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General introduction

Proteins consist of only 20 kinds of amino acids but each protein
has a unique 3-dimensional structure. This 3-dimensional structure is
determined in thermodynamic equilibrium law. The solvation free energy is
one of the key to understanding the stabilities of proteins in water. For the
purpose of calculating solvation free energies, theories and simulations are
used and checked by comparing calculated results with the experimental data
of small molecules. But direct application of the techniques, which are
originally used for small molecules, to biomolecules is very difficult due to
the overwhelmingly large configurational space to which solvent molecules
can access. In spite of the remarkable success of the molecular simulation
with computers for the past few decades, there is not yet feasible method
to determine the solvation free energy of the biomolecules. Scaled particle
theory (SPT) [1] is one of the liquid theories used for calculating the
solvation free energies and is widely used by solution chemists because of
its simplicity and broad validity [2]. The difficulties of applying the original
SPT to the biomolecule are a) consideration of the shape of the molecule,
b) application to both polar and ionic solutes. Original SPT can only deal
with spherical and convex molecules [3], the shape of which is different
from molecules having multiple interaction sites. We extended SPT in order
to apply to molecules having the shape of fused spheres.

In Chapter 1 of this thesis I review three methods concerning the
solvation free energy calculation. I then explain the extension of the SPT
for molecules with equal radii in Chapter 2, and the combination of the
extended SPT with the Poisson-Boltzmann equation in Chapter 3 (the
extension of the SPT with unequal radii is also explained). Applications of
the theory to proteins are discussed in Chapter 4, and the mathematical basis

of the extended SPT, a key of our success, is explained in Chapter 5. In
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Chapter 6, our conclusions and some preliminary results of the application

of our new method are presented, and the objective for future work is

discussed.
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Chapter 1
Review of three methods relating with the calculation of the

solvation free energy

Empirical method using the accessible surface area of the atom

One of the most widely used methods for calculating solvation free
energies for biomolecules an the empirical method developed by Ooi et
al.[1], in which the accessible surface area of the atoms in the molecule is

used. The solvation free energy of the solute molecule is assumed to be,

AgZ(g>m)=) ASA;p; (1)

where ASA, is the accessible surface area of the atom i, p; is solvation free
energy per accessible surface area of atom i. The parameters, p,, of typical
atoms are determined based on data from experiments on the solubilities of
small molecules. This simple method predicts good values for the solvation
free energies of biomolecules unless the electrostatic contribution is large in

the solvation free energy.

Molecular dynamics simulations

The molecular dynamics simulation is also powerful for the
solvation free energy calculation. The free energy perturbation method [2,
3] is well known for this purpose. In this method, the relative value of the
solvation free energy is calculated using the gradual deformation of the
solute molecule in the molecular dynamics simulation. For example, the
difference between the solvation free energies of the glycine and the alanine
can be calculated by deforming the glycine to the alanine in the simulation.
The effects of water configurations around the solute molecule must be

sufficiently averaged in every step in the course of the deformation of the



solute. However the application to estimate the large difference of the
solvation free energy is limited because of the cpu-time required. Both
contributions of hydrophobic and electrostatic parts to the solvation free

energy are considered.

Poisson-Boltzmann equation

The estimation of the electrostatic contribution to the solvation free
energy is very difficult. The classical method, in which the solvent is
regarded as the dielectric medium, has been applied to the polar and ionic
solutes. In the method, the Poisson-Boltzmann equation is solved
numerically, resulting in reasonable Born energy (electrostatic part of the
solvation energy) even for protein as long as the boundary condition is
properly adjusted [4-6]. There are three algorithms to solve the Poisson-
Boltzmann equation, the finite difference method, the finite element method,
and the boundary element method. Warwicker applied the finite difference
method to the protein in water for the first time. The finite difference
method is widely used because the numerical solvation is suitable for the

vector/parallel computers.
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Chapter 2
Extension of scaled particle theory for solutes with multi

interaction sites: applications to hydration free energies of hydrocarbons
Abstract

A method based on the scaled particle theory is proposed for
calculating the solvation free energy of a solute with an arbitrary shape in
the dilute solution. The new approach employs our extended version of
Richmond method [J. Mol. Biol. 178 (1984) 63] which enables us to
analytically calculate the excluded volume and the accessible surface area of
a molecule. The theory is applied-to estimate the solvation free energy for
a series of hydrocarbons in water. The calculated results exhibit a
remarkable agreement with the corresponding experimental values which have
been revised recently by Sharp and coworkers [Biochemistry 30 (1991)
9686].



Introduction

Theoretical determination of the solvation free energy is important
to pursue the prediction problem of the tertiary structure of the protein.
Furthermore, 1t is primarily important in the various sciences such as
chemical, biological and material sciences for the understanding of the nature
of the solvation in terms of physical quantities in molecular level. In spite
of the remarkable success of the molecular simulation with computers for
the past few decades [1], it is not yet feasible for the method to determine
the solvation free energy mainly due to the overwhelmingly large
configurational space to which solvent molecules can access. The integral
equation approach has been very successful in studying the solution
consisting of relatively small solutes, but its application to large molecules
such as polymers and proteins is still under development [2]. An alternative
empirical approach based on the solvent accessible surface area (ASA) has
been widely employed among polymer and protein chemists, but its success
largely depends on the experimental parameters assigned to the constituent
atom groups [3]. This uncomfortable situation urged us to develop a new
method extended from the scaled particle theory (SPT) [4] for the determina-
tion of the solvation free energy where solutes can take an arbitrary shape.
The theory can give a rigorous description for a liquid system consisting of
hard spheres [5]. The applicability of the method to a wider class of
systems such as aqueous solutions has already been demonstrated for the
solubility of small nonpolar molecules in water by Pierotti [6]. An
application of the method to the solvation of protein has been made first by
Ben-Naim et al. focussing on the hydrophobic effect, but protein was
modeled by a sphere which apparently oversimplifies characteristics of the
solute [7].



Although there have been significant efforts devoted to extend the
theory to cover non-spherical molecules, the mathematical problems
associated have confined the extension within rather limited class of
molecules with a convex shape [8,9]. The solvation free energy is a
reversible work required to dissolve a solute molecule into solvent. For the
solvent consisting of hard spheres, the dissolving procedure is a physical
process to scale up a cavity from which the center of solvent molecules are
excluded. Then, the crucial step to find the reversible work is to get an
analytical expression for the volume of the cavity and its derivatives with
respect to the scaling parameter. The mathematical problem associated with
the procedure is non-trivial for the solute molecules with an arbitrary shape
including a non—convex body.

In this report, we propose an approach for calculating the
reversible work required to create a cavity with an arbitrary shape in the
solvent system consisting of hard spheres based on the Richmond method
which was originally developed to calculate an accessible surface area of
protein [10]. Although there is no essential difficulty for applying our
method to the complicated molecules such as proteins, we present an
preliminary application to the solubility of a series of hydrocarbons in water
in this report. The problem belongs to rather classical thermodynamics in
physical chemistry [11], but has been reinvestigated recently by Sharp and
coworkers particularly in connection with the hydrophobic effect in protein
solutions [12,13].

L. Scaled Particle Theory for a solute with an arbitrary shape

We consider a system consisting of a solute molecule with an
arbitrary shape and solvent molecules with a spherical shape. The solute
molecule is modeled as a rigid body formed of fused hard spheres with

8



different radii and the solvent molecules are modeled as hard spheres with
the same radius. The problem is to find an expression for the reversible
work required to dissolve the solute in the solvent. As mentioned, the
dissolving procedure can be viewed as a scaling—up-process of a cavity
made in the solvent. The volume of the cavity is an excluded volume of

the scaling solute (see Fig. 1a).

solvent
molecule

excluded
volume

Fig. 1a The solute and solvent molecules in the extended scaled particle
theory.A schematic illustrating of the solute volume excluded by

solvents.

Then with the standard argument in SPT, the reversible work (C_?-L.) for

creating the cavity with an arbitrary shape can be written as [8,14],
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1naccessible accessible
surface surface
Fig. 1b

The solute and solvent molecules in the extended
scaled particle theory. Accessible and inaccessible

surface of a component of fused spheres.

?

1
G_=N J T|-In(1 - pVC(O))+pLG(k)( NWynf @

where N, is the Avogadro number, kg is the Boltzmann constant, T is

the

absolute temperature, p is the number density of the solvent, A is the
scaling parameter (0<A<1), V.(A) is the volume of the cavity, and G(A) is

10



Fig. 2 Models of hydrocarbons, normal-alkane in the trans-conformation,
as fused hard spheres. The symbol @ shows the location of the

exposed vertices.

the distribution function of solvent centers at surface of the cavity. The first
term in Eq.(1) is the work required to dissolve the material point as the
seed of the solute molecule into the pure solvent. The second term
represents the work required scaling—up the solute molecule from A=0 to
A=1. The meaning of the second term is rather obvious since it is a product
of the pressure of solvent exerted on the surface of the cavity, kBTpG—(k),
and the infinitesimal increment of the volume of the cavity. The integral can
be evaluated analytically to lead

where P is the macroscopic pressure of the solvent, which is to be applied
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( ) .C FV.

2(87@)” 2
v,
P 2 (m—)xo
A= B=_P 4 c-__P B, (3)
k, T 1-pV (0) (l—pVC(O))2 82V
% e

at the surface of the cavity with macroscopic size (A=c). The derivatives of
V(L) at A=0 are the limit when the positive A approaches 0. If the solute
1s a convex molecule, these equations are exactly the same as those of
Boublik [14]. The V. can be caiculated for the solute with virtually any
shape as follows [15],

V=3 [%R;J‘(M@ SELSUN L (@

_ D;,*R,~R,

w2 R, L Dy ()

ab

where a runs through all atoms in the solute molecule, » runs through
atoms with which the atom a intersects to form inaccessible surfaces, S,*(\)
and S,'(A) are accessible and inaccessible surface area of the scaling atom
a (see Fig. 1b), r, is the radius of the atom a, r, is the radius of the
solvent molecule, and d, is the distance between atom a and b. The
analytical equation of S/, as the function of only atomic radii and
interatomic distances, is derived by employing the Richmond method and
that of S, is derived by us [16]. The analytical equations of the first and
second derivatives of V(L) are obtained from V(A). More detailed description
of the theory is presented elsewhere [4]. Here we give an expression for the

case to be used in the next section.
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The fused spheres with equal radii in Fig. 2 are regarded as a
model of normal alkane in the trans-conformation.

V.(M)=nT, +E T,(a,b)+ Z Ty(a,b,c) . (6)

(a,b) (a,b,¢)

T, - _§.TcR3(1+8M) . Ty(ab)= %nFab(2R2+J§b) ,

1

T,(ab,c)= %[—Fab@R2+J§b)®(a,b,c)+R3Q(a,b,c)+FabL(a,b,c)\/J§b—L(a,b,c)2 } ,
(7)

D ~F cos®  +F
Fab= ab , Jab= /RZ_sz , L(a,b,c)= ab abc ac ,

2 sinB
R%cos® , -F F
Q(a,b,c)=_cos-l( abe ab ac') , @(a,b,C)_—_COS—I(L(a,b’C)) : (8)
Jabjac ab
Dcfb +D§c —Dbzc . 2
cosO , = 55D , sin@, =/1-cos’@,

ab~ ac

R=rp+r, , D_=d A , (9)

where 0 is the Kronecker’s delta, r, are the radii of solute atoms, d,, is the
distance between atoms a and b , and n is the number of atoms in the
solute molecule, the first summation extends over all pairs of atoms which
make inaccessible surfaces (Fig. 1b), the second summation extends over all
triplets of atoms which make exposed vertices (@ in Fig. 2), ie., both end
points of a line made of two intersecting inaccessible surfaces. The
summations can be performed using the suffices of the solute atoms which

are numbered sequentially from one terminal atom to the other,
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n n n-1 n-2
%bj) T,(a.b) --23 T, (a,a—2)+X; T, (a,a—1)+§:l T, (a,a+1)+z; T,(a,a+2) ,
(1 a= a= a= a=

n

n-1 n-2
Y T(abe)=2|Y T,(aa-2a-1)+y T(aa-la+1)+y. T,(a,a+l,a+2)
=3 a=2 a=1

(a.b,c) a=:

hgﬂj T3(a,a—l,a—2)+§ T, (a,a+1,a—l)+n22 T,(a.a+2,a+1)

(11) a=3 a=2 a=1

This expression of normal alkane in our extended SPT includes the case of
the single sphere solute (n=1) studied in the original SPT and the case of
the hard dumbbell solute (n=2) studied by Boublik[17].

II. Solvation Free Energy of Hydrocarbons

As an application of the theory sketched above, we study the
solubility of hydrocarbons in water of which importance in chemical
biological sciences has been well addressed [7,11]. Recently, Sharp and
coworkers restudied the problem with casting a suspicion to the traditional
interpretation of experimental values of the transfer free energy to extract
the solvation free energy [12,13]. The authors claimed from a
thermodynamic arguments that the traditional method to evaluate the
solvation free energy does not fully account for the change in volume
entropy, and they revised the interpretation of experimental data on this
account.

