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Extensions and Classification of Maps?V

By Sze-tsen Hu

I. INTRODUCTION

Given two topological spaces X and R, let us consider an arbitra-
rily given map® f:X, —» R defined on a given subsst X, of X. The
problem of determining whether f:X,—-R can be extended con-
tinuously throughout X, in other words, whether there exists a map
f*: X - R such that f*|X,=f, is known as the extension problem of
maps. The map f* is called an extension of f. Next, let us consider
the totality of the maps of X into R. These maps are divided into
disjoint homotopy classes, those in each class being homotopic to each
other [407®. The problem of enumerating these classes by means of
some convenient invariants is known as the classification problem of
maps.

The two problems of maps described above are of extremely great
importance in modern topology. Neither of them has been solved in
general form while a great number of particular results are already
known. A majority of the literatures of these results are provided in
the bibliography given at the end of the paper.

The object of the present work is to give a general investigation
to both problems by considering the singular polytope + o6f the given
space X. The singular polytope P(X) and the related notions are
studied in Chapter II. The general theory of continuous extengion is
given in Chapter III and that of homotopy classification in Chapter
IV. One might easily s2e that the results concerning homotopy and
classification are in a form more satisfactory than those of the exten-
sion problem. By suitable specializations, our theorems will contain a
major portion of the known results. Throughout the paper, we fre-
quently assume the =-simplicity of the space R in the sense of
Eilénberg (17].

II. THE SINGULAR POLYTOPE OF A SPACE
1. The singular complex S(X)
For the convenience of our investigation given in the s2quel, we
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shall briefly recall Eilenberg’s deﬁnit_ion, [23, p. 4207, of the singular
complex S(X) of a topological space X with some modified terminology.
Let

§= < Wy vev s Uy >

be an ordered geometric m-simplex, i.e. with ordered vertices. Denote
by s the face of s opposite the i-th vertex v»,, i.e.®

sHO— <1JO, vee s 79{,, vee s vm> .

For any two given ordered geometric m-simplices s; and s,;, there is
a unique barycentric map

Bsis;: 8, — 8,

which preserves the order of the vertices.

Let X be a topological space. By a continuous m-simplex in X,
we understand a (continuous) map

T: s—»X

of an ordered geometric m-simplex s with values in X.
Two continuous m-simplices

Tl: 31"—)X, Tz: Sz*-‘X

are said to be equivalent (notation: T,=T,), if Ty,Bs;s;=T;. The con-
tinuous m-simplices in X are thus divided into disjoint equivalence
called the singular m-simplices in X. We shall denote by (7] the
singular simplex which contain the ccntinuous simplex 7': s - X and
call T a representative of [T].

We remark that, for a given singular m-simplex £ and a given
ordered geometric m-simplex s, there is a unique continuous m-simplex
T: s— X such that &=[T].

Let C,(X) be the free abelian group generated by the singular
m-simplices in X. The elements of C,(X) are called the integral sin-
gular m-chains in X,

Given a continuous m-simplex
T: s—>X, 8= < Vgy v y Upy >,
consider the continuous (m—1)-simplices
TP: ¢ 5 X, (=0, ..., m),

defined by the partial maps 79=T|s*. We define the boundary of
the singular m-simplex (7] to be"
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oLTI= 3 (— 1 (7],

which is clearly independent of the choice of the representative

T: s— X for the singular m-simplex [77]. Therefore we get a homo-
morphism '

91 Cu(X)— Crn(X)

and we easily verify that 90=0. This boundary operation 9 can be
used to define incidence numbers and leads to a closure finite abstract
complex S(X), called the singular complex of the space X.

2. The singular polytope ¥ P(X)

For every integer m=0 and every singulat m-simplex & € S(X), let
us associate with an open geometric m-~cell o, called the open singular
m-~cell corresponding to the singular m-simplex &, which is the in-
terior of some ordered geometric m-simplex s, i.e.

O—E—_—Int 8, 8= < Wy vee s Uy >

We assume that no two of these open singular cells have a point in
common. Let each open singular cell o, have the euclidean topology
and the affine relation of the geometric simplex s,.

Now, we are going to define the closed singular m-cells. Let
£€8(X) be an arbitrary singular m-simplex in X and s be the ordered
geometric m-simplex associated with & as above. Then there is a
unique representative

T: ss—>X, 8t=<Vyy vev s Vpy >

of the singular simplex &, i.e. [7)=§. A singular p-simplex 7 € S(X),
(p<m), is termed as a face of the singular m-simplex (notation:

7 < §), if there exists a p-face < iy, ..., vi, > with i,< ... <4, such
that the continuous p-simplex

T | < Wigy ven s Vip >

represents 5. Define the closed singular m-cell Clo, as a set by taking

C lo= \_/n<50'~q.

There is a natural function u,: s, — Clo, defined as what follows.
For each p-face, (0<p<m), s'=<viy, ..., vi, > of s, we define p, on
the interior Int s of s’ to be the unique barycentric map of Int s
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onto o, which preserves the order of vertices, where »=[T|s'] and
4o < ... <%, The topology of Clo, is defined by calling a set M C Cloy,
to be open if its inverse image u;'(M) s, is open.

Let us denote by P(X) the union of all open singular cells cor-
responding to the singular simplices in X. We define a topology of
P(X) as follows: A set M of P(X) is said to be open if M N\ Clo, is
an open set of Clo, for every closed singular cell Cls,. The topolo- v
gical space P(X) thus obtained will be called the singular polytove of
X. It is a polyhedral realisation of the singular complex S(X); how-
ever, it is neither simplicial nor locally finite.

We remark that, for each singular simplex &€ S(X), the natural
function

pgl 8 —> Clo’a < P(X),

described above, is a continuous map of s; onto Clo, and ,u,glo-a is the
identity map on o, Following J.H.C. Whitehead, (73, p. 221], it
will b2 called the characteristic map.for the singular cell o,.

Obviously, P(X) is a CW-complex in the sense of J. H. C. White-
head, [73, p. 223]. Hence we have the following statements.

(2.1) The singular polytope P(X) of a topological space X is @
non-metrizable normal Hausdorff space.

(2.2) A transformation f: P(X)—> R of P(X) into an arbitrary
topological space R is continuous, if and only if the partial transfor-
mation f|Clo, is continuous for each closed singular cell Clo,.

3. The projection v: P(X) > X
There is a natural projection » of P(X) into X described as what
follows. For an arbitrary point pe P(X), let o; be the (unique) open
singular cell which contains p. Since oy is the interior of the associa-
ted Qrdered geometric simplex s, p is a point of s;. There is a unique
continuous simplex

T,: 8 —X

which represents £, i.e. £=[ T.]. We define the projection »: P(X) > X
by taking
o(@=Ty»), @€ CPX)).
(3.1) The projection w: P(X)—X is a continuous map of P(X)
onto X.

Proof. It is easy to s2e that » is onto. For an arbitrary point
r€X and an ordered geometric simplex s, consider the singular sim-
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plex £ represented by the trivial continuous simplex 7': s — X defined
by T(s)==x. Then, we have o(o)=2.

According to (2.2), to prove the continuity of » is to prove that
of the partial map m(,=w|Cl<rE for each closad singular cell Clo'E. Let
U X be an arbitrary open set, it remains to show that the inverse
image V=ow;'(U) is an open set of Clo,. '

Consider the ordered geometric simplex s, associated with the sin-
gular simplex £ The interior of s; is o,. There is a unique con-
tinuous simplex 7T,: s,— X such that £={7,]. Remembering the
definition of the characteristic map u,: s; > Clo; in §2, one can
easily s2e that

@3.2) Te=wop;.

Therefore, /Lgl(V)zTg‘(U). Since T, is continuous and U is open,
w;'(V) is an open sat of s,. According to the topology of Clo;, V is
an open set of Clo-E. This completes the proof.

4. Pathwise connectedness of X and P(X)

We say that two points x,, , of X can be connected by a path if
there exists a continuous map f: I—- X of the closed unit segment
I of real numbers into X such that f(0)==, and f(1)==z,. Such a map
f is called a path.

By the path-component I'(x,) of X containing z,€ X, we under-
stand the set of all points « € X which can be connected to x, by a
path. Obviously «,¢€'(z,), and I'(z,)=1'(x,) if «, €I'(x,). Hence the
sat I'==1"(w,) does not depend on the choice of the basic point z, from
I' and might be called a path-component of X.

A topological space X is said to be pathwise connected if every
pair of points of X can be connected by a path, or in other words, if
X has only a single path-component.

(4.1) A topological space X is pathwise connected if and only if
its singular polytope P(X) is so.

Proof. Sufficiency. Let x,,x, be any pair of points of X. Since
o maps P(X) onto X, there exists y,,y, of P(X) with w(y,)=x, and
o(y)=x,. Since P(X) is, by hypothesis, pathwise connected, there is
a path g: I — P(X) such that g(0)=y, and g(1)=y,. Then, the path
f=wg connects z, and «,; and X is pathwise connected. .

Necessity. Assume that X be pathwise connected. In order to
prove the pathwise connectedness of P(X), clearly it needs only to
show that any pair of vertices p,, p, of P(X) are connected by a closed
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singular 1-cell Clo,. Call z,=0(p,) and z,=w(p,). Since X is pathwise
connected, there exists a path 7:I—X such that T(0)=z, and
T(1)==x,. Since I=<_0,1>> is an ordered geometric 1-simplex, T is
a continuous 1-simplex and represents a singular 1-simplex &=[T].
Clearly Clo, connects p, and p,. This completes the proof.

5. Subspaces and subpolytopes

Let X, be a subspace® of X. The singular simplexes of S(X)
represented by the continuous simplexes whose images are contained
in X, form a closed subcomplex S(X,) ef S(X). Therefore, the cor-
responding open singular cells of P(X) form a subpolytope P(X,) of
P(X). Here we do not assume the closadness of X, as a subset of X ;
however, the subpolytope P(X,) obtained is closed both as a subcom-
plex and as a subset of the singular polytope P(X) of X. This might
be one of the advantages in using the singular polytope. Further, the
following statement is obvious:

(5.1) The projectivn w: P(X)— X maps P(X,) onto X,.

6. The induced map f%: P(X)— P(Y)

In the present section, let X,Y be topological spaces and let
f: X — Y be a continuous map. f induces naturally a map f*: P(X)—
P(Y) described as follows: For an arbitrary point p € P(X), let o; be
the (unique) open singular cell of P(X) which contains p and let s, be
the associated ordered geometric simplex. Then p€o,=Int s,. There
is a unique continuous simplex T,: s;-»X which represents £, i.e.
£&=(T,]. The continuous simplex fT,: s, —»Y represents a singular
simplex »=(fT,]€S(Y). Let o, be the corresponding open singular
cell of P(Y) and s, be the associated ordered geometric simplex. Ob-
viously, s, and s, are of the same dimension. Let B,: 8 —>8, denote
the unique barycentric map of s, onto s, which preserves the order of
the vertices. Then the map f* is definad by taking

fA(p)=Byp)€s,, (PEc, CP(X)).

(6.1) f* is continuous.

Proof. According to (2.2), it needs only to prove that the partial
map f¥=f*|Cls, is continuous for an arbitrary closed sngular cell Clo,
of P(X). Remembering the characteristic map ps 8, — Cloy, one can
easily see that '

(6' 2) f?/ﬁa - /‘('T'Ba'
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Let U be an arbitrary open set of P(Y) and let V=f;-Y(U) Clo,. It
remains to prove that V is an open set of Cls,. It follows from (6. 2)
that pg‘(V)nglp;’(U). Since wn and B, are “both continuous, pi(V)
is an open sct of s, Hence, by the topology of Clo,, V is an open
set of Cls;. This completes the proof.
Now let us consider the following diagram of maps:
f#
P(X) ———— P(Y)

|

[

- Y

The following commutativity relation is an immediate consequence of
the definition of f*:

>

(6.3) for = wyf*

Let X, X and Y, Y be subspaces, then the following state-
ment is obvious:

(6. 4) If f(X,) CY,, then f{(P(X,)) C P(Y,).

