

Title	On M-rings and general ZPI-rings
Author(s)	Ukegawa, Takasaburo
Citation	Osaka Journal of Mathematics. 1982, 19(4), p. 923-930
Version Type	VoR
URL	https://doi.org/10.18910/10635
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Ukegawa, T.
Osaka J. Math.
19 (1982), 923-930

ON *M*-RINGS AND GENERAL *ZPI*-RINGS

Dedicated to Professor Kentaro Murata on his 60th birthday

TAKASABURO UKEGAWA

(Received January 7, 1981)

In the preceding paper [10], we have proved that a left Noetherian *M*-ring is a so called “general *ZPI*-ring” in the commutative case. Also we know that in an *M*-ring the multiplication of prime ideals is commutative [8]. In the present paper we define general *ZPI*-rings in section 1 and we study general properties of them, and as an important example of such rings we can give a left Noetherian semi-prime Asano left order. In section 2 we research the condition for a left Noetherian general *ZPI*-ring to be an *M*-ring, using minimal prime divisors of an ideal. The notation “ $<$ ” means a proper inclusion as the preceding papers [8], [9], [10].

1. *M*-rings and general *ZPI*-rings

DEFINITION. If the multiplication of any two prime ideals of a ring R is commutative, and any ideal of R can be written as a produkt of powers of prime (considering R as a prime ideal) ideals of R , then we call R a general *ZPI*-ring. Therefore the multiplication of ideals is commutative.

In the commutative case a general *ZPI*-ring is necessarily Noetherian no matter whether the ring has an identity or not. But in our case the general *ZPI*-ring is not necessarily Noetherian as the example in [9] shows.

Proposition 1. *Let R be a left Noetherian general *ZPI*-ring, let P be any prime ideal of R , and let q be maximal in the set of prime ideals such that $q < P$. Then for any ideal a with $q < a < P$, there is an ideal b such that $a = Pb = bP$.*

Proof. Let $a = p_1 \dots p_r < P$, since R is a general *ZPI*-ring. Then $p_i \subseteq P$ for some p_i . Since $q < a \subseteq p_i$, $q < p_i \subseteq P$, so $p_i = P$. Therefore $a = Pp_1 \dots p_{i-1} p_{i+1} \dots p_r = bP$, where $b = p_1 \dots p_{i-1} p_{i+1} \dots p_r$.

As in the commutative case we have

Proposition 2. *Let R be a left Noetherian general *ZPI*-ring, and let P be a maximal ideal of R . Then there are no ideals between P and P^2 (including the case that $P = P^2$), more generally for any positive integer n , the only ideals*

between P and P^n are P, P^2, \dots, P^n (including the case that $P^i = P^{i+1}$ for some $i, 1 \leq i < n$).

REMARK. Let R be as above. If every proper ideal \mathfrak{a} of R can be written as a product of minimal prime divisors of \mathfrak{a} , then for any proper prime ideal \mathfrak{p} of R and for any positive integer n , the only ideals between \mathfrak{p} and \mathfrak{p}^n are $\mathfrak{p}, \mathfrak{p}^2, \dots, \mathfrak{p}^n$.

Proposition 3. *Let R be a left Noetherian general ZPI-ring, and let $\text{min-}\mathcal{P} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ be the set of minimal prime ideals of R . Then for any subset $\{\mathfrak{p}_{i_1}, \dots, \mathfrak{p}_{i_k}\}$ of $\text{min-}\mathcal{P}$, $\mathfrak{p}_{i_1} \cap \dots \cap \mathfrak{p}_{i_k} = \mathfrak{p}_{i_1} \dots \mathfrak{p}_{i_k}$. Especially for the prime radical N_1 of R , $N_1 = \mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_r = \mathfrak{p}_1 \dots \mathfrak{p}_r$.*

Proof. Since R is a general ZPI-ring, $\mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_i = P_1 \dots P_k$ for some prime ideals P_1, \dots, P_k of R . Then for any $\mathfrak{p}_j, 1 \leq j \leq i$ we have $P_j \equiv 0 \pmod{\mathfrak{p}_j}$ for some P_j , and so $P_j = \mathfrak{p}_j$, therefore $\mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_i = \mathfrak{p}_1 \dots \mathfrak{p}_i P_{i+1} \dots P_k$. Now $\mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_i \supseteq \mathfrak{p}_1 \dots \mathfrak{p}_i P_{i+1} \dots P_k = \mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_i$, hence $\mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_i = \mathfrak{p}_1 \dots \mathfrak{p}_i$.

