<table>
<thead>
<tr>
<th>Title</th>
<th>On M-rings and general ZPI-rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ukegawa, Takasaburo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 19(4) P.923-P.930</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1982</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/10635</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/10635</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
ON M-RINGS AND GENERAL ZPI-RINGS

Dedicated to Professor Kentaro Murata on his 60th birthday

TAKASABURO UKEGAWA

(Received January 7, 1981)

In the preceding paper [10], we have proved that a left Noetherian M-ring is a so called "general ZPI-ring" in the commutative case. Also we know that in an M-ring the multiplication of prime ideals is commutative [8]. In the present paper we define general ZPI-rings in section 1 and we study general properties of them, and as an important example of such rings we can give a left Noetherian semi-prime Asano left order. In section 2 we research the condition for a left Noetherian general ZPI-ring to be an M-ring, using minimal prime divisors of an ideal. The notation "<" means a proper inclusion as the preceding papers [8], [9], [10].

1. M-rings and general ZPI-rings

DEFINITION. If the multiplication of any two prime ideals of a ring R is commutative, and any ideal of R can be written as a produkt of powers of prime (considering R as a prime ideal) ideals of R, then we call R a general ZPI-ring. Therefore the multiplication of ideals is commutative.

In the commutative case a general ZPI-ring is necessarily Noetherian no matter whether the ring has an identity or not. But in our case the general ZPI-ring is not necessarily Noetherian as the example in [9] shows.

Proposition 1. Let R be a left Noetherian general ZPI-ring, let P be any prime ideal of R, and let q be maximal in the set of prime ideals such that $q<P$. Then for any ideal a with $q<a<P$, there is an ideal b such that $a=Pb=bP$.

Proof. Let $a=p_1\ldots p_i<P$, since R is a general ZPI-ring. Then $p_i\subseteq P$ for some p_i. Since $q\leq a\leq p_i$, $q<p_i\subseteq P$, so $p_i=P$. Therefore $a=pp_1\ldots p_{i-1}p_{i+1}\ldots p_i=bP$, where $b=p_1\ldots p_{i-1}p_{i+1}\ldots p_i$.

As in the commutative case we have

Proposition 2. Let R be a left Noetherian general ZPI-ring, and let P be a maximal ideal of R. Then there are no ideals between P and P^2 (including the case that $P=P^2$), more generally for any positive integer n, the only ideals
between \(P \) and \(P^n \) are \(P, P^2, \ldots, P^n \) (including the case that \(P^i = P^{i+1} \) for some \(i, 1 \leq i < n \)).

Remark. Let \(R \) be as above. If every proper ideal \(\alpha \) of \(R \) can be written as a product of minimal prime divisors of \(\alpha \), then for any proper prime ideal \(\mathfrak{p} \) of \(R \) and for any positive integer \(n \), the only ideals between \(\mathfrak{p} \) and \(\mathfrak{p}^n \) are \(\mathfrak{p}^i \), \(i = 1, 2, \ldots, n \).

Proposition 3. Let \(R \) be a left Noetherian general \(\mathcal{ZPI} \)-ring, and let \(\min-\mathcal{O} = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_s \} \) be the set of minimal prime ideals of \(R \). Then for any subset \(\{ \mathfrak{p}_{i_1}, \ldots, \mathfrak{p}_{i_k} \} \) of \(\min-\mathcal{O} \), \(\mathfrak{p}_{i_1} \cap \cdots \cap \mathfrak{p}_{i_k} = \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_k} \). Especially for the prime radical \(N \) of \(R \), \(N = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r = \mathfrak{p}_1 \cdots \mathfrak{p}_r \).

