Osaka University Knowledge Archive

Title	On M-rings and general ZPI-rings
Author(s)	Ukegawa, Takasaburo
Citation	Osaka Journal of Mathematics. 1982, 19(4), p. $923-930$
Version Type	VoR
URL	https://doi.org/10.18910/10635
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/
Osaka University

ON M-RINGS AND GENERAL ZPI-RINGS

Dedicated to Professor Kentaro Murata on his 60th birthday

Takasaburo UKEGAWA

(Received January 7, 1981)

In the preceding paper [10], we have proved that a left Noetherian M-ring is a so called "general ZPI-ring" in the commutative case. Also we know that in an M-ring the multiplication of prime ideals is commutative [8]. In the present paper we define general $Z P I$-rings in section 1 and we study general properties of them, and as an important example of such rings we can give a left Noetherian semi-prime Asano left order. In section 2 we research the condition for a left Noetherian general $Z P I$-ring to be an M-ring, using minimal prime divisors of an ideal. The notation " $<$ " means a proper inclusion as the preceding papers [8], [9], [10].

1. M-rings and general ZPI-rings

Definition. If the multiplication of any two prime ideals of a ring R is commutative, and any ideal of R can be written as a produkt of powers of prime (considering R as a prime ideal) ideals of R, then we call R a general ZPI-ring. Therefore the multiplication of ideals is commutative.

In the commutative case a general ZPI-ring is necessarily Noetherian no matter whether the ring has an identity or not. But in our case the general ZPI-ring is not necessarily Noetherian as the example in [9] shows.

Proposition 1. Let R be a left Noetherian general ZPI-ring, let P be any prime ideal of R, and let \mathfrak{q} be maximal in the set of prime ideals such that $\mathfrak{q}<P$. Then for any ideal \mathfrak{a} with $\mathfrak{q}<\mathfrak{a}<P$, there is an ideal \mathfrak{b} such that $\mathfrak{a}=P \mathfrak{b}=\mathfrak{b} P$.

Proof. Let $\mathfrak{a}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}<P$, since R is a general $Z P I$-ring. Then $\mathfrak{p}_{i} \subseteq P$ for some \mathfrak{p}_{i}. Since $\mathfrak{q}<\mathfrak{a} \subseteq \mathfrak{p}_{i}, \mathfrak{q}<\mathfrak{p}_{i} \subseteq P$, so $\mathfrak{p}_{i}=P$. Therefore $\mathfrak{a}=P \mathfrak{p}_{1} \cdots \mathfrak{p}_{i-1} \mathfrak{p}_{i+1} \cdots$ $\mathfrak{p}_{r}=\mathfrak{b} P$, where $\mathfrak{b}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{i-1} \mathfrak{p}_{i+1} \cdots \mathfrak{p}_{r}$.

As in the commutative case we have
Proposition 2. Let R be be a left Noetherian general ZPI-ring, and let P be a maximal ideal of R. Then there are no ideals between P and P^{2} (including the case that $P=P^{2}$), more generally for any positive integer n, the only ideals
between P and P^{n} are P, P^{2}, \cdots, P^{n} (including the case that $P^{i}=P^{i+1}$ for some i, $1 \leq i<n)$.

Remark. Let R be as above. If every proper ideal \mathfrak{a} of R can be written as a product of minimal prime divisors of \mathfrak{a}, then for any proper prime ideal \mathfrak{p} of R and for any positive integer n, the only ideals between \mathfrak{p} and \mathfrak{p}^{n} are \mathfrak{p}, $\mathfrak{p}^{2}, \cdots, \mathfrak{p}^{n}$.

Proposition 3. Let R be a left Noetherian general ZPI-ring, and let min$\mathcal{P}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}\right\}$ be the set of minimal prime ideals of R. Then for any subset $\left\{\mathfrak{p}_{i_{1}}, \cdots, \mathfrak{p}_{i_{k}}\right\}$ of $\min -\mathcal{P}, \mathfrak{p}_{i_{1}} \cap \cdots \cap \mathfrak{p}_{i_{k}}=\mathfrak{p}_{i_{1}} \cdots \mathfrak{p}_{i_{k}}$. Especially for the prime radical N_{1} of $R, N_{1}=\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{r}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}$.