We employed the Pierotti’s recipe [6] in order to calculate the
solvation free energy of a series of hydrocarbons in water. The dissolution

of the solute is decoupled into two steps by a thought experiment: (1)
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creating a cavity in solvent, which has a right size as well as a shape to
accommodate the solute, (2) establishing the attractive interaction between
the solute and solvent. Then the solvation free energy can be written as a

sum of the two terms:
G=G +G, , (12)

where 56 and C-}-, correspond to steps (1) and (2) above, respectively. The
free energy of cavity formation C?c can be calculated from the extended SPT
described in section 1. We employ the Pierotti’s value for the effective
hard-sphere radius (1.375 A) for water [18] which is very similar to the
value commonly used in the study of biopolymers (1.4 10&) [19]. To estimate
the contribution from the attractive interaction (_}_, we also utilized Pierotti’s
formula. He assumed C_;-, 1S approximately equal to the corresponding
enthalpy, 1-7,., due to the attractive force between solute and solvent. Then
fz 1s estimated as an integrated value of the Lennard-Jones type interactions
between the solute and solvent molecules. The electrostatic interactions
between the solute and solvent molecules are neglected. A following
step—wise function was assumed for the distribution function of solvent

molecules around a solute molecule,

gy, )=0 - (3b; d,sr +r) (13)
’ d = - 2+ - 2+ z- 2
glxy.2)=1 - (Vb; dbv>rb+rv)J by \ﬂx x) -y, +(z-z,)

where (x,,y,,z,) is a Cartesian coordinate of a center of the solute atom b.
In this study, we calculated the value of I;, in the same way as the Pierotti

(20] using distribution function g(x,y,z) to cover a series of hydrocarbons,
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6
R > 1 _Oa
H=) H, , Hz=-NC_|||pgxy2)(—-—)dxdydz
2 <] do, d, (14)

C =4(e e )0, , o, =(c,+c)2 ,

where h—fa is the enthalpy contribution from atom a, € and o, are the
Lennard-Jones parameters for water (as the solvent), ¢, and o, are the
Lennard-Jones parameters for solute atom a.

The solvation free energy was calculated for a series of the
normal-alkanes, CH,,,, (n=1,..,10). The extended atom representation is
employed so that the methylene, methyl, and methane groups are regarded
as single spheres. The Lennard-Jones parameters for calculating are listed
in table 1. The TIPS parameters determined by Jorgensen are employed for
the extended atoms CH,, CH,, and CH, [21]. The parameters for water are
those determined by Pierotti from the solubility data of inert gas in water.
The model of normal-alkanes is shown in Fig. 2. A single value 1.99 A,
which is a half the Lennard-Jones diameter (o) for CH,, is assigned to r,
and }b in Eq.(9) and (13) for CH,, CH,, and CH,. The values of d; is 1.535
A, the C-C bond length in ethane. The values of C-C-C bond angle is
109.47°.

The calculated values of the solvation free energy for the
normal-alkane are plotted against the number of carbon atoms as shown in
Fig. 3.
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Fig. 3 Plot of the calculated values of the solvation free energy for the
normal-alkane against the number of carbon atoms. The thick
solid, dashed and thin solid lines represent G, Ci and 5,,
respectively. The experimental values of G corrected by Sharp
et al. (@) and uncorrected (O) are also plotted.

The corresponding experimental values corrected by Sharp et al. [13] are
also plotted in the same figure along with the uncorrected values [22]. The
way used to derive the solvation free energy of methane (n=1) is identical
to that of Pierotti [12] except for the effective hard—sphere radius of
methane. The theoretical results shows almost perfect agreement with the
experimental results interpreted by Sharp et. al. within the experimental

accuracy in spite of the neglect of the multiplicity of the conformation of
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the solute molecule.
Concluding remarks

We have presented a method of calculating the solvation free
energy of a solute with an arbitrary shape based on the scaled particle
theory. The excluded volume of the solute molecule and its derivatives with
respect to a scaling parameter, which are keys to the theory, have been
analytically obtained using our extended version of Richmond method. The
theory has been applied to the solvation free energy of a series of hydrocar-
bons in water. The results have shown a remarkable agreement with the
experimental values which have been recently interpreted by Sharp and
coworkers. The scaled particle theory has been believed to account for the
hydrophobic effect reasonably well. Our results seem to have added another
evidence to the confidence.

In this chapter, we studied small molecules with non-spherical
shape. However, there is no principal difficulty to extend the method to
cover more general class of solute molecules including proteins as long as
the free energy for the cavity formation is concerned. The major difficulty
expected for such extension will be the treatment of the electrostatic
interactions which contribute to the solvation fee energy to a large extent
for the ionic molecules. The treatment based on the Poisson-Boltzmann
equation has been developed to account for the electrostatic effect [23],
although it does not account for the hydrophobic effect. A hybrid between
SPT and the Poisson—-Boltzmann approach will complete the theory for the

solvation free energy of biopolymers.
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Table 1

Lennard-Jones parameters of water and extended atoms

Compd oA €kgK

HO 275 853
CH, 373 1479
CH, 386 911
CH, 398 575

21



Chapter 3
Combination of the extended scaled particle theory and

Poisson-Boltzmann equation: applications to hydration free energies

alkanes and alcohols

Abstract

A hybrid approach of the extended scaled particle theory (SPT) and
the Poisson-Boltzmann (PB) equation is proposed for calculating the
solvation free energy of the solute with partial charges in dilute aqueous
solution. The applicability of this method is demonstrated by taking a series
of the normal alcohols as an example along with normal alkanes. The
solvation free energy of normal alkanes which has been studied previously
based on a rather crude model is recalculated using more elaborate model.
The electrostatic contribution to the free energy for the polar solute is
calculated by the PB equation. In order to take into account the complicated
boundary condition associated with the shape of molecular surface, the PB
equation is solved numerically using a finite difference method. A
superposition of hydrophobic and the electrostatic contributions to the
solvation free energy exhibits a reasonable agreement with corresponding
experimental data for the polar solute. Possibility of further applications of

the method is discussed.
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Introduction

Increasing attention has been paid to the theoretical determination of
the solvation free energy from a variety of fields including the stability
analysis of protein and the chemical reaction rate in the condensed phase.
In spite of the remarkable success of the molecular simulation with
computers for the past few decades [1], it is still one of the most difficult
tasks for the method to determine the solvation free energy mainly due to
the overwhelmingly large configurational space to which solvent molecules
can access. The integral equation approach has been very successful in
studying the solution consisting of relatively small solutes, but its application
to large molecules such as polymers and proteins is still under development
[2]. An alternative empirical approach based on the solvent accessible
surface area (ASA) has been widely erﬁployed among polymer and protein
chemists, of which success has been marked by the prediction of the cold
denaturation of proteins [3]. The ASA method has been applied even to a
quantum-chemical calculation to investigate the solvent effect upon the
electronic structure of a molecule in condensed phase. However, the success
of the method largely depends on experimental parameters assigned to the
constituent atom groups [4]. This uncomfortable situation urged us to
develop a new method [5] extended from the scaled particle theory (SPT)
for the determination of the solvation free energy where the solute can take
an arbitrary shape. The theory gives a rigorous description for a liquid
system consisting of hard spheres [6]. The applicability of the method to a
wider class of systems such as aqueous solutions has already been
demonstrated for the solubility of small nonpolar molecules in water by
Pierotti [7]. Recently, the physical origin of the anomalous decrease in

entropy in the solution process of solute from gas to aqueous environment
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was investigated by Soda [8] based on an analysis of the free energy of the
cavity formation calculated from SPT. The author has attributed the large
decrease in entropy upon the insertion of a molecule into solvent to the
decrease in volume available to solvent molecules. Although there have been
significant efforts devoted to extend the theory to cover non-spherical
molecules, the mathematical problems associated have confined the extension
within rather limited class of molecules with a convex shape [9,10]. In the
preceding chapter [S], we have proposed an extended version of SPT based
on the Richmond method [11] of calculating the surface area and the
volume of complex molecules, which is applicable to solute with an
arbitrary shape including that with non-convex shape. In the chapter 2, we
only outlined the method and reported the solvation free energies of normal
alkanes as fused spheres with equal radii. Results for revised model of
normal alkanes in which the fused spheres have unequal radii are reported
in the this chapter.

The main objective of the present chapter is to extend the method
further to be able to include polar and ionized solutes. A crucial problem
to be solved in calculating the solvation free energy for those solutes is how
to evaluate the electrostatic contribution or the Born energy [12]. Fully
statistical-mechanical treatment of the problem has again been limited to
relatively small molecules at this stage. A possible alternative is to employ
the Poisson-Boltzmann (PB) equation which is based on the continuum
solvent model [12,13]. The equation is known to give reasonable results for
the Born energy even for protein provided the boundary condition is
properly adjusted [13-15]. We employ the method in order to evaluate the
Born energy of polar molecules. The boundary problem representing the
complicated shape of molecular surface is solved numerically using the finite
difference method [14,15]. A notorious drawback of the PB approach has
been its inability to take account for the hydrophobic part of the free
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energy. On the other hand, the Pierotti method based on SPT just takes
care of the hydrophobic contribution in terms of the cavity formation and
the attractive interaction between the solute and the solvent. Therefore, a
hybrid between the two methods gives entire solvation free energy of polar
and ionized solute working complementarily each other. We demonstrate the
applicability of the method by taking a series of the normal alcohols as an

example.

25



Method

In the following two sections, we give rather instructive description of
the extended SPT. The details of the derivation of the equation of the
volume of the fused spheres used in the extended SPT is given elsewhere
[16]. In the section III, some details of the numerical calculations is given
including the PB procedure.

We employ the Pierotti’s recipe [7] to calculate the solvation free
energy, Ag’(g—m), of a series of normal alcohols in water as well as
normal alkanes. The dissolution process of the solute into dilute solution 1s
decoupled into three steps by a thought experiment: (I) creating a cavity in
solvent, which has a right size as well as a shape to accommodate the
solute molecule; g., (II) establishing the Lennard-Jones type interaction
between the solute molecule and solvent; g,, (III) coupling the electrostatic
interaction between the solute and the solvent molecules; g,. Then the

solvation free energy can be written as a sum of the three terms:

A‘g-so(g'a m) =g_c+§1+g_3 (L

I. Extended Scaled Particle Theory

We consider the rigid body system consisting of one solute
molecule with an arbitrary shape and solvent molecules with a spherical
shape. The solute molecule is modeled as the fused hard spheres with
different radii and the solvent molecules are modeled as hard spheres with

the same radius. This represents the system of aqueous solution of an
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organic molecule. All hydrogen atoms in the system are regarded as being
absorbed into the united atoms. The problem is to find an expression for the
reversible work required to dissolve the solute in the solvent. In this section,
at first step SPT is explained in the manner based on the work of Gibbons,
R. [9] which is the first attempt to apply SPT to the non-spherical particle
system. SPT is the theory to calculate g. by scaling up a solute molecule

in the solvent,

g.=W(i=1) (2)

where A is the scaling parameter varying from O (material point) to 1 (real
size), W(A) is the work required to dissolve the scaling solute particle to the
system. The theory assumes that W(A) can be represented for all positive

values of A by the following equation,

W(A)=A+BA +—;—C/12+PVC(/1) A20 (3)

where V(L) is the excluded volume of the scaling solute.where P is the
macroscopic pressure of the solvent. The term PV, is introduced since at
very large values of A the leading term in W(A) must be PV, . This term is
negligibly small at A=1 under the pressure of one atmosphere. The cavity
of the scaling molecule has non-zero volume even at A=0. The equation of

W(L) for negative values of A is known ,

W)=~k Tin(1-pV(A) . (4)

The coefficients A, B, and C are determined using the continuity up to
second derivatives at A=0. The explicit expression of A, B and C are

following;
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where k; is the Boltzmann constant, T is the absolute temperature, p is the
number density of the solvent, the derivatives of V (L) at A=0 are the limit
when the positive A approaches 0. This expression in our extended SPT
includes the case of the single sphere solute studied in the original SPT and
the case of the hard dumbbell solute studied by Boublik [17]. If the solute
is a convex molecule, these equations are the same as those of Gibbons [9]
and Boublik [10]. Validity of the scaled particle theory for nonspherical
particles has been demonstrated by comparing the compressibility factors
with those of Monte Carlo simulation [16,18].

The reversible work for creating a cavity with an arbitrary shape

can be written as follows [10],

V(M)
EN

W(A)=k87{-1n<1—ch<0»+p [Tax—==dn| ©

['(A) is the distribution function of solvent centers at the surface of the
cavity. The first term in Eq. (6) is the work required to dissolve the
material point as the seed of the solute molecule into the pure solvent. The
second term represents the work required for scaling up the solute molecule
from A=0 to A=1. The meaning of the second term is rather obvious since
it is a product of the pressure of solvent exerted on the surface of the
cavity, kzTpI'(A), and the infinitesimal increment of the volume of the
cavity,

The second step is to make analytical formulations of excluded
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volume, V(A), and its first and second derivatives. Because in this work a
solvent molecule is regarded as a single sphere, the excluded volume of the
solute molecule is exactly the same as a volume of fused spheres in which
the value of the radius of each sphere is the radius of the atom forming the
solute molecule plus the radius of the solvent molecule. The analytical
formulation of the volume of the fused spheres with unequal radii is
explained in the appendix. The topological nature of the fused spheres are
essential to calculate the volume. Because in most of the cases, topological
nature is not changed near A=0 in the course of the scaling, the derivatives
of the excluded volume are analytically derived using topological nature at
A=1.