Proof. Since \(R \) is a general \(\mathcal{ZPI} \)-ring, \(\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r = \mathfrak{p}_1 \cdots \mathfrak{p}_r \) for some prime ideals \(\mathfrak{p}_1, \ldots, \mathfrak{p}_r \) of \(R \). Then for any \(\mathfrak{p}_j \) \(1 \leq j \leq r \) we have \(\mathfrak{p}_j = 0 \pmod{\mathfrak{p}_j} \) for some \(\mathfrak{p}_j \), and so \(\mathfrak{p}_j = \mathfrak{p}_j \), therefore \(\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r = \mathfrak{p}_1 \cdots \mathfrak{p}_r \). Now \(\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r = \mathfrak{p}_1 \cdots \mathfrak{p}_r \), hence \(\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r = \mathfrak{p}_1 \cdots \mathfrak{p}_r \).

Lemma 4. Let \(R \) be a left Noetherian semi-prime general \(\mathcal{ZPI} \)-ring, and let \(\min-\mathcal{O} = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_r \} \) be the set of minimal prime ideals of \(R \). Then for any \(1 \leq i < r \) and any positive integers \(m_1, \ldots, m_r \), \(\mathfrak{p}_1^{m_1} \cdots \mathfrak{p}_r^{m_r} = 0 \).

Theorem 1. Let \(R \) be a left Noetherian semi-prime general \(\mathcal{ZPI} \)-ring, and let \(\min-\mathcal{O} = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_r \} \) be the set of minimal prime ideals of \(R \). If a proper ideal \(\alpha \) of \(R \) has the form \(\alpha = \mathfrak{p}_1^{i_1} \cdots \mathfrak{p}_r^{i_r} \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_r} \) where \(\mathfrak{p}_i \in \min-\mathcal{O} \) for \(i = 1, \ldots, s \) and \(\mathfrak{p}_j \in \min-\mathcal{O} \) for \(j = 1, \ldots, t \), then \(\mathfrak{p}_1^{i_1} \cdots \mathfrak{p}_r^{i_r} \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_r} \subseteq R \), i.e. essential as a left \(R \)-module, and the set \(\{ \mathfrak{p}_1, \ldots, \mathfrak{p}_r \} \) is uniquely determined by \(\alpha \).

Proof. Let \(\mathfrak{p} \) be a prime ideal of \(R \). By proposition 2.11 [5] and Lemma 4, \(\mathfrak{p} \) is not essential as a left \(R \)-module if and only if \(\mathfrak{p} \in \min-\mathcal{O} \). Hence \(\mathfrak{p}_1^{i_1} \cdots \mathfrak{p}_r^{i_r} \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_r} \subseteq R \) as a left \(R \)-module. Let \(\alpha = \mathfrak{p}_1^{i_1} \cdots \mathfrak{p}_r^{i_r} \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_r} \mathfrak{Q}_1 \cdots \mathfrak{Q}_w \) where \(\mathfrak{p}_j \in \min-\mathcal{O} \) for \(1 \leq j \leq k, \mathfrak{Q}_j \in \min-\mathcal{O} \) for \(1 \leq i \leq w \) be another form of \(\alpha \). Assume that two set \(\mathcal{M}_1 = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_s \}, \mathcal{M}_2 = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_d \} \) are distinct. If \(\mathcal{M}_1 > \mathcal{M}_2 \), then \(0 = \alpha \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_t} \mathfrak{Q}_1 \cdots \mathfrak{Q}_w \), \(\mathfrak{Q}_1 \cdots \mathfrak{Q}_w \) contains some regular element, hence \(0 = \mathfrak{p}_1^{i_1} \cdots \mathfrak{p}_r^{i_r} \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_r} \mathfrak{Q}_1 \cdots \mathfrak{Q}_w \), contradicting Lemma 4. Next we consider the case that \(\mathcal{M}_1 \nsubseteq \mathcal{M}_2 \) and also \(\mathcal{M}_1 \nsubseteq \mathcal{M}_2 \). We denote the product of minimal prime ideals belonging to the set \(\mathcal{M}_1 \) by \([\mathcal{M}_1] \), for example. Then \(0 = \alpha [\min-\mathcal{O} - \mathcal{M}_1] \) since \(\alpha = \mathfrak{p}_1^{i_1} \cdots \mathfrak{p}_r^{i_r} \mathfrak{p}_{i_1} \cdots \mathfrak{p}_{i_r} \mathfrak{Q}_1 \cdots \mathfrak{Q}_w \). On the other hand, \(\min-\mathcal{O} - \mathcal{M}_1 \cap \min-\mathcal{O} - \mathcal{M}_2 \) and \(\alpha = \mathfrak{p}_1^{i_1} \cdots \mathfrak{p}_r^{i_r} \mathfrak{Q}_1 \cdots \mathfrak{Q}_w \), hence \(0 = \alpha [\min-\mathcal{O} - \mathcal{M}_1] \) which is a contradiction. So we have \(\mathcal{M}_1 = \mathcal{M}_2 \).

