

Title	On M-rings and general ZPI-rings
Author(s)	Ukegawa, Takasaburo
Citation	Osaka Journal of Mathematics. 1982, 19(4), p. 923-930
Version Type	VoR
URL	https://doi.org/10.18910/10635
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Ukegawa, T. Osaka J. Math. 19 (1982), 923-930

ON M-RINGS AND GENERAL ZPI-RINGS

Dedicated to Professor Kentaro Murata on his 60th birthday

TAKASABURO UKEGAWA

(Received January 7, 1981)

In the preceding paper [10], we have proved that a left Noetherian M-ring is a so called "general ZPI-ring" in the commutative case. Also we know that in an M-ring the multiplication of prime ideals is commutative [8]. In the present paper we define general ZPI-rings in section 1 and we study general properties of them, and as an important example of such rings we can give a left Noetherian semi-prime Asano left order. In section 2 we research the condition for a left Noetherian general ZPI-ring to be an M-ring, using minimal prime divisors of an ideal. The notation "<" means a proper inclusion as the preceding papers [8], [9], [10].

1. M-rings and general ZPI-rings

DEFINITION. If the multiplication of any two prime ideals of a ring R is commutative, and any ideal of R can be written as a produkt of powers of prime (considering R as a prime ideal) ideals of R, then we call R a general ZPI-ring. Therefore the multiplication of ideals is commutative.

In the commutative case a general ZPI-ring is necessarily Noetherian no matter whether the ring has an identity or not. But in our case the general ZPI-ring is not necessarily Noetherian as the example in [9] shows.

Proposition 1. Let R be a left Noetherian general ZPI-ring, let P be any prime ideal of R, and let q be maximal in the set of prime ideals such that q < P. Then for any ideal a with q < a < P, there is an ideal b such that a = P b = bP.

Proof. Let $\mathfrak{a}=\mathfrak{p}_1\cdots\mathfrak{p}_r< P$, since R is a general ZPI-ring. Then $\mathfrak{p}_i\subseteq P$ for some \mathfrak{p}_i . Since $\mathfrak{q}<\mathfrak{a}\subseteq\mathfrak{p}_i$, $\mathfrak{q}<\mathfrak{p}_i\subseteq P$, so $\mathfrak{p}_i=P$. Therefore $\mathfrak{a}=P\mathfrak{p}_1\cdots\mathfrak{p}_{i-1}\mathfrak{p}_{i+1}\cdots\mathfrak{p}_r$. $\mathfrak{p}_r=\mathfrak{b} P$, where $\mathfrak{b}=\mathfrak{p}_1\cdots\mathfrak{p}_{i-1}\mathfrak{p}_{i+1}\cdots\mathfrak{p}_r$.

As in the commutative case we have

Proposition 2. Let R be be a left Noetherian general ZPI-ring, and let P be a maximal ideal of R. Then there are no ideals between P and P^2 (including the case that $P=P^2$), more generally for any positive integer n, the only ideals

between P and Pⁿ are P, P^2, \dots, P^n (including the case that $P^i = P^{i+1}$ for some i, $1 \le i < n$).

REMARK. Let R be as above. If every proper ideal \mathfrak{a} of R can be written as a product of minimal prime divisors of \mathfrak{a} , then for any proper prime ideal \mathfrak{p} of R and for any positive integer n, the only ideals between \mathfrak{p} and \mathfrak{p}^n are \mathfrak{p} , $\mathfrak{p}^2, \dots, \mathfrak{p}^n$.

Proposition 3. Let R be a left Noetherian general ZPI-ring, and let min- $\mathcal{O} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ be the set of minimal prime ideals of R. Then for any subset $\{\mathfrak{p}_{i_1}, \dots, \mathfrak{p}_{i_k}\}$ of min- \mathcal{O} , $\mathfrak{p}_{i_1} \cap \dots \cap \mathfrak{p}_{i_k} = \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_k}$. Especially for the prime radical N_1 of R, $N_1 = \mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_r = \mathfrak{p}_1 \cdots \mathfrak{p}_r$.

Proof. Since R is a general ZPI-ring, $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_i = P_1 \cdots P_k$ for some prime ideals P_1, \cdots, P_k of R. Then for any \mathfrak{p}_j $1 \le j \le i$ we have $P_j \equiv 0 \pmod{\mathfrak{p}_j}$ for some P_j , and so $P_j = \mathfrak{p}_j$, therefore $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_i = \mathfrak{p}_1 \cdots \mathfrak{p}_i P_{i+1} \cdots P_k$. Now $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_i \supseteq \mathfrak{p}_1 \cdots \mathfrak{p}_i P_{i+1} \cdots P_k = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_i$, hence $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_i = \mathfrak{p}_1 \cdots \mathfrak{p}_i$.

Lemma 4. Let R be a left Noetherian semi-prime general ZPI-ring, and let $\min - \mathcal{O} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ be the set of minimal prime ideals of R. Then for any $1 \le i < r$ and any positive integers $m_1, \dots, m_i \mathfrak{p}_1^{m_1} \dots \mathfrak{p}_i^{m_i} \neq 0$.