II. Lennard-Jones interaction of the solute molecule with the solvent.

To estimate the contribution from the Lennard-Jones interaction g,
we also utilized Pierotti’s method [19]. Because the solvent entropy change
caused by coupling the Lennard-Jones type interaction is thought to be
small, g, is approximately equal to the corresponding enthalpy, l-z-,, due to
the attractive force between solute and solvent. Then }-z—, is estimated as an
integrated value of the Lennard-Jones type interactions between the solute
and solvent molecules. A following step—wise function was assumed for the

distribution function of solvent molecules around a solute molecule,

nxy,2)=0 - (3 b; dy<r,+r) (7)

=L V(v VRi+(7—7 Y2112
T](x’y’z)=1 (V b, dbv>rb+rv) > dbv {(x xb) (}’ }’b) (Z Zb)}

where r, and r, are the radius of atom & and the solvent molecule,
respectively, (x,.y,,2,) are Cartesian coordinates of a center of the solute

atom b. In this study, we calculate the value of E, in the same way as
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Pierotti has done [20] using distribution function n(x,y,z) to cover a multi-

site molecules.

6

h, =§a: . H=¢, [[[ pn(x,y,z)(;———(—i—a)dxd ydz "

C,=4(c e )?cS, , o =(c,+0)2 ,

where }_z-,a is the enthalpy contribution from atom «, €, and o, are the
Lennard-Jones parameters for water (as the solvent), €, and o, are the
Lennard-Jones parameters for solute atom a. The calculation is performed
numerically using equally spaced 3-d grids of which size is 0.02 A. When
the topology of the solute molecule is very simple, analytical calculation of
l;a can be done using expression of accessible surface area of the solute
molecule. We calculated the values of I;a for methane, ethane, and methanol

analytically in order to check the corresponding numerical results.
III. Electrostatic interaction between the solute molecule and the solvent

To evaluate the hydrophilic part of the free energy change due to the
electrostatic  interaction (Born energy), we numerically solve the
Poisson-Boltzmann equation of the solute-solvent system using a finite
difference method [13-15] based on the macroscopic dielectric model [21].
We used essentially the same algorithm as that of Warwicker et al. [13] but
modified the algorithm in a few points in the treatment of the boundary
conditions [14,15]. The system is divided into two regions: solute region and
solvent region. In this case, the dielectric constants of the solute molecule
and the water are 1 and 78.4, respectively. The boundary between these
dielectric media is just the surface of the solute molecule except hydrogen

atoms bound to heteroatoms (see Fig. 1).
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Fig. 1

Models of organic molecule, normal-alcohol in the trans-
conformation, as fused hard spheres. The boundary of the
excluded volume is represented by the thick solid lines. The
radius of the solvent molecule is r,. The dielectric medium as

the solvent (water) is represented by the shaded region.
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For hydrogen atoms bound to heteroatoms, which have partial charges, we
use the dielectric boundary radius of 1.0 A in order to avoid a situation in
which the hydrogen charge comes too close to water [22]. To see the effect
of the grid size, we performed the numerical calculation using different grid
sizes, and found that the effect was negligible in case of 0.25 A with which
the present work were carried out. The Debye screening constant kK is set
to zero corresponding to the condition of infinite dilution. Our program
which used in this work to solve the Poisson-Boltzmann equation will be
registered in JCPE (Japan chemistry program exchange) in this year from

which anyone can get our program in the similar way as QCPE.

Energy and structure parameters

As has been mentioned already, solute hydrogen atoms are not
treated explicitly, but are treated as absorbed into united atoms. Each radius
r of the hard sphere making fused spheres is a half the Lennard-Jones
diameter o of the united atom. The Lennard-Jones parameters used in
section II and electrostatic partial charges used in section III are listed in
table 1. The TIPS parameters determined by Jorgensen are employed for the
extended atoms CH,, CH,, CH,, O in ROH, and H in ROH [23]. The
parameters for water are those determined by Pierotti from the solubility
data of inert gas in water [20]. The effective hard-sphere radius (1.375 A)
for water is similar to those commonly used in the study of biopolymers
(1.4 /0\) [24]. The structure parameters of normal-alkanes and alcohols are

the same as those in the Jorgensen’s paper [23].
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Results

The calculated values of the solvation free energy for the
normal-alkane in the trans-conformation are plotted against the number of
carbon atoms as shown in Fig. 2. There have been an unsettled controversy
concerning the experimental data for the solvation free energy at infinite
dilution, with which the theoretical results should be compared. The
experimental data can be abstracted from the solubility data according to the
following equation,

g
AZ2(g~ my=-kyTn( L)+ (9)
Ps
where p2 and p,” are the number densities of the solute molecules in the
gas phase and in the mixture, respectively. The second term in Eq. (9) is
a correction proposed by Sharp et al., [25, 26] which somehow takes
account for the volume difference between solute and solvent, and it has the

same expression with what appears in the Flory-Huggins theory [27, 28],

x=—kBT(1-—‘—/f) (10)
A%

v

where v, and v, are the partial molar volumes of the solute s and solvent
v, respectively. It is the unsolved question whether the correction is
necessary or not. Since it 18 not the purpose of this article to solve the
question, we leave it to future studies and plot both data in Fig. 2.

In our calculation, the method for deriving the solvation free energy
of methane (n=1) is identical to that of Pierotti [20] except for the effective
hard-sphere radius of methane. The theoretical results shows fairly good

agreement with the both experimental results with and without Sharp’s
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Plot of the calculated values of the solvation free energy for the
normal-alkane against the number of carbon atoms. The thick
solid, thin solid and dashed lines represent g, g. and g,
respectively. The experimental values of G interpreted by Sharp
et al. (@ partial molar volume is used for v,, + molar volume

is used for v, ) and without correction term (O) are also plotted.
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correction, although better agreement was obtained with that using Sharp’s
correction.

The calculated values of the solvation free energy for normal-
alcohol in the trans-conformation are plotted against the number of carbon
atoms as shown in Fig. 3. The corresponding experimental values are also
plotted in the same figure. The theoretical results shows good agreement
with the both experimental values with and without Sharp’s correction. The
agreement is better again with the experimental results corrected by Sharp
et. al. Our results for the Born energies of meth.anol and ethanol are also
in good agreement with those obtained from the free energy perturbation
method, -7.1 and -7.4, and with those calculated from the generalized Born
equation, -7.1 and -6.4 [22].
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Fig. 3 Plot of the calculated values of the solvation free energy for the
normal-alcohol against the number of carbon atoms. The thick
solid, thin solid, dashed, and dashed-dot lines represent g, gc, 2
and g, respectively. The experimental values of G interpreted by
Sharp et al. (@ partial molar volume is used for v,) and without
correction term (O ) are also plotted.
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Discussion

It is not surprising why SPT works so well for liquids which consist
of molecules interacting via short range potential such as the Lennard-Jones
interaction, since thermodynamic quantities of those liquids are largely
determined by the repulsive part of the potential. However, why the theory
is successful also for aqueous system has been a puzzle since Pierotti
published the famous article concerning the solubility of inert gases in water,
because the liquid structure of water is largely determined by hydrogen-
bonds between a pair of molecules and the hydrogen-bonding network and
its modification due to the solute perturbation are believed to play an
essential role in determining the solvation free energy. The modern computer
simulation which of course incorporates such a highly non-central interaction
seems to have been giving reasonable, if not perfect, agreement with SPT
as long as the solvation free energy is concerned. It is therefore worthwhile
to express our opinion for this problem even though the discussion is largely
speculative in this stage.

According to SPT, the solvation free energy in water is characterized
by the large positive contribution from the work required to make a cavity.
The work is proportional to the local pressure which in turn is proportional
to the number density of solvent as indicated in Eq. (6). It is therefore
reasonable to attribute the large energy for the cavity formation to the large
number density of water. Then, next question will be what distinguishes
water from other solvent. In another word, what is the anomaly of water?
The fact that water maintains liquid state at such high density will be the
anomaly of the solvent, which can be possible only due to the strong
attractive electrostatic interaction (hydrogen bond). Recently, Wakai and
Nakahara presented interesting experimental results (personal communication)

which concern the pressure dependence of the virial for a variety of liquid.

37



They have found the virial at room temperature for water stays essentially
constant over a pressure range from 1 MPa to 300 MPa, while CH,CN,
CHCl, and CH, exhibit large dependence on the pressure. The results
suggest that water is highly compressed liquid already at standard state due
to the harsh balance between the repulsive and attractive forces. The low
compressibility of water compared to other liquids support the view.
Although SPT does not explicitly take account for the structural aspect of
water, it reflects the most important nature of water implicitly through the
number density which is anomalously large compared to other solvent.

Our results for both normal alkane and alcohols apparently support
the interpretation proposed by Sharp et. al. However, the results should not
be regarded conclusive considering various approximations with which the
theory 1s associated at this stage. The approximation include (1) making
solvent distribution uniform beyond the distance of closest approach in the
calculation of g, (2) using continuum dielectrics to evaluate the electrostatic
contribution, and (3) neglecting contribution from the conformational isomers
which possibly plays a significant role in solution. Further extensive study
is needed to elucidate significance of those approximations. Rather
encouraging for the theory is the fact that the theoretical results show
reasonable agreement with either of the two experimental results after
cancellation of the large positive contribution from the cavity formation and
the attractive contribution due to the Lennard-Jones as well as the
electrostatic interaction. The resolution of the theory must be sufficient for
most of applications which concern a qualitative nature of the solvation
process.

In fact, our theory reproduces qualitatively the difference in the
solubility, between two typical solutes, hydrocarbons and alcohols, which
respectively represent those solutes with low and high solubilities. It should

be noted that the present theory is free from any experimental parameters
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except for the dielectric constant of solvent which is employed for the
evaluation of the electrostatic contribution.

For an actual application of the theory to a phenomenon in which
only difference of the solvation free energy matters, the problem concerning
the two experimental data becomes even less significant, because the error
associated with the correction will be largely canceled out anyway. One
example of such possible applications will be the thermal and cold
denaturation of protein. A study has been carried by Ooi and Oobatake [3]
based on the method of the accessible surface area with empirical energy
parameters for the atom groups. They have calculated the free energy
difference between the native state of the protein and one of the possible
extended states (a denatured state), and could have successfully predicted
the thermal as well as cold denaturation. The cold denaturation occurs due
to the unfavorable change in the entropic contribution as temperature
decreases, of which essential part is the free energy of the cavity formation.
It is almost obvious that each part of the decomposed free energy in the
present treatment shows different behavior with the conformation of protein
and with the temperature change. If so, it is of great interest to calculate
the free energy difference between the two conformations based on the
method presented here, and to see how each part of the decomposition

behaves as temperature changes.
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Conclusions

In this chapter, we have presented a new method to evaluate the
solvation free energy of polar and non-polar solute by coupling the extended
scaled particle theory and the Poisson-Boltzmann equation. Considering the
rather crude approximation employed for the model for solute and solvent,
the theoretical results show a reasonable agreement with the experimental
data. Although there remains few questions in the quantitative aspect in the
method, we conclude that the theory can be applicable to more interesting
classes of solvation phenomena including the thermal and cold denaturation

of protein.
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Appendix

Analytical formulation of the volume of the fused spheres with unequal radii

The body of fused spheres can be divided into the pieces of
bodies belonging to the single spheres by the Dodd’s definition. The volume
of each piece, V,, can be calculated from [29],

2 p2 p?
a LST2/(a) ab

(A1)

where a runs through all spheres considered, LST2’(a) runs through spheres
with which the atom a intersects to form inaccessible surfaces (see Fig. 4a),
S* and S, are accessible and inaccessible surface area of the sphere a, R,
is the radius of the sphere a, and D, is the distance between the sphere a
and b. The piece belonging to each sphere has the intersection circles,
exposed vertices, buried vertices which are important topological elements
used soon (figure 4a). Eq. (Al) shows that the each piece can be divided
into the smaller pieces consisted of cone-pyramids and spherical sectors [29]
(see Fig. 4b).
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Fig. 4a Accessible and inaccessible surface of a component of fused
spheres. The thick dashed line represents intersection circles
(including one isolated intersection circle). The symbols O and
A show the locations of the exposed and buried vertices

respectively.
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Fig. 4b Cone-pyramids and spherical sectors. The symbol @ shows the
location of the center of the sphere (for the case of the left

body, the center of the sphere is located inside the body).
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The elegant analytical equation of V, as the function of only

sphere radii and inter-sphere distances, was derived by employing the
Richmond method and that of S,/ is derived by one of us [16]. We

originally started from the Eq. (A1), but after rearranging a lot of equations

paying attention to the topologies of the pieces, we finally got the elegant

equation. The only topological information needed to get V, are what

follows,

1)
2)

3)

4)

Target sphere, a, is isolated (having volume of 4/3 mR,’) or not.
The list of spheres (LST2(a)) making isolated intersecting circles
with the sphere a.

The component (b) of this list (LST2(a)={b}) is the sphere index
which makes the isolated intersecting circle with sphere i.