As a result of Theorem 1 we have

Proposition 5. Let \(R \) be as above, and let \(\min-\mathcal{O} = \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_r \} \). Then
(p_{i_1} \cdots p_{i_r}) is a regular\(^{1)}\) ideal of \(R\), where \(p_i, \ldots, p_r\) are distinct minimal prime ideals of \(R\), \(1 \leq i < j \leq r\) and \(\alpha_i, \ldots, \alpha_j\) are any positive integers.

Proposition 6. Let \(R\) be a left Noetherian general ZPI-ring, and let \(P\) be a maximal ideal of \(R\) such that \(P^i > P^{i+1}\) for any positive integer \(i\). Then \(\bigcap_{n=1}^{\infty} P^n\) is a prime ideal of \(R\).

Proof. Set \(\bigcap_{n=1}^{\infty} P^n = \mathfrak{a}\). Let \(A, B\) be ideals of \(R\) such that \(AB \equiv 0\) (mod \(\mathfrak{a}\)) \(A \equiv 0\) and \(B \equiv 0\) (mod \(\mathfrak{a}\)). Therefore there is a maximal \(i \geq 0\) such that \(A \subseteq P^i\) and so \(A \subseteq P^{i+1}\). Similarly there is a maximal \(j \geq 0\) such that \(B \subseteq P^j\) and so \(B \subseteq P^{j+1}\). Then \(P^{i+1} < (A, P^{i+1}) \subseteq P^i\), therefore \((A, P^{i+1}) = P^i\) by Proposition 2, and similarly \((B, P^{j+1}) = P^j\). Hence \(P^{i+j} = (A, P^{i+1}) (B, P^{j+1}) \subseteq P^{i+j+1}\), thus \(P^{i+j} = P^{i+j+1}\) contradicting the assumptions.

Remark. Let \(R\) be as above. Let \(\mathfrak{p}\) be any proper prime ideal such that for any positive integer \(i\) \(\mathfrak{p}^i > \mathfrak{p}^{i+1}\). If every proper ideal of \(R\) can be written as a product of minimal prime divisors, then \(\bigcap_{n=1}^{\infty} \mathfrak{p}^n\) is a prime ideal of \(R\).

Theorem 2. Let \(R\) be a Noetherian (left and right) prime ring with an identity. If \(R\) satisfies the following

1) \(R\) is a general ZPI-ring;
2) every non-zero proper prime ideal of \(R\) is maximal;
3) every ideal of \(R\) is injective both as a left and as a right \(R\)-module,

the \(R\) is an M-ring.