Theorem 1. Let R be a left Noetherian semi-prime general ZPI-ring, and let $\min - \mathcal{O} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ be the set of minimal prime ideals of R. If a proper ideal a of R has the form $\mathfrak{a} = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_s^{e_s} P_1^{f_1} \dots P_t^{f_t}$ where $\mathfrak{p}_i \in \min - \mathcal{O}$ for $i = 1, \dots, s$ and $P_j \notin \min - \mathcal{O}$ for $j = 1, \dots, t$, then $P_1^{i_1} \dots P_t^{i_t} \subseteq R$, i.e. essential as a left R-module, and the set $\{\mathfrak{p}_1, \dots, \mathfrak{p}_s\}$ is uniquely determined by \mathfrak{a} .

Proof. Let P be a prime ideal of R. By proposition 2.11 [5] and Lemma 4, P is not essential as a left R-module if and only if $P \in \min_{i} \mathcal{O}$. Hence $P_1^{f_1} \cdots P_i^{f_i} \stackrel{\prime}{\subseteq} R$ as a left R-module. Let $\mathfrak{a} = \mathfrak{p}_{i_1}^{\mathfrak{a}_1} \cdots \mathfrak{p}_{i_k}^{\mathfrak{a}_k} Q_1 \cdots Q_w$ where $\mathfrak{p}_{i_j} \in \min_{i_j} \mathcal{O}$ for $1 \leq j \leq k$, $Q_i \notin \min_{i_j} \mathcal{O}$ for $1 \leq i \leq w$ be another form of \mathfrak{a} . Assume that two set $\mathcal{M}_1 = \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\}$, $\mathcal{M}_2 = \{\mathfrak{p}_{i_1}, \dots, \mathfrak{p}_{i_k}\}$ are distinct. If $\mathcal{M}_1 > \mathcal{M}_2$, then $0 = \mathfrak{a} \mathfrak{p}_{s+1} \cdots \mathfrak{p}_r = \mathfrak{p}_{i_1}^{\mathfrak{a}_1} \cdots \mathfrak{p}_{i_k}^{\mathfrak{a}_k} \mathfrak{p}_{s+1} \cdots \mathfrak{p}_r Q_1 \cdots Q_w$ and $Q_1 \cdots Q_w$ contains some regular element, hence $0 = \mathfrak{p}_{i_1}^{\mathfrak{a}_1} \cdots \mathfrak{p}_{i_k}^{\mathfrak{a}_k} \mathfrak{p}_{s+1} \cdots \mathfrak{p}_r$ contradicting Lemma 4. Next we consider the case that $\mathcal{M}_1 \cong \mathcal{M}_2$ and also $\mathcal{M}_1 \oplus \mathcal{M}_2$. We denote the product of minimal prime ideals belonging to the set \mathcal{M}_1 by $[\mathcal{M}_1]$, for example. Then $0 = \mathfrak{a}$ [min- $\mathcal{O} - \mathcal{M}_1$] since $\mathfrak{a} = \mathfrak{p}_{i_1}^{\mathfrak{e}_1} \cdots \mathfrak{p}_s^{\mathfrak{e}_s} P_1^{f_1} \cdots P_i^{f_t}$. On the other hand, $\min_{i} \mathcal{O} - \mathcal{M}_1 \cong \min_{i} \mathcal{O} - \mathcal{M}_2$ and $\mathfrak{a} = \mathfrak{p}_{i_1}^{\mathfrak{e}_1} \cdots \mathfrak{p}_s^{\mathfrak{e}_s} Q_1 \cdots Q_w$, hence $0 \neq \mathfrak{a}$ [min- $\mathcal{O} - \mathcal{M}_1$] which is a contradiction. So we have $\mathcal{M}_1 = \mathcal{M}_2$.

As a result of Theorem 1 we have

Proposition 5. Let R be as above, and let $min-\mathcal{O} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$. Then

924

 $(\mathfrak{p}_{1}^{\mathfrak{a}_{1}}\cdots\mathfrak{p}_{i}^{\mathfrak{a}_{i}},\mathfrak{p}_{i+1}^{\mathfrak{a}_{i+1}}\cdots\mathfrak{p}_{j}^{\mathfrak{a}_{j}})$ is a regular¹⁾ ideal of R, where $\mathfrak{p}_{1},\cdots,\mathfrak{p}_{j}$ are distinct minimal prime ideal of R, $1 \leq i < j \leq r$ and $\alpha_{1},\cdots,\alpha_{j}$ are any positive integers.

Proposition 6. Let R be a left Noetherian general ZPI-ring, and let P be a maximal ideal of R such that $P^i > P^{i+1}$ for any positive integer i. Then $\bigcap_{n=1}^{\infty} P^n$ is a prime ideal of R.