7. The barycentric subdivisions of P(X)

For each singular simplex £ ¢ S(X), let us denote by s’ the bary-
centric first derived, [54, p. 3], of the ordered geometric 31mplex s,
associated with £ Since the characteristic map gt 8 — Cloy reduces
to the identity map if it is restricted within the mterior oy of Sp My
induces a simplicial subdivision of o: into ,uE(Int s;)‘, named the bary-
centric first derived o'é of o, which is a finite set of open geometric
simplices. If we replace each open singular cell P by its barycentric
first derived og, we obtain a subdivision of P(X), called the first bary-
centric subdivision P'(X) of P(X).

More generally, let us denote by s’”> the barycentric n-th derived,
(54, p. 3], of s, Then the charactenshc map p, induces a simplicial
subdivision of o' into p,(Int &), called the ba,rycentmc n-th derived

oi” of o, If we replace each open singular cell o by its barycentric
n-th derlved ag’”, we obtain the n-th barycentric subdivision P™(X) of
the singular pulytope P(X) of X. It is clear that the characteristic
map p, of s, onto Cls: maps each open simplex of sg") barycentrically

onto some open simplex of P“(X).
By a simplicial polytope P, we understand the union of a collection
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of closed geometric simplices {s,}, where a runs over a certain ab-
stract set 4, such that (i) every face of an arbitrary simplex s, of
the collection belongs to the collection and (ii) the intersaction s,/ s,
of any two simplices of the collection is either wvacuous or a face on
both of them, with the topology defined as follows: A set M C P is
said to be open if and only if, for each closed geometric simplex s, of
the collection, M /\s, is an open set of s, in its euclidean topology.
Simplicial polytopes are called topological polyhedra by J. H. C. White-
h»ad, (72, p. 316].

(7.1) For each n=2, the n-th barycentric subdivision P™(X) of the
singular polytope P(X) of X is a simplicial polytope.

Proof. If, for every closed singular cell Clo,, the finite subpoly-
tope Claz N\ P™(X) of P™(X) is simplicial, then clearly so is P™(X)..
It is classical that ClaE N P™(X) is simplicial if »~2. Hence (7.1) is
proved.

8. The injection j: X - P(X)

Throughout the present section, we assume that X be a simplicial
polytope and X, b2 a closed subpolytope of X. Let the vertices of X
be partially ordered in such a way that those of every closad simplex
of X are ordered. If such a partial ordering has been given, then
each closed simplex of X becomes an ordered geometric simplex. Then
we may define a natural map j: X — P(X), called the injection of the
simplicial polytope X into its s'ngular polytope P(X) associated with
the given partial ordering, which will be described as follows.

Let s b2 an arbitrary closed simplex of X. Then the identity
map on s defines. a continuous simplex 7: s— X and represents a
singular simplex §=[7] of X. Let s: be the ordered geometric sim-
plex associated with & and o its interior. Then, we define the map
j: X —» P(X) by taking

i@y=pBa), (welnt sCX),

where B, denotes the barycentric map of s onto s; preserving the order
of vertices and o denotes the characteristic map of 8 onto Clo,.

(8.1) The injection j: X — P(X) is a homeomorphism of X onto a
closed subpolytope j(X) of P(X) with the property that oj is the identity
map on X.

Proof. To show the continuity of the injection 7, it needs only
to prove that of the partial map j|s for any closed simplex s of X.
It is easily verified that j|s=u:B,. Since both B, and u, are con-



S. Hu 173

tinuous, so is j|s. This proves that j is a continuous map. Since
the image of each closad simplex s of X is a closed singular cell Clo,
of P(X), the image j(X) is a closad subcomplex and hence a clcsed
subpolytope of P(X). Since the continuous simplex T: s— X in the
definition of j is defined by the identity map on s, it is obvious that
wj is the identity map on X. This shows that j '=w|j(X) and hence
7 is 2 homeomorphism of X onto j(X). Q.E.D.

The following statement is obvious:

(8.2) 7 maps X, into P(X,).

III. Tiae GENERAL THEORY OF CONTINUOUS EXTENSION
Throughout the present chapter, we assume that R be a pathwise
connected topological space and (X, X,) a given pair, i.e. a topological
space X and a subspace X, X which need not be closed. We shall
us2 the following abridged notations:

P=P(X),  P,=P(X,).

As usual, we denote by P* the n-dimensional skeleton of P, i.e.
the set of all open singular cells with dimensions not exceeding .
Further, let '

P"=P,\ ] P".

Remembering the projection »: P — X, we denote the partial map
on P, onto X, by wy=o|P,.

Hereafter, a map will understand to be a continuous map and an
extension means a continuous extension.

9. mn-Extensibility

A map f: X, — R is said to be n-extensible with respect to X, if
the map fwo,: P, — R has an extension ¢:P* —» R. Since R is path-
wise connected, the following assartion is obvious. ’

(9.1) Ewvery map f: X,— R is 1-extensible with respect to X.

For a given map f: X, — R, the least upper bound of the set of
integers n such that f is n-extensible with respect to X is called the
extension indexr of f with respect to X.

(9.2) Homotopic maps have the same extension index.

Proof. Suppcse that f,g: X, — R be any two homotopic maps
and that f be n-extensible with respect to X. It needs only to show
that ¢ is also n-extensible with respect to X. Since f=~g, we have
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foy=gw,. Since fw, has an extension over P", it follows from the
homotopy extension property of the CW-complexes, [73. p. 2287, that
gw, has also an extension over P*. This completes the proof.

(9.3) Let «: (M,M,)—(X,X,) be a map of a pair (M, M,) into
(X, X,) and let xy=«x|M,. If @ map f: X, >R is n-extensible with
respect to X, then the map frx,: M, —> R is n-extensible with respect
to M.

Proof. According to §6, the map « induces a map «#%: P(M)—
P(X). Let «f=«#|P(M,). It is obvious that «# maps P*(M) into P*(X).
Since f is n-extensible with respect to X, the map fey,6 has an ex-
tension ¢ over P*(X). Then, the map wa «¥ will have ¢«# over P"(M)
as an extension. According to (6.3), we have fro wm=foxx*. Hence
fr, is m-extensible with respect to M. This completes the prcof.

(9.4) A necessary and sufficient condition for a map f: X, —> R to
be n-extensible with respect to X is that, for an arbitrary map «:
(M, M,)) - (X,X,) of a simplicial polytope M and a closed subpolytope
M, M, the map fx,, where xy—=r|M,, can be extended over M"=
M,\J M". ,

Proof. Necessity. Assume that f be n-extensible with respect to
X. Then, there is an extension ¢: P"(X) >R of the map foy =
foy|P(X,). TLe map « induces a map «#: P(M)— P(X) which clearly
maps P*(M) into P*(X). Since M is a simplicial polytope and M, M
is a closed subpolytope, there is an injection j: M — P(M) which
maps M" into P*(M). By (6.3) and (8.1), we have

wx ¥ (Y)=r0yi(¥)=xc(y), (y€M).

Hence, the map fx,=fx|M, has an extension ¢*=q«#j|M" over M",
This proves the necessity.

Sufficiency. Assume that the ccndition holds. Let @ and @, C @
denote thé second barycentric subdivision of P=P(X) and P,=—=P(X,).
According to (7.1), Q is a simplicial polytope and @, is a closed sub-
polytope of Q. As a topological space and a subspace, we have P=Q
and P,=@Q,. Now, since the projection w: P-—X mars the pair
(Q, Q) into (X, X,), it follows from our condition that the map fw,=
fo|Q, has an extension ¢*: Q" — R, where Q"=Q,\/ Q". Since P*
Q", we may take ¢p=¢*|P". This proves that f is n-extensible thh
respect to X and thus completes the proof.

(9.5) If X is a simplicial polytope and X, a closed subpolytope of
X, then a necessary and sufficient condition for a map f: X,— R to
be n-extensible with respect to X is that f has an extension f*: X" >R
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over X"=X,\/ X"

Proof. Necessity. Assume f: X,— R to be n-extengible with
respect to X. Then, by definition, the map feo,: P, — R has an ex-
tension ¢: P* —»R. Since X is a simplicial polytope and X, a clcsed
subpolytope of X, it follows from (8.1) that there exists an injection
j: X - P which clearly maps X* into P". According to (8 1), we
have fwj|X,=f. Therefore, f has an extension ¢j|X"=f*. This
proves the necessity of the condition.

Sufficiency. Assume the existence of an extension f*: X" — R of
the given map f. Since both X and P are CW-complexes, [73, p. 2237,
it follows from a cellular approximation theorem of J.H.C. White-
head, [73, p. 2297, that there exists a homotopy %,: P -» X (0<t<L1)
such that A,—=w and 4,(P*) C X" for each n. Clearly we may choocse
h, in such a way that A,(P,) C X, for each 0<¢t<1. Now, f%,|P, has
an extension f*4,|P"; therefore, it follows from a homotopy extension
theorem of J. H. C. Whitehead, [73, p. 228], that the map fo,=f%,|P,
has also an extension over P*. This completes the proof.

10. Extensibility

A map f: X, — R is said to be extensible over X, if there exists
an extension f*: X - R of f, i.e. f=*|X,. The following assertion
is immediate :

(10.1) The extensibility of & map f: X, — R over X implies the
n-extensibility of f with respect to X for every positive n.

In the remainder of the present section, we are going to study
the converse of (10.1). '

We recall the notion of the homotopy extension property, [40,
p. 9927, as follows: X, is said to have the homotopy extension pro-
perty in X relative to R, if any partial homotopy f.: X, —R
(0<t<1) of an arbitrary map f,:%X — R has an extension f¥: X - R
(0<t<1) such that fj*=f,. In particular, for the following three im-
portant special cases, X, has the homotopy extension property in X
relative to R:- (i) if X is a CW-complex and X, a closed subcomplex
of X, (73, p. 2287; (ii) if both X and X, are absolute neighborhood
retracts and X, is closed in X, [39]; (iii) if R is an absolute neigh-
borhood retract and X, a closed subspace of a metric space X, (49,
p. 86, Boisuk’s Theorem].

Following J. H. C. Whitehead, (73, p. 214], we say that a pair
(M, M,) dominates a pair (X, X,), if there are two maps
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£ (X, Xo)—> (M, M), n: (M, M,)—(X,X,),

and a homotopy A,: (X, X,) — (X, X,), (0<t<1), such that A,=»& and
A, is the identity map on X.

Let C denote the class of all pairs (X, X,) each of which is domi-
nated by a simplicial pair (M, M,), i.e. M being a simplicial polytope
and M, a closed subpolytope of M. For each pair (X, X,) of C, we
shall use A(X, X,) to denote the minimum value of dim(M\4,) for
all simplicial pairs (M, M,) dominating (X,X,). Let C, denote the
subclass of C consisting of all pairs (X, X,) of C such that A(X, X,)
be finite. In particular, C, contains the following important sub-
classes, where (X, X,) satisfies one of the following conditions: (i)
(X, X,) is a simplicial pair with a finite dim(X\ X,); (ii) X and X,
are compact absolute neighborhcod retracts; and (iii) X and X, are
absolute neighborhood retracts of finite dimensions and X, is closed
in X.

(10.2) Let (X, X,) be a pair of C, such that X, is closed in X and
has the homotopy extension property in X relative to R, and let n=
A(X, X,). Then, the n-extensibility of a map f: X, — R with respect
to X implies the extensibility of f over X.