Proof. We shall prove the existence of an ideal \(C\) with \(A = BC = CB\) for ideals \(A, B\) such that \(0 < A < B < R\). Let \(A = P_1^{e_1} \cdots P_r^{e_r} < B = Q_1^{f_1} \cdots Q_m^{f_m}\) where \(P_1, \ldots, P_r, Q_1, \ldots, Q_m\) are prime ideals of \(R\) and \(e_k > 0\) for \(k = 1, \ldots, \alpha, f_j > 0\) for \(j = 1, \ldots, \beta\), so for every \(Q_k\) there is some \(P_k = Q_k\) for \(k = 1, \ldots, \beta\). Hence \(A = Q_1^{j_1} \cdots Q_m^{j_m} P_1^{e_1} \cdots P_r^{e_r} < B = Q_1^{j_1} \cdots Q_m^{j_m}\). Now by Proposition 2.2 [3], each maximal ideal of \(R\) is either idempotent or invertible. Let \(Q_1, \ldots, Q_j\) be the set of idempotent maximal ideals in the set of maximal ideals \(Q_1, \ldots, Q_j, \ldots, Q_{j+1}\) (including the case that \(\{Q_1, \ldots, Q_j\}\) is empty). Then \(A = Q_1^{j_1} \cdots Q_j^{j_j} \cdots Q_{j+1}^{j_{j+1}} \cdots Q_m^{j_m} P_1^{e_1} \cdots P_r^{e_r} < B = Q_1^{j_1} \cdots Q_j^{j_j} \cdots Q_{j+1}^{j_{j+1}} \cdots Q_m^{j_m}\), where \(Q_{j+1}, \ldots, Q_{j+1}\) are invertible ideals of \(R\). If \(e_{j+1} < j_{j+1}\) for example, multiplying \((Q_{j+1})^{j_{j+1}}\) on each side, we have \(Q_1 \cdots Q_j Q_{j+1}^{j_{j+1} - j_{j+1}} \cdots Q_m^{j_m} \equiv 0\) (mod \(Q_{j+1}\)), which is a contradiction. Therefore \(e_{j+1} \geq j_{j+1}, \ldots, e_{j+1} \geq f_j\). Thus \(A = B Q_1^{j_1} \cdots Q_{j+1}^{j_{j+1} - j_{j+1}} \cdots Q_m^{j_m} P_1^{e_1} \cdots P_r^{e_r}\), hence \(R\) is an M-ring.

1) We call an \(R\)-ideal a regular ideal.
REMARK. If R is a Noetherian semi-prime ring with an identity, then we may replace the condition 2) by the following:

2') the proper prime ideals of R are either comaximal minimal prime ideals or maximal prime ideals of R.

The theorem is valid also in this case, because $R=R_1 \oplus \cdots \oplus R_i \oplus \cdots \oplus R_n$ where $R_i \cong R/p_i$ for every i and $\{p_1, \ldots, p_n\} = \text{min}(\mathfrak{D})$, so every R_i is a Noetherian general ZPI-ring satisfying the condition 2).

Theorem 3. Let R be a left Noetherian semi-prime Asano left order. Then R is a general ZPI-ring and also an M-ring, and the proper prime ideals of R are either comaximal idempotent minimal prime ideals or maximal prime ideals of R. Every proper ideal α of R has the form $\alpha = \alpha_1 \oplus \cdots \oplus \alpha_i \oplus \cdots \oplus \alpha_n$ where $\alpha_i \in \text{min}(\mathfrak{D})$ for $1 \leq k \leq i$ and $\alpha_i, \ldots, \alpha_n$ are maximal prime ideals of R which are regular.