The list of pairs of spheres(LST3(a)) making the exposed vertices
of the sphere a.

The component ((b,c)) of this list (LST3(a)={(b,c)}, b<c) contains
the indices of the two spheres which make the exposed vertex
with sphere i..

The list of triplets of spheres (LST4(a)) making the buried vertex
of the sphere a.

The component ((b,c,d)) .of this. list (LST4(a)={(b,c,d)}, b<c<d)
contains the indices of the three spheres which make the buried

vertex with the sphere i.

These topological information 1)-4) are obtained by the analytical calculation.

From these information we can make the following lists.

07)

2’)

The Euler-Poincaré characteristic, »,, of the accessible surface of
sphere a.

The list of spheres appeared in 2), 3), and 4). This is exactly the
same as the list LST2’(a).
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The volume, V,, can be calculated for the fused spheres with

virtually any shape as follows:

V, sT(@+ Y Tyab)+ Y, {T,,@bc)+T,(a.b.c)+T,a,c.b)}

LST2(a) LST3(a) (A2
+ Y (T(abed)+T(acdb)+T(adbc)) )
LST4(a)

2 2 1 1
Tl(a)=_3-nR3x;‘ : Tz(a,b)=§—nR§Fab+§nFabjjb , T3a(a,b,c)=—3—R2£2(a,b,c

T, (a,b,c)= _% R’F »2(@,b,0) +_é_ F ab[ -J2,®(a,b,c) +L(a,b,c){.l§b —L(a,b,C)2}1/2]

T(ab.cd)=- %RﬁdeT(a,b,c,d) +%F AT @bed Mabed)

45



DZb +R§ —R;
2D,

-F abcoseabc +F
sinf
2L(a,b,C)L(a,b,d) —(L(a,b,C)2 +L(a’b>d)2)cos b4 (a7b)cad)
sin¥(a,b,c,d)

. TRE-FL}” L L@bo-

F =

M(a,b,c,d)=

>

Ricos6, -F F
Q(a,b,c)=-cos {(— - b acy ®(a,b,c)=cos 1(L(abc))

ab” ac ab
2 2 2
D ab +D ac -D bc
2D D,

cosB , = , sin® {1 -cos®0,,_ }1/2 ,

abc
in® +D,fdsin260bd—Dc2d+(D 080, -D_cosB , )

D s
cos¥(a,b,c,d)=
( 9 2D, D, sin@ , sinB , ,

sin'® (a,b,¢,d)={1-cos*¥(a,b,c,d)}? |

It is easily understood from our equation that the topological
nature, ie. exposed and buried vertices, are important to calculate the
excluded volume. The detail of the analytical calculation of the volume,
including the analytical equation of the accessible surface area in the same
manner of the volume, is explained elsewhere [16].

In our extended scaled particle theory, the excluded volume of the
scaling solute molecule is calculated by setting the radius and the distance

as follows,
R=rA+r, , Dj=d A (A3)

where r, and r, are the radius of the solute atom a and the solvent
molecule, respectively, d, is the distance between atom a and b, A is the
scaling parameter. First and second derivatives of the excluded volume by
the scaling parameter are also derived analytically from Eq. (A3), because

our expression of the excluded volume is the function of only atomic radit
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and interatom distances.
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Table 1

Lennard-Jones parameters of water and extended atoms

[

Compd 0,A  €/kgK qg.electrons

H,0 2.75 85.3 0
CH, 3.73 148.0 0
CH, 3.86 91.2 *
CH, 3.98 575 *

O in 3.08 88.0 -0.685
ROH

H in 0 0 0.40
ROH

* partial charges chosen to achieve neutrality of monomers in the same

manner in TIPS.
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Chapter 4
Application to the proteins: hydration free energies of avian

pancreatic polypeptide and actin

Abstract

A hybrid approach combining the extended scaled particle theory
(SPT) and the Poisson-Boltzmann (PB) equation for the solvation free energy
of non-polar and polar solutes has been proposed by us. This new method
is applied for the calculation of the hydration free energy of two proteins,
avian pancreatic polypeptide (36 residues) and actin (372 residues). In the
hydrophobic part of the solvation free energies of these proteins, cavity
formation in the water and attractive force between the solute and the
solvent compensate each other. Born energy is much larger than hydrophobic
terms in this hydration free energy, because hydrophilic residues are ionized
in the water. Temperature dependences of the hydrophobic part of the
hydration free energies of the avian pancreatic polypeptide in the native and
extended conformations are also calculated. The extended conformation is a
model for the conformation of denatured proteins. The native conformation
is destabilized at low temperature in terms of the hydrophobic effects. This
fact shows that the hydrophobic hydration can be the origin of cold
denaturation. This work is the first step for free energy difference calculation

in stability analysis of the proteins.

Introduction
Increasing attention has been paid to the theoretical determination of
the solvation free energy from a variety of fields including the stability

analysis of protein. Solvation free energies of molecules, especially large
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ones, are very difficult to calculate due to the overwhelmingly large
configurational space. This uncomfortable situation urged us to develop a
new method extended from the scaled particle theory (SPT) [1] for the
determination of the solvation free energy where the solute can take an
arbitrary shape [2]. Furthermore a hybrid approach in which the extended
SPT and Poisson-Boltzmann equations work complementarily was proposed
for the solvation free energy of the non-polar and polar solutes by us. We
have demonstrated the applicability of this new method by taking a series
of the normal alcohols as an example as well as normal alkanes in other
place [3]. In this chapter, we explain the first attempt for the application

of our new method to protein hydration.

Method

In the preceding chapters [2,3], we explained precisely about our
method. Here, we explain the method briefly and add more information
relating to the application for protein. We employed the Pierotti’s recipe [1]
to calculate the solvation free energy, Ag,’(g—m). The dissolution process of
the solute is decoupled into three steps by a thought experiment: (I) creating
a cavity in solvent, which has a right size as well as a shape to
accommodate the solute molecule; g., (II) establishing the Lennard-Jones
type interaction between the solute molecule and solvent; g, (I
establishing the electrostatic interaction between the solute molecule and the
solvent molecules; g;. Then the solvation free energy can be written as a

sum of the three terms:

Ag(g—m)=g +g,+g, (1)
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I. Extended Scaled Particle Theory

We consider the rigid body system consisting of one solute
molecule with an arbitrary shape and solvent molecules with a spherical
shape. The solute molecule is modeled as the fused hard spheres with
different radii and the solvent molecules are modeled as hard spheres with
the same radius. This corresponds to the system of aqueous solution of an
organic molecule.

The reversible work for creating the cavity with an arbitrary shape

can be written as follows [4]

V.0

8-k /{ In(1-pV (0))+p LFO»)( yda | (2

where V. (A) is the excluded volume of the scaling solute, I'(A) is the
distribution function of solvent centers at the surface of the cavity. The first
term in equ. (2) is the work required to dissolve the material point as the
seed of the solute molecule into the pure solvent. The second term
represents the work required scaling up the solute molecule from A=0 to
A=1. The meaning of the second term is rather obvious since it is a product
of the pressure of solvent exerted on the surface of the cavity, kTpI'(A),
and the infinitesimal increment of the volume of the cavity. The difficulty
appeared in the calculation of equ. (2), is we must make analytical
formulations of excluded volume, Vo(\), and first and second derivatives of
it. Because in this work the solvent molecule are regarded as a single
sphere, the excluded volume of the solute molecule is exactly the same as
a volume of fused spheres in which the value of the radius of each sphere
is the radius of the atom consisting the solute molecule plus the radius of
the solvent molecule (Fig. 1). The analytical formulation of the volume of

the fused spheres with unequal radii made by us, is explained in the
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elsewhere [5].

II. Lennard-Jones interaction of the solute molecule with the solvent.

To estimate the contribution from the Lennard-Jones interaction g,
we also utilized Pierotti’s formula [6]. Because the solvent entropy change
caused by the establishment of the Lennard-Jones type interaction is thought
to be small, g, is approximately equal to the corresponding enthalpy, }—z-, due
to the attractive force between solute and solvent. Then }7, is estimated as
an integrated value of the Lennard-Jones type interactions between the solute
and solvent molecules. In the calculation, individual contribution from each
atom in the protein is calculated first. Because it is better to calculate
difference of enthalpy of the solute atom between in analytically known
hypothetical situation (alone in the solvent) and in real situation (surrounded
by other atoms in the solute). Numerical integration with grid size of 0.08

A is done for each atom in the protein.

Fig.1 Schematic drawing of the system. A+B represents the excluded
volume. Solute region (A) has the low dielecrtic constant and

solvent region (B+C) has the high dielectric constant.
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Fig.2

C-terminal

N-terminal

Avian pancreatic polypeptide (1PPT) [11] taken from protein data
bank in BNL.
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II1.Electrostatic interaction between the solute molecule and the solvent

To evaluate the polar part of the free energy change due to the
electrostatic interaction (Born energy), g, we numerically solved the
Poisson-Boltzmann equation of the solute-solvent system [7] based on the
macroscopic dielectric model. Here, only the essence is mentioned. The
system is divided into two regions: solute region and solvent region (Fig.
1). In this case, the dielectric constants of the solute molecule and the
water are 1 and 78.4, respectively. The boundary between these dielectric
media is just the surface of the solute molecule except hydrogen atoms
bound to heteroatoms. For hydrogens bound to heteroatoms, which have
charges, we used the dielectric boundary radius of 1.0 A not to locate the
charges too much close to the solvent having high dielectric constant [8].
In the numerical calculation of this work, the grid size is 0.5 A and K is
set to zero. We treated the both terminals and hydrophilic residues of

protein as ionized both in water and in vacuum .

Energy parameter and structure
The OPLS [9] parameters are employed for the united atoms and
partial charges in protein. The parameters for water are those determined by
Pierotti [10]. |
Avian pancreatic polypeptide:
The crystallographic structure of avian pancreatic polypeptide
(1PPT) [11] is taken from protein data bank in BNL (Fig. 2). For
electrostatic calculation, we add 67 hydrogen atoms, which are
bound to heteroatoms, to crystallographic structure having 301
heavy atoms. In this structure, N- and C- terminals are positively
and negatively ionized respectively and 3 residues (arginine) are

positively ionized and 5 residues (asparagine and glutamine) are

56



Fig. 3 Actin (1ATN) [12] taken from protein data bank in BNL.



negatively ionized. Net charge of this polypeptide is -2 electron
unit.
Actin:

The crystallographic structure of actin (IATN) [12] is taken from
protein data bank in BNL (Fig. 3). For electrostatic calculation, we
add 628 hydrogen atoms, which are bound to heteroatoms, to
crystallographic structure having 2907 heavy atoms. In this
structure, N- and C- terminals are positively and negatively ionized
respectively and 36 residues (arginine and lysine) are positively
ionized and 50 residues (asparagine and glutamine) are negatively

ionized. Net charge of this protein is -14 electron unit.

Temperature dependence of the solvation free energy

The calculation of the temperature dependence of the solvation free
energy is a straight-forward application of our extended SPT. The only
parameter affected by the temperature is the number density of the solvent
in SPT. The solvation free energy at any temperature can be derived
analytically by using the number density of the water. The number density
of thé water is determined as a 4-th polynomial function of temperature to
reproduce the temperature dependence of the bulk water experiments of the
number density. The parameters of the water molecule in SPT is constant
and can be used for over the entire temperature range.

Results and Discussion

Avian pancreatic polypeptide:

The accessible surface area and excluded volume of this protein
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Fig. 4~  Native conformation of avian pancreatic polypeptide.
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Fig. 5 Temperature dependence of the hydrophobic part of the hydration free energy of

avian pancreatic polypeptide (native conformation)
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Extended conformation of avian pancreatic polypeptide. All dihedral angles are

set to be degree of 180 except for ¢ dihedral angles in proline residues. The

accessible surface area and the excluded volume are 5073 A2 and 9618 A’

respectively.
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Fig.7 Temperature dependence of the hydrophobic part of the hydration free energy of

avian paﬁcreatic polypeptide (extended conformation)
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Fig.& Temperature dependence of the hydrophobic part of the hydration free energy

difference. The plotted values are derived by subtracting the hydrophobic part of the

hydration free energies of the native conformation from those of the extended

conformation at the corresponding temperatures.
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Actin:

are 3336.8 A? and 8524.1 A3, respectively. However this protein
has two a-helicies, most of the heavy atoms in the protein are
accessible from water molecules (only three heavy atoms are not
accessible).

The calculated values of the solvation free energy for this protein
are follows; g, g, & and Ag’g—m) are 239.8 kcal/mol,
—-142.5 kcal/mol, -1612.4 kcal/mol and -1515.1 kcal/mol,
respectively.

The temperature dependence of the hydrophobic part of the
hydration free energy (g. and g,) of this protein in the native
conformation (Fig. 4) is calculated (Fig. 5). The temperature
dependence of the hydrophobic part of the hydration free energy
(8¢ and g;) of this protein in the extended conformation (Fig. 6)
is also calculated (Fig. 7). The extended conformation is a model
for the conformation of the denatured protein. The plotted values
in Fig. 8 are derived by subtracting the hydrophobic part of the
hydration free energies of the native conformation from those of
the extended conformation at the corresponding temperature. This
result shows that the hydrophobic part of the hydration can be the
origin of the denaturation at low temperature, which is well known

as cold denaturation.