Proof. Set $\bigcap_{n=1}^{\infty} P^n = \mathfrak{a}$. Let A, B be ideals of R such that $AB \equiv 0$ (mod \mathfrak{a}) $A \equiv 0$ and $B \equiv 0 \pmod{\mathfrak{a}}$. Therefore there is a maximal $i \geq 0$ such that $A \subseteq P^i$ and so $A \subseteq P^{i+1}$. Similarly there is a maximal $j \geq 0$ such that $B \subseteq P^j$ and so $B \subseteq P^{j+1}$, where $P^0 = R$. Then $P^{i+1} < (A, P^{i+1}) \subseteq P^i$, therefore $(A, P^{i+1}) = P^i$ by Proposition 2, and similarly $(B, P^{j+1}) = P^j$. Hence $P^{i+j} = (A, P^{i+1}) (B, P^{j+1}) \subseteq P^{i+j+1}$, thus $P^{i+j} = P^{i+j+1}$ contradicting the assumptions.

REMARK. Let R be as above. Let \mathfrak{p} be any proper prime ideal such that for any positive integer $i \mathfrak{p}^i > \mathfrak{p}^{i+1}$. If every proper ideal of R can be written as a product of minimal prime divisors, then $\bigcap_{n=1}^{\infty} \mathfrak{p}^n$ is a prime ideal of R.

Theorem 2. Let R be a Noetherian (left and right) prime ring with an identity. If R satisfies the following

2) every non-zero proper prime ideal of R is maximal;

3) every ideal of R is projective both as a left and as a right R-module, the R is an M-ring.

Proof. We shall prove the existence of an ideal C with A=BC=CBfor ideals A, B such that O < A < B < R. Let $A=P_1^{e_1}\cdots P_{a}^{e_a} < B=Q_1^{f_1}\cdots Q_{\beta}^{f_{\beta}}$ where $P_1, \cdots, P_a, Q_1, \cdots, Q_{\beta}$ are prime ideals of R and $e_k > 0$ for $k=1, \cdots, \alpha, f_j > 0$ for $j=1, \cdots, \beta$, so for every Q_k there is some P_k with $P_k=Q_k$ for $k=1, \cdots, \beta$. Hence $A=Q_1^{e_1}\cdots Q_{\beta}^{e_{\beta}} P_{\beta+1}^{e_{\beta+1}}\cdots P_{a}^{e_a} < B=Q_1^{f_1}\cdots Q_{\beta}^{f_{\beta}}$. Now by Proposition 2.2 [3], each maximal ideal of R is either idempotent or invertible. Let Q_1, \cdots, Q_j be the set of idempotent maximal ideals in the set of maximal ideals $Q_1, \cdots, Q_j, \cdots, Q_{\beta}$ (including the case that $\{Q_1, \cdots, Q_j\}$ is empty). Then $A=Q_1\cdots Q_j Q_{j+1}^{e_{j+1}}\cdots Q_{\beta}^{e_{\beta}} P_{\beta+1}^{e_{\beta+1}}$ $\cdots P_{a}^{e_a} < B=Q_1\cdots Q_j Q_{j+1}^{f_{j+1}}\cdots Q_{\beta}^{f_{\beta}}$, where $Q_{j+1}, \cdots, Q_{\beta}$ are invertible ideals of R. If $e_{j+1} < f_{j+1}$ for example, multiplying $(Q_{j-1}^{f_{j+1}})^{e_{j+1}}$ on each side, we have $Q_1\cdots Q_j Q_{j+2}^{e_{j+2}}$ $\cdots Q_{\beta}^{e_{\beta}} P_{\beta+1}^{e_{\beta+1}}\cdots P_{a}^{e_a} < Q_1\cdots Q_j Q_{j+1}^{f_{j+1}-e_{j+1}}\cdots Q_{\beta}^{f_{\beta}} B} \equiv 0 \pmod{Q_{j+1}}$, which is a contradiction. Therefore $e_{j+1} \ge f_{j+1}, \cdots, e_{\beta} \ge f_{\beta}$. Thus $A=B Q_{j+1}^{e_{j+1}-f_{j+1}}\cdots Q_{\beta}^{e_{\beta}-f_{\beta}} P_{\beta+1}^{e_{\beta+1}}\cdots P_{a}^{e_{a}}$, hence R is an M-ring.

¹⁾ R is a general ZPI-ring;

¹⁾ We call an R-ideal a regular ideal.

REMARK. If R is a Noetherian semi-prime ring with an identity, then we may replace the condition 2) by the following:

2') the proper prime ideals of R are either comaximal minimal prime ideals or maximal prime ideals of R.

The theorem is valid also in this case, because $R = R_1 \oplus \cdots \oplus R_i \oplus \cdots \oplus R_n$ where $R_i \cong R/\mathfrak{p}_i$ for every *i* and $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\} = \min - \mathcal{O}$, so every R_i is a Noetherian general ZPI-ring satisfying the condition 2).