Lemma 4. *Let R be a left Noetherian semi-prime general ZPI-ring, and let $\text{min-}\mathcal{P} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ be the set of minimal prime ideals of R . Then for any $1 \leq i < r$ and any positive integers $m_1, \dots, m_i, \mathfrak{p}_1^m \dots \mathfrak{p}_i^m \neq 0$.*

Theorem 1. *Let R be a left Noetherian semi-prime general ZPI-ring, and let $\text{min-}\mathcal{P} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ be the set of minimal prime ideals of R . If a proper ideal \mathfrak{a} of R has the form $\mathfrak{a} = \mathfrak{p}_{i_1}^{e_1} \dots \mathfrak{p}_{i_s}^{e_s} P_{i_1}^{f_1} \dots P_{i_t}^{f_t}$ where $\mathfrak{p}_i \in \text{min-}\mathcal{P}$ for $i = 1, \dots, s$ and $P_j \notin \text{min-}\mathcal{P}$ for $j = 1, \dots, t$, then $P_{i_1}^{f_1} \dots P_{i_t}^{f_t} \subseteq R$, i.e. essential as a left R -module, and the set $\{\mathfrak{p}_1, \dots, \mathfrak{p}_s\}$ is uniquely determined by \mathfrak{a} .*

Proof. Let P be a prime ideal of R . By proposition 2.11 [5] and Lemma 4, P is not essential as a left R -module if and only if $P \in \text{min-}\mathcal{P}$. Hence $P_{i_1}^{f_1} \dots P_{i_t}^{f_t} \subseteq R$ as a left R -module. Let $\mathfrak{a} = \mathfrak{p}_{i_1}^{e_1} \dots \mathfrak{p}_{i_k}^{e_k} Q_1 \dots Q_w$ where $\mathfrak{p}_{i_j} \in \text{min-}\mathcal{P}$ for $1 \leq j \leq k$, $Q_i \notin \text{min-}\mathcal{P}$ for $1 \leq i \leq w$ be another form of \mathfrak{a} . Assume that two set $\mathcal{M}_1 = \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\}$, $\mathcal{M}_2 = \{\mathfrak{p}_{i_1}, \dots, \mathfrak{p}_{i_k}\}$ are distinct. If $\mathcal{M}_1 > \mathcal{M}_2$, then $0 = \mathfrak{a} \mathfrak{p}_{s+1} \dots \mathfrak{p}_r = \mathfrak{p}_{i_1}^{e_1} \dots \mathfrak{p}_{i_k}^{e_k} \mathfrak{p}_{s+1} \dots \mathfrak{p}_r Q_1 \dots Q_w$ and $Q_1 \dots Q_w$ contains some regular element, hence $0 = \mathfrak{p}_{i_1}^{e_1} \dots \mathfrak{p}_{i_k}^{e_k} \mathfrak{p}_{s+1} \dots \mathfrak{p}_r$, contradicting Lemma 4. Next we consider the case that $\mathcal{M}_1 \not\supseteq \mathcal{M}_2$ and also $\mathcal{M}_1 \not\subseteq \mathcal{M}_2$. We denote the product of minimal prime ideals belonging to the set \mathcal{M}_1 by $[\mathcal{M}_1]$, for example. Then $0 = \mathfrak{a} [\text{min-}\mathcal{P} - \mathcal{M}_1]$ since $\mathfrak{a} = \mathfrak{p}_{i_1}^{e_1} \dots \mathfrak{p}_{i_k}^{e_k} P_{i_1}^{f_1} \dots P_{i_t}^{f_t}$. On the other hand, $\text{min-}\mathcal{P} - \mathcal{M}_1 \not\supseteq \text{min-}\mathcal{P} - \mathcal{M}_2$ and $\mathfrak{a} = \mathfrak{p}_{i_1}^{e_1} \dots \mathfrak{p}_{i_k}^{e_k} Q_1 \dots Q_w$, hence $0 \neq \mathfrak{a} [\text{min-}\mathcal{P} - \mathcal{M}_1]$ which is a contradiction. So we have $\mathcal{M}_1 = \mathcal{M}_2$.

As a result of Theorem 1 we have

Proposition 5. *Let R be as above, and let $\text{min-}\mathcal{P} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$. Then*

$(\mathfrak{p}_{j_1}^{\alpha_1} \dots \mathfrak{p}_{j_i}^{\alpha_i}, \mathfrak{p}_{j+1}^{\alpha_{i+1}} \dots \mathfrak{p}_{j_r}^{\alpha_r})$ is a regular¹⁾ ideal of R , where $\mathfrak{p}_1, \dots, \mathfrak{p}_j$ are distinct minimal prime ideal of R , $1 \leq i < j \leq r$ and $\alpha_1, \dots, \alpha_r$ are any positive integers.