Proof. Let (M, M,) be a simplicial pair with dim(M \ M,)== which
dominates (X, X,). Let £ 5, and A\, be the maps and the homotopy
given in the above definition of a dominating pairs. Since
dim(M\M,)=n, we have M"=M. If f: X, >R is n-extensible with
respect to X, then it follows from (9.4) that the map fy|M, has an
extension g: M - R. Hence, the map f7£|X, has an extension
gé: X > R. Since n£|X, is homotopic with the identity by the homo-
topy \.|X,, it follows from the homotopy extension property that f
has an extension f*: X —» R. This completes the proof.

11. Algebraic condition for 2-extensibility

Let f: X, > R be a given map and assume that both X and X,
be pathwise connected. Choose a fixed point z,€ X, and call r,=
f(x,) € R. Throughout the present section, let us use the following
notations

F=n(X, x,), Fy=m\(X, %), G=mn\(R, 1y)

for the fundamental groups of X, X,, B with basic points =z, %,, 7,
respectively. The given map f induces a homomorphism

f*: 7f1(Xo, xo) — (R, )



S. Hu 177

as follows: Let ee F, be an arbitrary element represented by a closed
path ¢:I - X, with ¢(0)=z,=s(1). Then f*(e) is the element of G
represented by the closed path fo: I — R.

In particular, the identity map :: X, — X on X, induces a homeo-
morphism :

F 1 (X, ) = (X, ).

A homomorphism k: F,— G is said to be extensible with respect
to X, if ‘there exists a homomorphism #%: F — G such that k=h*.

(11.1) The map f: X, —» R is 2-extensible with respect to X, if
and only if its induced homomorphism f*: ny(X,, z,) — 7 (R,7,) is ex-
tensible with respect to X. .

Proof. Necessity. Assume that f be 2-extensible with respect to
X. Then, the map fo,: P,— R has an extension ¢: P? - R.

We are going to construct a homomorphism #%: F — G depending
only on ¢. Let e F be an arbitrary element represented by a path
T:1-X with T(0)=2,=T(1). Since the closed unit segment I=
<0,1> is an ordered geometric 1-simplex, the path 7' is a continuous
1-simplex in X and hence represents a singular 1-simplex &=[T].
Let s, dénote the ordered geometric 1-simplex associated with & whose
interior is the open singular cell oy Let B,: I—s denote the bary-
centric map of I onto s, preserving the order of the vertices. Using
the characteristic map p;: s, — Clo;, we define a path «: I—- R by
taking T=¢u.B,. Clearly +(0)=r,=r(1), and hence T represents an
element %(e) € G.

The element %(e) does not depend on the choice of the represent-
ative path 7: I —-X for e. In fact, let 77: I - X be another re-
presentative path of e with 77(0)=a,=7"(1). Take an ordered
geometric 2-simplex s= <v,, v;,v, > Let B, (i=1,2), denote the
barycentric map of I=<0,1> onto s,= < v,, v,_> preserving the order
of vertices. Call s;=<v,,v, > Define a map g:9s—X on the
boundary sphere os of s by taking

TBi'(y) (y €81)s
9= T'B;\(y) (y €82),
x, (y e 83).

Since the paths 7 and 7" represent the same element e € F and since
g(s;)==,, the map g has an extension g*: s— X. Since s is an
ordered geometric 2-simplex, g¢* is a continuous 2-simplex in X and
hence represents a singular 2-simplex 7=[g¢*]. Let s, be the ordered
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geometric 2-simplex associated with 7 whose interior is the open sin-
gular 2-cell on. Let By: s— sy, denote the barycentric map of s onto
sy preserving the order of vertices. Consider the map

Y=¢urBn: s — R,

where pq: sy — Clov is the characteristic map for the singular simplex
7. It is clear that +=+B, and +'=B,. Since g¢(s;)=x,, we obtain
pnBn(s3) C P,. Therefore, we have

P pnBn(83)=FwopnBn(83)=Fg(83)=",.

Since 4 is defined throughout s, + and ' represent the same element
h(e)e G. This proves that %(e) does not depend on the choice of the
representative path 7: I - X for ec F.

Next, let us show that the correspondence e — k(e) defines a homo-
morphism %:F — G. Suppose e cF, (i=1,2,3), to be arbitrary ele-
ments such that e,—e;e;. Choose representative path 7,: 71— X,
(==1, 2,3), for e, with T,(0)=x,=T,(1). Take an ordered geometric
2-simplex s= < v,, v, v, > and call

s1=<0,, V1>, 8y= <y, V3_>, 83= <y, Vy_>.

Let B;: I —»s, (i=1,2,3), denote the barycentric map of I onto s
preserving the order of vertices. Define a map g: 2s— X on the
boundary sphere 9s of s by taking g¢|s,=T B! on each s, (i=1,2, 3).
It follows from e,=e,e; that g has an extension g*: s—X. g* is a
continuous 2-simplex in X and hence represents a singular 2-simplex
n=[g*]. As before, we obtain a map

'\ll‘:(’b[l:nB'q . s—>R.

It is easy to see that «B,: I — R represents the element /4(e,) of G
for each i=1,2,3. Since « is defined throughout s, we have h(e,)=
h(e))h(e;). This proves that /2 is a homomorphism.

Last, let us show that f*=h*. Lete€F, be an arbitrary element
represented by a path- T: I —- X, with T(0)=2,=7(1). Then, the
element *(e)€F is represented by the same path T. Denote by
£=[T]e€S(x). Then, by construction, the element h*(e)€G is re-
presented by the path

T=¢punBy: I - R.
Since T(I) C X,, we have uBy(I)_ P,. Hence, we obtain

T=¢u;B;=fwou;B;=fT.
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This shows that f*(e)=hs*(e) and completes the proof of the necessity.
Sufficiency. Assume f* to be extensible with respect to X. Then,
there exists a homomorphism %: F — C such that ft=h*.
By means of the homotopy extension property of P, in P and the
pathwise connectedness of X, and X, one might easily prove the exist-
ence of a homotopy

8. (P, P))— (X, X,), (Ogtél),

such that §,— and §, maps every vertex of P at a,.

Let o, be an arbitrary open singular 1-cell contained in P, and s
the ordered geometric 1-simplex associated with £ Denote by
Bz_ : I — s, the barycentric map of I onto s which preserves the order
of vertices. The map :

is a path in X, with 0,(0)=x,=0,(1). It represents an element ¢, € F
and an element e=:*(¢,) € F. Hence, the path foz_—_fsl,wEBE: I->Ris
a representative of the element f*(e,)="h(e).

Now, we are going to construct an extension «r*: P* S R of the
partial map f§,|P, by the methods described as what follows.

First, let o, be an arbitrary open singular 1-cell contained in
P\ P, and s: the ordered geometric 1-simplex associated with & The
path 8,4,B,: I — X represents an element e,€F. Choose a path
T 1 — R with «rE(O)z—-ro:rrE(l) which represents the element %(e;) € G.
Since o, is the interior of s, we may define a map +: P! >R by

() (y e P=P,\J P"),
«}»(y)— {'TgBE—l(y) (ye Oy < PI\PO)-

The continuity of 4 is verified by the fact that §, maps every vertex
of P at x, € X,.

Next, let on be an arbitrary open singular 2-cell contained in
P\ P, and s;= <v,, v,, v, > the ordered geometric 2-simplex associated
with » whose interior is oy. Denote by

8= <0y, V1_>, 8g= <V, V2>, 83=<0,, Vy_>

the three ordered sides of s,. Let B;: I —s;, (i=1,2,3), denote the
barycentric maps of I onto s, preserving the order of vertices. Let
e, €F, (i=1,2,3), be the elements represented by the paths 8,usB,:
I—>X. Since 8,un is defined throughout s,, we have e,=ee;. It
follows from the construction of « that the paths +rusB,: I — R re-
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present the elements #(e,) € G, (i=1,2,3). Since # is a homomorphism,
e,;=e,e; implies A(e;)=h(e,)h(e;). Hence, the map +rus|9sy can be ex-
tended into the interior oy of s,. Choose an extension +: sy — E of
Yrun |93y for each oy C P2\ P,. Then the required map *: P2 >R is
given by »

st § V(W) (y e P'=P,\J PY),
vw) { V(1) (¥ €aq C PPN\ Py).

The continuity of «* is easily verified by the fact that y*un=+ on
Sn.

Since 18, |P, is homotopic with fw,, it follows from the homotopy
extension property of P, in P relative to R that fw, has an extension
¢: P* > R. Hence, f is 2-extensible with respect to X and our proof
is complete. :

12. Obstruction cocycles ¢”*(¢$)

In the present section, we are concerned with the task to establish
the theorems of Eilenberg, (197, for the singular polytope P and its
closed subpolytope P,. With a purpose to simplify the arguments,
we assume an additional condition that R be n-simple in the sense of
Eilenberg (173, where » -1 is a given integer. Let us denote by
w,—=mn,(R) the n-th homotopy group of R.

Let ¢: P* >R be a given map. ¢ defines an (n+1)-dimensional
singular cochain c¢***(¢) of X with coefficients in =, as follows: Let
£€S(X) be an arbitrary singular (n+1)-simplex. Let 8 be the ordered
geometric (n+1)-simplex associated with & whose interior is the open
singular cell e The characteristic map Bt Sy Cla‘g maps the bound-
ary sphere Os; of S into P*. Since the sphere os, has been oriented
by the order of the vertices, the map qS,u,élaSE determines an element
¢, of the homotopy group =,=w,(R) since R is n-simple. The cor-
respondence & — ¢, defines (n+1)-dimensional singular cochain ¢"*(¢)
of X with coefficients in =,.

(12.1) c¢**Y¢) is @ singular cocycle of X modulo X,, called the
obstruction cocycle of ¢.

Proof. Let € S(X) be an arbitrary singular (n+2)-simplex. To
show that ¢"*(¢$) is a singular cocycle, it suffices to prove that
8¢"*Y(p)»p=0. Let s, be the ordered geometric (#+2)-simplex associa-
ted with 5 and pn: sy — Cley the characteristic map for 5. Denote
by sy the n-dimensional skeleton of s, and consider the map 4: s:;—-»R
defined by 6=¢un|s;. According to Eilenberg, [19, p. 2377, 6 deter-
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mines a cocycle ¢**}(9) of s,. Let's be an arbitrary (z+1)-face of s,,
then u, maps the interior of s onto some open singular (7 +1)-cell oy
of P. It is easy to see that

"t {(p)eE=c""1(0)s.
Hence it follows that
8¢ () p=8¢"*1(0)+s,=0.

This proves that ¢"*}(¢) is a singular cocycle.

Next, let £ be an arbitrary singular (n+)-simplex contained in
S(X,). Since xz;, maps s, onto Clo, C P, ¢, is defined over s,. There-
fore, .c"*Y(¢)- E—c =0. This proves that c”“(q_';) is a smgular cocycle
of X modulo X,. Q.E.D.

Now, let ¢,y : P* >R be two maps such that ¢|P" 1=y |P" 1
¢ and +» determine an =n-dimensional singular cochain d"(¢, ) de-
scribed as follows: Let £€S(X)be an arbitrary singular n-simplex.
Obviously, the characteristic map .+ 8;— Clo, maps the boundary
sphere Os, of s, into P*-1, Hence the maps bu, and pu, of s, into B
agree on Os,. We define a map 0. on the boundary sphere

O(s; x I)==(s; x 0)\J (98, x I)\ J (s, x 1)

of s,xI with values in R by taking

( q")/l’g(y) (y € 8g2 t=0),
Oy, t)= qﬁ;&e(y):\lf,u,‘g('y) (y € asgs tel),
l YY) (y €s,, t=1).