Theorem 3. Let R be a left Noetherian semi-prime Asano left order. Then R is a general ZPI-ring and also an M-ring, and the proper prime ideals of R are either comaximal idempotent minimal prime ideals or maximal prime ideals of R. Every proper ideal \mathfrak{a} of R has the form $\mathfrak{a}=\mathfrak{p}_1\cdots\mathfrak{p}_i P_1^{e_1}\cdots P_m^{e_m}$ where $\mathfrak{p}_k \in \min$. \mathfrak{P} for $1 \leq k \leq i$ and P_1, \cdots, P_m are maximal prime ideals of R which are regular.

Proof. Let $Q=Q_1\oplus\cdots\oplus Q_i\oplus\cdots\oplus Q_n$ be the left quotient ring of R which is semisimple Artinian, where Q_1, \cdots, Q_n are simple Artinian rings. Now we can deduce that $R=R_1\oplus\cdots\oplus R_i\oplus\cdots\oplus R_n$ where R_i is a left Noetherian Asano left order of Q_i for $1\leq i\leq n$. Each proper prime ideal of R has either the form $\mathfrak{p}_i=R_1\oplus\cdots\oplus R_{i-1}\oplus R_{i+1}\oplus\cdots\oplus R_n$ or the form $P_i=R_1\oplus\cdots\oplus R_{i-1}\oplus\mathfrak{p}_{(i)}\oplus$ $R_{i+1}\oplus\cdots\oplus R_n$ where $\mathfrak{p}_{(i)}$ is a maximal prime ideal of R_i for $1\leq i\leq n$. Every proper ideal \mathfrak{a} of R has the form $\mathfrak{a}=\mathfrak{a}_1\oplus\cdots\oplus\mathfrak{a}_i\oplus\cdots\oplus\mathfrak{a}_n$ where \mathfrak{a}_i is an ideal of R_i for $1\leq i\leq n$. In order to make the proof concise we assume that $\mathfrak{a}_1=\cdots$ $=\mathfrak{a}_{i-1}=0$ (including the case that $\{\mathfrak{a}_1,\cdots,\mathfrak{a}_{i-1}\}$ is empty) and $\mathfrak{a}_i=\mathfrak{p}_{(i)}^{e_{i1}}\cdots\mathfrak{p}_{(i)\mathfrak{a}}^{e_{i\mathfrak{a}}},\cdots,$ $\mathfrak{a}_n=\mathfrak{p}_{(n)1}^{e_{n1}}\cdots\mathfrak{p}_{(n)\lambda}^{e_{n\lambda}}$. Then $\mathfrak{a}=\mathfrak{p}_1\cdots\mathfrak{p}_{i-1}P_{i_1}^{e_{i_1}}\cdots P_{i_n}^{e_{n_1}}\cdots P_{n_\lambda}^{e_{n_\lambda}}$ where $P_{i_j}=R_i\oplus\cdots\oplus$ $R_{i-1}\oplus\mathfrak{p}_{(i)_j}\oplus P_{i+1}\oplus\cdots\oplus R_n$, thus R is a general ZPI-ring. Then it is easy to see that R is an M-ring.

By Proposition 6 we have

Corollary 4. Let R be a left Noetherian semi-prime Asano left order and let P be a regular prime ideal of R, then $\bigcap_{n=1}^{\infty} P^n = \mathfrak{p}$ is a minimal prime ideal of R.

2. Minimal prime divisors of ideals

Let a be a proper ideal of R. A minimal prime divisor of a is a prime ideal \mathfrak{p} with $\mathfrak{a} \subseteq \mathfrak{p}$ such that there are no prime ideals \mathfrak{p}' with $\mathfrak{a} \subseteq \mathfrak{p}' < \mathfrak{p}$. We denote the set of minimal prime divisors of a by min- \mathcal{P}_a . The set min- \mathcal{P} of minimal prime ideals of R is min- \mathcal{P}_0 . As a consequence of Theorem 3 [10] and Proposition 1 [8], we have

Proposition 7. Let R be a left Noetherian general ZPI-ring. Moreover if R is an M-ring, then

926

- (*){i) For any prime ideal \mathfrak{p} , \mathfrak{q} with $\mathfrak{p} < \mathfrak{q}$, $\mathfrak{p} = \mathfrak{p} \mathfrak{q} = \mathfrak{q} \mathfrak{p}$. (ii) Let \mathfrak{a} be any proper ideal of R, and let min- $\mathcal{P}_{\mathfrak{a}} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$. Then $\mathfrak{a} =$ $\mathfrak{p}_1^{f_1}\cdots\mathfrak{p}_r^{f_r}$ for some positive integers f_1,\cdots,f_r .

REMARK. Let R be a left Noetherian general ZPI-ring. Then i) of the above condition (*) is equivalent to the following:

i') For any prime ideal \mathfrak{p} and any ideal \mathfrak{b} properly containing $\mathfrak{p}, \mathfrak{p}=\mathfrak{b}\mathfrak{p}=\mathfrak{p}$ pb.

Next we consider the converse of this apparent proposition.