Proposition 6. *Let R be a left Noetherian general ZPI-ring, and let P be a maximal ideal of R such that $P^i > P^{i+1}$ for any positive integer i . Then $\bigcap_{n=1}^{\infty} P^n$ is a prime ideal of R .*

Proof. Set $\bigcap_{n=1}^{\infty} P^n = \mathfrak{a}$. Let A, B be ideals of R such that $AB \equiv 0 \pmod{\mathfrak{a}}$. Then $A \not\equiv 0 \pmod{\mathfrak{a}}$ and $B \not\equiv 0 \pmod{\mathfrak{a}}$. Therefore there is a maximal $i \geq 0$ such that $A \subseteq P^i$ and so $A \not\subseteq P^{i+1}$. Similarly there is a maximal $j \geq 0$ such that $B \subseteq P^j$ and so $B \not\subseteq P^{j+1}$, where $P^0 = R$. Then $P^{i+1} < (A, P^{i+1}) \subseteq P^i$, therefore $(A, P^{i+1}) = P^i$ by Proposition 2, and similarly $(B, P^{j+1}) = P^j$. Hence $P^{i+j} = (A, P^{i+1}) (B, P^{j+1}) \subseteq P^{i+j+1}$, thus $P^{i+j} = P^{i+j+1}$ contradicting the assumptions.

REMARK. Let R be as above. Let \mathfrak{p} be any proper prime ideal such that for any positive integer i $\mathfrak{p}^i > \mathfrak{p}^{i+1}$. If every proper ideal of R can be written as a product of minimal prime divisors, then $\bigcap_{n=1}^{\infty} \mathfrak{p}^n$ is a prime ideal of R .

Theorem 2. *Let R be a Noetherian (left and right) prime ring with an identity. If R satisfies the following*

- 1) *R is a general ZPI-ring;*
- 2) *every non-zero proper prime ideal of R is maximal;*
- 3) *every ideal of R is projective both as a left and as a right R -module,*

the R is an M -ring.

Proof. We shall prove the existence of an ideal C with $A = BC = CB$ for ideals A, B such that $0 < A < B < R$. Let $A = P_1^{e_1} \dots P_{\alpha}^{e_{\alpha}} < B = Q_1^{f_1} \dots Q_{\beta}^{f_{\beta}}$ where $P_1, \dots, P_{\alpha}, Q_1, \dots, Q_{\beta}$ are prime ideals of R and $e_k > 0$ for $k = 1, \dots, \alpha$, $f_j > 0$ for $j = 1, \dots, \beta$, so for every Q_k there is some P_k with $P_k = Q_k$ for $k = 1, \dots, \beta$. Hence $A = Q_1^{e_1} \dots Q_{\beta}^{e_{\beta}} P_{\beta+1}^{f_{\beta+1}} \dots P_{\alpha}^{e_{\alpha}} < B = Q_1^{f_1} \dots Q_{\beta}^{f_{\beta}}$. Now by Proposition 2.2 [3], each maximal ideal of R is either idempotent or invertible. Let Q_1, \dots, Q_j be the set of idempotent maximal ideals in the set of maximal ideals $Q_1, \dots, Q_j, \dots, Q_{\beta}$ (including the case that $\{Q_1, \dots, Q_j\}$ is empty). Then $A = Q_1 \dots Q_j Q_{j+1}^{e_{j+1}} \dots Q_{\beta}^{e_{\beta}} P_{\beta+1}^{f_{\beta+1}} \dots P_{\alpha}^{e_{\alpha}} < B = Q_1 \dots Q_j Q_{j+1}^{f_{j+1}} \dots Q_{\beta}^{f_{\beta}}$, where $Q_{j+1}, \dots, Q_{\beta}$ are invertible ideals of R . If $e_{j+1} < f_{j+1}$ for example, multiplying $(Q_{j+1}^{-1})^{e_{j+1}}$ on each side, we have $Q_1 \dots Q_j Q_{j+2}^{e_{j+2}} \dots Q_{\beta}^{e_{\beta}} P_{\beta+1}^{f_{\beta+1}} \dots P_{\alpha}^{e_{\alpha}} < Q_1 \dots Q_j Q_{j+1}^{f_{j+1}-e_{j+1}} \dots Q_{\beta}^{f_{\beta}} \equiv 0 \pmod{Q_{j+1}}$, which is a contradiction. Therefore $e_{j+1} \geq f_{j+1}, \dots, e_{\beta} \geq f_{\beta}$. Thus $A = B Q_{j+1}^{e_{j+1}-f_{j+1}} \dots Q_{\beta}^{e_{\beta}-f_{\beta}} P_{\beta+1}^{f_{\beta+1}} \dots P_{\alpha}^{e_{\alpha}}$, hence R is an M -ring.

1) We call an R -ideal a *regular ideal*.

REMARK. If R is a Noetherian semi-prime ring with an identity, then we may replace the condition 2) by the following:

2') *the proper prime ideals of R are either comaximal minimal prime ideals or maximal prime ideals of R .*

The theorem is valid also in this case, because $R=R_1\oplus\cdots\oplus R_i\oplus\cdots\oplus R_n$ where $R_i\simeq R/\mathfrak{p}_i$ for every i and $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}=\min-\mathcal{O}$, so every R_i is a Noetherian general ZPI-ring satisfying the condition 2).