The sphere 9(s,xI) may be oriented in such a way that s,x0 lies
negatively and sixl positively on o(s, xI). Then the map o, deter-
mines an element d, €=, since R is n-simple. The association & —d,
defines an n-dimensional singular cochain d"(¢, ).

(12.2) d™(p, y) is a singular cochain of X modulo X,, satisfying

8d™(p, Yr)==c" "Hfr) =" " Hp).

Proof. That d*(¢p,)-E=0 for every singular n-simplex & con-
tained in S(X,) is easily verified by means of the fact that the maps
¢ and +r agree on P,.

To prove the equality, let 5 € S(X) be an arbitrary singular (z+1)
-simplex. It suffices to prove that

(i) 3d™(p, Yr)e =" (W) e p—C" )+ 7.
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Let s, be the ordered geometric (n+1)-simplex associated with 5, and
denote by s} the n-dimensional skeleton of s;. Consider the maps

f=¢un|s} g=yrpn|s;.

They determine two cocycles c¢”**}(f) and c¢**Y(g) of s, with coefficients
in =,. Since f and g agree on the (n—1)-dimensional skeléton st
they determine an n-dimensional cochain d"(f; ¢g) of s, with coefficients
in =, such that

8d™(f, g)=c"*(g)—¢"* (1),

according to Eilenberg, [19, p. 237], with an obvious minor modifi-
cation. It is easy to verify that

)0 K f)e sy €)= H(g) e,
887 p, r)+y=5d"(f, 9)+5n.

This proves our equality (i) and completes the proof.

(12.3) For an arbitrary singular n-cochain d" of X modulo X,
with coefficients in =, and an arbitrary map ¢: P" — R, there is a map
Vi P* > R such that ¢|P* 1=+ |P*"! and d"(¢p,)=d".

Proof. Since d" is a singular n-cochain of X modulo X,, d"+£=0
for every £€S(X,). Now, let »¢€S(X) be an arbitrary n-simplex not
in S(X,) and s, the ordered geometric n-simplex associated with y3
whose interior is the open singular cell ov. Call dn=d"+5 €=, Con-
sider the map fr=¢un: sn — R. There is a map gn: s, — R such that
fn|OSn=gn|Osn, and the maps fv, gn determine the element d,. Define
a map v : P* >R by taking

e § ) (yeP),
=12 (y € onC PNPy).

The continuity and the relation d"(¢,)=d"” are immediate conse-
quences of the construction. This completes the proof.

As a direct consequence of (12.2) and (12. 3), we state the follow-
ing existence theorem :

(12.4) For a gzven map ¢ P" — R and any cocycle ¢! ~ ¢" ()
modulo X,, there exists a map : P* >R such that ¢|P* =y |P"!
and cn+1(\1,‘)._.cn+1

With the same proof of Eilenberg, (19, p. 2397, the following First
Extension Theorem of Eilenberg can be proved.

(12.5) For a given map ¢: P* — R, we have :-
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(1) ¢**Yp)=0 if and only if there is a map ¢*: P**'' >R such
that §*|P'=¢.

(ii) ¢*"Y¢p)~0 modulo X, if and only if the're is @ map ¢*: P* 1R
such that ¢*|P*-1=¢| P

13. Obstruction sets

In the present section, let =1 be a given integer. Assume that
R be n-simple and denote by =,==,R) the n-th homotopy group of
R. Denote by H"*Y(X, X,,w,) the (n+1)-dimensional singular coho-
mology group of X modulo X, with =, as the coefficient group.

- Let f:X,— R be a given map. We are going to define the (n+1)
-dimensional obstruction set Q"*\(f)CH** (X, X,,~,) of the map f
with respect to X. If f is not m-extensible with respect to X, we
define Q**}f) to be the vacuous set. Now suppose f to be n-éxten-
sible with respect to X. Then there exists an extension ¢: P* >R
of the partial map fe,: P,—R. The obstruction cocycle ¢**Y(¢)
represents an element y"*}(¢) of the cohomology group H” (X, X,, =,),
called an (n+1)-dimensional obstruction element of f. Q"*'(f) is defined
to be the set of all (n+1)-dimensional obstruction elements of f. )

(13.1) Homotopic maps have the same (n-+1)-dimensional obstruc-
tion set.

Proof. Assume that f,g: X, >R be two homotopic maps. It
follows from (9.2) that our assertion is true if one and hence both of
the maps are not n-extensible with respect to X. On the other hand,
let y"+1(¢) be an arbitrary element of Q"*Y(f), where ¢: P* > R is an
extension of fw,. Since f=g, we have fw,~gw,. Hence it follows
from the homotopy extension property of P, in P relative to R that
gw, has an extension : P*— R which is homotopic with ¢. Then
Y P)=7"*} () € Q**}(g). This proves that Q"+*¥(f)C Q"*¥(g). Simi-
larly, one may prove that Q"*(f) > Q"*(g). Q.E.D.

(13.2) A map f:- X, - R is n-extensible with respect to X if and
only if Q*"Yf) is non-empty.

(13.3) FuNDAMENTAL EXTENSION LEMMA. A map f: X, —>R is
(n+1)-extensible with respect to X if and only if Q"X (f) contains the
zero element of H"'W(X, X,, mu). :

Proof. Necessity. Suppose f: X, — R to be (n+1)-extensible with
respect to X. Then the map fo, has an extension ¢*: P**! - R.
Let q5==(/)*|P”. According to (i) of (12.5), we have ¢"*}(¢)=0. Hence
Q"*1(f) contains the zero element v"*!(¢) of H"*}(X, X°, w,).
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Sufficiecy. Suppose that Q"*)(f) contains the zero element of
H**Y(X, X,, 7.). There exists an extension ¢: P" — R of fw, such that
¢**}(¢p) ~0. According to (ii) of (12.5), there exists a map ¢*: P*+!
R such that ¢*|P*-'=¢|P*-1, Since ¢*|Py=fw, [ is (n+1)-exten-
sible with respect to X. This completes the proof.

(13.4) Let «: (M,M,)—(X,X,) be a map of a pair (M, M,) into
(X,X,) and wx,~=x|M, Then, for an arbitrary map f: X,—>R,
Q" Yfr,) contains the image «*(Q"*Yf)) under the induced homomor-
phism

©* H”+1(X, XO’ 71',;) - H”'LI(M’ Mo» 77%)'

Proof. The assertion is obviously true if f is not n-extensible
with respect to X. ~ Assume that f be n-extensible with respect to X and
v"*Y(¢) be an arbitrary element of Q"*}(f) where ¢: P*(X)—>R is an
extension of the map fo Xy According to (6.1) and (6.4), the map «
induces a map

«#: (P(M), P(M,)) - (P(X), P(X,)),

which maps P*(M) into P*(X). Consider the map y=¢«#|P(M). By
means of (6.3), we have

¥l P(M0)=fwxox# | P(M0)=f/c0w1”0.

Hence, + is an extension of fre Mo and determines an (n+1)-dimen-
sional obstruction element v"1(yr) € Q"*}(f«,). Since we have obviously
that "}y )=x*(v"* 1)), if follows that Q"1 (fx,) D «*(Q""*(f)). This
completes the proof. _

Throughout the remainder of the section, we shall assume further
that X be a locally finite simplicial polytope, i.e. a locally finite poly-
hedron with a fixed simplicial triangulation K, and X, be a closed
subpolytope of K, i.e. XO/'\K is a closed subcomplex K, of K. We
shall denote by H"'K, K,,=,) the (n+1)-dimensional cohomology
group of the simplicial complex K modulo K, by using the (infinite)
cochains with coefficients in =,—==,(R), while H"*Y(X, X,, =,) is still
used to denote the singular cohomology group.

For a given map f: X, —» R, we are going to definre the obstruc-
tion set Q"* f,K) of f in H**Y(K,K,, =,). If f is not n-extensible
with respect to X, we define Q"*}(f,K) to be thé vacuous set of
H*"*YK,K,, =,). Now suppose f to be n-extensible with respect to X.
It follows from (9.5) that there exists an extension f*: K" - R of f
over K*=K,\ /. K". According to Eilenberg, [19, p. 2397, f* determines
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a cocycle c¢**}(f*) in K*=K\ K, and hence an element ¥"*!(f*) of
H"*Y(K,K,, =,), called an obstruction element of f in H*"*Y(K, K,, =,).
Q"*Y(f, K) is defined to be the set of all obstruction elements of f in
H"'Y(K, K,, =,).

For a fixed partial order of the vertices of K, there is an injec-
tion j: X —» P(X), (see §8). It is obvious from the construction of
j that j maps the complex K isomorphically onto a closed subcomplex
j(K) of P(X). Further, it is clear that j(K,)C P(X,). According to
the invariance theorem, [23, pp. 418, 4227, this simplicial map y in-
duces an onto isomorphism :

7% H"*NX, X,, n,) > H""{(K, K,, 7,). :

The following theorem proves the topological invariance of the
obstruction set Q"*(f, K).

(13.5) Q" Y(f, K)=5*Q"*(f).

Proof. First, let v"*1(¢) be an arbitrary element of Q"(f) where
¢: P* > R is an extension of fw,. Since j maps K" into P*, we may
define a map f*: K* — R by taking f*=¢j|K". Since wj is the iden-
tity map on X, we have f*|X,=f. Obviously, 7" "}(f*)=j*y""1(¢).
Hence 7*Q"Y(f) is contained in Q”*l(f K).

Next, let ¥**(f*) be an arbitrary element of Q’”l(f, K) where
f¥: E* > R is an extension of f. It follows from a cellular approxi-
mation theorem of J.H.C. Whitehead, (73, p. 2297, that there exists
a homotopy #4,: P —-»X (0<t<1) such that A,=w,h,(P")C K", and

h(y)=w(y) for each y€j(K) and each 0<t<1l. We may obviously
assume that 4(P,) C X, for every 0<t<1. Define a map : P" >R
by taking «p:f*h1|P" Since 4 has a partial homotopy +,: j(K")\J
P, > R (0<t<1) defined by

= | JK)\J Py (0<t<1),

it follows from the homotopy extension property of j(K")\/P, in P*
relative to R, [73, p. 228], that +, has an extension *: P" >R
(0<t<1) such that y,*=+. Let ¢p=1,*. Since k=0, we have ¢|Py=
fo, and ¢j(x)=f*x) for each x€K". Hence 7"*%(¢)eQ""}(f) and
v ri(fR)=g%y"+*1(¢). This completes the proof.

14. General extension theorem

The following theorem can be easily proved by the recurrent ap-
plications of (13.2) and (13.3).
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(14.1) If R is r-simple and H"*Y(X,X,, n{R))=0 for each r such
that n<r <m, then the n-extensibility of @ map f: X,— R with respect
to X implies its m-extensibility with respect to X.

For the remainder of the present section, let (X, X,) be a pair of
C, such that X, is closed in X and has the homotopy extension pro-
perty in X relative to R, and let m=A(X, X,). Combining (10. 2) and
(14. 1), we obtain the following assertion. '

(14.2) If R is r-simple and H™*Y X, X,, #.{R))=0 for each r such
that n<r <m, then the n-extensibility of ¢ map f: X, — R with 1e.spect
to X implies its extensibility over X.

In particular, if we take n=1 or 2, we deduce the following two
corollaries of (14.2) by means of (9.1) and (11.1) respectively.

(14.3) If R is r-simple and H*Y X, X,, =.(R))=0 for each r such
that 1<r<m, then every map f: X, — R is extensible over X.