Proof. Since R is a general ZPI-ring, $\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{i}=P_{1} \cdots P_{k}$ for some prime ideals P_{1}, \cdots, P_{k} of R. Then for any $\mathfrak{p}_{j} 1 \leq j \leq i$ we have $P_{j} \equiv 0(\bmod$ \mathfrak{p}_{j}) for some P_{j}, and so $P_{j}=\mathfrak{p}_{j}$, therefore $\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{i}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{i} P_{i+1} \cdots P_{k}$. Now $\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{i} \supseteq \mathfrak{p}_{1} \cdots \mathfrak{p}_{i} \supseteq \mathfrak{p}_{1} \cdots \mathfrak{p}_{i} P_{i+1} \cdots P_{k}=\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{i}$, hence $\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{i}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{i}$.

Lemma 4. Let R be a left Noetherian semi-prime general ZPI-ring, and let $\min -\mathcal{P}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}\right\}$ be the set of minimal prime ideals of R. Then for any $1 \leq i<r$ and any positive integers $m_{1}, \cdots, m_{i} \mathfrak{p}_{1}^{m_{1}} \cdots \mathfrak{p}_{i}^{m_{i}} \neq 0$.

Theorem 1. Let R be a left Noetherian semi-prime general ZPI-ring, and let $\min -\mathcal{P}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}\right\}$ be the set of minimal prime ideals of R. If a proper ideal \mathfrak{a} of R has the form $\mathfrak{a}=\mathfrak{p}_{1}^{e_{1} \cdots \mathfrak{p}_{s}^{e_{s}} P_{1}^{f_{1} \cdots P_{t}} f^{t} \text { where } \mathfrak{p}_{i} \in \min -\odot \text { for } i=1, \cdots, s \text { and }, ~}$ $P_{j} \notin \min -\mathcal{P}$ for $j=1, \cdots, t$, then $P_{1}^{j_{1}} \cdots P_{t}^{f_{t}} \subseteq R$, i.e. essential as a left R-module, and the set $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{s}\right\}$ is uniquely determined by \mathfrak{a}.

Proof. Let P be a prime ideal of R. By proposition 2.11 [5] and Lemma 4, P is not essential as a left R-module if and only if $P \in \min -\mathcal{P}$. Hence
 for $1 \leq j \leq k, Q_{i} \notin \min -\mathcal{P}$ for $1 \leq i \leq w$ be another form of \mathfrak{a}. Assume that two set $\mathfrak{K}_{1}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{s}\right\}, \mathfrak{K}_{2}=\left\{\mathfrak{p}_{i_{1}}, \cdots, \mathfrak{p}_{i_{k}}\right\}$ are distinct. If $\mathfrak{K}_{1}>\mathbb{N}_{2}$, then

 the case that $\mathfrak{K}_{1} \mp \mathfrak{K}_{2}$ and also $\mathfrak{N}_{1} \ddagger \mathfrak{K}_{2}$. We denote the product of minimal prime ideals belonging to the set \prod_{1} by [\mathfrak{K}_{1}], for example. Then $0=\mathfrak{a}$ [min-
 $\mathcal{P}-\mathfrak{N}_{2}$ and $\mathfrak{a}=\mathfrak{p}_{1}^{\alpha} \cdots \mathfrak{p}_{i_{k}^{k}}^{\alpha_{1}^{k}} Q_{1} \cdots Q_{w}$, hence $0 \neq \mathfrak{a}\left[\min -\mathcal{P}-\mathfrak{K}_{1}\right]$ which is a contradiction. So we have $\prod_{1}=\prod_{2}$.

As a result of Theorem 1 we have
Proposition 5. Let R be as above, and let $\min -\mathcal{P}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}\right\}$. Then
$\left(\mathfrak{p}_{1}^{\alpha_{1}} \cdots \mathfrak{p}_{i}^{\alpha_{i}}, \mathfrak{p}_{i+1}^{\alpha_{i+1}} \cdots \mathfrak{p}_{j^{j}}^{\alpha_{j}}\right)$ is a regular ${ }^{1)}$ ideal of R, where $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{j}$ are distinct minimal prime ideal of $R, 1 \leq i<j \leq r$ and $\alpha_{1}, \cdots, \alpha_{j}$ are any positive integers.

Proposition 6. Let R be a left Noetherian general ZPI-ring, and let P be a maximal ideal of R such that $P^{i}>P^{i+1}$ for any positive integer i. Then $\bigcap_{n=1}^{\infty} P^{n}$ is a prime ideal of R.