Theorem 3. *Let R be a left Noetherian semi-prime Asano left order. Then R is a general ZPI-ring and also an M -ring, and the proper prime ideals of R are either comaximal idempotent minimal prime ideals or maximal prime ideals of R . Every proper ideal \mathfrak{a} of R has the form $\mathfrak{a}=\mathfrak{p}_1\cdots\mathfrak{p}_i P_1^{e_1}\cdots P_m^{e_m}$ where $\mathfrak{p}_k\in\min-\mathcal{O}$ for $1\leq k\leq i$ and P_1, \dots, P_m are maximal prime ideals of R which are regular.*

Proof. Let $Q=Q_1\oplus\cdots\oplus Q_i\oplus\cdots\oplus Q_n$ be the left quotient ring of R which is semisimple Artinian, where Q_1, \dots, Q_n are simple Artinian rings. Now we can deduce that $R=R_1\oplus\cdots\oplus R_i\oplus\cdots\oplus R_n$ where R_i is a left Noetherian Asano left order of Q_i for $1\leq i\leq n$. Each proper prime ideal of R has either the form $\mathfrak{p}_i=R_1\oplus\cdots\oplus R_{i-1}\oplus R_{i+1}\oplus\cdots\oplus R_n$ or the form $P_i=R_1\oplus\cdots\oplus R_{i-1}\oplus\mathfrak{p}_{(i)}\oplus R_{i+1}\oplus\cdots\oplus R_n$ where $\mathfrak{p}_{(i)}$ is a maximal prime ideal of R_i for $1\leq i\leq n$. Every proper ideal \mathfrak{a} of R has the form $\mathfrak{a}=\mathfrak{a}_1\oplus\cdots\oplus\mathfrak{a}_i\oplus\cdots\oplus\mathfrak{a}_n$ where \mathfrak{a}_i is an ideal of R_i for $1\leq i\leq n$. In order to make the proof concise we assume that $\mathfrak{a}_1=\cdots=\mathfrak{a}_{i-1}=0$ (including the case that $\{\mathfrak{a}_1, \dots, \mathfrak{a}_{i-1}\}$ is empty) and $\mathfrak{a}_i=\mathfrak{p}_{(i)}^{e_{i1}}\cdots\mathfrak{p}_{(i)}^{e_{i\alpha}}, \dots, \mathfrak{a}_n=\mathfrak{p}_{(n)}^{e_{n1}}\cdots\mathfrak{p}_{(n)}^{e_{n\lambda}}$. Then $\mathfrak{a}=\mathfrak{p}_1\cdots\mathfrak{p}_{i-1} P_1^{e_{i1}}\cdots P_{i\alpha}^{e_{i\alpha}}\cdots P_{n1}^{e_{n1}}\cdots P_{n\lambda}^{e_{n\lambda}}$ where $P_{i,j}=R_i\oplus\cdots\oplus R_{i-1}\oplus\mathfrak{p}_{(i)}\oplus P_{i+1}\oplus\cdots\oplus R_n$, thus R is a general ZPI-ring. Then it is easy to see that R is an M -ring.

By Proposition 6 we have

Corollary 4. *Let R be a left Noetherian semi-prime Asano left order and let P be a regular prime ideal of R , then $\bigcap_{n=1}^{\infty} P^n=\mathfrak{p}$ is a minimal prime ideal of R .*

2. Minimal prime divisors of ideals

Let \mathfrak{a} be a proper ideal of R . A minimal prime divisor of \mathfrak{a} is a prime ideal \mathfrak{p} with $\mathfrak{a}\subseteq\mathfrak{p}$ such that there are no prime ideals \mathfrak{p}' with $\mathfrak{a}\subseteq\mathfrak{p}'<\mathfrak{p}$. We denote the set of minimal prime divisors of \mathfrak{a} by $\min-\mathcal{O}_{\mathfrak{a}}$. The set $\min-\mathcal{O}$ of minimal prime ideals of R is $\min-\mathcal{O}_0$. As a consequence of Theorem 3 [10] and Proposition 1 [8], we have

Proposition 7. *Let R be a left Noetherian general ZPI-ring. Moreover if R is an M -ring, then*

(*) { i) For any prime ideal $\mathfrak{p}, \mathfrak{q}$ with $\mathfrak{p} < \mathfrak{q}$, $\mathfrak{p} = \mathfrak{p} \mathfrak{q} = \mathfrak{q} \mathfrak{p}$.
 ii) Let \mathfrak{a} be any proper ideal of R , and let $\text{min-}\mathcal{O}_{\mathfrak{a}} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$. Then $\mathfrak{a} = \mathfrak{p}_1^{f_1} \dots \mathfrak{p}_r^{f_r}$ for some positive integers f_1, \dots, f_r .