Proposition 8. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*) in Proposition 7 and let a be a proper ideal of R. Then for any minimal prime divisor \mathfrak{p} of \mathfrak{a} , either $\mathfrak{p}^i = \mathfrak{p}^{i+1}$ for some positive integer i or else there is some positive integer j such that $\mathfrak{p}^{j} \not\supseteq \mathfrak{a}$.

Proof. We assume that for any positive integer $i p^i > p^{i+1}$, and we shall show that $\mathfrak{p}^{i} \supseteq \mathfrak{a}$ for some positive integer j. If $\mathfrak{p}^{i} > \mathfrak{p}^{i+1}$ for any positive integer *i* and moreover $\mathfrak{p}^k \supseteq \mathfrak{a}$ for any positive integer *k*, then $\mathfrak{a} \subseteq \bigcap \mathfrak{p}^n = \mathfrak{n} < \mathfrak{p}$ where \mathfrak{n} is a prime ideal by the remark of Proposition 6, a contradiction.

Proposition 9. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*), let a be a proper ideal of R, and let min- $\mathcal{P}_{a} = \{\mathfrak{p}_{1}, \dots, \mathfrak{p}_{n}\}$. Then for any $i \neq j$ and any positive integer $e_i, e_i, (\mathfrak{p}_i^{e_i}, \mathfrak{p}_i^{e_j})$ is an idempotent ideal of R.

Proof. First we prove that $\mathfrak{p}_{i}^{e_{i}}(\mathfrak{p}_{i}^{e_{i}},\mathfrak{p}_{j}^{e_{j}})=\mathfrak{p}_{i}^{e_{i}}$, and similarly $\mathfrak{p}_{j}^{e_{j}}(\mathfrak{p}_{i}^{e_{j}},\mathfrak{p}_{j}^{e_{j}})=\mathfrak{p}_{i}^{e_{i}}(\mathfrak{p}_{i}^{e_{i}},\mathfrak{p}_{j}^{e_{j}})=\mathfrak{p}_{i}^{e_{i}}(\mathfrak{p}_{i}^{e_{i}},\mathfrak{p}_{j}^{e_{j}})=\mathfrak{p}_{i}^{e_{i}}(\mathfrak{p}_{i}^{e_{i}},\mathfrak{p}_{j}^{e_{j}})$ $\mathfrak{p}_{i}^{e_{j}}$. Since $\mathfrak{p}_{j}^{e_{j}} \equiv 0 \pmod{\mathfrak{p}_{i}^{e_{j}}}, \mathfrak{p}_{i}^{e_{j}} < (\mathfrak{p}_{i}^{e_{j}}, \mathfrak{p}_{j}^{e_{j}}) = P_{1}^{f_{1}} \cdots P_{s}^{f_{s}}$ where P_{1}, \cdots, P_{s} are minimal prime divisors of $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})$. Now we know that $\mathfrak{p}_i \equiv 0 \pmod{P_k}$ for every P_k , $1 \le k \le s$. If $\mathfrak{p}_i = P_k$ for some P_k , then $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) = P_1^{f_1} \cdots P_{k-1}^{f_k} \mathfrak{p}_{k+1}^{f_k} \cdots P_s^{f_s} \equiv 0$ (mod \mathfrak{p}_i), hence $\mathfrak{p}_j \equiv 0 \pmod{\mathfrak{p}_i}$, a contradiction. Therefore $\mathfrak{p}_i < P_k$ for $1 \le k \le s$, hence $\mathfrak{p}_i^{e_i}(\mathfrak{p}_i^{e_i},\mathfrak{p}_j^{e_j}) = \mathfrak{p}_i^{e_i}P_1^{f_1}\cdots P_s^{f_s} = \mathfrak{p}_i^{e_i}$. Then $(\mathfrak{p}_i^{e_i},\mathfrak{p}_j^{e_j})^2 = (\mathfrak{p}_i^{e_i}(\mathfrak{p}_i^{e_i},\mathfrak{p}_j^{e_j}), \mathfrak{p}_j^{e_j}(\mathfrak{p}_i^{e_i},\mathfrak{p}_j^{e_j}))$ $=(\mathfrak{p}_{i}^{e_{i}},\mathfrak{p}_{j}^{e_{j}}).$

Lemma. Under the same assumptions as above, for any $i \neq j$ and any positive integer $e_i, e_j, \mathfrak{p}_i^e \cap \mathfrak{p}_j^e = \mathfrak{p}_i^e, \mathfrak{p}_j^e$.