Proof. Set $\bigcap_{n=1}^{\infty} P^{n}=\mathfrak{a}$. Let A, B be ideals of R such that $A B \equiv 0$ $(\bmod \mathfrak{a}) A \not \equiv 0$ and $B \equiv 0(\bmod \mathfrak{a})$. Therefore there is a maximal $i \geq 0$ such that $A \subseteq P^{i}$ and so $A \subseteq P^{i+1}$. Similarly there is a maximal $j \geq 0$ such that $B \subseteq$ P^{j} and so $B \subseteq P^{j+1}$, where $P^{0}=R$. Then $P^{i+1}<\left(A, P^{i+1}\right) \subseteq P^{i}$, therefore $(A$, $\left.P^{i+1}\right)=P^{i}$ by Proposition 2, and similarly $\left(B, P^{j+1}\right)=P^{j}$. Hence $P^{i+j}=(A$, $\left.P^{i+1}\right)\left(B, P^{j+1}\right) \subseteq P^{i+j+1}$, thus $P^{i+j}=P^{i+j+1}$ contradicting the assumptions.

Remark. Let R be as above. Let \mathfrak{p} be any proper prime ideal such that for any positive integer $i \mathfrak{p}^{i}>\mathfrak{p}^{i+1}$. If every proper ideal of R can be written as a product of minimal prime divisors, then $\bigcap_{n=1}^{\infty} \mathfrak{p}^{n}$ is a prime ideal of R.

Theorem 2. Let R be a Noetherian (left and right) prime ring with an identity. If R satisfies the following

1) R is a general ZPI-ring;
2) every non-zero proper prime ideal of R is maximal;
3) every ideal of R is projective both as a left and as a right R-module, the R is an M-ring.

Proof. We shall prove the existence of an ideal C with $A=B C=C B$
 $P_{1}, \cdots, P_{a}, Q_{1}, \cdots, Q_{\beta}$ are prime ideals of R and $e_{k}>0$ for $k=1, \cdots, \alpha, f_{j}>0$ for $j=$ $1, \cdots, \beta$, so for every Q_{k} there is some P_{k} with $P_{k}=Q_{k}$ for $k=1, \cdots, \beta$. Hence
 mal ideal of R is either idempotent or invertible. Let Q_{1}, \cdots, Q_{j} be the set of idempotent maximal ideals in the set of maximal ideals $Q_{1}, \cdots, Q_{j}, \cdots, Q_{\beta}$ (including the case that $\left\{Q_{1}, \cdots, Q_{j}\right\}$ is empty). Then $A=Q_{1} \cdots Q_{j} Q_{j+1}^{e_{j+1} \cdots Q_{\beta}^{e} \beta P_{\beta+1}^{e_{\beta+1}}, ~}$
 $e_{j+1}<f_{j+1}$ for example, multiplying $\left(Q_{j+1}^{-1}\right)^{e_{j+1}}$ on each side, we have $Q_{1} \cdots Q_{j} Q_{j+2}^{e_{j+2}}$
 tion. Therefore $e_{j+1} \geq f_{j+1}, \cdots, e_{\beta} \geq f_{\beta}$. Thus $A=B Q_{j+1}^{e_{j+1}-f_{j+1}} \ldots Q_{\beta}^{e_{\beta}-f_{\beta}} P_{\beta+1}^{e_{\beta+1}} \ldots$ $P_{\alpha}^{e_{\alpha}}$, hence R is an M-ring.

[^0]Remark. If R is a Noetherian semi-prime ring with an identity, then we may replace the condition 2) by the following:
2^{\prime}). the proper prime ideals of R are either comaximal minimal prime ideals or maximal prime ideals of R.
The theorem is valid also in this case, because $R=R_{1} \oplus \cdots \oplus R_{i} \oplus \cdots \oplus R_{n}$ where $R_{i} \cong R / \mathfrak{p}_{i}$ for every i and $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}\right\}=\min -\mathcal{P}$, so every R_{i} is a Noetherian general $Z P I$-ring satisfying the condition 2).

Theorem 3. Let R be a left Noetherian semi-prime Asano left order. Then R is a general ZPI-ring and also an M-ring, and the proper prime ideals of R are either comaximal idempotent minimal prime ideals or maximal prime ideals of R.
 $1 \leq k \leq i$ and P_{1}, \cdots, P_{m} are maximal prime ideals of R which are regular.