(14.4) Assume that X and X, be pathwise connected. If R is r
-simple and H™Y X, Xy, 7(R))=0 for each r such that 2<r <m, then
a mecessary and suﬂiczent condition for .« map f: X, —> R to be exten-
sible over X is that its induced homomorphism f*: =(X,, xo)——»nl(R 7o)
is extensible with respect to X, where x,€ X, and ry=f(x,).

Setting R=X,, we obtain a sufficient condition for retraction as
follows. Let (X, X,) be a pathwise connected pair of C, such that X 0
is closed in X and has the homotopy extension property in X relative
to X,, and let m=A(X, X,).

(14.5) Assume that X, be r-simple and H (X, X,, n(Xo))__O for
each r such that 2<r<m, then X, is. a retract of X if and only if
there ewxists a homomorphism h:=(X,x,) — z(X,, &,) such that ho* is
the identily automorphism on m(X,,x,), where x,€X, and
o my( Xy, %) = (X, 2,) denotes the homomorphism induced by the
identity map o: X, — X. )

IV. THE GENERAL THEORY OF HoMoTOPY CLASSIFICATION

Throughout the present chapter, we shall assume the same assump-
tions as given at the beginning of Chapter III.

15. n-Homotopy
Two maps f,g: X — R with f|X,=g¢g|X, are said to be n-homoto-
pic relative to X,, provided that the maps fo,go: P — R are n-homo-
topic relative to P, -i.e. there exists a homotopy #,: P"— R (0<t<1)
such that h,=fw|P*, hy=gw|P", and fo|P,=h;|Py=ge|P, for every
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0<t<1. Since R is pathwise connected, the following :asSertion is
obvious.

(15.1) Every pair of maps f,9: X >R with f|X,=g|X, are 0
-homotopic with respect to X,.

For a given pair of maps f,g: X — R with leo_ngo, the least
upper bound of the set of integers n such that f and g are n-homoto-
pic relative to X, is called the komotopy index of the pair (f, g) rela-
tive to X,. Two pairs (f,g) and (f’,g’) are said to be homotopic
relative to X, if f=~f" and g=:g’ relative to X,.

(15.2) Homotopic pairs have the same homotopy index.

Proof. Suppose that (f,g) and (f’,g’) be two homotopic pairs of
maps relative to X, and that f and g be n-homotopic relative to X,.
It needs only to show that f’ and g’ are also n-homotopic relative to
X,. Since f=f' and g=<g' relative to X,, we have fo=f'0w and go=g'e
relative to P,. Hence -

f’wlﬁ"*’fwlﬁ" :(]wl]?""’g' IF"
relatlve to P,. This proves that f’ and ¢’ are n- homotoplc relative
to X,. Q.E.D.

(15.3) Let «: (M,M,)—(X,X,) be a map of o pair (M, M,) into
(X, X,). If the maps f,g9: X - R with f|X,=g|X, are n-homotopic
relative to X,, then the maps fx,gxc: M — R are mn-homotopic relative
to M,. ’

Proof. According to §6. the map « induces a map «#: P(M) —
P(X). Obviously «# maps P(M,) into P(X,) and P*(M) into P*(X).
Since f and g are n-homotopic relative to X,, the maps fo,|P*X)
and go,|P*(X) are homotopic relative to P(X,). Therefore, the maps
foxc#|P (M) and go«*|P*(M) are homotopic relative to P(M,). In
accordance with (6. 3), we have o x#=rw,. Hence the maps frwy|P"(M)
and grw,|P*(M) are homotopic relative to P(M,). By definition, this
implies that the maps f« and g« are n-homotopic relative to M,.
Q.E.D.

The following theorem proves the equlvalence of our deﬁmtlon of
n-homotopy with that of R. H. Fox, [26, p. 49].
~ (15.4) A necessary and sufficient condition for two maps f,g: X —
R with f|X,=g|X, to be n-homotopic relative to X, is that, for an
arbitrary map «:(M,My)— (X, X,) of a simplicial polytope M and a
closed subcomplex M, M, the maps frx|M" and gr|M" are homotopic
relative to M,, where M"=M,\ ] M".

Proof. Necessity. Assume that f and g be n-homotopic relative
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to X,. Then we have
for| PYX)=go, | P(X)

relative to P(X,). The map « induces a map «#: P(M)— P(X) which
clearly maps P(M,) into P(X,) and P*(M) into P*(X). Since M is a
simplicial polytope and M, M is a closed subpolytope, there is an
injection 7: M - P(M) which maps M, into P(M,) and M into P*(M).
By (6. 3) and (8.1), we have

o ¥ (Y)=coui(y)=ry), (y€M).
Hence we obtain
fr| M "=fo x#] | M"=go wc#i | M*=g x| M

relative to M,. This proves the necessity.

Sufficiency. Assume that the condition holds. Let @ and @, @
denote tke second barycentric subdivision of P=P(X) and P,=P(X,).
According to (7.1), Q is a simplicial polytope and @, is a closed sub-
polytope of Q. As a topological space and a subspace, we have P=Q
and P,—=Q,. Now, since the projecticn »: P —-X maps (@, Q,) into
(X, X,), it follows from our condition that feo|Q@"=~gw|Q" relative to
Q,, where Q"=Q,\/ Q". Since P* Q!, this proves that f and g are
n-homotopic relative to X,. Q.E.D.

(15.5) If X is a simplicial polytove and X, a closed subpolytope of
X, then a necessary and sufficient condition for two maps f,9: X > R
with f|X,=g|X, to be n-homotopic relative to X, is that f|X"=g|X"
relative to X,, where X"=X,\J X". '

Proof. Necessity. Assume that f and g be n-homotopic to X,.
Then, by definition, fo|P*=gw|P" relative to P,. Since X is a simpli-
cial polytope and X, a clused subpolytope of X, it follows from (8.1)
that there exists an injection j: X — P which clearly maps X, into
P, and X" into P*. According to (8.1), we have foj=f and geoj=g.
Hence f|X"=>g|X" relative to X,. This proves the necessity of the
condition.

Sufficiency. Assume that f|X"=g|X" relative to X,. Then, by
definition, there is a homotopy #,: X" — R (0<t<1) such that k,=f,
hi=g, and h,(x)=f(x) for eacn z € X, and each 0<t<1. Since both X
and P are CW-complexes, (73, p. 223], it follows from a cellular ap-
proximation theorem of J. H. C. Whitehead, [73, p. 2297, that there is
a homotopy ¢,: P - X (0<¢<1) such that ¢,—=w and ¢,(P*) X" for
each n. Clearly we may choose ¢, in such a way that ¢,(P,) X,
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fqre.vgry 0<t<1. Let I denote the closed interval of real numbers
between 0 and 1. Define a map F: P"xI >R by taking

(fds(p) (eP", 0<t<1/3),
F(p, t)= | h.o (D) (peP, 1/3<t<2/3),
9b3_2(D) (peP, 2/3<t<L1).

It is easily verified that, for each n€eP, and each tclI, we have
F(p, t)=F(p,1—t). Consider the closed subset

T=(P"x0)\J (P,xI)\J (P*x1)

of the topological product P"xI. Define a homotopy F.: T —R
(0<7<1) as follows:

F.=F on (P*x0)\J(P"x1);

_ {F,(A=m)  (peP, 0<t<%);
Feo. =1 p.n, 11,  (pePp, u=<i<l).

Since F,=F|T, it follows from a homotopy extension theorem of
J. H. C. Whitehead, [73, p. 228], that the homotopy F. has an exten-
sion H;: P'xI - R (0<r<1) such that H,—=F. Define a homotopy
k,: P* > R (0<t<1) by taking

k(p)=H\(p,t), (peP", 0<t<1).

Then ky=fw|P", k;=gw|P", and k(p)=fw(p) for each p € P, and every
0<t<1. Hence, f and g are n-homotopic relative to X,. Q.E.D.

16. Homotopy

We recall the definition of homotopy relative to X, as follows:
Two maps f,g9: X —- R with f|X,=g|X, are said to be homotopic
relative to X,, if there exists a homotopy #4,: X — R (0<t<1) such
that h,=f, h,=g, and h(x)=f(z) for each € X, and each 0<t<1.
The following assertion is clear.

(16.1) If two maps f,9: X - R with f|X0——g|X Care homotomc
relative to X,, then they are n-homotopic relative to X, for every n.

In the remainder of the section, we shall return to the notations
converse of (16.1). Let (X, X,) be a pair of C, and n=A(X, X,). In
case that X, is non-empty, we shall further assume that X, is closed
in X and that the closed subset

T=(X x0)\J (X, xI)\J (X x1)
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of the topological product X xI has the homotopy extension property
in X x1I relative to B, where I denotes the closed unit interval.of real
numbers.

(16.2) If two maps f,9: X - R with f|X,~g|X, are n-homotopic
relative to X,, then they are homotopic relative to X,.

Proof. Let (M,M,) be a simplicial pair with dim(M\M,)=n
which dominates (X, X,). By definition, there are maps

£: (X’Xo)_’(M’Mo), 7. (M:Mo)-"(XyXo),

and a homotopy \,: (X, X,) = (X, X,), (0<t<1), such that A,=»& and
A, is the identity map on X. Since dim(M\M,)=n, we have M =M.,
By our hypothesis, f and g are n-homotopic relative to Xj,; hence it
follows from (15.4) that fy and g5 are homotopic relative to M,.
Therefore, fré=~gné relative to X, The homotopy , proves that
fré=f and gné=g. Hence f=g. This proves the case that X, is
empty. Now assume that X, is non-empty. Since fp=gy relative to
M,, there is a homotopy u,: M — R (0<t<1) such that u,=fy, =
gn, and u,|M=fn|M, for every 0<t<1. Define amap F: XxI—>R
by taking

Phorosd®@); (e X, 0<t<1/3),
F(x, )= | pac-1(2), (weX, 1/3<t<2/3),
lg)\,;,_z(a:), (x€X, 2/3<t<1).

It is easily verified that, for each x€X, and each tel, we have
F(z, t)=F(x, 1—t). Define a homotopy F.: 7T —-R (0<r<1) as
follows :

F.=F on (Xx0)\/(Xx1),

F(z, (1=7)t) (weX,, 0<t<),
Felw, = {5 (0 1_1) (@ € X, 3 <t<1).

Since F=F|T, it follows from the homotopy extension property of T'
in X xI relative to R that the homotopy F, has an extension H,:
XxI— R (0<r<1) such that H,=F. Define a homotopy #4,: X - R
(0<t<1) by taking

h(x)=H,(x,t), (xeX, 0<¢t<1).

Then h,=f, h,=g, and 4,| X,=f|X, for each 0<t<1. Hence, f and g
are homotopic relative to X,. Q.E.D:

17. Algebraic condition for 1-homotopy
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Throughout the present section, let us assume that both X and X,
are pathwise connected. ,

First, let us consider the case that X, is non-empty. Let f,g
X - R be two given maps with f|X,=g|X, Choose a fixed point
xz,€X, and call r;=f(x,)=g(x,). Consider the fundamental groups
=(X, x,) ani =,(R,r,) of the spaces X and R with basic roints z, and
r, respectively. The given maps f and ¢ induce homomorphisms

%, g% m(X, %) = (R, 7).

(17.1) Two maps f,g9: X > R with f|X,=gX, are 1-homotopic
relative to X,, if and only if their induced homomorphisms fr=g*.