Proof. First we prove that $\mathfrak{p}_{i}^{e_{i}} \cap \mathfrak{p}_{j}^{e_{j}} = (\mathfrak{p}_{i}^{e_{i}} \cap \mathfrak{p}_{j}^{e_{j}}) (\mathfrak{p}_{i}^{e_{i}}, \mathfrak{p}_{j}^{e_{j}})$. For some positive integer $\rho \ \mathfrak{a}^{\circ} \subseteq \mathfrak{p}_{i}^{e_{i}} \cap \mathfrak{p}_{j}^{e_{j}} = P_{1}^{f_{1}} \cdots P_{s}^{f_{s}} \equiv 0 \pmod{\mathfrak{p}_{i}}$, where P_{1}, \cdots, P_{s} are minimal prime divisors of $\mathfrak{p}_i^e \cap \mathfrak{p}_j^e$. Therefore $\mathfrak{a} \subseteq P_1 \equiv 0 \pmod{\mathfrak{p}_i}$ for some P_1 , so $P_1 = \mathfrak{p}_i$. Similarly for some P_2 , $\mathfrak{a} \subseteq P_2 \equiv 0 \pmod{\mathfrak{p}_i}$, so $P_2 = \mathfrak{p}_i$, and $\mathfrak{p}_i^{e_i} \cap \mathfrak{p}_j^{e_j} = \mathfrak{p}_i^{f_1} \mathfrak{p}_j^{f_2} P_3^{f_3} \cdots$ $P_s^{f_s}$. Let $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j}) = Q_1 \cdots Q_t$ where Q_1, \cdots, Q_t are minimal prime divisors of $(\mathfrak{p}_i^{e_i}, \mathfrak{p}_j^{e_j})$. For every $Q_k, \mathfrak{p}_i \equiv 0 \pmod{Q_k}$ and $\mathfrak{p}_j \equiv 0 \pmod{Q_k}$, hence $\mathfrak{p}_i < Q_k$ and $\mathfrak{p}_i < Q_k$ for every Q_k , $1 \le k \le t$. From the above arguments $(\mathfrak{p}_i^e \cap \mathfrak{p}_j^e) (\mathfrak{p}_i^e, \mathfrak{p}_j^e) =$

T. UKEGAWA

 $\mathfrak{p}_{1}^{f_1} \mathfrak{p}_{j}^{f_2} P_{3}^{f_3} \cdots P_s^{f_s} Q_1 \cdots Q_t = \mathfrak{p}_{1}^{f_1} \mathfrak{p}_{j}^{f_2} P_{3}^{f_3} \cdots P_s^{f_s} = \mathfrak{p}_{i}^{e_i} \cap \mathfrak{p}_{j}^{e_j} \text{ by the condition (*). Hence } \\ \mathfrak{p}_{i}^{e_i} \cap \mathfrak{p}_{j}^{e_j} = (\mathfrak{p}_{i}^{e_i} \cap \mathfrak{p}_{j}^{e_j}) (\mathfrak{p}_{i}^{e_i}, \mathfrak{p}_{j}^{e_j}) = ((\mathfrak{p}_{i}^{e_i} \cap \mathfrak{p}_{j}^{e_j}) \mathfrak{p}_{i}^{e_i}, (\mathfrak{p}_{i}^{e_i} \cap \mathfrak{p}_{j}^{e_j}) \mathfrak{p}_{j}^{e_j}) \subseteq (\mathfrak{p}_{j}^{e_j} \mathfrak{p}_{i}^{e_i}, \mathfrak{p}_{i}^{e_i} \mathfrak{p}_{j}^{e_j}) = \mathfrak{p}_{i}^{e_i} \mathfrak{p}_{j}^{e_j}.$ The other inclusion is obvious, so $\mathfrak{p}_{i}^{e_i} \cap \mathfrak{p}_{j}^{e_j} = \mathfrak{p}_{i}^{e_i} \mathfrak{p}_{j}^{e_j}.$

Now by the induction we have

Theorem 5. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*), let a be a proper ideal of R, and let $\min-\mathcal{O}_{a} = \{\mathfrak{p}_{1}, \dots, \mathfrak{p}_{r}\}$. Then for any subset $\{\mathfrak{p}_{1}, \dots, \mathfrak{p}_{k}\}$ of $\min-\mathcal{O}_{a}$ and for any positive integers $e_{i}, i=1, \dots, k, \mathfrak{p}_{1}^{e_{1}} \cap \dots \cap \mathfrak{p}_{k}^{e_{k}} = \mathfrak{p}_{1}^{e_{1}} \dots \mathfrak{p}_{k}^{e_{k}}$.

Theorem 6. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*), let a be a proper ideal of R, and let $a = p_1^{x_1} \cdots p_r^{x_r}$ where $\min - \mathcal{O}_a = \{p_1, \cdots, p_r\}$ and $x_i > 0$ for $1 \le i \le r$. Let $\{p_1, \dots, p_k\}$ be the subset of $\min - \mathcal{O}_a$ every p_i of which has a maximal index α_i such that $p_1^{\alpha_i} \ge a$ and so $p_i^{\alpha_{i+1}} \ge a$, and assume that for p_{k+1}, \dots, p_r there are no maximal β_j among indices β_j such that $p_j^{\beta_j} \ge a$ (including the case that one of the sets $\{1, \dots, k\}, \{k+1, \dots, r\}$ is empty). Then a has the form $a = p_1^{\beta_1} \cdots p_k^{\beta_k} p_{k+1}^{\gamma_k} \cdots p_r^{\gamma_r}$, where β_i is any positive integer such that $x_i \le \beta_i \le \alpha_i$ for $1 \le i \le k$ and y_j is any positive integer with $x_j \le y_j$ for $k < j \le r$.