Proof. Let $Q=Q_{1} \oplus \cdots \oplus Q_{i} \oplus \cdots \oplus Q_{n}$ be the left quotient ring of R which is semisimple Artinian, where Q_{1}, \cdots, Q_{n} are simple Artinian rings. Now we can deduce that $R=R_{1} \oplus \cdots \oplus R_{i} \oplus \cdots \oplus R_{n}$ where R_{i} is a left Noetherian Asano left order of Q_{i} for $1 \leq i \leq n$. Each proper prime ideal of R has either the form $\mathfrak{p}_{i}=R_{1} \oplus \cdots \oplus R_{i-1} \oplus R_{i+1} \oplus \cdots \oplus R_{n}$ or the form $P_{i}=R_{1} \oplus \cdots \oplus R_{i-1} \oplus \mathfrak{p}_{(i)} \oplus$ $R_{i+1} \oplus \cdots \oplus R_{n}$ where $\mathfrak{p}_{(i)}$ is a maximal prime ideal of R_{i} for $1 \leq i \leq n$. Every proper ideal \mathfrak{a} of R has the form $\mathfrak{a}=\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{i} \oplus \cdots \oplus \mathfrak{a}_{n}$ where \mathfrak{a}_{i} is an ideal of R_{i} for $1 \leq i \leq n$. In order to make the proof concise we assume that $\mathfrak{a}_{1}=\cdots$ $=\mathfrak{a}_{i-1}=0$ (including the case that $\left\{\mathfrak{a}_{1}, \cdots, \mathfrak{a}_{i-1}\right\}$ is empty) and $\mathfrak{a}_{i}=\mathfrak{p}_{(i) 1}^{e_{i 1}} \cdots \mathfrak{p}_{(i)_{a}}^{e_{i \alpha}}, \cdots$, $\mathfrak{a}_{n}=\mathfrak{p}_{(n) 1}^{e_{n 1}} \cdots \mathfrak{p}_{(n) \lambda}^{e_{n \lambda}}$. Then $\mathfrak{a}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{i-1} P_{i 1}^{e_{i 1}} \cdots P_{i \alpha}^{e_{i \alpha} \cdots} \cdots P_{n 1}^{e_{n 1}} \cdots P_{n \lambda}^{e_{n \lambda}}$ where $P_{i j}=R_{i} \oplus \cdots \oplus$ $R_{i-1} \oplus \mathfrak{p}_{(i) j} \oplus P_{i+1} \oplus \cdots \oplus R_{n}$, thus R is a general ZPI-ring. Then it is easy to see that R is an M-ring.

By Proposition 6 we have
Corollary 4. Let R be a left Noetherian semi-prime Asano left order and let P be a regular prime ideal of R, then $\bigcap_{n=1}^{\infty} P^{n}=\mathfrak{p}$ is a minimal prime ideal of R.

2. Minimal prime divisors of ideals

Let \mathfrak{a} be a proper ideal of R. A minimal prime divisor of \mathfrak{a} is a prime ideal \mathfrak{p} with $\mathfrak{a} \subseteq \mathfrak{p}$ such that there are no prime ideals \mathfrak{p}^{\prime} with $\mathfrak{a} \subseteq \mathfrak{p}^{\prime}<\mathfrak{p}$. We denote the set of minimal prime divisors of \mathfrak{a} by $\min -\mathcal{P}_{\mathfrak{a}}$. The set min- \mathcal{P} of minimal prime ideals of R is min- \mathcal{P}_{0}. As a consequence of Theorem 3 [10] and Proposition 1 [8], we have

Proposition 7. Let R be a left Noetherian general ZPI-ring. Moreover if R is an M-ring, then

(ii) Let \mathfrak{a} be any proper ideal of R, and let $\min -\mathcal{P}_{\mathfrak{a}}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}\right\}$. Then $\mathfrak{a}=$

Remark. Let R be a left Noetherian general ZPI-ring. Then i) of the above condition $\left(^{*}\right)$ is equivalent to the following:
i^{\prime}) For any prime ideal \mathfrak{p} and any ideal \mathfrak{b} properly containing $\mathfrak{p}, \mathfrak{p}=\mathfrak{b} \mathfrak{p}=$ $\mathfrak{p b}$.

Next we consider the converse of this apparent proposition.
Proposition 8. Let R be a left Noetherian general ZPI-ring which satisfies the condition (*) in Proposition 7 and let \mathfrak{a} be a proper ideal of R. Then for any minimal prime divisor \mathfrak{p} of \mathfrak{a}, either $\mathfrak{p}^{i}=\mathfrak{p}^{i+1}$ for some positive integer i or else there is some positive integer j such that $\mathfrak{p}^{j} \nsupseteq \mathfrak{a}$.