REMARK. Let R be a left Noetherian general ZPI-ring. Then i) of the above condition (*) is equivalent to the following:

i') For any prime ideal \mathfrak{p} and any ideal \mathfrak{b} properly containing \mathfrak{p} , $\mathfrak{p} = \mathfrak{b} \mathfrak{p} = \mathfrak{p} \mathfrak{b}$.

Next we consider the converse of this apparent proposition.

Proposition 8. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*) in Proposition 7 and let \mathfrak{a} be a proper ideal of R . Then for any minimal prime divisor \mathfrak{p} of \mathfrak{a} , either $\mathfrak{p}^i = \mathfrak{p}^{i+1}$ for some positive integer i or else there is some positive integer j such that $\mathfrak{p}^j \nmid \mathfrak{a}$.

Proof. We assume that for any positive integer i $\mathfrak{p}^i > \mathfrak{p}^{i+1}$, and we shall show that $\mathfrak{p}^j \nmid \mathfrak{a}$ for some positive integer j . If $\mathfrak{p}^i > \mathfrak{p}^{i+1}$ for any positive integer i and moreover $\mathfrak{p}^k \supseteq \mathfrak{a}$ for any positive integer k , then $\mathfrak{a} \subseteq \bigcap_{n=1}^{\infty} \mathfrak{p}^n = \mathfrak{n} < \mathfrak{p}$ where \mathfrak{n} is a prime ideal by the remark of Proposition 6, a contradiction.

Proposition 9. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*), let \mathfrak{a} be a proper ideal of R , and let $\text{min-}\mathcal{O}_{\mathfrak{a}} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$. Then for any $i \neq j$ and any positive integer e_i, e_j , $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})$ is an idempotent ideal of R .

Proof. First we prove that $\mathfrak{p}_i^e (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) = \mathfrak{p}_i^{e_i}$, and similarly $\mathfrak{p}_j^e (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) = \mathfrak{p}_j^{e_j}$. Since $\mathfrak{p}_j^e \nmid 0 \pmod{\mathfrak{p}_i^e}$, $\mathfrak{p}_i^e < (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) = P_1^{f_1} \dots P_s^{f_s}$ where P_1, \dots, P_s are minimal prime divisors of $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})$. Now we know that $\mathfrak{p}_i^e \equiv 0 \pmod{P_k}$ for every P_k , $1 \leq k \leq s$. If $\mathfrak{p}_i = P_k$ for some P_k , then $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) = P_1^{f_1} \dots P_{k-1}^{f_{k-1}} \mathfrak{p}_i^{f_k} P_{k+1}^{f_{k+1}} \dots P_s^{f_s} \equiv 0 \pmod{\mathfrak{p}_i}$, hence $\mathfrak{p}_i \equiv 0 \pmod{\mathfrak{p}_i}$, a contradiction. Therefore $\mathfrak{p}_i < P_k$ for $1 \leq k \leq s$, hence $\mathfrak{p}_i^e (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) = \mathfrak{p}_i^e P_1^{f_1} \dots P_s^{f_s} = \mathfrak{p}_i^{e_i}$. Then $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})^2 = (\mathfrak{p}_i^e (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}), \mathfrak{p}_j^e (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})) = (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})$.

Lemma. Under the same assumptions as above, for any $i \neq j$ and any positive integer e_i, e_j , $\mathfrak{p}_i^{e_i} \cap \mathfrak{p}_j^{e_j} = \mathfrak{p}_i^{e_i} \mathfrak{p}_j^{e_j}$.

Proof. First we prove that $\mathfrak{p}_i^{e_i} \cap \mathfrak{p}_j^{e_j} = (\mathfrak{p}_i^{e_i} \cap \mathfrak{p}_j^{e_j}) (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})$. For some positive integer ρ $\mathfrak{a}^{\rho} \subseteq \mathfrak{p}_i^{e_i} \cap \mathfrak{p}_j^{e_j} = P_1^{f_1} \dots P_s^{f_s} \equiv 0 \pmod{\mathfrak{p}_i}$, where P_1, \dots, P_s are minimal prime divisors of $\mathfrak{p}_i^{e_i} \cap \mathfrak{p}_j^{e_j}$. Therefore $\mathfrak{a} \subseteq P_1 \equiv 0 \pmod{\mathfrak{p}_i}$ for some P_1 , so $P_1 = \mathfrak{p}_i$. Similarly for some P_2 , $\mathfrak{a} \subseteq P_2 \equiv 0 \pmod{\mathfrak{p}_j}$, so $P_2 = \mathfrak{p}_j$, and $\mathfrak{p}_i^{e_i} \cap \mathfrak{p}_j^{e_j} = \mathfrak{p}_i^{f_1} \mathfrak{p}_j^{f_2} P_3^{f_3} \dots P_s^{f_s}$. Let $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) = Q_1 \dots Q_t$ where Q_1, \dots, Q_t are minimal prime divisors of $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})$. For every Q_k , $\mathfrak{p}_i \equiv 0 \pmod{Q_k}$ and $\mathfrak{p}_j \equiv 0 \pmod{Q_k}$, hence $\mathfrak{p}_i < Q_k$ and $\mathfrak{p}_j < Q_k$ for every Q_k , $1 \leq k \leq t$. From the above arguments $(\mathfrak{p}_i^{e_i} \cap \mathfrak{p}_j^{e_j}) (\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) =$