Proof. By Theorem 5 $\mathfrak{a} = \mathfrak{p}_{1}^{x_{1}} \cap \cdots \cap \mathfrak{p}_{r}^{x_{r}} \supseteq \mathfrak{p}_{1}^{\beta_{1}} \cap \cdots \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}}$, since $x_{i} \leq \beta_{i} \leq \alpha_{i}$ for $1 \leq i \leq k$ and $x_{j} \leq y_{j}$ for $k < j \leq r$. Conversely $\mathfrak{a} \subseteq \mathfrak{p}_{i}^{\beta_{i}}$ for $1 \leq i \leq k$ since $\beta_{i} \leq \alpha_{i}$, and also $\mathfrak{a} \subseteq \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}}$ for any $y_{j} \geq x_{j}$, $k < j \leq r$; hence $\mathfrak{a} \subseteq \mathfrak{p}_{1}^{\beta_{1}} \cap \cdots \cap \mathfrak{p}_{k+1}^{\beta_{k}} \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}}$. Thus $\mathfrak{a} = \mathfrak{p}_{1}^{\beta_{1}} \cap \cdots \cap \mathfrak{p}_{k}^{\beta_{k}} \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}} = \mathfrak{p}_{1}^{\beta_{1}} \cdots \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}} = \mathfrak{p}_{1}^{\beta_{1}} \cdots \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \mathfrak{p}_{r}^{y_{r}}$ by Theorem 5.

The following definition of primary ideal is defined in [2]. Let \mathfrak{a} be an ideal of R. If for ideals $A, B A B \equiv 0 \pmod{\mathfrak{a}}$ implies $A \equiv 0 \pmod{\mathfrak{a}}$ or $B^{\rho} \equiv 0 \pmod{\mathfrak{a}}$ for some positive integer ρ , then \mathfrak{a} is called *r*-primary. And a *l*-primary ideal is defined similarly. A 1- and *r*-primary ideal is called *a primary ideal*.

Theorem 7. Let R be as above. Then for every proper prime ideal \mathfrak{p} of R \mathfrak{p}^e is a primary ideal for any positive integer e.

Proof. Let $AB \equiv 0 \pmod{\mathfrak{p}^e}$ for ideals A, B. We may assume that $A \not\equiv \mathfrak{a}$ and $B \not\equiv \mathfrak{a}$ where we set $\mathfrak{p}^e = \mathfrak{a}$. We set anew $A_1 = (A, \mathfrak{a}), B_1 = (B, \mathfrak{a})$. Then $A_1 B_1 \equiv 0 \pmod{\mathfrak{p}^e}$; and $A \equiv 0 \pmod{\mathfrak{p}^e}$ if and only if $A_1 \equiv 0 \pmod{\mathfrak{p}^e}$, etc.. Therefore it is sufficient to prove that for ideals $A > \mathfrak{a}$, and $B > \mathfrak{a}$, if $AB \equiv 0 \pmod{\mathfrak{p}^e}$, then $A \equiv 0 \pmod{\mathfrak{p}^e}$ or $B^n \equiv 0 \pmod{\mathfrak{p}^e}$ for some positive integer n. Hence we prove that for ideals A, B such that $\mathfrak{a} < A, \mathfrak{a} < B$, if $AB \equiv 0 \pmod{\mathfrak{p}^e}$ and for any positive integer $m B^m \equiv 0 \pmod{\mathfrak{p}^e}$, then $A \equiv 0 \pmod{\mathfrak{p}^e}$. Let $\min-\mathcal{O}_A = \{P_1, \dots, P_t\}$, and let $A = P_1^{\mathfrak{h}_1} P_2^{\mathfrak{h}_2} \cdots P_t^{\mathfrak{h}_t}$ for some positive integers $\delta_1, \dots, \delta_t$. Since $AB \equiv 0 \pmod{\mathfrak{p}^e}$, however $B \equiv 0 \pmod{\mathfrak{p}}$, hence $A \equiv 0 \pmod{\mathfrak{p}}$ and \mathfrak{p} . minimal prime divisor of \mathfrak{a} ; so $A = \mathfrak{p}^{\mathfrak{d}_1} P_2^{\mathfrak{d}_2} \cdots P_i^{\mathfrak{d}_i}$, i.e. \mathfrak{p} is a minimal prime divisor of A. Let $\min -\mathcal{O}_B = \{\mathfrak{q}_1, \cdots, \mathfrak{q}_k\}$. Since $\mathfrak{a} = \mathfrak{p}^e < B = \mathfrak{q}_1^{\mathfrak{r}_1} \cdots \mathfrak{q}_k^{\mathfrak{r}_k}$ for some positive integers ν_1, \cdots, ν_k , $\mathfrak{p} < \mathfrak{q}_i$ for every q_i and since \mathfrak{p} is a factor of A AB = A by the condition (*), i.e. $A \equiv 0 \pmod{\mathfrak{p}^e}$.