The accessible surface area and excluded volume of this protein
are 16735.5 A? and 69959.3 A3, respectively.

The calculated values of the solvation free energy for this protein
are follows; g., g, g and Ag°(g—m) are 777.5 kcal/mol,
-741.4 kcal/mol, -1314.5 kcal/mol and -1278.4 kcal/mol,
respectively (See Fig. 9, 10 and 11).
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Fig. 9 Contribution of each atom to the first derivative of the excluded volume of

actin. Blue, green and red represent the positive, zero and negative values,

respectively,
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Fig. [ ¢ Contribution of each atom to the second derivative of the excluded volume

of actin. Blue, green and red represent the positive, zero and negative values,

respectively.
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Fig. | | Born energies of atoms are shown. Blue, green and red represent the positive,

zero and negative values, respectively.



In the hydrophobic part of the solvation free energies of each
protein, cavity formation in the water and attractive force between the solute
and the solvent compensate each other. In the cavity formation of each
protein, Born energy is much larger than other terms in this hydration free
energy, because hydrophilic residues are ionized in the water. The Bomn
energy calculated here is the preliminary one, so more investigation is
needed. This method is suitable for the analysis of the solvation of the
protein, because this can be used without any problems with the
overwhelmingly large configurational space due to the solvent molecules. The
most cpu-time consuming part is numerical integration of attractive forces
between solute and solvent molecules. Analytical calculation of this part may
be possible by using the analytical formulation of the excluded volume
calculation. Although Born energy is dominant in the solvation free energy
of this protein, hydrophobic term is practically important because our main
purpose is an application of this method to the free energy difference
calculation in the future work. For the thermal stability of the proteins, for
example, temperature dependence of the free energy difference is required.
To apply the empirical method using accessible surface area of the solute
to such a problem, the experimental parameter sets at individual temperatures
are needed. In our method, temperature dependence of the solvation free
energy can be obtained by changing few parametérs. It will be also good
application of our method to investigate the effect of the solute shape to the
solvation, because in our method we can treat molecules of arbitrary shape.
Conformational change of proteins and the interface of the two proteins (e.g.

motor proteins, actin and myosin) are good targets.
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Chapter 5
Mathematical basis of extended scaled particle theory:

analytical method for calculating volume of the fused spheres with different

radii

Abstract

We propose a new algorithm for calculating volume of fused
spheres. The new algorithm is superior to the old methods in two aspects.
One is the separation of the algorithm into topological and analytical parts.
This makes mathematical nature of the problem "what is minimum
topological information required to calculate the volume of fused spheres?"
clear. The number of conditional branches is drastically reduced. The
remained conditional branches are those which are topologically essential.
For practical use, only the list of the spheres forming isolated spheres,
isolated sphere circles, exposed vertices, and buried vertices are required.
The other aspect which make the new algorithm superior to the old ones
is the analytical expression which is unrestricted to a choice of the
coordinate frame. All equations are written only by radii of spheres and
distances between spheres. This enables us to calculate derivatives of the
excluded volume with respect to a scaling parameter which is used in the

scaled particle theory of liquid.
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Introduction

Analytical calculation for volume of fused spheres with different
radii is a key for formulating liquid state theories of hard bodies, which
includes the scaled particle theory of arbitrary shaped solutes [1,2] and the
virial coefficients of the liquid consisting of hard spheres [3,4]. In this
chapter we will propose a new algorithm of the analytical calculation for
volume of fused spheres with different radii. The aim of our work is the
volume calculation of the molecule [5], but our algorithm is effective for
any volume calculation for the fused spheres. Some algorithms have been
proposed for this purpose, but all those are not well elaborated in a sense
that they involve too many conditional branches depending on configurations
of the spheres. Most of the conditional branches used in the earlier works
come from two points; 1) the machine (vector/parallel computer) dependent
acceleration of the speed of the algorithm, 2) the topology of the fused
spheres required for the analytical expression. In order to make the problems
in the analytical calculation for volume of fused spheres clear, we focus on
the point 2) in this work. In the discussion of this chapter, you would find
the future strategy of point 1) become clearer by the study of point 2) in
this work. The other aspect which make our new algorithm superior to the
old ones is the analytical expression which is unrestricted to a choice of the
coordinate frame. The analytical expression is applicable for the investigation
of the molecular volume changes depending on the configurations in the
theories/simulations where the internal coordinates of the atoms in the
molecule (such as Van der Waals radii of the atoms and interatomic
distances) are important. An application of the analytical expression of the
volume of the fused spheres for a liquid theory is explained in the
discussion in which the numerical/probabilistic calculation of the volume
[5,6] is not suitable.
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There are two problems to be solved in the analytical methods to
calculate the volume of the fused spheres. The first is how to define the
shape of the solid body, which can be done by giving the configurations
and radii of the fused spheres. The shape determines topology of boundary
made by intersecting spheres. The topology in turn determines conditional
branches in the algorithm of the equation of volume. The solid body so
defined can be viewed as a set of primary bodies with simpler geometry.
It is the second problem how to express the volume of the simple objects
by one analytical equation. Earlier studies concerning the volume calculation,
which aim the application for the molecule, can be classified into two
categories depending on the definition of the topology of boundary made by
intersecting spheres: inclusion-exclusion algorithms by Kratky (7] and
building block algorithm by Dodd et al. [8].

Basic concept in Kratky’s inclusion-exclusion method ([8] is
analogous to the mathematical set theory, where volume of fused spheres
corresponds to a union of sets. An instructive example is the case in which
two spheres overlap. It is analogous to a union of two sets which can be
derived from the individual sets and the intersection of the two sets.
Extension of the method to more general cases in which more than three
spheres become increasingly complicated. However, Kratky has proved that
any intersection made by more than four spheres can be expressed by a
combination of the intersection made by up to four spheres. This means the
final expression for the volume of the fused spheres becomes a sum of
terms corresponding to up to four spheres. However, the straight forward
implementation of Kratky’s method for a solid body with more than four
spheres overlapped requires enormous amount of computation time. Sheraga
and his coworkers have tried to bypass the problem using a 'shortcut
algorithm" which identifies the vanishing contributions concerning more than

four spheres overlapped [9]. This was the first attempt to implement
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Kratky’s method for the calculation of the fused spheres. However, their
calculation did not give the right answer to a test problem which involves
more than five spheres overlapped due to an unidentified mistake in their

algorithm [8].

Fig. 1  Schematic drawing of partitions of fused spheres in which the

partitions of pair of the spheres are flat planes.
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Dodd’s method [8] resembles constructing a house from building
blocks. Fig. 1 illustrates how a solid body is constructed from '"building
blocks" each of which consists of a part of spherical surface and two flat
planes. The building blocks themselves can be divided successively into
pieces with simpler geometry. The essential idea due to Dodd is to make
the division until the simplest geometry such as cones and pyramid is
reached, which of course can be calculated analytically. A difficulty in the
method arises from the definition of division which is not necessarily
unique. An arbitrary choice of the division can give rise to a messy
computational algorithm with many conditional branches. One of the
problems, which is apparent in the Dodd division, is that the expression for
the primary body with the simplest geometry requires the information of up
to five spheres in contradiction with Kratky’s finding [7]. The use of the
Cartesian coordinates in his method, which is related to the five-sphere
problem, is another disadvantage in such cases in which the derivatives of
the volume with respect to the radii of spheres and inter-sphere distances
are required. The application to the scaled particle theory is a typical
example of such cases.

A crucial step in Dodd’s method is how to calculate the spherical
portion of the surface which makes the building block. An analytical method
proposed by Richmond [10] can be employed for that purpose, which uses
an elegant theorem due to Gauss and Bonnet. The Gauss-Bonnet theorem
enables us to calculate area of the spherical surface bounded with connected
arcs from the length of the arcs and the angles made by adjacent two arcs.
Unfortunately, the expression of the accessible surface area proposed by
Richmond is too difficult to understand due partly to the use of the
Cartesian coordinates. Improvement which we could have achieved in this
work for the algorithm of the volume calculation largely due to the

reconstruction of the Richmond method by changing the Cartesian
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coordinates to the internal coordinates (sphere radii and inter-sphere
distances).

In the present chapter, we propose a new algorithm for calculating
a solid body consisting of fused spheres. The method employs the internal
coordinates instead of the Cartesian coordinates. The use of the internal
coordinates facilitates the direct calculation for the volume of the building
blocks of a solid body, an example of which appears in Fig. 1. Since
further division of the building blocks as in the Dodd method is not
necessary, the final expression for the volume is far more elegant compared
to the earlier works and the conditional branches in the computational
algorithm is drastically reduced. Moreover, any analytical term in our
expression uses information up to four spheres in consistent with Kratky’s
finding [7]. The use of the internal coordinates makes some applications for
the liquid state theories possible, in which the derivatives of the volume
with respect to the internal coordinates are required.

The relation between our work and other works [11-15] using the
power diagrams for the volume calculation in the computational geometry
field is follows. Our new algorithm is explicitly separated into topological
part and analytical parts. In this chapter, we conclude that the topological
information required for the volume calculation of the fused spheres are
topology of the building blocks. This building block exactly corresponds to
the intersection of the sphere and the '"cell' of the power diagram
[11,13,16,17)(which is a kind of Voronoi diagram). In our work, after the
topology of the building blocks is known, the volume of the building block
can be calculated at once by using '"one'" analytical equation without
considering conditional branches which are caused by the further division of
the building block. But all other works using power diagram divide the
building block into pieces with simpler geometry [11,12,14,15]. Our work

considers all possible configurations of the spheres which include the
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singular cases appeared in the configurations of the molecules. The singular
cases are a) one exposed vertex is formed by one spherical surface and
more than two intersection planes, b) one buried vertex is formed by more
than three intersection planes. For example, one of the case a) is the
benzene molecule whose atoms are located on the vertices of the regular
polygon. This difficulty in the volume calculation of the fused spheres has
not been discussed explicitly in the works using the power diagrams for
volume calculation. The singular cases corresponds to the singular cases in
power diagrams. In these cases, one vertex of the cell in the power diagram

is formed by more than three planes of the cells.
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Method

In the definition we define the "building block" of a solid body
and names of the topological elements. At first, we show the expression of
the volume and the surface areas of the fused spheres. Then we will explain
our algorithm by employing Richmond method [10]. After that we also show
the expression of the volume and the surface area of the fused spheres with

an special configuration which does not appear in the almost all molecules.
I. Definition of the division of the fused spheres (building block)

At first we define the building block precisely for later use. The
definition was first proposed by Dodd and co-worker [8] in the molecular
science field. A geometrical 3-dimensional body of fused spheres (B)

composed of n spheres is expressed as following equation,

B=sPU sPU ..U sPU @ (1)

where S is a solid body of sphere i. This solid body B is also expressed
by B, (building block) as follows,
B=L_J1B,. , BNB=0 (f &) |,

(2)
B,=5¥-|J {OutHalf (5™ 5}

)
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sphere 1

Fig. 3

sphere j

Schematic drawing of the function OutHalf. Shaded region is
OutHalf(S;”NS;”). Thick line represents sphere circle, P,”. The
partition plane P, is the plane containing P,(”. P,/ divides the

whole space into sub spaces P,” and P;®.
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Fig. 2  Schematic drawing of the function OutHalf. Shaded region is
OutHalf(S”NS®). Thick line represents sphere circle of the

sphere 1 and j.

where OutHalf, is a function which divides the intersection made by S and
S into two pieces and chooses a piece formed by the sphere circle and
the buried part of S, as is shown in Fig. 2. S? is the whole spherical
surface of S. The function OutHalf, is also defined by following equation.

OutHalf (SN §)=P.’N 57 (3)
where the set of P,¥ is a space divided by a partition plane P,” and
contains the buried part of S };,.j(” is a composite set of P,/ (see Fig. 3).

The partition plane P,/ is defined as the plane which contains the sphere

circle (P,")
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PP> P (4

The building block B; exactly corresponds to the intersection of the sphere
{ and the ‘“cell", which belongs to i, of the power diagram
[11,13,16,17](which is a kind of Voronoi diagram) in the computational
geometry.

For later usage, we must give definitions for the topological
elements (Fig. 4). We name the exposed spherical surfaces of the body B,

as 'accessible surface", B/?*, and plane surfaces of the body B, as

@y
[j ’

"inaccessible surface", B

B;(Z)A=Si(2)ﬂB,- , Bi(jz)1=Pi(jZ)ﬂBi , 5)

The term "exposed vertex" and 'buried vertex" are the vertex of B; which
forms boundary of B/** and the vertex of B, which is surrounded by B,®'
respectively. The term "A-A inner-angle" is the angle which is formed by
the two adjacent arcs at the exposed vertex on the accessible surface, B,®.
The term "A-L inner-angle" is the angle which is formed by the one arc
and one straight line at the exposed vertex on the inaccessible surface, B,/
The term "L-L inner-angle" is the angle which is formed by the two straight
lines at the vertex on the inaccessible surface, B,/”. The term "isolated
sphere circle" is the sphere circle which has no exposed vertex intersected

with another sphere circle.