Proof. We assume that for any positive integer $i \mathfrak{p}^{i}>\mathfrak{p}^{i+1}$, and we shall show that $\mathfrak{p}^{j} \nsupseteq \mathfrak{a}$ for some positive integer j. If $\mathfrak{p}^{i}>\mathfrak{p}^{i+1}$ for any positive integer i and moreover $\mathfrak{p}^{k} \supseteq \mathfrak{a}$ for any positive integer k, then $\mathfrak{a} \subseteq \bigcap_{n=1}^{\infty} \mathfrak{p}^{n}=\mathfrak{n}<\mathfrak{p}$ where \mathfrak{n} is a prime ideal by the remark of Proposition 6, a contradiction.

Proposition 9. Let R be a left Noetherian general ZPI-ring which satisfies the condition $\left(^{*}\right)$, let \mathfrak{a} be a proper ideal of R, and let $\min -\mathcal{P}_{\mathfrak{a}}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{\mathfrak{r}}\right\}$. Then for any $i \neq j$ and any positive integer $e_{i}, e_{j},\left(\mathfrak{p}_{i}^{e_{i}}, \mathfrak{p}_{j}^{e}\right)$ is an idempotent ideal of R.

Proof. First we prove that $\mathfrak{p}_{i}^{e_{i}}\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right)=\mathfrak{p}_{i}^{e_{i}}$, and similarly $\mathfrak{p}_{j}^{e}\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right)=$
 prime divisors of $\left(\mathfrak{p}_{i}^{e_{i}}, \mathfrak{p}_{j}^{e} j\right)$. Now we know that $\mathfrak{p}_{i} \equiv 0\left(\bmod P_{k}\right)$ for every P_{k}, $1 \leq k \leq s$. If $\mathfrak{p}_{i}=P_{k}$ for some P_{k}, then ($\left.\mathfrak{p}_{i}^{e_{i}}, \mathfrak{p}_{j}^{e} j\right)=P_{1}^{f_{1} \cdots P_{k-1}^{f} f_{k-1} \mathfrak{p}_{i}{ }^{f_{k}} P_{k+1}^{f_{k+1}} \ldots P_{s}^{f_{s}} \equiv 0}$ $\left(\bmod \mathfrak{p}_{i}\right)$, hence $\mathfrak{p}_{j} \equiv 0\left(\bmod \mathfrak{p}_{i}\right)$, a contradiction. Therefore $\mathfrak{p}_{i}<P_{k}$ for $1 \leq k \leq s$, hence $\mathfrak{p}_{i}^{e}\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right)=\mathfrak{p}_{i}^{e} P_{1}^{f_{1}} \cdots P_{s}^{f_{s}}=\mathfrak{p}_{i}^{e}$. \quad Then $\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right)^{2}=\left(\mathfrak{p}_{i}^{e_{i}}\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right), \mathfrak{p}_{j}^{e}\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right)\right)$ $=\left(\mathfrak{p}_{i}^{e_{i}}, \mathfrak{p}_{j}^{e}{ }^{j}\right)$.

Lemma. Under the same assumptions as above, for any $i \neq j$ and any positive integer $e_{i}, e_{j}, \mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e}{ }_{j}=\mathfrak{p}_{i}^{e} \cdot \mathfrak{p}_{j}^{e}{ }^{j}$.