Proof. Necessity. Assume that f and g be 1-homotopic relative
to X,. Then the maps fo|P! and go|P! are homotopic relative to P,,
i.e. there is a homotopy #4,: P! — R (0<t<1) such that k,=fw|P?,
hi=go|P', and h,|P;=fo|P, for each 0<t<1’ Let e€my(X,,) be an
arbitrary element represented by a path 7: I —» X with T(0)=x,=T(1).
Since the closed unit interval I is an ordered geometric 1-simplex, the
path T is a continuous 1-simplex in X and hence represents a singular
1-simplex &=[T]. Let s, denote the ordered geometric 1-simplex
associated with £ whose interior is the open singular cell oy Lét
B,: I — s, denote the barycentric map of I onto 8 Wh1ch preserves
the order of vertices. Using the characteristic map g, : s, — Cls,, we
clearly have T——a),uB Define a homotopy ¢.: I - R (0<'r<1) by
taking ¢.=h pu.B, for each 0<7<1. Then we have:

b=IT, $i=9T, $e(O)=re=p(1), (0=<r<L)

Hence f*(e)=g*(e). This proves the necessits; of the condition.

Sufficiency. Assume that f*=g*. -Consider the projection
o (P,P))—(X,X,). Since both X aud X, are pathwise connected,
one can easily show, by means of the homotopy extension property,
that there exists a homotopy A

8. (P, Po) - (X, Xo)’ (Oétél)’

such that §,—=w and 8, maps every vertex of P at z,, We ‘are going
to construct a homotopy ¢,: P' —» R (0<t<1) as follows: Let o, be
an arbitrary open singular 1-cell contained in P\ P, and s the ordered
geometric 1-simplex associated with £ The path 31,u,B I->X re-
presents an element e, € 7,(X, %) Smce f*(e )—g*(e) there is a
homotopy 6,: I - R (Ogt_gl) such that 6 —fb‘l,u‘B,, Hl_gsl,uEBE,’a"nd
0,(0)=r,=0,(1) for each 0<t<1. The homotopy ¢, is given by
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) {fsluo) (pe P'=P,\J PY),
HPI=10.8(0) (peo, CPIN\P,),

for every 0<t<1. The continuity of the homotopy ¢, is verified by
the fact that 8, maps every vertex of P at x,. ¢, has the following
properties :

—fb‘l]Pl </)1—---9811P1 ‘[HIPO o, |P° (0<LE<L1).
Define a map F: P'xI— R by taking

F(p, t)= {%z-,l(l?), (pe P, 1/3<t<2/3),
98;_:(D)s (pe P, 2/3<t<1).

It is easily verified that, for each peP, and each tclI, we have
F(p, t)=F(p,1—t). By an argument used in the sufficiency proof of
(15.5), one can prove that the maps fo|P! and ge|P! are homotopic
relative to P,., Hence, f and g are l-homotopic relative to X,.
Q.E.D. : :

Throughout the remainder of the section, we shall assume that
X, be the vacuous set. Let f,g: X — R be two given maps. Choose
a point 2,€ X and call »,=f(x,) and r,=g(x,). Let us use the follow-
ing notations:

G=m(X, x,), Go”_‘”l(R: 79), Ghy=m (R, 7).
The given maps f,g: X — R induce homomorphisms
*: G- G, g*: G- G,.

It is well-known that evenry path o: I — R joining 7, to r, induces
an isomorphism o*: Gy,~G, of G, onto G, which depends only on
the homotopy class of o leaving extremities fixed. .

(17.2) Two maps f,g: X — R are 1-homotopic if and only if there
exists @ path o: I — R, joining ry=f(x,) to r,=g(x,), such that o*f*=g*.

Proof. Necessity. Assume that f and g be 1l-homotopic. Then
there is a homotopy #4,: P! - R (0<t<1) such that A,=fw{P' and
h,=gwo|P'. The point x, determines a vertex p, of P. Define a path
o: IR by taking o(t)=h(p,) for every 0<¢<1. Let ecG be an
arbitrary element represented by a path 7: I — X with 7(0)=a,=
T(1). T is a continuous l-simplex in X and represents. a singular
1-simplex £=[T]. Define a homotopy ¢.: I - R (0<¢<1) by -taking
¢r=h,p,B; for each 0<r<1. Then we have
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(f)o:fT, ¢1=gT’ ‘PT(0)=‘T(‘T)=¢T(1)! (0§T§1)°

Hence o*f*(e)=g*(e). This proves the necessity.

Sufficiency. Assume that there exists a path o: I — R joining 70
to 7, such that o*f*=g*. As in the sufficiency proof of (17.1), there
is a homotopy 8&,: P— X (0<t<1) such that §,=e and &, maps every
vertex of P at wx, Construct a homotopy ¢,: P! > R (0<t<1) as
follows: Let oy be an arbitrary open singular 1-cell of P. The path
31”535: I > X represents an element e, €G. Since o*f*(eé)zg*(eg),
there is a homotopy 6,: I - R (0<t<1) such that 0, =18, 1By, 0,=
9%,u.B,, and 6,0)=q(t)=0,1) for each 0<¢<1. The homotopy ¢, is
given by

_(fe(m (peP?),
dP)= § 0.B;(p) (pea, CPY),

for every 0<¢t<1. Then we have $,=/3,|P' and $,=¢3,|P’. Hence
fo|Piafs,| P=gs,| P'~ge| P,

This proves that f and g are 1-homotopic. Q.E.D.

Two homomorphisms h,k: G— H of a group G into a group H
are said to be equivalent, provided that there exists an element we H
such that k(e)=w~'h(e)w for every element ec€G. The following
assertion is an immediate corollary of (17.2).

(17.3) Two maps f,g: X — R with f(x,)=r,=g(x,) are 1-homotopic,
if and only if their induced homomorphisms f*, g*: n (X, z,) — = (R, 7,)
are equivalent.

18. Deviation cocycles d"(¢, 4, 0,)

As in §12, with a purpose to simplify the arguments, we shall
assume that R be n-simple in the sense of Eilenberg [17] where n>1
is a given integer. Denote by =,==,(R) the n-th homotopy group of
R.

Let ¢,v: P— R be two maps with ¢|P=v|P, and 6,: P*"! >R
(0<t<1) be a homotopy such that 8,=¢|P"", 6,=+|P""?, and 6,|P,=
¢|P, for every 0<t<1. The triple (¢,,6,) defines an n-dimensional
singular cochain d™(¢, 4, 6,) of X with coefficients in =, as follows:
Let £ € S(X) be an arbitrary singular n-simplex. Let s, be the ordered
geometric n-simplex associated with & whose interior is the open sin-
gular cell o,, The characteristic map Myt 8> Clo, maps the boundary
sphere s, onto P*-. We define a map D, on the boundary sphere
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sz x I=(s;x 0)\J (0s:x I)\J (szx 1)

of s:xI with values in R by taking

95#5(?/) (?] € sg’ t=0)}
D¢y, t)_ 0,[1/2(2]) (y €os, tel),
l Yuly)  (yes, t=1).

The sphere o(s;xI) may be oriented on such a way that SEXO lies
negatively and s,x1 positively on 9(s,xI). Then the map D, deter-
mines an element dsem,"s“ince R is n-simple. The association & —»dE
defines an n-dimensional singular ccchain d*(¢, ¥, 6,).

(18.1) d™(¢,, 6,) is a singular cocycle of X modulo X,, called the
deviation cocycle of the triple (¢, 4, 6,).

Proof. Let 5 €S(X) be an arbitrary singular (n+1)-simplex. To
show that d”(¢,, 6,) is a singular cocycle, it suffices to prove that
8d™(¢p, yr, 6,).p=0. Let s, denote the ordered geometric (n+1)-simplex
associated with 5 and pun: s;— Cloy the characteristic map for 4.
Denote by sy~ the (n—1)-dimensional skeleton of s, and consider the
maps f—-<f>,m,, g=1vrun, and the homotopy #,=0,uq|sp " Since A o=f|sp !
and % ——gls" 1, it follows from the correspondmg theorem for ﬁmte
complex that the triple (f, g, h,) determines a cocycle d*(f, g, k) of sn.
Let s be an arbitrary n-face of s, then u, maps the interior of s
onto some open singular n-cell oy of P. It is easy to see that

d™(p, r, 6,) E=d"(f, 9, he)+s.
Hence it follows that
8d"(p, \r, 0,) p=8d"(f, g, h.)*sn=0.

This proves that d*(¢, ¥, 6,) is a singular cocycle.

Next, let £ be an arbitrary singilar n-simplex contained in S(X,).
Since u, maps s, onto Clot C P,, the map D, can be defined through-
out s, x1I. Therefore a*(p, ¥, 0,)+E=d,=0. ThlS proves that d"(¢, 4, 6,)
isa smgular cocycle of X modulo X Q.E.D.

By means of the methods analogous to those used in §12, one
can prove the following assertions.

(18.2) ' For a given triple (p, v, 0,) and any d"~d"(p, v, 6,) modulo
X,, there exists a homotopy p.: P > R (0<t<1) such that p,=¢|P""1,

—\HP‘ L p, ]P" 29, |P*~2 for each 0<t<1, and d"(¢,, p,)—d"

(18.3) For a given triple (¢, 6,), we have:

(1) d™(p,r, 0,)=0 if and only if there is a homotopy 6,*: P* >R
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(0<t<1) such that 0,*=¢|P*, 0,*=v:|P", and 6,*|P"-'=0, for each
0<t<1. '

(_i_i) d"(ps r, 0,) ~ 0 modulo X, if and only if there is a homotopy
01 P* >R (0<t<1) such that 6,*=¢|P", 0,*=y|P", and 6| P" =
0.|P*-2 for each O<t< 1.

19. The group W*(X, X,, f)
Let f: X >R be a given map. We are going to construct for
each integer n=1 a group W*(X, X,, f) as what follows.

Let us denote by V” the totality of the maps F: P*!xI— R
such that:

F(p, 0)=fw(p)=F(p,1), (peP"1);
- F(p, t)y=fw(p), (peP, tel).

Two maps F, G €V” are said to be equivalent, if there is a homotopy
H.: P*'xI R (0<r<1) such that H,=F, H1=G, and H,.eV" for
each 0<+-<1. This equivalence relation divides the maps of V" into
disjoint classes. We shall denote by the symbol W*(X, X,,f) the
totality of these classes and by [F] the class which contains the map
Feve. ‘ -

For any two given maps F, G € V", we define a map F+G: P*-'xI
— R by taking

. _ (F(p,20) (pe P, 0<t<3%),
(F G)(p’”“g.a(p,_zt—l) (peP™?, %<t<1).

Obviously F+-G is a map in V* and the class [F-G] depends only on
the classes [F] and [G]. Therefore, we may define a multiplication
in WX, X,,f) by taking [F]:[G]=[F-+G]. Let E denote the map in
V* defined by E(p,t)=fo(p) for every peP"!and tcl. For each
FeV® we defino a map F-!'eV” by setting (F~)(p, t)=F(p,1—t) for
each peP*-! and tel. The following theorem is obvious.

(19.1) The elements of W™(X, Xy, f) form a group with the multi-
plication defined above as the group operation. The neutral element of
WX, X,,f) is the class [E] and the inverse of the class [F] is the
class [F'71].

Let «:(M,M, —(X,X,) be a map of a pair (M, M,) into (X, X,).
According to §6, the map « induces a map «#: P(M)— P(X) which
maps P(M;) into P(X,) and P*(M) into P(X) for each n=0. For every
integer =1 and any given map f: X — R, «* determines, in an ob-
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vious way, an induced homomorphism
(19.2) ¥ WHX, X,, ) = WM, My, fr).

Now assume that X be a simplicial polytope with a fixed trian-
gulation K and X, be a closed subpolytope of K, i.e. X, N\ K isa
closed subcomplex K, of K. For a given map f: X — R, let us con-
sider the maps ¢: K" !xI— R such that:

¢z, 0)=f(2)=¢(x, 1), (x e K1)
Pz, t)=f(2), (xe K1, tel).

By the method used at the beginning of the section, one can define a
group which will be denoted by W*(K, K,, f).