Proof. Let $Q = Q_1 \oplus \cdots \oplus Q_i \oplus \cdots \oplus Q_n$ be the left quotient ring of R which is semisimple Artinian, where Q_1, \ldots, Q_n are simple Artinian rings. Now we can deduce that $R=R_1 \oplus \cdots \oplus R_i \oplus \cdots \oplus R_n$ where R_i is a left Noetherian Asano left order of Q_i for $1 \leq i \leq n$. Each proper prime ideal of R has either the form $\mathfrak{p}_i = R_1 \oplus \cdots \oplus R_i-1 \oplus R_{i+1} \oplus \cdots \oplus R_n$ or the form $\mathfrak{p}_i = R_1 \oplus \cdots \oplus R_i-1 \oplus \mathfrak{p}_{(i)} \oplus R_{i+1} \oplus \cdots \oplus R_n$ where $\mathfrak{p}_{(i)}$ is a maximal prime ideal of R_i for $1 \leq i \leq n$. Every proper ideal α of R has the form $\alpha = \alpha_1 \oplus \cdots \oplus \alpha_i \oplus \cdots \oplus \alpha_n$ where α_i is an ideal of R_i for $1 \leq i \leq n$. In order to make the proof concise we assume that $\alpha_i = \cdots = \alpha_{i-1} = 0$ (including the case that $\{\alpha_1, \ldots, \alpha_{i-1}\}$ is empty) and $\alpha_i = \mathfrak{p}_{(i)}^{e_{(i)}} \cdots \mathfrak{p}_{(i)}^{e_{(i)}}$, $\alpha_n = \mathfrak{p}_{(n)}^{e_{(n)}} \cdots \mathfrak{p}_{(n)}^{e_{(n)}}$. Then $\alpha = \mathfrak{p}_{(1)} \cdots \mathfrak{p}_{(i-1)} \mathfrak{p}_{(i)}^{e_{(i)}} \cdots \mathfrak{p}_{(n)}^{e_{(n)}}$ where $\mathfrak{p}_{(i)} = R_i \oplus \cdots \oplus R_{i-1} \oplus \mathfrak{p}_{(i)} \oplus R_{i+1} \oplus \cdots \oplus R_n$, thus R is a general ZPI-ring. Then it is easy to see that R is an M-ring.

By Proposition 6 we have

Corollary 4. Let R be a left Noetherian semi-prime Asano left order and let P be a regular prime ideal of R, then $\bigcap_{n=1}^\infty P^n = \mathfrak{p}$ is a minimal prime ideal of R.

2. Minimal prime divisors of ideals

Let α be a proper ideal of R. A minimal prime divisor of α is a prime ideal \mathfrak{p} with $\alpha \subseteq \mathfrak{p}$ such that there are no prime ideals \mathfrak{p}' with $\alpha \subseteq \mathfrak{p}' \subset \mathfrak{p}$. We denote the set of minimal prime divisors of α by $\text{min}(\mathfrak{D}_\alpha)$. The set $\text{min}(\mathfrak{D})$ of minimal prime ideals of R is $\text{min}(\mathfrak{D})$. As a consequence of Theorem 3 [10] and Proposition 1 [8], we have

Proposition 7. Let R be a left Noetherian general ZPI-ring. Moreover if R is an M-ring, then
For any prime ideal p, q with $p < q, p = q = q$.

(ii) Let a be any proper ideal of R, and let $\text{min-}\mathfrak{a} = \{p_1, \ldots, p_s\}$. Then $a = a_1 \cdots a_s$ for some positive integers f_1, \ldots, f_s.

Remark. Let R be a left Noetherian general ZPI-ring. Then i) of the above condition (*) is equivalent to the following:

i') For any prime ideal p and any ideal b properly containing p, $p = b = p$.

Next we consider the converse of this apparent proposition.

Proposition 8. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*) in Proposition 7 and let a be a proper ideal of R. Then for any minimal prime divisor p of a, either $p = p^{i+1}$ for some positive integer i or else there is some positive integer j such that $p^j \not\supseteq a$.

Proof. We assume that for any positive integer i, $p^i > p^{i+1}$, and we shall show that $p^j \supseteq a$ for some positive integer j. If $p^i > p^{i+1}$ for any positive integer i and moreover $p^k \supseteq a$ for any positive integer k, then $a = \prod_{i=1}^n p^i = n < p$ where n is a prime ideal by the remark of Proposition 6, a contradiction.

Proposition 9. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*), let a be a proper ideal of R, and let $\text{min-}\mathfrak{a} = \{p_1, \ldots, p_s\}$. Then for any $i \neq j$ and any positive integer $e_i, e_j, (\psi_{i}, \psi_{j})$ is an idempotent ideal of R.