Proof. First we prove that $\mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e}=\left(\mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e}\right)\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e} j\right)$. For some positive integer $\rho \mathfrak{a}^{\rho} \subseteq \mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e} j=P_{1}^{f_{1}} \ldots P_{s}^{f_{s}} \equiv 0\left(\bmod \mathfrak{p}_{i}\right)$, where P_{1}, \cdots, P_{s} are minimal prime divisors of $\mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e}$. . Therefore $\mathfrak{a} \subseteq P_{1} \equiv 0\left(\bmod \mathfrak{p}_{i}\right)$ for some P_{1}, so $P_{1}=\mathfrak{p}_{i}$, Similarly for some $P_{2}, \mathfrak{a} \subseteq P_{2} \equiv 0\left(\bmod \mathfrak{p}_{j}\right)$, so $P_{2}=\mathfrak{p}_{j}$, and $\mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e}=\mathfrak{p}_{i}^{f_{1}} \mathfrak{p}_{j}^{f_{2}} P_{3}^{f_{3}} \ldots$ $P_{s}^{f_{s}}$. Let $\left(\mathfrak{p}_{i}^{e_{i}}, \mathfrak{p}_{j}^{f_{j}}\right)=Q_{1} \cdots Q_{t}$ where Q_{1}, \cdots, Q_{t} are minimal prime divisors of $\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right)$. For every $Q_{k}, \mathfrak{p}_{i} \equiv 0\left(\bmod Q_{k}\right)$ and $\mathfrak{p}_{j} \equiv 0\left(\bmod Q_{k}\right)$, hence $\mathfrak{p}_{i}<Q_{k}$ and $\mathfrak{p}_{j}<Q_{k}$ for every $Q_{k}, 1 \leq k \leq t$. From the above arguments $\left(\mathfrak{p}_{i}^{e} \cap \cap \mathfrak{p}_{j}^{e} j\right)\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right)=$
$\mathfrak{p}_{1}^{f_{1} \mathfrak{p}_{j}^{f_{2}} P_{3}^{f_{3}} \ldots P_{s}^{f_{s}} Q_{1} \cdots Q_{t}=\mathfrak{p}_{i}^{f_{1}} \mathfrak{p}_{j}^{f_{2}} P_{3^{3}}^{f_{3}} \ldots P_{s}^{f_{s}}=\mathfrak{p}_{i}^{e_{i}} \cap \mathfrak{p}_{j}^{e} j \text { by the condition (*). Hence }}$ $\mathfrak{p}_{i}^{e_{i}} \cap \mathfrak{p}_{j}^{e}=\left(\mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e}\right)\left(\mathfrak{p}_{i}^{e}, \mathfrak{p}_{j}^{e}\right)=\left(\left(\mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e}\right) \mathfrak{p}_{i}^{e},\left(\mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e}\right) \mathfrak{p}_{j}^{e}\right) \subseteq\left(\mathfrak{p}_{j}^{e} \mathfrak{p}_{i}^{e}, \mathfrak{p}_{i}^{e} \mathfrak{p}_{j}^{e}\right)=\mathfrak{p}_{i}^{e_{i}} \mathfrak{p}_{j}^{e} j$. The other inclusion is obvious, so $\mathfrak{p}_{i}^{e} \cap \mathfrak{p}_{j}^{e} j=\mathfrak{p}_{i}^{e} \mathfrak{p}_{j}^{e}$.

Now by the induction we have
Theorem 5. Let R be a left Noetherian general ZPI-ring which satisfies the condition $\left(^{*}\right)$, let \mathfrak{a} be a proper ideal of R, and let $\min -\mathcal{P}_{\mathfrak{a}}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}\right\}$. Then for any subset $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{k}\right\}$ of min- \mathcal{P}_{a} and for any positive integers $e_{i}, i=1, \cdots, k, \mathfrak{p}_{1}^{e_{1}} \cap \cdots$ $\cap \mathfrak{p}_{k}^{\ell}{ }^{\ell}=\mathfrak{p}_{1}^{\ell} \cdots \mathfrak{p}_{k}^{\ell}{ }^{\ell}$.

Theorem 6. Let R be a left Noetherian general ZPI-ring which satisfies the condition $\left(^{*}\right)$, let \mathfrak{a} be a proper ideal of R, and let $\mathfrak{a}=\mathfrak{p}_{1}^{x_{1}} \cdots \mathfrak{p}_{r}^{\tau_{r}}$ where min $-\mathcal{P}_{\mathfrak{a}}=\left\{\mathfrak{p}_{1}, \cdots\right.$, $\left.\mathfrak{p}_{r}\right\}$ and $x_{i}>0$ for $1 \leq i \leq r$. Let $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{k}\right\}$ be the subset of $\min -\mathcal{P}_{\mathfrak{a}}$ every \mathfrak{p}_{i} of which has a maximal index α_{i} such that $\mathfrak{p}_{1}^{\alpha} \supseteq \mathfrak{a}$ and so $\mathfrak{p}_{i+1}^{\alpha_{i+1}} \mathfrak{a}$, and assume that for $\mathfrak{p}_{k+1}, \cdots, \mathfrak{p}_{r}$ there are no maximal β_{j} among indices β_{j} such that $\mathfrak{p}_{j}^{\beta} \supseteq \mathfrak{a}$ (including the case that one of the sets $\{1, \cdots, k\},\{k+1, \cdots, r\}$ is empty). Then \mathfrak{a} has the form
 $1 \leq i \leq k$ and y_{j} is any positive integer with $x_{j} \leq y_{j}$ for $k<j \leq r$.