Theorem 8. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*). Then R is an M-ring.

Proof. Let 0 < A < B < R be ideals of R, let $\min -\mathcal{O}_A = \{P_1, \dots, P_a\}$, $\min -\mathcal{O}_B = \{Q_1, \dots, Q_b\}$, and let $A = P_1^{\alpha_1} \dots P_a^{\alpha_a}$, $B = Q_1^{\beta_1} \dots Q_b^{\beta_b}$ where β_1, \dots, β_b are positive integers and as for $\alpha_1, \dots, \alpha_a$ by Theorem 6 we can choose them as large as possible. Then for every Q_i , there is some P_j such that $P_j \subseteq Q_i$. If $P_j < Q_i$ for every Q_1, \dots, Q_b , then A = A B = B A, so there is nothing to prove. If there are some Q_i such that $P_j = Q_i$, we may assume for convenience sake that $P_i = Q_i$ for $1 \le i \le m$ and for every Q_j ($m < j \le b$) there are some P_k with $P_k < Q_j$. Furthermore, as to P_1, \dots, P_m , let P_1, \dots, P_s be minimal prime divisors of A which have maximal indices such that $P_j^{\alpha_j} \supseteq A$ for $1 \le j \le s$, and let P_{s+1}, \dots, P_m be those which do not have such indices as above. On prime ideals $P_j, 1 \le j \le s, A \subseteq P_j^{\alpha_j}$. and $A < B \subseteq Q_j^{\beta_j} = P_j^{\beta_j}$, so $A \subseteq P_j^{\beta_j}$, hence $\beta_j \le \alpha_j$ for $1 \le j \le s$ by Theorem 6. On prime ideals P_{s+1}, \dots, P_m we may assume that $\beta_i \le \alpha_i$ for $s < i \le m$, by Theorem 6. Therefore $A = P_1^{\alpha_1 - \beta_1} \dots P_m^{\alpha_m - \beta_m} P_1^{\beta_1} \dots P_m^{\beta_m} P_{m+1}^{\alpha_{m+1}} \dots P_a^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_1^{\alpha_m + 1} \dots P_a^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_a^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_a^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_a^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_a^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_a^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_a^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_m^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_m^{\alpha_m} = P_1^{\alpha_1 - \beta_1} \dots P_m^{\alpha_m - \beta_m} P_n^{\beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_m^{\alpha_m - \beta_m} P_n^{\beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_m^{\alpha_m - \beta_m} P_n^{\beta_1} \dots P_m^{\beta_m} P_m^{\alpha_m + 1} \dots P_m^{\alpha_m - \beta_m} P_n^{\beta_m} \dots P_m^{\alpha_m - \beta_m} P_n^{\alpha_m - \beta_m} P_n^{\beta_m} \dots P_m^{\alpha_m - \beta_m} P_n^{\beta_m} \dots P_m^{\alpha_m - \beta_m} P_n^{\beta_m} \dots P_m^{\alpha_m -$

We summarize

Theorem 9. Let R be a left Noetherian general ZPI-ring. Then R is an M-ring if, and only if,

- 1) For any prime ideals \mathfrak{p} , \mathfrak{q} of R such that $\mathfrak{p} < \mathfrak{q}$, $\mathfrak{p} = \mathfrak{p} \mathfrak{q}$, and
- Any proper ideal a of R can be written as a product of powers of minimal prime divisors of a.

References

- [1] K. Asano: The theory of rings and ideals, Kyoritsu Shuppan, 1949 (in Japanese).
- [2] A.W. Chatters and C.R. Hajarnavis: Non-commutative rings with primary decomposition, Quart. J. Math. Oxford Ser. (2) 22 (1971), 73-83.
- [3] D. Eisenbud and J.C. Robson: Hereditary Noetherian prime rings, J. Algebra 16 (1970), 86-104.
- [4] A.W. Goldie: Semi-prime rings with maximum condition, Proc. London Math. Soc. 10 (1960), 201-220.
- [6] M.D. Larsen and P.J. McCarthy: Multiplicative theory of ideals, Academic

Press, New York and London, 1971.

- [7] S. Mori: Allgemeine Z.P.I.-Ringe, J. Sci. Hiroshima Univ. 10 (1940), 117-136.
- [8] T. Ukegawa: Some properties of non-commutative multiplication rings, Proc. Japan Acad. 54A (1978), 279-284.
- [9] ———: On the unique maximal idempotent ideals of non-commutative multiplication rings, ibid., 55 A (1979), 132–135.
- [10] ———: Left Noetherian multiplication rings, Osaka J. Math. 17 (1980), 449–453.

Department of Mathematics College of General Education Kobe University Kobe 657, Japan

930