80



Fig. 4

Definitions for the topological elements. Thick and thin shaded

surfaces are accessible and inaccessible surfaces, respectively.
Exposed vertex and buried vertex are represented as open
triangle and open circle respectively. A-A, A-L, and L-L inner-
angles are represented as small arc, small arc with -, small arc

with =, respectively.
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II. Expression of the volume and surface area of the fused spheres in our

method

When the fused spheres have ordinary configuration in which each

exposed vertex on the fused spheres is made of three arcs and one straight

line, and each buried vertex is made of four straight lines (Fig. 5), the

topological information required for the analytical calculation of the volume

of fused spheres is only as follows,

1)
2)

3)

4)

The list of isolated spheres (LST1).

The list of two spheres (LST2) making isolated intersecting circles.
The component ((i,j)) of this list (LST2={(i,j)}, i<j) is the indices
of the two spheres which make the isolated intersecting circle.
The list of three spheres (LST3) making exposed vertex on the
accessible surface.

The component ((i,j,k)) of this list (LST3={(3,},k)}, i<j<k) is the
indices of the three spheres which make the exposed vertex.

The list of four spheres (LST4) making buried vertex on the
inaccessible surface.

The component ((i,j,k,1)) of this list (LST4={(i,j,k,1}, i<j<k<l) is

the indices of the four spheres which make the buried vertex.

Above topological information is obtained by the simple analytical

calculation explained in the Appendix A. By using lists in 1), 2), 3), and

4), we make the following lists.

0’)

1)
2’)

The Euler-Poincaré characteristics (y,*) of the accessible surface of
each sphere (i). The detail of the derivation of % is explained in
the Appendix B.

The list of spheres (LST1’) which appeared in 1), 2), and 3).
The list of pairs of spheres (LST2’) which appeared in 2), 3), and
4).
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Fig. 5 Regular configuration in which one exposed vertex has three arc

and one straight line, and one buried vertex has four straight
lines.
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" The volume V and surface area A can be calculated for the fused

spheres as follows:

V =Y 1,0+ Y {TG)+T,G.0)}

LSTI’ LST2’
+ 3 AT G+ T, G kD) + T, (ki)
LST3

+ 3b(izj,k)fT3b(j,k,i)+T3b(k,izj)
+ T, (k) +T,, (kg i)+ T, (il k) } 6)
+ Y AT gk D+ T (kL) + T (i, Lj )

LST4

* TGk L)+ T (il k) + T,k )
+ 4(kal’l’xj)+T4(k9lJ7l)+T4(kJ’l’l)
T (Lig )+ T(LjkD)+TLkL)DY

A =Y T,0)+ Y {T,GN*T,00)}

LSTI’ LST2/
* Z {TA.?a(i"j’k) * TA3a(j’k’i) + TAJa(k’i’j)
LST3

T3 () + T Gokoi) + T 5, (Ko)
+T () + Ty (k) + T (i) 3 -
+ Y AT LGk D)+ T, kL) +T, (i, k)

LST4

+ TA4(i’k9l’i) + TA4(i7l7i9k) + TA4(i7i9k9l)
T (R Li)+T, (ki) + T, (kjoboi)
+T,,(Lijk)+T, (Ljk)+T, (Lkip}

84



N . . 1 .. .
T‘(l)=-3—p,~TA,(l) ) Tz(l’j)=§piTA2(lz])+T12(lzj) ,

.. 1 .. .. 1 .. ..
T3a(lJ,k)=§piTA3a(zJ,k) » Ty(igik) =—§p Ly K+ T (Egok) , (8)

. 1 . .
T4(1J,k,l)=—§piTA4(lJ,k,l)+T,4(lz],k,l)

T,W=2npix , T,G)=2npg, ,
T ik = pIQUGK) T, 10k = -pg 06k , O
T, (kD)= -p g0k

a1
T, (i) = gg,-;tré :
T, (ijik) = %g,.[-r;¢(iJ,k)+h(iJ,k) ri—h(ij,k)? J , (10)

o g g
T (ikD=—g | TGk velijkD)|
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Fig. 6
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T, r..
ij ik ij (11)

d,+dy-d,
cosOl.jk=_’Td;_f , sineijkﬁ/l—coszel.jk ,

ij ik

Q(ij,k)=-cos™!(

d;sin®0_ +d’sin®0.. ~d}+(d.cosB. ~d.cosf. )
o8 (i) = T T T GO
2d.d sinB_sin@_
ik il ijk ijl

sinw(ij,k,l)=\/ 1-cosw (i,j k,0)

spherical sector

' >  cone-pyramids

Schematic drawing of the division of the sold body B, into
pieces of solid bodies. The pieces have two types of solid
bodies, Cntprj®(0,B,?*) (spherical sector) and Cntprj”(0,,B;{")
(cone-pyramid). B{** and B,/ are accessible and inaccessible

surface respectively. Center of the sphere is represented as closed

circle.
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where p; and p; are radii of sphere i and j respectively, d; 1s a distance
between the sphere i and j. From now on, p indicates a radius of a sphere

and d indicates a distance between two spheres.

HI. Derivation of the volume expression

In order to derive our expression of the volume of the fused
spheres, we will explain below a very simple method to calculate the
volume or/and surface area of a geometrical 3-dimensional body. The
method consists of hierarchial division of a geometrical 3-dimensional body
into pieces of which geometrical description becomes less and less complex.
But the final expression of the volume and surface area of the fused spheres
described in the previous section is independent of the way of this
hierarchical division.

The building block B; can be decomposed into pieces of solid
bodies (see Fig. 6),

B,=Cntprj®(0,B{**)+Y, sign®(0,B " Cntprj®(0,BY") ,
j

12
1 (if o, eP) (12)

sign®(0,,B;”")=

-1 (if o, P}
where o, is a center of the sphere i, B/”* (accessible surface) represents one
spherical plane or some spherical planes depending on the configuration of
spheres, j run through all spheres making inaccessible surface in B,
Cntprj®(x, Y¥) is a function making a geometrical 3-dimensional body
composed of Y (a spherical plane or spherical planes or a flat plane) and
all straight lines from the point x to Y. The one of the component of the
solid body Cntprj(o, B/**) and the solid body Cntpri®(o, B,®) were
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Fig. 7

triangles

sectors

Schematic drawing of the division of the inaccessible surface B,
into pieces of plane figures. The pieces have two types of plane
figures, Cntprj®(0’;,B,") (sector) and Cntprj®(0’;;By")

(triangle). B;"* and By " are arc and straight line respectively.

Center of the sphere circle Py is represented as closed circle.
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named as a spherical sector and a cone-pyramid respectively in Dodd’s
paper [8]. Both the spherical sector and the cone-pyramid have vertices at
0;.

The surface B,/ (inaccessible surface) can be decomposed into

pieces of plane figures (see Fig. 7) in an analogous manner with Eq. (12),
B;'=Cntprj®(o;,B{ ")+ ¥ sign®(o;,B;")Catprj?(o,,B L")
k

(DA _ o) 1 I _p @) 1

(13)

e/ ©) @
sign (Oij’Bijk )= ) ) 3 (2)
=1 (if 02PN P;))

where o’; is a center of the sphere circle P,/”, B,/™ represents one arc or
some arcs on B,®* depending on the configuration of spheres, k runs
through all spheres making straight lines in the inaccessible surface B,
B, represents a straight line on B,®' formed by the sphere &, Cntpri®(x’,
Y’) is a function making a plane figure composed of Y’ (an arc or arcs or
a straight line) and all straight lines from the point x’ to Y’. Components
of the surface Cntprj®(o’,, B,/™) and the surface Cntprj®(o’ B, ") are

sectors and triangles respectively. Both a sector and a triangle have vertices

ij7

at o’,.
When the plane figure Cntprj®(o’;, B,{"*) is expressed as the sum

of some sectors,
Catprj®(0;,B; ™)=Y Cntprj®(o;,Bi') (14)
n
B;"'= Ctprj® (0B )+ Y sign®(o;, B \Cripri®(o,B) (15)
n p

where 1 and p run through all arcs and straight lines in the boundary of
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the inaccessible surface B,® respectively, B,,* and B, are arc and
‘straight line respectively. When straight line p is formed by the inaccessible

surface B,” and sphere k, B;, " equal to B,"".
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III-1. Analytical part
The volume of B is calculated by,

V=3_V. (16)

where V, is the volume of B. In this section, we assume we know i)
whether B= or not, i) whether B,/*'= or not, iii) which spheres form
exposed vertices, arcs, and lines, and their relative orientations, and iv) the
Euler-Poincaré characteristic of the accessible surface of the sphere i. By the
last of this section you would understand this assumption is too much
information about the topology of the fused spheres for the volume
calculation.

The volume of B; which is not zero is calculated by the following

equations,
1 1
V,-=‘§P:SfA+z,: 58S (allow g,<0) (17)
d+pi-p;
8 s (allow g,<0) (18)

i

where j is the sphere index which shares the inaccessible surface B,/ with
sphere i (B,/”'#J), S/ and S,/ are the areas of B and B, respectively.
The first and second terms in Eq.(17) represent volumes of Cntprj®(o,, B**)
and Cntprj(o, B;?) with signs, respectively. By using g, which is a
distance with the sign between the center of the sphere i/ and the partition
plane P,®, the conditional branch of sign®(o, B,*') is automatically
selected.

91



-
..------

Fig. 8  Oriented arcs in boundaries of the accessible surface. Orientation
of numbering of the arcs in the boundary is shown as arrows.
Only accessible surfaces of solid body B, are represented as
shaded regions.
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The accessible surface area of the sphere i (S”) is calculated by
the Richmond method which uses the Gauss-Bonnet theorem in the

differential-topological geometry,
S/=p; 2nx+Y (X Q.+ Y ks)] (19)
v Y Y

where v runs through closed boundaries of the accessible surface B,** which
has sometimes more than one boundary depending on the configuration of
fused spheres, v runs through arcs in the closed boundary v, Q... is an
angle formed from a tangent line to the arc v, and a tangent line to the arc
v+1 at the exposed vertex, k, and s, are the geodesic curvature and length
of arc vy, respectively, and y is the Euler-Poincaré characteristic of B,®.
The numbering of arcs in the boundary is clockwise (Fig. 8) with respect
to the accessible region. The orientation of the numbering affects only the
sign of €., (always negative in this method). Now let us focus on a
closed boundary v. In this boundary when arc 7y is formed by sphere i and
J» and arc y+1 is formed by sphere i and k, Q... (i,j,k) is given as (Fig. 9),

-1 pfcoseijk—gijgik (20)

rijrik

Q. (ijk)=-cos

di+d’-d>
cosei.k=__i__"‘__’_"_ (21)
/ 2d.d

i ik

ry=ypi-g; (r20) (22)

where r; is the radius of the sphere circle of P\, Q,.,, and 8, is limited

as 0<@ <m. When arc y is formed by sphere i and j, the geodesic
curvature k, is given by the following equation,
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Fig. 9 Angle Q ., formed by arc y and y+1. The tangent line to the
arc Y and the tangent line to arc y+1 form the angle Q.
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g =%

Y
p,‘r,'j

(23)

The length of the arc v, s, is given as,

=r,©, (24)

gy

where @, is the center angle of the arc 7 in the intersecting circle P,?, this
term will be discussed soon after in this section.
The inaccessible surface area S,.j’ is calculated by the following

equations (see Fig. 10),

1
S;= E TS, Ehprp (allow h<0) (25)

where s, and #, are the lengths of B, and B,,"”, n and p run through

all arcs and straight lines in the boundary of the inaccessible surface B,
respectively, and h, is the distance with sign between the center of the
intersecting circle o; and the line p. The conditional branch of sign®(o’;,
B, ") is automatically selected. When a sphere & forms straight line p on

ij. 1

1
B--(),

y

~8,£080,,*g;

smeijk

h (i k)=h,= (allow h<0) (26)

sme =/1-cos?0, (27)

The expression for h;, is derived in Appendix C. The first and second terms
in Eq.(25) represent areas of sectors and triangles respectively. The

numbering of straight

95



Fig. 10 Sectors and triangles in an inaccessible surface. Height with sign
of the triangles are h;. Exposed vertex and buried vertex are
represented as open triangle and open circle respectively.
Orientation of the numbering of the arcs and straight lines in the

boundary is also shown as arrows,
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Fig. 11

+
LS

Straight lines and Center angles of an inaccessible surface. The
length of the line t, is divided into €, and g,". Negative value
is allowed for ¢, and g,”. The Solid line represents the line
rectangle to straight line B, from 0’; center of the sphere
circle P;". Center angle for the arc is represented as ®,. Center
angle for the triangle neighboring the exposed vertex is
represented as ¢,. Center angle for the quadrangle including the
buried vertex is represented as ©,.,,- Exposed vertex and buried
vertex are represented as open triangle and open circle

respectively.
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lines in the boundary is anti-clock-wise. The straight line B, is
decomposed into pieces, the length of the straight line, ¢, is given by

following equations,

t,=e,+e, (120) (allow €,£,<0) (28)

where €, and g, are defined as Fig. 11,

__h,_ ~hcoso .
£ = _ ple o gts
ShlON

h . —hcosw
H H Hp (29)

I SInw e

When straight lines p-1 and p in inaccessible surface B,*' are formed by

sphere k and !/ respectively,

2 in2 20020 42 - 2
dysin"0,, +d;sin’0 ~d,+(d,cos8,, ~d,cos,)

2d,d,sind,,sing, (30)

cos®,_, (iyk,0)=

(OS(;)p <n)

_l‘p

where ® is the angle on B,?' between the projected vectors pointing

p-1, g
from o’ to sphere centers of k and /. Above equations of g~ and g, are
valid for negative values of those variables. This is proved in Appendix C.
When the line p has an arc as its neighbor,

g, or e; = r;—hj (g, or 8; >0) 31
The second term in Eq.(25) is described as the summation through

the individual straight lines, B, ", of the inaccessible surface B,®. This

iju
summation can be replaced by the summation through the individual vertices
of B,”'. The calculation of the individual line length is not required for the

maccessible surface area calculation.
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Y %hté_z hp(e;+e;)=—;-{zo;fa+%: ¢} (32)

B

where o and B represent the exposed vertex on B,? (which has one-to-one
correspondence to A-L inner-angle) and the buried vertex on B,*' (which
has one-to-one correspondence to L-L inner-angle), respectively.