For a fixed partial order of the vertices of K, there is an injec-
tion j: X - P(X), (see §8). It is obvious from the construction of
7 that 7 maps the complex K isomorphically onto a closed subcomplex
j(K) of P(X) and that j is the identity map on X. Further, it is

also clear that j(K,) C P(X,). The injection j determines an induced
homomorphism ‘

(19.3) 71 WX, Xo, £) — WK, Ko, )

for each integer #>1 and any map f: X - R as follows: If an
element a« e W*(X, X,,f) is represented by a map F €V”, then the
element j*(a) e W*(X, X,, f) is represented by the map ¢: K" 'xI - R
defined by ¢(x, t)=F(j(), t) for each # € K" and tel.

(19.4) 5% maps WX, X,, ) onto W*(K, K,, f).

Proof. Let Be¢W"* K, K, f) be an arbitrary element represented
bys a map ¢: K" 'xI-—>R. It follows from a cellular approximation
theorem of J. H.C. Whitehead, [73, p. 2297, that there exists a homo-
topy #h,: P — X (0<t<1) such that ~,=w, £,(P* 1) K"}, and A,(p)=
w(p) for each pej(K) and each 0<t<1. Define a map ®: P*-1xJ
— R by taking

O(p, t)=¢(hy(p),t), (PP, tel).
Let T=(P*-'x0)\J (P, xI)\J (F(R*Y)xI)\J(P**x1) and define a
homotopy ®.: T — R (0<t<1) by taking
(I)T(p, t)=¢(hr(p)r t)’ (p’ t) eTl.

Since ®,=®|7, ®. has an extension @ *: P*'xI - R (0<t<1) such
that ®*=®. Call F=®,*. Then we have F € V" and ¢(x, {)=F(j(x), t)
for each z€K* ! and tel. Let a=[F]eW*X,X,,f), then B=j*a).
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Hence j* is onto. Q.E.D.

20. The homomorphisms £,

Throughout the present section, we assume that B be n-simple,
where n>1 is a given integer. We.shall construct a homomorphism
k, of WX, X,,f) into the n-dimensional singular cohomology group
HY (X, X,, 7,) of X modulo X, with coefficients in »,==.(R).

Let a e W*(X, X,,f) be an arbitrary element represented by a map
F: P*1xI >R in V", Let ¢=fw and define a homotopy 6,: P*"! > R
(0<t<1) by taking 6,(p)=F(p, t) for each pe P*-! and 0<t<1. Then
we obtain a triple (¢, ¢, 6;). The deviation cocycle d*(¢, ¢, 6,), which
depends only on the class a=[F], represents an element k,(a)c H"
(X, X,, m,). The following theorem is cbvious.

(20.1) The correspondence o — k(a) define a homomorphism
kn: IV“(X; X()) .f) _')H”(‘X/’ XO) ”7; .

Let J;=J (X, X,, =, denote the image of W*X, X,, f) under the
homomorphism. J, is a subgroup H"(X, X,, =,). We denote the
quotient group by

Q:ZQ,,:(X’ Xo) ”n)an(Xy Xo’ ”n)/J;(X, XO! '”n)'

(20.0) The subgroup J, (and hence the quotient group Q) depends
only on the (n—1)-homotopy class of f relative to X,.

Proof. Let g: X—R be any map such that f|X,=g|X, and f, g
are (n—1)-homotopic relative to X,. Then there exists a homotopy
X,: P*"15R (0<t<1) such that X,=¢|P""!, X,=++|P""1, and X,|P,=¢
|P, for each 0<¢<1, where ¢=fo and Jr=go. Because of symmetry,
it needs only to prove that J,CJ,. As before, for an arbitrary element
a=[F] of W¥X, X,, f), the element k (a)ec H* (X, X,, =,) is represent-
ed by the deviation cocycle d*(¢, ¢, 6;). Define a homotopy p,: P~
—R (0<t<1) by taking

X1-3.(D) (peP™1, 0<t<1/3),
pD)=10s_(p)  (PEP*1, 1/35t<2/3),
Xse-o(p)  (PEP", 2/3<t<1).

Then p,=|P*'=p, and p,|P;=1|P, for every 0<t<1. It is obvious
that
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d* (Y, P Pe)=—d"(p, VY, Xo)+d"(p, B5 0,)+A (b, Y, X )=d"(p, b5 ;)

Define a map G: P !xI—R by setting G (p, t)=p,(p) for each pe
P*1and tel. Call B=[G]eW"(X, X,, g). Then the element k,(3)
€J, is represented by d*(v, ¥, p.). This proves k(a)=k(B)€EJ,.
Hence J,J,. Q.E.D. - :

Let «: (M, M,) > (X, X,) be a map of a pair (M, M,) into the
pair (X, X,) jand f: X—»R be a map. In the following rectangle of
homomorphisms

wH(X, X,, f);gW”(M, M, f)

[, L

H"(X: Xo’ ”n) _—; Hn(M’ Mo’ ”n)
K

we have obviously the following commutativity relation :
(20.3) k.t = ¥k,

For the remainder of the section, we assume that X be a locally
finite simplicial polytope with a fixed triangulation K and X, be a
closed subpolytope of K, i.e. X,\K is a closed subcomplex K, of K,

In an obviously analogous way, we may define the homomorphisms :

(20. 4) ko: WK, K,, f)—H"(K, Ko, m,),

where H*(K, K,, =,) denotes the n-dimensional cohomology group of
the simplicial complex K modulo K, with coefficients in =,==,(R).

The image of k, is denoted by J/K, K,, =,) and the quotient group
by

Qn(K’ Ko’ ”n)an(K’ Ko, ”n)/J(K: Ko: ”n)'

For a fixed partial order of the vertices of K, there is an injection
j:X—>P(X). According to the invariance theorem, j induces an iso-
morphism j* of H*(X, X,, =,) onto H"(K, K,, =,). In accordance
with (19.3) and (19.4), 7 induces a homorphism j* of WX, X,, f)
onto W* K, K,, f). In the following rectangle of homomorphisms

7%
WHX, Xo, /) WK, K, [)
lk" 7% lk"

H"(X, X, =,) — H"(K, K, 7,),

one can easily see the following commutativity theorem.
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(20. 5) k% = §*F,.

The following theorem is an immediate consequence of (19.4),
(20.4), and the fact that j* maps H"(X, X,, =,) isomorphically onto
H*K, K,, n,).

(20.6) 7* maps JHAX, X,, =n) isomorphyically onto JNK, K,, ).

This indicates the topological invariance of Jy(K, K, =») and
hence of Q7 K, K,, =»).

21. Deviation sets

In the present section, we assume that R be n-simple, where n>1
is a given integer.

Let f, g: X—R be two given maps such that f|X,=g|X,. We
are going to define the n-dimensional deviation set A™(f, g)H™(X, X;,
wz,) of the pair of maps (f, g) relative to X,. If f :nd g are not
(n—1)-homotopic relative to X,, we define A™(f, g) to be the vacuous
set. Now suppose that f and g be (n—1)-homotopic relative to X,.
Then there is a homotopy 6,: P*'—R (0<t<1) such that §,=¢|P"!,
0,= | P*1, and 6,|P,=¢| P, for every 0<t<1, where =fo and Y=go.
The deviation cocycle d"(¢, y, 6,) represents an element &"(¢p, +, 6,)
of the eingular cohomology group H" (X, X,, =,), called an n-dimen-
sional deviation element of f and g. A”*(f, g) is defined to be the sat
of all n-dimensional deviation elements of f and g.

(21.1) Homotopic pairs have the same n-dimensional deviation set.

Proof. Suppose that (f, g) and (f', g’) be two homotopic pairs of
maps relative to X,. It follows from (15.2) that our assertion is true
if one and hence both of the pairs are not (#—1)-homotopic relative
to X,. On the other hand, let 6*(¢, v, 6,) be an arbitrary element of
A"(f, g), where ¢=fo, Yy=go, and 6,: P*-1»>R(0<t<1) is a homotopy
such that §,=¢|P*"!, ,=+|P*"!, and 6,|P,=¢|P, for each 0<t<1.
Since f=f" and g=g' relative to X,, there are homotopies f;, g,: X—
R (0<t<1) such that f=f, fi=f", 9,=9, 9,=¢' and f,| X, =f|X,=g|X,
=g,| X, for each 0<t<1. Call ¢'=f'w and J'=g'w. Define homotopies
a,, B, P"'-R (0<t<1) by taking

a(p)=F(P), Bp)=g.0(p), (peP, 0<t<1).
According ‘to (i) of (18.3), we have
dn((/')’ ‘f)” a£)=0» dn(‘l’" "!',9 :307:0-
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Define a homotopy 9;: P*-1,R(0<t<1) by taking

D) (peP™1,  0<t<1/3),
0.(p)=105_(p) (PP, 1/3<t<2/3),
Bse-a(p)  (peP"1, 2/3<t<1).

Obviously we have

AP, W'y 0)=—dp, ¢'s @) +d(p, Yy 0.)+d7(P, P, Bo)-

Therefore, d*(¢', ', 0,)=d"($, ¥, 6,) and the element 8*(¢, v, 6,) is in
A™(f', g'). This proves that A™(f, ¢)A"f', ¢'). Similarly, one can
show that A™(f’, g"YCA™f, g). Hence A™f, g)=A™f", ¢). Q.E.D.

The following assertion is obvious.

(21.2) Two mapsf, g: X—R with f| X,=g|X, are (n—1)-homotopic
relative to X, if and only if A™f, g) is non-empty.

The above statement is strengthened as follows:

(21.3) Two maps f, 9: X—>R with f|X,=g|X, are (n—1)-homoto-
pic relative to X, if and only if A™(f,g) is a coset of J,(X, X,, =,) in
HYX, X,, =)

Proof. Because of (21.2), it needs only to prove thé necessity.
Suppose f and g to be (n—1)-homotopic relative to X,. Call ¢=fo
and y=go. Let §"(¢, ¥, a;) and 8" (¢, y, B;) be any two deviation
elements of f and g. Define a map F: P*!xI—R by taking

ay(p)  (peP", 0<t<%),
Ba-2(P) (pEP", 3 <t
Evidently F v, F represaents an element w of the group W*(X, X,,
7). If follows from the definition of F' that
Ea(w) = 8"(¢, Y, ac)—8"(p, V¥ Be)-
Since k,(w)eJ,, this proves that A"(f, g) is contained in the ccset

8y Yy ) + Iy

Conversely, let w=[F] be an arbitrary element of W*(X, X,, f).
Define a homotopy 6,: P* 'R (0<t<1) by setting 6,(p)=F(p, t) for
every peP" ! and 0<t<1. Then k,(w)=8"(¢, ¢, 8,). Define a homo-

topy B,: P*"'>R (0<t<1) by taking

02((p) (peP"?, 0<t<14),
@y-(p) (PEP Y, U<EL]).

Fp, =}

8w =]
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Then we have §"(¢, v, Be)=k.(w)+8"(¢, ¥, a,). Hence every element
of the cosat 8"(¢, v, @,)+J, is in A™(f, g). This completes the proof
that A%(f, g) is a coset of J? in H(X, X,, =,). Q.E.D.