$\mathfrak{p}_{i_1}^{f_1} \mathfrak{p}_{j_2}^{f_2} P_{j_3}^{f_3} \cdots P_{i_s}^{f_s} Q_1 \cdots Q_t = \mathfrak{p}_{i_1}^{f_1} \mathfrak{p}_{j_2}^{f_2} P_{j_3}^{f_3} \cdots P_{i_s}^{f_s} = \mathfrak{p}_{i_1}^{e_i} \cap \mathfrak{p}_{j_1}^{e_j}$ by the condition (*). Hence $\mathfrak{p}_{i_1}^{e_i} \cap \mathfrak{p}_{j_1}^{e_j} = (\mathfrak{p}_{i_1}^{e_i} \cap \mathfrak{p}_{j_1}^{e_j}) (\mathfrak{p}_{i_1}^{e_i}, \mathfrak{p}_{j_1}^{e_j}) = ((\mathfrak{p}_{i_1}^{e_i} \cap \mathfrak{p}_{j_1}^{e_j}) \mathfrak{p}_{i_1}^{e_i}, (\mathfrak{p}_{i_1}^{e_i} \cap \mathfrak{p}_{j_1}^{e_j}) \mathfrak{p}_{j_1}^{e_j}) \subseteq (\mathfrak{p}_{j_1}^{e_j} \mathfrak{p}_{i_1}^{e_i}, \mathfrak{p}_{i_1}^{e_i} \mathfrak{p}_{j_1}^{e_j}) = \mathfrak{p}_{i_1}^{e_i} \mathfrak{p}_{j_1}^{e_j}$. The other inclusion is obvious, so $\mathfrak{p}_{i_1}^{e_i} \cap \mathfrak{p}_{j_1}^{e_j} = \mathfrak{p}_{i_1}^{e_i} \mathfrak{p}_{j_1}^{e_j}$.

Now by the induction we have

Theorem 5. *Let R be a left Noetherian general ZPI-ring which satisfies the condition (*), let \mathfrak{a} be a proper ideal of R , and let $\text{min-}\mathcal{O}_{\mathfrak{a}} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$. Then for any subset $\{\mathfrak{p}_1, \dots, \mathfrak{p}_k\}$ of $\text{min-}\mathcal{O}_{\mathfrak{a}}$ and for any positive integers $e_i, i=1, \dots, k$, $\mathfrak{p}_{i_1}^{e_1} \cap \dots \cap \mathfrak{p}_{i_k}^{e_k} = \mathfrak{p}_{i_1}^{e_1} \dots \mathfrak{p}_{i_k}^{e_k}$.*

Theorem 6. *Let R be a left Noetherian general ZPI-ring which satisfies the condition (*), let \mathfrak{a} be a proper ideal of R , and let $\mathfrak{a} = \mathfrak{p}_{i_1}^{x_1} \dots \mathfrak{p}_{i_r}^{x_r}$ where $\text{min-}\mathcal{O}_{\mathfrak{a}} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ and $x_i > 0$ for $1 \leq i \leq r$. Let $\{\mathfrak{p}_1, \dots, \mathfrak{p}_k\}$ be the subset of $\text{min-}\mathcal{O}_{\mathfrak{a}}$ every \mathfrak{p}_i of which has a maximal index α_i such that $\mathfrak{p}_{i_1}^{\alpha_1} \supseteq \mathfrak{a}$ and so $\mathfrak{p}_{i_{i+1}}^{\alpha_{i+1}} \supseteq \mathfrak{a}$, and assume that for $\mathfrak{p}_{k+1}, \dots, \mathfrak{p}_r$ there are no maximal β_j among indices β_j such that $\mathfrak{p}_{j_1}^{\beta_1} \supseteq \mathfrak{a}$ (including the case that one of the sets $\{1, \dots, k\}$, $\{k+1, \dots, r\}$ is empty). Then \mathfrak{a} has the form $\mathfrak{a} = \mathfrak{p}_{i_1}^{\beta_1} \dots \mathfrak{p}_{i_k}^{\beta_k} \mathfrak{p}_{k+1}^{y_{k+1}} \dots \mathfrak{p}_r^{y_r}$, where β_i is any positive integer such that $x_i \leq \beta_i \leq \alpha_i$ for $1 \leq i \leq k$ and y_j is any positive integer with $x_j \leq y_j$ for $k < j \leq r$.*