When A-L inner-angle o is formed by straight line p and the
inaccessible surface B,*" , and L-L inner-angle B is formed by the two

adjacent straight lines p-1 and p and the inaccessible surface B,?",
e O

2 2
_ 2 u_lhp—(hp +h,)Cosw

_l‘
ep= le (34)

sinw
p-lp

sincop_lf\/l ~cos’, (39

The first term in Eq.(25) is described as follows,
1 _1 )
n n

It is the important point that the individual values of ®, is not required in
the above equation. Finally following equation enables us to get required

quantities, the sum of @,,
¥y e =2n-Y %-% Wy (37)
n o

where o runs through A-L inner-angles at the exposed vertices of the
inaccessible surface B,”' and B runs through the L-L inner-angles at the

vertices on the inaccessible surface B,”'. When A-L inner-angle o is formed
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by the straight line p and inaccessible surface B,

h
q)p=cos“(.i) (0<dp<m) . (38)
r.

y

Final expression of S,/ is as follows,

1 1
SUI =_2'r;(2n —Z d)a-z 0‘)[3)+_2—(Efa+z eB)
a B a 8 (39)
=Tcr§+z (—ir;¢a+lfa)+z (—_l_r;(,\)B+eB)
x 2 2 57 2
In the above derivation of S,/ (DAY and straight

1y
lines (B, ") are not necessary.

individual length of arcs (B,
ij.e
Let us return to the accessible surface area calculation. The
summation of the last term in Eq.(19) is carried out through the all arcs on
the closed boundary y and then carried out through the all closed
boundaries. This can be replaced as the summation, "at first sum through
the all arcs on B, and then sum through the all inaccessible surfaces of

B,®", as follows,
(40)
) kyS, =3 ). k8, =Z )Y k7., =Z k(2 - (DG—XB: ©p)
v oy v v J J a

In this equation, summation through the boundaries of the accessible surfaces
is changed to summation through the inaccessible surfaces. Then we can use
Eq.(37). The lengths of the individual arcs are not required for the
accessible surface area calculation in the volume calculation. The final

expression of S is as follows,
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St =2mp Y { ) %ka"’r""@n 20 mg)}
- = a B

, (41)
1
=21 ,.X? +Z { 27 k,-,f,-,-"z (_2_Qa —kijr,.j(j) 9] +§ ( _kijrijw B)}
j o

In the above derivation of S*, individual length of arc (B, ."") is not

iim
necessary.
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B

[I-2. Topological part

Our work considers all possible configurations of the spheres

which include the singular cases appeared in the molecular science. The

singular cases are a) one exposed vertex is formed by one spherical surface

and more than two intersection planes (see Fig.12a), b) one buried vertex

is formed by more than three intersection planes (see Fig.12b). For example,

one of the case b) is that benzene molecule whose atoms are located on the

vertices of the regular polygon.

The topological information required for the analytical calculation

of the volume (V,) and accessible surface area (A;) of each sphere in the

fused spheres are as follows,

I1)

12)

I3a)

I3b)

Whether the target sphere, i, is isolated (having volume of 4/3 mp.
and y,*=2) or not.

A list of spheres (LSTI2(i)) making isolated intersecting circles
with the sphere i.

The component (j) of the list (LSTI2(i)={j}) is the sphere index
which makes the isolated intersecting circle with the sphere 1.

A list of pairs of spheres (LSTI3a(i)) making the A-A inner-angles
at exposed vertices of the sphere i.

The component ((j,k)) of the list (LSTI3a(i)={(j,k)}) consists of the
indices of the two spheres which make the A-A inner-angle with
the sphere i. Depending on the configuration a same pair appears
twice in this list (e.g. the fused spheres made of three spheres like
Fig. 1).

A list of pairs of spheres (LSTI3b(i)) making the A-L inner-angles
at exposed vertices of the sphere i.

The component ((j,k)) of this list (LSTI3b(i)={(j,k)}) consists of
the index of the sphere (j) making the inaccessible surface on

which this A-L inner-angle is located, and the index of the sphere
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(k) making the A-L inner-angle with the spheres i and j.
14) A list of triplets of spheres (LSTI4(i)) making the L-L inner-angles
at the exposed and buried vertices of the sphere i.
The component ((j,k,1)) of the list (LSTI4(1)={(j,k,))}) consists of
the index of the sphere (j) making the inaccessible surface on
which this L-L inner-angle is located, and the indices of the two
spheres (k and 1) making the L-L inner-angle with the spheres i
and j.
We do not need information of the orientation of the spheres in the pair in
I3a), I3b), and the triplet in 14) relative to each other. Above topological
information from I1) to I4) can be obtained by the simple analytical
calculation explained in the Appendix A. From these information we make

the following lists.

0”) The Euler-Poincaré characteristics of the accessible surface of
sphere 1.
27) The list of spheres (LSTI2'(i)) appeared in 2), 3), and 4).

The list LSTI2’ corresponds to the summation through the

inaccessible surfaces, B,*", in B, The V, and A; can be calculated for the

t

fused spheres by summing up all the contributions listed above.

V. =T+ Y, T,G)N+ Y, TG0+ Y T,Gjk

LSTI2'(i) L8TI3a(i) LSTI3b(i)

+ Y TagkD

LSTI4(i)

(42)
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A ={TAI(i)+ Z T,,Gn+ Z Ty (i) * Z T ,5,(0:k)
LSTI2G) LSTI3a(i) LSTI3b()

43)
> TM(z'J,k,l)} :

LSTI4(i)

N1 : | iy .
T,(l)‘_‘?p,-TA;(l) ’ Tz(lz])=§p,‘TA2(l’.])+T[2(lz]) ’

coon ] . y 1 . ..
T3a(zz],k)=§piTA3a(lJ,k) , T3b(zz],k)=§piTA3b(zJ,k)+T,3(1J,k) , (44

.. 1 .. ..
T4(lz]9kal)=§p,‘TA4(Z7]’k7l)+T[4(lz]1kal)

This formulation contains the very rare case of the configuration of the
spheres shown in Fig. 12.

In what follows, we show a case which is less general but
contains most of the configurations of spheres in the practical use (for
example the calculation of the excluded volume of a molecule represented
by fused spheres etc.). If each exposed vertex is made of one A-A inner-
angle and two A-L inner-angles, and each buried vertex is made of three
L-L inner-angles, then the topological information needed for the analytical
calculation of the volume of each sphere in the fused spheres is decreased.
The topological information for such a case is as follows,

1) Whether the target sphere, i, is isolated (having volume of 4/3 mp.
and x,*=2) or not.
2) A list of spheres (LST2(i)) making isolated intersecting circles with

the sphere i.

The component (j) of the list (LST2(i)={j}) is the sphere index
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Fig. 12 Solid body B; in special configuration of fused spheres a) The
solid body B, where an exposed vertex has L-L inner-angle. b)
The solid body B, where a buried vertex has more than three L-

L inner-angle.
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Fig. 13 Special configuration where sphere centers are located on the
regular polygon.
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3)

4)

Above

which makes isolated intersecting circles with the sphere i.

A list of pairs of spheres(LST3(i)) making the exposed vertices of
the sphere 1i.

The component ((j,k)) of the list (LST3(1)={(j,k)}, j<k) consists of
the indices of the two spheres which make and exposed vertex
with the sphere i.

The list of triplets of spheres (LST4(i)) making a buried vertex of
the sphere 1.

The component (k1)) of this list (LST4(1)={G,k,D}, j<k<l)
consists of the indices of the three spheres which make a buried

vertex with the sphere i.

topological information is obtained by the simple analytical

calculation explained in the Appendix A. From these information we make

the following lists.

0%)

2’)

The Euler-Poincaré characteristic of the accessible surface of sphere
i
The list of spheres (LST2’(i)) appeared in 2), 3), and 4).

The V; and A, can be calculated in a simpler way as,

Vi =T+ Y TG+ Y, AT, (k) + T, (ik) + T, (k) }

LST2() LST3(d)

+ Y ATk D+ TGN T LR}

LST4(i)

(45)

A, =T, )+ Z TAZ(i’j)+E {TA3a(iJ’k)+TA3b(iJ’k)+TA3b(i’k‘j)}

LST21G) LST3() (46)
+ 3, AT kDT, L)+ T, LK)}
LST4()
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Note that the special case like Fig. 13 (a configuration of which sphere
centers are located on the regular polygon, is one of the example) can be
treated by doing the topological search explained above for each B,, because
the vertex has different meaning for each B.

We can get the final expression described in the beginning of the
section 1 by summing V; and A, and by doing the topological search for
B, at one time (in this case, the special case like Fig. 13 cannot be treated).
If we assume all radii of the spheres are equal,

Y T, 0)=2rp? Y xi=2np% (47)
LSTI’ LSTI’
x is the Euler-Poincaré characteristic of the whole body, B, of the fused

spheres (two examples are shown in Fig. 14).

108



v (D

b)

Fig. 14 Examples of the Euler-Poincaré characteristic of the fused spheres
B. a) Straight chains which has isolated sphere circles and no
vertex. In this case ¥=2. b) Ring chains which has isolated

sphere circles and no vertex. In this case y=0.

Implementation of the method

The excluded volumes of a pentane and a protein is calculated by
using our program ESPER (Extended Scaled Particle theory PERformer). The
values of the excluded volume and accessible surface area of a pentane are
353.8A° and 256.3A? for all-trans conformation, 344.6A° and 247.3A? for all-
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gauche conformation, respectively. The values of the excluded volume and
accessible surface area of a protein, avian pancreatic polypeptide (1PPT)
[18], are 8524A% and 3337A2, respectively. The excluded volumes calculated
by using the numerical method with 3-dimensional mesh (the grid size is
0.02A) are 353.8A° for the all-trans pentane, 344.4A° for the all-gauche
pentane, and 8522A° for 1PPT. In the calculation, the molecule is modeled
as a fused spheres whose radius of the sphere is the van der Waals radius
of the atom plus the radius of water molecule (1.375A). The TIPS
parameters [19] are employed for the conformation and the van der Waals
radii of the pentane. The OPLS parameters [20] are employed for the van
der Waals radii of 1PPT. The ESPER was originally intended for the
calculation of first and second derivatives of the volumes in the scaled
particle theory [1,2] and has not been well optimized for the acceleration of

the speed of the calculation yet.
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Discussion

In the previous sections, we could have derived an elegant
expression for the volume of fused spheres. Our algorithm employs the
method of Richmond [10] and the building block usage of Dodd [8], but
the final expression for the fused spheres is more elegant than the old
methods, because some analytical functions (g, %,, e, etc.) appeared in the
expression absorbs the conditional branches which otherwise is necessary to
take account for the configuration of the spheres. Topological information
required is explicitly separated.

One of the reason why we can express the volume by the spheres
radil and inter-sphere distances, is as follows. In the methods of Richmond
(surface area calculation) [10] and Dodd (surface area and volume
calculation) [8], the topological information of the arcs and straight lines of
the building blocks of the fused spheres is required, because the length of
the arcs and straight lines are needed. In the topological search algorithm,
it 1s easy to find the list of the spheres making vertices, but it is very
difficult to find those of the spheres making the arcs (or straight lines). We
can easily find one vertex (e.g. as an intersection point of partition planes
explained in Appendix A). But in order to find the vertex located at the
other edge of an arc (or straight line), we must search this among other
vertices. Since Cartesian coordinate is used in such a search and in the
calculation of the length of the arc (or straight line), the final analytical
expression of the volume or surface area of both methods could not be
expressed by spheres radii and inter-sphere distances. In our algorithm we
do not need the information with respect to which vertices make a pair of
edges for the individual arc (or straight line).

In exchange for the advantage described above, we cannot trace the

boundaries of accessible surfaces in our method. According to the Gauss-
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Bonnet theorem, we need the Euler-Poincaré characteristics of the accessible
surfaces in the calculation of the accessible surface area of the fused
spheres. To avoid direct calculation of the Euler-Poincaré characteristics,
Richmond and Dodd used the trace of the closed paths of the arcs which
surround the accessible surfaces in order to count the number of the isolated
accessible surfaces and the holes of the surface. When one wants to get
only the analytical expression of surface area (like Richmond method), this
technique is natural. But in the analytical volume calculation, we can
directly calculate Euler-Poincaré characteristics. In our method we directly
count the number of faces, lines and vertices of the inaccessible surfaces in
order to derive the Euler-Poincaré characteristics of the accessible surfaces
(Appendix B). Therefore our method does not require the trace of the closed
boundaries of accessible surface.