Proof. First we prove that $\psi_{i}(\psi_{i}, \psi_{j}) = \psi_{i}$, and similarly $\psi_{j}(\psi_{i}, \psi_{j}) = \psi_{j}$. Since $\psi_{i} \equiv 0 \pmod{p_{i}}$, $\psi_{j} \not\equiv 0 \pmod{p_{i}}$, $\psi_{j} \equiv P_{1} \cdots P_{s}$ where P_1, \ldots, P_s are minimal prime divisors of (ψ_{i}, ψ_{j}). Now we know that $p_{i} \equiv 0 \pmod{P_{k}}$ for every P_{k}, $1 \leq k \leq s$. If $p_{i} = P_{k}$ for some P_{k}, then $(\psi_{i}, \psi_{j}) \equiv P_{1} \cdots P_{k-1} \psi_{i} P_{k+1} \cdots P_{s} \equiv 0 \pmod{p_{i}}$, hence $p_{j} \equiv 0 \pmod{p_{i}}$, a contradiction. Therefore $p_{j} \not\equiv 0 \pmod{P_{k}}$, $1 \leq k \leq s$, hence $p_{j} \equiv 0 \pmod{P_{k}}$, $1 \leq k \leq s$. Then $(\psi_{i}, \psi_{j}) = (\psi_{i}(\psi_{i}, \psi_{j}), \psi_{j}(\psi_{i}, \psi_{j})) = (\psi_{i}, \psi_{j})$.

Lemma. Under the same assumptions as above, for any $i \neq j$ and any positive integer $e_i, e_j, \psi_{i} \cap \psi_{j} = \psi_{i} \psi_{j}$.

Proof. First we prove that $\psi_{i} \cap \psi_{j} = (\psi_{i} \cap \psi_{j}) (\psi_{i}, \psi_{j})$. For some positive integer ρ, $\alpha \leq \psi_{i} \cap \psi_{j} = P_{1} \cdots P_{s} \equiv 0 \pmod{p_{i}}$, where P_1, \ldots, P_s are minimal prime divisors of $\psi_{i} \cap \psi_{j}$. Therefore $\alpha \leq P_{1} \equiv 0 \pmod{p_{i}}$ for some P_{1}, so $P_{1} = p_{i}$. Similarly for some P_{s}, $\alpha \leq P_{s} \equiv 0 \pmod{p_{i}}$, so $P_{s} = p_{i}$, and $\psi_{i} \cap \psi_{j} = \psi_{i} \psi_{j} P_{1} \cdots P_{s}$. Let $(\psi_{i}, \psi_{j}) = Q_{1} \cdots Q_{t}$, where Q_1, \ldots, Q_t are minimal prime divisors of (ψ_{i}, ψ_{j}). For every Q_{s}, $p_{i} \equiv 0 \pmod{Q_{s}}$ and $p_{j} \equiv 0 \pmod{Q_{s}}$, hence $p_{i} < Q_{s}$ and $p_{j} < Q_{s}$ for every $Q_{s}, 1 \leq k \leq t$. From the above arguments $(\psi_{i} \cap \psi_{j}) (\psi_{i}, \psi_{j}) = \psi_{i} \psi_{j}$.
Theorem 5. Let \(R \) be a left Noetherian general \(\mathbb{Z} \)-PI-ring which satisfies the condition (*)\), let \(a \) be a proper ideal of \(R \), and let \(\text{min-} \mathcal{O}_a = \{ P_1, \ldots, P_r \} \) and \(x_i > 0 \) for \(1 \leq i \leq r \). Let \(\{ P_1, \ldots, P_r \} \) be the subset of \(\text{min-} \mathcal{O}_a \) every \(P_i \) of which has a maximal index \(\alpha_i \) such that \(P_i \supseteq a \) and so \(P_i \supseteq \mathcal{O}_a \), and assume that for \(P_{k+1}, \ldots, P_r \), there are no maximal \(\beta_i \) among indices \(\beta_i \) such that \(P_i \supseteq a \) (including the case that one of the sets \(\{ 1, \ldots, k \} \), \(\{ k+1, \ldots, r \} \) is empty). Then \(a \) has the form \(a = P_1^{\beta_1} \cdots P_r^{\beta_r} \), hence \(a \) is primary for any positive integer such with \(x_i \leq \beta_i \leq \alpha_i \) for \(1 \leq i \leq r \). Let \(p_i = p_i^{\beta_i} \cdots P_r^{\beta_r} \), where \(\beta_i \) is any positive integer such that \(x_i \leq \beta_i \leq \alpha_i \) for \(1 \leq i \leq r \) and \(y_j \) is any positive integer for \(k < j \leq r \).

