFICATION THEOREM. Given an (n—l)-homotopy class
θ relative to XQ of the maps M, the n-homotopy classes relative to XQ of

those maps which are contained in θ are in a (^-^-correspondence with

the elements of the g-admίssible set A^ in the quotient group Qn

Q(X, XQ,
πn}, where g is an arbitrarily given map of θ.

Proof. According to (22j. 1), every map h e θ determines a unique

element Xn(g, λ) e Aζ. We assert that %w(gf, k) depends only on the
w-homotopy class relative to X0 which contains h. For, if h, k£θ
are rc-homotopic relative to X99 (22. 1) gives

i.e. Xn(g, h)= Xn(g, K). Hence the correspondence h->Xn(g, Λ) defines
a transformation r of the ^-homotopy classes relative to X0 contain-

ed in θ into the elements of An

g. It remains to show that r is one-

to-one. That T is onto follows from the definition of An

g. To prove
that T is univalent, suppose Xn(g, h)—%n(g, K). Then we have

%n (h, fc) = χ» (fir, fc) - %n (g, h} = 0.

By (22.1), h and k are ^-homotopic relative to ' XQ. This completes
the proof.

Tulane University.

(Received October 2, 1950)

NOTES
1) A major part of the results contained in the present, paper were carried

out under sponsorship of the Office of Naval Research in the Summer
Session of 1949. The homotopy and classification theorems in § § 21-23
were first obtained for a finite polyhedron when the author was working at
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Acadfeitiia Siϊiica in 1948. The essentials of the paper were delivered in
an adress before the Conference on Topology held at the University of
Chicago in May, 1950.

2) If X,R are topological spaces, a map /:.Y-»7? is a continuous transforma-
tion / of X into R. If XoCX and #0C#, a map f:(X, X0)->(/?, /?0) is
a map / : X~+R such that / (JY"0) C/?0.

3 ) Numbers in brackets refer to the bibliography at the end of the paper.
4) The singular polytope of a topological space was independently introduced

by ]. B. Giever C31D in proving the equivalence of the two singular homo-
logy theories.

5) The circumflex over Vi indicates that Vt is omitted.
6) A subspace X0 of a topological space X is a subset (not necessarily

closed) of X with the relative topology.
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