What is minimum topological information required to calculate the
volume of fused spheres? Our method suggests that the answer is the
topology of the building block, especially isolated sphere circles, exposed
vertices, and buried vertices. These topological elements, especially buried
vertices, depend on the local configuration of up to four spheres. From this
fact, our final expression for the volume of the fused spheres becomes a
sum of terms corresponding to up to four spheres in consistent with
Kratky’s finding. In the method of Dodd, length of the straight line, which
1s required in their algorithm, depends on the local configuration of up to
five spheres. When we know nothing about the 3-dimensional configuration
of the fused spheres, buried vertices of the building block enables you to
image the shape of interior of the fused spheres. In the Kratky’s method
(71, topological information of the interior of the fused spheres is expressed
as many intersecting regions made by spheres. Our method may be the
"shortcut algorithm" Sheraga’s group wanted to complete [8,9].

We found that our work and the work in the computational
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geometry which uses power diagram complement each other. In the
computational geometry, there exists the efficient search algorithm for the
topology of the power diagrams [16,17]. The building block in our work
exactly corresponds to the intersection of the sphere and the cell of the
power diagram [11,13]. In our work, after the topology of the building
blocks is known, the volume of the building block can be calculated at once
by using "one" analytical equation without considering conditional branches
which are caused by the further division of the building block. But all other
works using power diagrams divide the building block into pieces with
simpler geometry [11,12,14,15].. This further division of the building block
is not necessary. The hybrid of our algorithm and power diagram method
would be the best algorithm in the mathematical sense. But the problems of
singular cases described in section 2.3.2 must be cleared, because these
problems have not been explicitly discussed in the power diagram methods
related to the volume calculation of the fused spheres.

The acceleration of the speed of the algorithm is the next problem
in our work. The target of the acceleration is very clear, because the
topological part and the analytical part are explicitly separated in our
algorithm. The search of the topology of the building block must be
accelerated, because the analytical part can easily be optimized in the use
of the vector machine. The power diagram method mentioned before would
be suitable for this purpose. But we cannot say which is faster the power
diagram method or the vector/parallel machine dependent algorithms like
the method of Dodd [8].

When we express the analytical volume of the fused spheres with
equal radii, the analytical expression of volume of this fused spheres
depends on the Euler-Poincaré characteristics of the whole fused spheres ¥,
not each sphere . This result is one of the good example how our

method reflect the shape of the fused spheres well, and is very interesting
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as well for the future use in the virial coefficient calculation in the liquid
state theories.

Although the algorithm proposed here is general enough to be
applied to many problems which concerns the volume and accessible surface
area of a geometrical 3-dimensional body consisting of fused spheres, an
application which takes advantage of the algorithm most is probably to the
scaled particle theory (SPT) of liquids [1,2]. The scaled particle theory is
a method to evaluate the thermodynamic work required to make a cavity in
the system of hard spheres. If the cavity is regarded as a region from which
solvent molecules are excluded, then the thermodynamic work is a part of
the solvation free energy of a solute molecule. The scaled particle theory
requires derivatives of the excluded volume with respect to a scaling
parameter which linearly scales the cavity up from O to its final size as

seen in

G.=N k 7{ In[1- pV(O)]+pJ;G(7L) ( ) | @®

where N,, kp, T have usual meanings, A is the scaling parameter and G())
1s the radial distribution function of solvent molecules around solute at
contact. Our new method explained above enables us to take derivatives of
the excluded volume with respect to the scaling parameter. This was indeed
a key to the extension of the scaled particle theory to an arbitrary shaped
solute molecule. We have succeeded in the calculation of the solvation free
energy of the aqueous solution of the nonpolar (normal-alkanes, from
methane to dekane) {1] and polar solutes (normal-alcohols, from methanol
to pentanol) (2] by using this new algorithm. We can get the perfect
agreement of this calculated result with the experimental data. This means
the scaled particle theory can be applied to the larger molecules such as

proteins.
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Appendix

When the molecule is small enough so that its surface (accessible
and inaccessible) can be displayed by the computer graphics. You may be
able to find the topological information to be used in the volume calculation
by visual inspection. But when the molecule is large such as protein, you
must get the information by the calculation. An practical method to obtain
the topological information is explained in the Appendix A. This method has
been implemented in the program ESPER which calculates the solvation free
energy of the molecule by the extended scaled particle theory [1,2].

In the Appendix B, the brief explanation and derivation of the
Euler-Poincaré characteristic of the accessible surface is presented. In the

Appendix C, the proof of the equations of A, €, and g are given.
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APPENDIX A: ALGORITHM USED IN THE SEARCH OF
TOPOLOGY OF THE FUSED SPHERES

Loop for single spheres

1. List the isolated spheres (condition Al), completely buried spheres
(condition A2), and others (stored in list B).

Loop for pairs of spheres in list B

2. List the isolated sphere circles (condition Bl) and completely

buried sphere circles (condition B2), and others (stored in list C).

Here, all vertices of the fused spheres are not searched at once, but vertices
relating to each sphere are searched step by step.
Loop for single spheres, represented sphere i, in list B
Loop for pairs of partition planes of sphere i in list C.
3-1. List the vertices each of which is formed by two
partition planes and the target sphere i. Vertices are
stored in list D.
Loop for vertices in list D and the partition plane of sphere i in
list C.
3-2. Check if each vertex is remained or not by using the
partition planes. Remained ones are exposed vertices.
Loop for triplet of partition planes of sphere i in list C.
4-1. List the vertices each of which is formed by three
partition planes. Vertices are stored in list E.
Loop for vertices in list E and the partition plane of sphere i in
list C.
4-2. Check each vertex is remained or not by using the
partition planes. Remained ones are buried vertices.

The exposed vertex corresponds one A-A inner-angle and two A-L
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inner-angles of focused sphere i. The buried vertex corresponds to

three L-L inner-angles of focused sphere 1

In most of the cases, the conditions listed above is enough for the topology
search. If the very rare case exists, in which some exposed and buried

vertices are located at a same position (see Fig. 12),
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straight line

straight line

arc

arc
arc

straight line

A-A inner-angle A-L inner-angle L-L inner-angle

Fig. 15 Schematic drawing of the triangles of A-A, A-L, L-L inner
angles, which are used in the search of the remained inner-
angles for very rare case when two or more vertices are located
at the same position. The triangles have vertices on the straight
line or the tangent line to the arc which make inner-angles. If
an inner-angle is remained, any of the vertices of the triangle of
the inner-angle are not cut out by any partition plane which
makes vertex located at the same position with the vertex of the

inner-angle.
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5-1. List the exposed and buried vertices which are located at the same
positions. Partition planes relating with these vertices located at the
same position are listed in F.

5-2. List all inner-angles considered to be possible as A-A, A-L, and
L-L inner-angles located at the same position. Make a triangle
which is made of each (A-A or A-L or L-L) inner-angle (see Fig.
15).

5-3. Check if each vertex of the triangle is remained or not by using
the partition planes in list F. When all three of the vertex of the
triangle is not cut out by any partition plane, the (A-A or A-L or

L-L) inner-angle corresponds to this triangle is remained.

Conditions used above algorithm and the procedure which checks if the
vertex is remained or not by using partition planes are as follows,
Al) If any sphere j(i) satisfies the condition described below, the

sphere i is an isolated sphere.
V), 8,2P; (d20) and p2P(d,=0) and i<j(d,=0, p=p) (49)

A2) If a sphere j(i) satisfies the condition described below, the sphere

i 1s completely buried.

3J; 8,5p; (d20) or p<pd,;=0) or i>j(d;=0,p=p) (50)

B1) The sphere circle made by pair of spheres (i,j) is isolated, when
any other pair of spheres belonging to B satisfies the condition
described below,

Vk; h,.}.k>r'.j (sineijk¢0) and 8,58 (sin9vk=0)

_ (51)
and d<d, (s1n9ijk=0, 8,;=8:)
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B2) The sphere circle made by pair of spheres (i,j) is completely bur-
ied, when another pair of spheres (i,k) belonging to B satisfies the
condition described below,

k; h,<-r; (sinf, #0) or 8,28 (sind,,=0)

. (52)
or d,.j>dl.k (51n91.jk=0, g,.j=g,.k)

The procedure of checking if the vertex is remained or not
A vertex of sphere i is not remained when one of the partition
planes of sphere i satisfies the following condition which uses the Cartesian

coordinate frame having the origin at the center of the sphere i.
8,1 (x=x)+n (y-y)+n (z-zp) (53)

where (n,, n,, n,) is the normal vector of the partition plane P,/ pointing

from sphere i to j, (X, y, z) is the coordinate of the vertex.

APPENDIX B: EULER-POINCARE CHARACTERISTIC OF THE
ACCESSIBLE SURFACE OF A SPHERE

Euler-Poincaré characteristic of the accessible surface of sphere i,

X", is calculated as follows,

X? =CiA +n! _diA (54)

where ¢, n® d* are the numbers of vertices on the accessible surface,
regions of closed boundaries on the accessible surface (an isolated accessible
region is +1, a hole region is -1), and arcs on the accessible surface,
respectively. Some examples are shown in Fig. 16. Since it is difficult to
check if the region is accessible or hole, we calculated in alternative way.
If B#J, Euler-Poincaré characteristic of the accessible surface can
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be calculated as follows,

A_n_ I
X =2 (C,-”li Z cij] (55)
J

c=a+b, , cij=qij+_c]2_ij (56)

a
qijz___ , q’ij—_-al_j+bij—qij (57)

2

where c¢; are the total number of vertices in the body B,, a; and b, are the

numbers of the exposed and buried vertices in the body B, respectively, a;

and b; are the numbers of A-L and L-L inner-angles in the inaccessible
surface B, respectively, c; is the numbers of arcs and lines in the

inaccessible surface B,®'. If B=, v is equal zero.
i i i
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Fig. 16 Schematic drawing of the accessible surface. Shaded region
represents accessible surface. Inaccessible surfaces are not shown.
Euler-Poincaré characteristic of the accessible surfaces are listed

below each figure.
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APPENDIX C: DERIVATION OF THE EQUATIONS OF h;, ¢, AND

]

+
€y

At first we derive the equation for hy but you will find €, and

8+

. can be derived in analogous way with hy,. When two sphere circles of

ijk*

a sphere i have two intersection points Q, the projection of the sphere
circles onto the plane on which centers of three spheres i, j, and k are
located, is represented as Fig. 17. The sphere 1 and angle 6;; are represent-
ed as a circle and a small arc. In the Fig.17 the centers of spheres j and
k are located at the direction of y-axis, and the direction of thick arrow,
respectively. The value of hy corresponds to the x component of the
position of Q, even if the value of hy is negative. The position of Q is
derived by solving these two equations which are also valid for negative
values of g; and g,. Second, the derivation of g, for which the same
y=8; (58)

cosf,, (y-g,c0s6,,)=-sinb, (x-g,sinb )

figure as Fig.17 can be used by replacing the meaning of the geometrical
elements is following. In this explanation, straight lines p-1 and p in
inaccessible surface B,/ are formed by spheres k and I, respectively. When
three partition plane of sphere i have a intersection point Q, the projection
of the two partition planes onto the partition plane made by the spheres i
and j 1s represented as Fig.17. In the figure the sphere circle made by i and

j is represented as a circle. An angle w , (i,j,k,]) is represented as a small

p-lp
arc. The projected positions of the centers of sphere k and 1 are located at
the direction of thick arrow, and the direction of y-axis, respectively. The
value of g, corresponds to the x component of the position of Q, even if

the value of €, is negative.
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y=hy, (59)
cosw . -(y—h,.ﬂcoscop-l,p)=—smmp_l‘p-(x—hl.ﬂmnwu_l,u)

We can derive €, in the same way described above.

Fig. 17 This figure has different meaning depending on the function, Ay,

g,/ , or &7 for which this figure is used in the derivation,
because theses three functions can be derived in analogous way

(see detail in the text).
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Chapter 6
Conclusions

I developed the new method, the extended SPT with PB equation,
for calculating the solvation free energy of biomolecules. This method was
successfully applied to alkanes, alcohols and proteins. Our new method is
superior to the previous ones in three aspects. 1) In the calculation of the
solvation free energy, our new method requires less than 1/100 of the cpu-
time for the molecular dynamics simulation. 2) This method is suitable for
the analysis of the solvation of the protein, because it can be used without
any problems on the overwhelmingly large configurational space due to the
solvent molecules. 3) Temperature dependence of the solvation free energy
can be obtained by changing only few parameters. To apply the empirical
method using accessible surface area of the solute to the thermal stability,
experimental parameter sets at individual temperatures are needed.

It has been very difficult to consider the effect of water in
studying the large molecules. Hydration free energy can be used as the
effective potential representing the effects of water in long time scale where
the effect of configurational changes of water is averaged. Conformational
change of the protein and the interface of the two proteins (e.g. motor

proteins, actin and myosin) are good targets.
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