Proof. By Theorem 5 \(a = P_1^{\beta_1} \cdots P_r^{\beta_r} \supseteq P_1^{\alpha_1} \cdots P_r^{\alpha_r} \cap \cdots \cap P_r^{\alpha_r} \cap \cdots \cap P_r^{\alpha_r} \), since \(x_i \leq \beta_i \leq \alpha_i \) for \(1 \leq i \leq k \) and \(y_j \leq y_j \) for \(k < j \leq r \). Conversely \(a \subseteq P_i^{\beta_i} \) for \(1 \leq i \leq k \) since \(\beta_i \leq \alpha_i \), and also \(a \subseteq P_1^{\alpha_1} \cdots P_r^{\alpha_r} \) for any \(y_j \geq x_j \), \(k < j \leq r \); hence \(a \subseteq P_1^{\alpha_1} \cdots P_r^{\alpha_r} \cap \cdots \cap P_r^{\alpha_r} \cap \cdots \cap P_r^{\alpha_r} \). Thus \(a = P_1^{\beta_1} \cap \cdots \cap P_r^{\beta_r} \cap \cdots \cap P_r^{\beta_r} \cap \cdots \cap P_r^{\beta_r} \). The following definition of primary ideal is defined in [2]. Let \(a \) be an ideal of \(R \). If for ideals \(A, B \) \(A B \equiv 0 \) (mod \(a \)) implies \(A \equiv 0 \) (mod \(a \)) or \(B \equiv 0 \) (mod \(a \)) for some positive integer \(\rho \), then \(a \) is called \(r \)-primary. And an \(l \)-primary ideal is defined similarly. A \(1 \)- and \(r \)-primary ideal is called a primary ideal.

Theorem 7. Let \(R \) be as above. Then for every proper prime ideal \(\mathfrak{p} \) of \(R \) \(\mathfrak{p} \) is a primary ideal for any positive integer \(e \).

Proof. Let \(A B \equiv 0 \) (mod \(p^e \)) for ideals \(A, B \). We may assume that \(A \equiv a \) and \(B \equiv a \) where we set \(p^e = a \). We set anew \(A_1 = (A, a), B_1 = (B, a) \). Then \(A_1, B_1 \equiv 0 \) (mod \(p^e \)); and \(A \equiv 0 \) (mod \(p^e \)) if and only if \(A_1 \equiv 0 \) (mod \(p^e \)), etc.

minimal prime divisor of \(\alpha \); so \(A = \mathfrak{p}^{\beta_{1}} \mathfrak{p}^{\beta_{2}} \cdots \mathfrak{p}^{\beta_{s}} \), i.e. \(\mathfrak{p} \) is a minimal prime divisor of \(A \). Let \(\text{min-}\mathfrak{p}_{\mathfrak{j}} = \{ \mathfrak{q}_{1}, \cdots, \mathfrak{q}_{\nu} \} \). Since \(\alpha = \mathfrak{p}^{\nu_{1}}B = \mathfrak{q}_{1}^{\nu_{1}} \cdots \mathfrak{q}_{\nu}^{\nu_{\nu}} \) for some positive integers \(\nu_{1}, \cdots, \nu_{\nu} \), \(\nu < \mathfrak{q}_{i} \) for every \(\mathfrak{q}_{i} \) and since \(\mathfrak{p} \) is a factor of \(A \), \(AB = A \) by the condition (*), i.e. \(A \equiv 0 \pmod{\mathfrak{p}} \).