Proof. By Theorem 5 $\mathfrak{a} = \mathfrak{p}_{i_1}^{x_1} \cap \dots \cap \mathfrak{p}_{i_r}^{x_r} \supseteq \mathfrak{p}_{i_1}^{\beta_1} \cap \dots \cap \mathfrak{p}_{i_{k+1}}^{y_{k+1}} \cap \dots \cap \mathfrak{p}_r^{y_r}$, since $x_i \leq \beta_i \leq \alpha_i$ for $1 \leq i \leq k$ and $x_j \leq y_j$ for $k < j \leq r$. Conversely $\mathfrak{a} \subseteq \mathfrak{p}_{i_1}^{\beta_1}$ for $1 \leq i \leq k$ since $\beta_i \leq \alpha_i$, and also $\mathfrak{a} \subseteq \mathfrak{p}_{k+1}^{y_{k+1}} \cap \dots \cap \mathfrak{p}_r^{y_r}$ for any $y_j \geq x_j$, $k < j \leq r$; hence $\mathfrak{a} \subseteq \mathfrak{p}_{i_1}^{\beta_1} \cap \dots \cap \mathfrak{p}_{i_k}^{\beta_k} \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \dots \cap \mathfrak{p}_r^{y_r}$. Thus $\mathfrak{a} = \mathfrak{p}_{i_1}^{\beta_1} \cap \dots \cap \mathfrak{p}_{i_k}^{\beta_k} \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \dots \cap \mathfrak{p}_r^{y_r} = \mathfrak{p}_{i_1}^{\beta_1} \dots \mathfrak{p}_{i_k}^{\beta_k} \mathfrak{p}_{k+1}^{y_{k+1}} \dots \mathfrak{p}_r^{y_r}$ by Theorem 5.

The following definition of primary ideal is defined in [2]. Let \mathfrak{a} be an ideal of R . If for ideals A, B $A B \equiv 0 \pmod{\mathfrak{a}}$ implies $A \equiv 0 \pmod{\mathfrak{a}}$ or $B^{\rho} \equiv 0 \pmod{\mathfrak{a}}$ for some positive integer ρ , then \mathfrak{a} is called *r-primary*. And a *l-primary* ideal is defined similarly. A 1- and *r-primary* ideal is called a *primary ideal*.

Theorem 7. *Let R be as above. Then for every proper prime ideal \mathfrak{p} of R \mathfrak{p}^e is a primary ideal for any positive integer e .*

Proof. Let $A B \equiv 0 \pmod{\mathfrak{p}^e}$ for ideals A, B . We may assume that $A \not\subseteq \mathfrak{a}$ and $B \not\subseteq \mathfrak{a}$ where we set $\mathfrak{p}^e = \mathfrak{a}$. We set anew $A_1 = (A, \mathfrak{a})$, $B_1 = (B, \mathfrak{a})$. Then $A_1 B_1 \equiv 0 \pmod{\mathfrak{p}^e}$; and $A \equiv 0 \pmod{\mathfrak{p}^e}$ if and only if $A_1 \equiv 0 \pmod{\mathfrak{p}^e}$, etc.. Therefore it is sufficient to prove that for ideals $A > \mathfrak{a}$, and $B > \mathfrak{a}$, if $A B \equiv 0 \pmod{\mathfrak{p}^e}$, then $A \equiv 0 \pmod{\mathfrak{p}^e}$ or $B^{\rho} \equiv 0 \pmod{\mathfrak{p}^e}$ for some positive integer ρ . Hence we prove that for ideals A, B such that $\mathfrak{a} < A$, $\mathfrak{a} < B$, if $A B \equiv 0 \pmod{\mathfrak{p}^e}$ and for any positive integer m $B^m \not\equiv 0 \pmod{\mathfrak{p}^e}$, then $A \equiv 0 \pmod{\mathfrak{p}^e}$. Let $\text{min-}\mathcal{O}_A = \{P_1, \dots, P_t\}$, and let $A = P_1^{\delta_1} P_2^{\delta_2} \dots P_t^{\delta_t}$ for some positive integers $\delta_1, \dots, \delta_t$. Since $A B \equiv 0 \pmod{\mathfrak{p}^e}$, however $B \not\equiv 0 \pmod{\mathfrak{p}}$, hence $A \equiv 0 \pmod{\mathfrak{p}}$. Therefore $\mathfrak{a} < A \subseteq P_1 \equiv 0 \pmod{\mathfrak{p}}$ for some P_1 , hence $P_1 = \mathfrak{p}$ since \mathfrak{p} is a

minimal prime divisor of \mathfrak{a} ; so $A = \mathfrak{p}^{\delta_1} P_2^{\delta_2} \cdots P_t^{\delta_t}$, i.e. \mathfrak{p} is a minimal prime divisor of A . Let $\text{min-}\mathcal{O}_B = \{q_1, \dots, q_k\}$. Since $\mathfrak{a} = \mathfrak{p}^e < B = q_1^{\nu_1} \cdots q_k^{\nu_k}$ for some positive integers ν_1, \dots, ν_k , $\mathfrak{p} < q_i$ for every q_i and since \mathfrak{p} is a factor of A $AB = A$ by the condition (*), i.e. $A \equiv 0 \pmod{\mathfrak{p}^e}$.