(21.4) FunpDAMENTAL HoMoToPY LEMMA. Two maps f,g9 : X—R
with f|X,=g|X, are n-homotopic relative to X, if and only if A™(f, g)
=JUX, Xy )

Proof. Necessity. Suppose that f and g be n-homotopic relative
to X,. Call ¢=fo and y—=go. Then there exists a homotopy «a; : P
—R (0<t<1) such that ay=¢|P*, aj=1y|P", and a; |P,=¢|P, for each
0<t<1. Call @;=a;|P*-1. According to (i) of (18.3), we have d"(¢,
¥, a;)=0 and hence 8*(¢p, ¢, «,)=0. This implies that A"(f, g) con-
tains the zero element of H*(X, X,, =,). By (21.3), we have A™(f, g)
=J /X, Xo5 7n)- :

Sufficiency. Suppose that A™f, ¢)=J/(X, X,, =,). Then A"(f, g)
contains the zero element of H*(X, X,, =,). Hence there is a homoto-
py a.: P* 'R (0<t<1)such that ay=¢|P""1, a,=|P*" 1, a;|P)=¢|P,
for each 0<t<1, and 8"(¢, v, a,)=0. This implies that d"(¢, ¥, a;)
~0 modulo X, It follows from (ii) of (18.3) that f and g are »-
homotopic relative to X,. Q.E.D.

(21.5) Let v: (M, My)—(X, X,) be a map of a pair (M, M,) into
(X, X,), and f, g: X>R be any two given maps with f|X,=g|X,.
Then A"(fr, gx) contains the image «*(A™(f, g)) under the induced
homomorphism

wt HY(X, X,, 7, —»H" (M, M,, =,).

Proof. The assertion is obviously true if f and g are not (n—1)
-homotopic relative to X,. Assume that f and g be (n—1)-homotopic
relative to X, and 8", Y, a,) be an arbitrary élement of A™(f, g)
where ¢p=foy, Y=gow,, and «,: P*-Y(X)>R (0<t<1) is a homotopy
such that ay=¢|P" (X), a,;=y|P" (X), and «P(X,)=¢|P(X,) for
every 0<t<1. According to (6.1) and (6.4), the map « induces a
map

wt L (P(M), P(M,)—~(P(X), P(X,)),

which maps P*-'(M) into P*-Y(X). Call ¢'=¢x#, '=v«#, and a,=
a, k#| P*~Y(M), (0<t<1). By means of (6.3), we have

' =prt=fot=frwy, P="r¥=gort=greoy.

The triple (¢', ¥/, a:) determines an element 8"(¢/, ¥/, a':) of A"(fx, g«).



202 Extension and Classi fication of Maps

Since we have obviously -
8(¢'s ¥y a)=w*¥(8"(¢, P @),

it follows that A™f«, g«) DOe*(A™(f, g)). Q.E.D.

Taking f=g, we obtain the following corollary of (21.5).

(21.6) For any given maps «: (M, M,)—(X, X,) and f: X—>R, we
always have

(I AX, Xoy 70)) CI (M, My, 7).
Hence the map « induces a homomorphism
kD Q: (X, Xy ) — Q;/c (M, Mo’ )

Once more, let X be a locally finite simplicial polytope and X, be
a closed subpolytope of X with a given triangulation K o6f X such
that X,\K=K, is a closed subcomplex of K. For any two maps
f, 9 X—>R with f|X,=g|X,, we can define their deviation set' A"(f, g,
K) in H*K, K,, =,) as follows. If f and g are not (»—1)-homotopic
relative X,, we define A*(f, g, K) to be the vacuous set of H"(K, K,,
7,). Now suppose f and g to be (n—1)-homotopic relative to X,. It
follows from (15.5) that there exists a homotopy 4,: K" 'R 0(<t<1)
such that hy=f|K"1, h,=g|K""1, and h,|K,=f|K, for each 0<t<1.
The triple (f, g, &,) determines, in an obvious way, a cocycle d*(f, g,
h;) of K modulo K, with coefficients in =,. d*(f, g, %;) represents an
element 8*(f, g, h,) of H"(K, K,, =,), called a deviation element of

(f, 9) in H(K, K,, n,). A™f, g, K) is defined to be the set of all
deviation elements of (f, g) in H*(K, K,, =,).

Analogous to (21.3) and (21. 4), one.can easily prove the following
assertion.

(21.7) If two maps f, g: X—R with f|X,=g|X, are (n—1)-homoto-
pic relative to X,, then A™(f, g, K) is a coset of JK, K,, n,) in H"K,
K,, =,). f and g are n-homotopic relative to X, if and only if A™(f,
g9, K)=J;(K: Ko: ”n)'

For a fixed partial order of the vertices of K, there in an injection
j: X—>P(X). j induces an isomorphism j* of H*(X, X,, =»,) onto H"
(K, K,, =,). According to (20.6), j* maps J (X, X, =,) onto Ji K,
K, 7»). One can also easily prove the following assertion.

(21. 8.) A*(f, g, K) = j*A"(f, 9).
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22. General homotopy theorems

The following main homotopy theorem is an immediate censequen-
ce of (21.3) and (21. 4).

(22.1) If R is n-simple, then any two maps f, g : X—>R with f|X,
=g|X, which are (n—1)-homotopic relative to X, determine a unique
element X"(f, g) of Q(X, X,, m.), called the n-dimensional characteris-
tic element of (f, g). X"(f, 9)=0 if and only if f and g are n-homotopic
relative to X,. "

By the recurrent application of (22.1), we obtain the following
theorem.

(22.2) Let f: X—>R be o given map. If R is r-simple and Q4 X,
Xy, 7-)=0 for each r such that n<r<m, then the n-homotopy relative
to X, of two maps f, g: X—R with f|X,=g|X, implies that they are
m-homotopic relative to X,.

For the remainder of the present section, let (X, X,) be a pair of
C, and m=A(X, X,). In case that X, is non-empty, we assume that
X, is closed in X and that (Xx0)\/(X,xI)\/(X x1) has the homo-
topy extension property in X xI relative to R. Combining (16.2) and
(22.2), we obtain the following assertion.

(22.3) Let f: X—>R be a given map. If R is r-simple and Q;(X,
X,, 7.)=0 for each r such that n<lr<m, then the n-homotopy relative
to X, of two maps f, 9: X—>R with f|X;=g|X, implies that they are
homotopic relative to X,.

In particular, if we take #=0 or 1, we deduce the following corol-
laries of (22.3) by means of (15.1), (17.1) and (17. 2).

(22.4) Let f: X—R be a given map. If R is r-simple and Q;(X,
X,, 7,)=0 for edch r such that 1<r<m, then every map g: X—R with
f| Xo=g|X, is homotopic with | relative to X,.

(22.5) Assume that X and X, be pathwise connected, X, be non-
empty, and f: X—R be a given map. If R is r-simple and QYX, X, 7))
=0 for each r such that 2<r<m, then a necessary and sufficient con-
dition for a map g:X—R with f|X,—=g|X, to be homotopic with f re-
lative to X, is that f*=g*, where f*, g*: (X, xy)—>m (R, 7,) are
the homomorphisms induced by f, g respectively, x,€ X,, r=f(,).

(22.6) Assume that X be pathwise connected, X, be empty, x,€ X,
and f: X—R be a given map. If R is r-simple and Q(X, =,)=0 for
each r such that 2<r<m, then a mnecessary and sufiicient condition
for a map g: X—R to be homotopic with [ is the existence of a path
ot I>R joining f(x,) to g(x,) such that o*f*=g*, where
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1% (X, ®o)->m(R, (&), g% (X, xo)—m(R, 9(,))

are the induced homomorphisms and o* denotes the isomorphism of =,
(R, f(x,)) onto = (R, g(x,)) determined by the path o.

If we assume X to be pathwis2 connected, X, to be vacuous, and
R=X, (22.4) implies the following assertion.

(22.7) The following statements are equivalent :

(1) X 1is contractible to a point.

(ii) 7A(X)=0 for each 1<r<m. _ _

(iii) X s r-simple and H'(X, n(X))=0 for each 1<r<m.

(iv) X is r-simple and QUX, n(X))=0 for each 1<r<m, where
i: X—X denotes the identity map.

23. Classification theorems

Throughout the present section, let f: X—R be a given map. Let
us denote by M=M(X, X,, R, f) the totality of the maps g: X—-R
such that leo;gl?_fo- The maps of M are divided into disjoint homo-
topy classes relative to X,. The classTﬁca,tion problem is to enumerate
these classes by means of some convenient invariants.

The relation of n-homotopy relative to X, among the maps M
divides M into disjoint n-homotopy classes relative to X, For each
n=1, evgfy (n—1)-homotopy class relative to X, of M contains a cer-
tain collection of m-homotopy classes relative to Xo_. Theoretically,
the classification problem could be considered as solved, if there is a
definite way to count the =»-homotopy classes contained in g given

(n—1)-homotopy class by means of the elements of some cohomology
invariant.

In the sequel, let 6 be a given (n—1)-homotopy class relative to
X, of the maps M, We are going to give a method to enumerate the
n-homotopy classes relative to X, of the maps of M, which are con-
tained in 6. We assume that » be a given rositive integer and R be
n-simple.

According to (20.2), the (»—1)-homotopy class @ relative tv X,
determines a subgroup J,(X, X,, =,) of the singular cohomology group
H"(X, X,, =,) and hence the quotient group:

QUX, Xy m)=H"(X, Xo, 7.)/To(X, Xo» 7).

Now let us'cooose a map g : X—R from the class ¢ as our referen-
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ce map. According to (22.1), every map. 2 €6 determines a charac-

teristic element X"(g, %) of the group Qy(X, X,, =,). An element a ¢
(X, X,, m,) is said to ba g-admissble if there is a map % €8 such

that X"(g, h)=a. The g-admissible elements of Qy(X, X,, =,) form a

set A,, called the g-admissible set. The following lemma is clear.
(23.1) For any two maps g, h: X—R of the (n—1)-homotopy class

0 relative to X,, A, is the image of A, under the translation deter-
mined by their characteristic element X"(g, h), i.e.

A=X"(g, k)+A,.
(22.2) CLASSIFICATION THEOREM. Given an (n—1)-homotopy class
0 relative to X, of the maps JL_I, the n-homotopy classes relative to X, of

those maps which are contained in 6 are in a (1-1)-correspondence with

the elements of the g-admissible set A, in the quotient group Qy(X, X,,
.), Where g is an arbitrarily given map of 6.

Proof. According to (22.1), every map % €6 determines a unique
element X"(g, h)c A,. We assert that X"(g, %) depends only on the
n-homotopy class relative to X, which contains %#. For, if &, kcéd
are n-homotopic relative to X,, (22.1) gives

X"(g, W—X"(g, k)=X"(k, h) =0,
i.e. X"(g, h)=X"(g, k). Hence the correspondence h-—X"(g, k) defines
a transformation r of the n-homotopy classes relative to X, contain-

ed in @ into the elements of A,. It remains to show that r is one-

to-one. That  is onto follows from the definition of A,. To prove
that r is univalent, suppose X"(g, 2)=X"(g, k). Then we have

X" (h, B)=X"(g, k) — X" (g9, h)=0.

By (22.1), & and k are n-homotopic relative to X,. This completes
the proof.
Tulane University.

(Received October 2, 1950)

NoOTES

1) A major part of the results contained in the present. paper were carried
out under sponsorship of the Office of Naval Research in the Summer
Session of 1949, The homotopy and classification theorems in § §21-23
were first obtained for a finite polyhedron when the author was working at
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Academia Sinica in 1948. The essentials of the paper were delivered in
an adress before the Conference on Topology held at the University of
Chicago in May, 1950.

2) 1f X,R are topological spaces, a map f:X—R is a continuous transforma-
tion f of X into R. If X,CX and R,CR, a map f:(X, X,)~(R, Ry) is
a map f: X—R such that f (X,) CR,. '

3) Numbers in brackets refer to the bibliography at the end of the paper.

4) The singular polytope of a topological space was independently introduced
by J. B. Giever (31] in proving the equivalence of the two singular homo-
logy theories.

5) The circumflex over v»; indicates that »; is omitted.

6) A subspace X, of a topological space X is a subset (not necessarily
closed) of X with the relative topology.
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