Proof. By Theorem $5 \mathfrak{a}=\mathfrak{p}_{1}^{x_{1}} \cap \cdots \cap \mathfrak{p}_{r}^{x_{r}} \supseteq \mathfrak{p}_{1}^{\beta_{1}} \cap \cdots \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}}$, since $x_{i} \leq \beta_{i} \leq \alpha_{i}$ for $1 \leq i \leq k$ and $x_{j} \leq y_{j}$ for $k<j \leq r$. Conversely $\mathfrak{a} \subseteq \mathfrak{p}_{i}^{\beta_{i}}$ for $1 \leq i \leq k$ since $\beta_{i} \leq \alpha_{i}$, and also $\mathfrak{a} \subseteq \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}}$ for any $y_{j} \geq x_{j}, k<j \leq r$; hence $\mathfrak{a} \subseteq$ $\mathfrak{p}_{1}^{\beta_{1}} \cap \cdots \cap \mathfrak{p}_{k}^{\beta_{k}} \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}}$. Thus $\mathfrak{a}=\mathfrak{p}_{1}^{\beta_{1}} \cap \cdots \cap \mathfrak{p}_{k}^{\beta_{k}} \cap \mathfrak{p}_{k+1}^{y_{k+1}} \cap \cdots \cap \mathfrak{p}_{r}^{y_{r}}=\mathfrak{p}_{1}^{\beta_{1}} \cdots$ $\mathfrak{p}_{k}^{\beta_{k}} \mathfrak{p}_{k+1}^{y_{k+1}} \cdots \mathfrak{p}_{r}^{y_{r}^{r}}$ by Theorem 5 .

The following definition of primary ideal is defined in [2]. Let \mathfrak{a} be an ideal of R. If for ideals $A, B A B \equiv 0(\bmod \mathfrak{a})$ implies $A \equiv 0(\bmod \mathfrak{a})$ or $B^{\rho} \equiv 0$ $(\bmod \mathfrak{a})$ for some positive integer ρ, then \mathfrak{a} is called r-primary. And a l-primary ideal is defined similarly. A 1 - and r-primary ideal is called a primary ideal.

Theorem 7. Let R be as above. Then for every proper prime ideal \mathfrak{p} of $R \mathfrak{p}^{e}$ is a primary ideal for any positive integer e.

Proof. Let $A B \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$ for ideals A, B. We may assume that $A \nsubseteq \mathfrak{a}$ and $B \nsubseteq \mathfrak{a}$ where we set $\mathfrak{p}^{\mathfrak{e}}=\mathfrak{a}$. We set anew $A_{1}=(A, \mathfrak{a}), B_{1}=(B, \mathfrak{a})$. Then $A_{1} B_{1} \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$; and $A \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$ if and only if $A_{1} \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$, etc.. Therefore it is sufficient to prove that for ideals $A>\mathfrak{a}$, and $B>\mathfrak{a}$, if $A B \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$, then $A \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$ or $B^{n} \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$ for some positive integer n. Hence we prove that for ideals A, B such that $\mathfrak{a}<A, \mathfrak{a}<B$, if $A B \equiv 0$ $\left(\bmod \mathfrak{p}^{e}\right)$ and for any positive integer $m B^{m} \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$, then $A \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$. Let $\min -\mathcal{P}_{A}=\left\{P_{1}, \cdots, P_{t}\right\}$, and let $A=P_{1}^{\delta_{1}} P_{2}^{\delta_{2} \cdots P_{t}^{\delta_{t}} \text { for some positive integers }}$ $\delta_{1}, \cdots, \delta_{t}$. Since $A B \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$, however $B \equiv 0(\bmod \mathfrak{p})$, hence $A \equiv 0(\bmod$ $\mathfrak{p})$. Therefore $\mathfrak{a}<A \subseteq P_{1} \equiv 0(\bmod \mathfrak{p})$ for some P_{1}, hence $P_{1}=\mathfrak{p}$ since \mathfrak{p} is a
minimal prime divisor of \mathfrak{a}; so $A=\mathfrak{p}^{\delta_{1}} P_{2}^{\delta_{2}} \ldots P_{t}^{\delta_{t}}$, i.e. \mathfrak{p} is a minimal prime divisor of A. Let $\min -\mathcal{P}_{B}=\left\{\mathfrak{q}_{1}, \cdots, \mathfrak{q}_{k}\right\}$. Since $\mathfrak{a}=\mathfrak{p}^{e}<B=\mathfrak{q}_{1}^{\nu} \cdots \mathfrak{q}_{k}^{\nu}$ for some positive integers $\nu_{1}, \cdots, \nu_{k}, \mathfrak{p}<\mathfrak{q}_{i}$ for every q_{i} and since \mathfrak{p} is a factor of $A A B=A$ by the condition $\left(^{*}\right)$, i.e. $A \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$.

Theorem 8. Let R be a left Noetherian general ZPI-ring which satisfies the condition (${ }^{*}$). Then R is an M-ring.