Theorem 8. *Let R be a left Noetherian general ZPI-ring which satisfies the condition (*). Then R is an M -ring.*

Proof. Let $0 < A < B < R$ be ideals of R , let $\text{min-}\mathcal{O}_A = \{P_1, \dots, P_s\}$, $\text{min-}\mathcal{O}_B = \{Q_1, \dots, Q_b\}$, and let $A = P_1^{\alpha_1} \cdots P_s^{\alpha_s}$, $B = Q_1^{\beta_1} \cdots Q_b^{\beta_b}$ where β_1, \dots, β_b are positive integers and as for $\alpha_1, \dots, \alpha_s$ by Theorem 6 we can choose them as large as possible. Then for every Q_i , there is some P_j such that $P_j \subseteq Q_i$. If $P_j < Q_i$ for every Q_1, \dots, Q_b , then $A = A B = B A$, so there is nothing to prove. If there are some Q_i such that $P_j = Q_i$, we may assume for convenience sake that $P_i = Q_i$ for $1 \leq i \leq m$ and for every Q_j ($m < j \leq b$) there are some P_k with $P_k < Q_j$. Furthermore, as to P_1, \dots, P_m , let P_1, \dots, P_s be minimal prime divisors of A which have maximal indices such that $P_{j,i}^{\alpha_i} \supseteq A$ for $1 \leq j \leq s$, and let P_{s+1}, \dots, P_m be those which do not have such indices as above. On prime ideals P_j , $1 \leq j \leq s$, $A \subseteq P_j^{\alpha_j}$, and $A < B \subseteq Q_j^{\beta_j} = P_j^{\beta_j}$, so $A \subseteq P_j^{\beta_j}$, hence $\beta_j \leq \alpha_j$ for $1 \leq j \leq s$ by Theorem 6. On prime ideals P_{s+1}, \dots, P_m we may assume that $\beta_i \leq \alpha_i$ for $s < i \leq m$, by Theorem 6. Therefore $A = P_1^{\alpha_1 - \beta_1} \cdots P_m^{\alpha_m - \beta_m} P_1^{\beta_1} \cdots P_m^{\beta_m} P_{m+1}^{\alpha_{m+1}} \cdots P_a^{\alpha_a} = P_1^{\alpha_1 - \beta_1} \cdots P_m^{\alpha_m - \beta_m} P_1^{\beta_1} \cdots P_m^{\beta_m} (Q_{m+1}^{\alpha_{m+1}} \cdots Q_b^{\beta_b}) P_{m+1}^{\alpha_{m+1}} \cdots P_a^{\alpha_a} = B C$, say. Hence R is an M -ring.

We summarize

Theorem 9. *Let R be a left Noetherian general ZPI-ring. Then R is an M -ring if, and only if,*

- 1) *For any prime ideals $\mathfrak{p}, \mathfrak{q}$ of R such that $\mathfrak{p} < \mathfrak{q}$, $\mathfrak{p} = \mathfrak{p} \mathfrak{q}$, and*
- 2) *Any proper ideal \mathfrak{a} of R can be written as a product of powers of minimal prime divisors of \mathfrak{a} .*

References

- [1] K. Asano: The theory of rings and ideals, Kyoritsu Shuppan, 1949 (in Japanese).
- [2] A.W. Chatters and C.R. Hajarnavis: *Non-commutative rings with primary decomposition*, Quart. J. Math. Oxford Ser. (2) **22** (1971), 73–83.
- [3] D. Eisenbud and J.C. Robson: *Hereditary Noetherian prime rings*, J. Algebra **16** (1970), 86–104.
- [4] A.W. Goldie: *Semi-prime rings with maximum condition*, Proc. London Math. Soc. **10** (1960), 201–220.
- [5] ———: *The structure of Noetherian rings*, Lecture Notes in Math. 246, Springer-Verlag, 1972, 242–320.
- [6] M.D. Larsen and P.J. McCarthy: Multiplicative theory of ideals, Academic

Press, New York and London, 1971.

- [7] S. Mori: *Allgemeine Z.P.I.-Ringe*, J. Sci. Hiroshima Univ. **10** (1940), 117–136.
- [8] T. Ukegawa: *Some properties of non-commutative multiplication rings*, Proc. Japan Acad. **54A** (1978), 279–284.
- [9] ———: *On the unique maximal idempotent ideals of non-commutative multiplication rings*, ibid., **55 A** (1979), 132–135.
- [10] ———: *Left Noetherian multiplication rings*, Osaka J. Math. **17** (1980), 449–453.

Department of Mathematics
College of General Education
Kobe University
Kobe 657, Japan