Theorem 8. Let \(R \) be a left Noetherian general ZPI-ring which satisfies the condition (*). Then \(R \) is an \(M \)-ring.

Proof. Let \(0 < A < B < R \) be ideals of \(R \), let \(\text{min-}\mathfrak{p}_{\mathfrak{j}} = \{ \mathfrak{p}_{1}, \cdots, \mathfrak{p}_{\alpha} \} \), and let \(A = \mathfrak{p}_{1}^{\beta_{1}} \cdots \mathfrak{p}_{\alpha}^{\beta_{\alpha}} \), \(B = \mathfrak{q}_{1}^{\lambda_{1}} \cdots \mathfrak{q}_{\nu}^{\lambda_{\nu}} \). By Theorem 6 we can choose them as large as possible. Then for every \(\mathfrak{q}_{i} \), there is some \(\mathfrak{p}_{i} \) such that \(\mathfrak{p}_{i} \subseteq \mathfrak{q}_{i} \). If \(\mathfrak{p}_{i} < \mathfrak{q}_{i} \) for every \(\mathfrak{q}_{i} \), then \(A = AB = BA \), so there is nothing to prove. If there are some \(\mathfrak{q}_{i} \) such that \(\mathfrak{p}_{i} = \mathfrak{q}_{i} \) and \(\mathfrak{p}_{i} < \mathfrak{q}_{i} \) for every \(\mathfrak{q}_{i} \), there are some \(\mathfrak{p}_{k} \) with \(\mathfrak{p}_{k} < \mathfrak{q}_{k} \). Furthermore, as to \(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{\alpha} \), let \(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{s} \) be minimal prime divisors of \(A \) which have maximal indices such that \(\mathfrak{p}_{i} \subseteq \mathfrak{q}_{i} \) for \(1 \leq i \leq s \) and let \(\mathfrak{p}_{s+1}, \cdots, \mathfrak{p}_{m} \) be those which do not have such indices as above. On prime ideals \(\mathfrak{p}_{j}, 1 \leq j \leq s, A \subseteq \mathfrak{p}_{j} \), and \(A < B \subseteq \mathfrak{q}_{j} \), \(R \) is an \(M \)-ring if, and only if, for \(1 \leq j \leq s \), by Theorem 6. On prime ideals \(\mathfrak{p}_{s+1}, \cdots, \mathfrak{p}_{m} \), we may assume that \(\beta_{i} \leq \alpha_{i} \) for \(s < i \leq m \), by Theorem 6.

Therefore \(A = \mathfrak{p}_{1}^{\beta_{1}} \cdots \mathfrak{p}_{s}^{\beta_{s}} \cdots \mathfrak{p}_{m}^{\beta_{m}} \cdots \mathfrak{p}_{m+1}^{\beta_{m+1}} \cdots \mathfrak{p}_{s}^{\beta_{s}} = \mathfrak{p}_{1}^{\beta_{1}} \cdots \mathfrak{p}_{m}^{\beta_{m}} \cdots \mathfrak{p}_{s}^{\beta_{s}} \cdots \mathfrak{p}_{m}^{\beta_{m}} \cdots \mathfrak{p}_{m+1}^{\beta_{m+1}} \cdots \mathfrak{p}_{s}^{\beta_{s}} = B C \), say. Hence \(R \) is an \(M \)-ring.

We summarize

Theorem 9. Let \(R \) be a left Noetherian general ZPI-ring. Then \(R \) is an \(M \)-ring if, and only if,

1) For any prime ideals \(\mathfrak{p}, \mathfrak{q} \) of \(R \) such that \(\mathfrak{p} \subset \mathfrak{q}, \mathfrak{p} = \mathfrak{q} \), and

2) Any non-zero proper ideal \(\alpha \) of \(R \) can be written as a product of powers of minimal prime divisors of \(\alpha \).

References

Department of Mathematics
College of General Education
Kobe University
Kobe 657, Japan