Proof. Let $0<A<B<R$ be ideals of R, let min- $\mathcal{P}_{A}=\left\{P_{1}, \cdots, P_{a}\right\}$, min-
 integers and as for $\alpha_{1}, \cdots, \alpha_{a}$ by Theorem 6 we can choose them as large as possible. Then for every Q_{i}, there is some P_{j} such that $P_{j} \subseteq Q_{i}$. If $P_{j}<Q_{i}$ for every Q_{1}, \cdots, Q_{b}, then $A=A B=B A$, so there is nothing to prove. If there are some Q_{i} such that $P_{j}=Q_{i}$, we may assume for convenience sake that $P_{i}=Q_{i}$ for $1 \leq i \leq m$ and for every $Q_{j}(m<j \leq b)$ there are some P_{k} with $P_{k}<Q_{j}$. Furthermore, as to P_{1}, \cdots, P_{m}, let P_{1}, \cdots, P_{s} be minimal prime divisors of A which have maximal indices such that $P_{j}^{\alpha} \supseteq A$ for $1 \leq j \leq s$, and let P_{s+1}, \cdots, P_{m} be those which do not have such indices as above. On prime ideals $P_{j}, 1 \leq j \leq s, A \subseteq P_{j}^{a_{j}}$. and $A<B \subseteq Q_{j}^{\beta_{j}}=P_{j}^{\beta_{j}}$, so $A \subseteq P_{j}^{\beta_{j}}$, hence $\beta_{j} \leq \alpha_{j}$ for $1 \leq j \leq s$ by Theorem 6. On prime ideals P_{s+1}, \cdots, P_{m} we may assume that $\beta_{i} \leq \alpha_{i}$ for $s<i \leq m$, by Theorem 6 . Therefore $A=P_{1}^{\alpha_{1}-\beta_{1}} \cdots P_{m}^{\alpha_{m}-\beta_{m}} P_{1}^{\beta_{1}} \cdots P_{m}^{\beta_{m}} P_{m+1}^{\alpha_{m}+\cdots} P_{a}^{\alpha_{a}}=P_{1}^{\alpha_{1}-\beta_{1}} \cdots P_{m}^{\alpha_{m}-\beta_{m}} P_{1}^{\beta_{1}} \ldots P_{m}^{\beta_{m}}$ $\left(Q_{m+1}^{\alpha_{m+1}} \cdots Q_{b}^{\beta_{b}}\right) P_{m+1}^{\alpha_{m+1}} \cdots P_{a}^{\alpha_{a}}=B C$, say. Hence R is an M-ring.

We summarize
Theorem 9. Let R be a left Noetherian general ZPI-ring. Then R is an M-ring if, and only if,

1) For any prime ideals $\mathfrak{p}, \mathfrak{q}$ of R such that $\mathfrak{p}<\mathfrak{q}, \mathfrak{p}=\mathfrak{p} \mathfrak{q}$, and
2) Any proper ideal \mathfrak{a} of R can be written as a product of powers of minimal prime divisors of a.

References

[1] K. Asano: The theory of rings and ideals, Kyoritsu Shuppan, 1949 (in Japanese).
[2] A.W. Chatters and C.R. Hajarnavis: Non-commutative rings with primary decomposition, Quart. J. Math. Oxford Ser. (2) 22 (1971), 73-83.
[3] D. Eisenbud and J.C. Robson: Hereditary Noetherian prime rings, J. Algebra 16 (1970), 86-104.
[4] A.W. Goldie: Semi-prime rings with maximum condition, Proc. London Math. Soc. 10 (1960), 201-220.
[5] -: The structure of Noetherian rings, Lecture Notes in Math. 246, Sprin-ger-Verlag, 1972, 242-320.
[6] M.D. Larsen and P.J. McCarthy: Multiplicative theory of ideals, Academic

Press, New York and London, 1971.
[7] S. Mori: Allgemeine Z.P.I.-Ringe, J. Sci. Hiroshima Univ. 10 (1940), 117-136.
[8] T. Ukegawa: Some properties of non-commutative multiplication rings, Proc. Japan Acad. 54A (1978), 279-284.
[9] -: On the unique maximal idempotent ideals of non-commutative multiplication rings, ibid., 55 A (1979), 132-135.
[10] -: Left Noetherian multiplication rings, Osaka J. Math. 17 (1980), 449453.

Department of Mathematics
College of General Education
Kobe University
Kobe 657, Japan

[^0]: 1) We call an R-ideal a regular ideal.
