<table>
<thead>
<tr>
<th>Title</th>
<th>Completions and maximal quotient rings over regular rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kobayashi, Shigeru</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 26(1) P.225-P.228</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/10640</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/10640</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Let R be a (Von Neumann) regular ring with rank function N. Then there exists the N-metric completion \overline{R} of R with respect to N. It is well known that \overline{R} is a right and left self-injective regular ring. On the other hand, we have always the maximal right quotient ring $Q^\text{max}_r(R)$ of R, which is a right self-injective regular ring.

In this paper, we are concerned with the connection between the N-metric completion of R and the maximal right quotient ring of R.

In [1, Theorem 23.17], Goodearl has shown that if for any essential right ideal I of R, $N(I)=1$, then $Q^\text{max}_r(R)$ is embedded in \overline{R} as a subring. Under this condition, we shall show that \overline{R} is isomorphic to the maximal left quotient ring of $Q^\text{max}_r(R)$.

Furthermore, we shall show the simillar result with the above result to the case that N is a pseudo-rank function.

§ 1. Preliminaries

Throughout of this paper, we assume that all rings are associative with identity element and all modules are unitary.

Let R be a regular ring. A pseudo-rank function on R is a map $N: R \to [0, 1]$ such that

1. $N(1)=1$ and $N(0)=0$
2. $N(xy) \leq \text{Max} \{N(x), N(y)\}$, for any x, y in R
3. $N(e+f)=N(e)+N(f)$, for each orthogonal idempotent elements e, f of R.

A rank function on R is a pseudo-rank function with additional property

4. $N(x)=0$ implies $x=0$.

If N is a pseudo-rank function on R, the the rule $\delta(x, y)=N(x-y)$ defines a pseudo-metric on R. Clearly, δ is metric if and only if N is a rank function.

The completion \overline{R} of R with respect to δ is a right and left self-injective regular ring which is complete with respect to the \overline{N}-metric, where \overline{N} is the unique extension of N to \overline{R}.
If N is a pseudo-rank function, then we denote that \(\ker N = \{ x \in R \mid N(x) = 0 \} \).

We set \(P(R) \) is the set of pseudo-rank functions over \(R \). We say that \(N \) of \(P(R) \) is an extreme point of \(P(R) \) provided that \(N \) can not be expressed as a positive convex combination of two distinct points of \(P(R) \).

Let \(I \) be a right ideal of \(R \). Then we denote that \(N(I) = \text{Sup} \{ N(x) \mid x \in I \} \).

Finally, if \(A \) and \(B \) are modules, then the notation \(A \subseteq B \) means that \(A \) is an essential submodule of \(B \).

\section*{§2. Completions over regular rings}

In this section, we prove the following main theorem.

Theorem 1. Let \(R \) be a regular ring with rank function \(N \). If for any essential right ideal \(I \) of \(R \), \(N(I) = 1 \), then the completion \(\bar{R} \) of \(R \) with respect to \(N \)-metric is isomorphic to the maximal left quotient ring of the maximal right quotient ring of \(R \).

Proof. First we shall show that there exists a ring monomorphism \(\psi \) from the maximal right quotient ring \(Q \) of \(R \) to the completion \(\bar{R} \) of \(R \). This is proved by the same idea of [1, Theorem 21.17], but we shall give a proof for completeness. Since \(\bar{R} \) is right and left-self-injective regular ring, \(\bar{R} \) is a injective right \(R \)-module. Let \(x \) be any element of \(\bar{R} \) and \(I \) is an essential right idel ideal of \(R \) such that \(xI = 0 \). Then since \(N(I) = 1 \), for any positive number \(\varepsilon \), there exists an idempotent \(e \) of \(I \) such that \(N(e) > 1 - \varepsilon \). Now since \(x = x - xe \), \(\bar{N}(x) = \bar{N}(x - xe) \leq \bar{N}(1 - e) = N(1 - e) = 1 - \varepsilon \). Thus \(\bar{N}(x) = 0 \). Since \(\bar{N} \) is a rank function, \(x = 0 \). Therefore \(\bar{R} \) is a non-singular right \(R \)-module. Since \(R \) is essential right submodule of \(Q \) and \(\bar{R} \) is an injective right \(R \)-module, the identity map on \(R \) extends to a right \(R \)-module monomorphism \(\psi : Q \to \bar{R} \). We claim that \(\psi \) is a ring homomorphism. Given any elements \(x, y \) in \(Q \), we have \(yf \subseteq R \) for some essential right ideal \(J \) of \(R \). Then \(\psi(xy)r = \psi(xy)r = \psi(x)y\psi(y)r = \psi(x)(y)r \) for all \(r \) in \(J \). Whence \([\psi(x)(y) - \psi(xy)]J = 0 \). Since \(\bar{R} \) is non-singular right \(R \)-module, we obtain that \(\psi(xy) = \psi(x)\psi(y) \), so that \(\psi \) is a ring homomorphism. Next we shall show that for any essential left ideal \(K \) of \(Q \), \(N_Q(K) = 1 \), where \(N_Q \) is an extension of \(N \). Let \(K \) be an essential left ideal of \(Q \). Then by [1, Lemma 9.7], there exist orthogonal idempotents \(e_1, e_2, \ldots \), such that \(\sum_{n=1}^{\infty} Qe_n \subseteq K \subseteq Q \). We set \(J = \bigoplus_{n=1}^{\infty} e_nQ \). We claim that \(J \) is an essential right ideal of \(Q \). If \(J \cap eQ = 0 \), then \(J \oplus eQ \subseteq eQ \). On the other hand, since \(Q \) is a right self-injective regular ring, there exist orthogonal idempotents \(e', e' \) such that \(e'Q = eQ, eQ = e'Q \). We claim that \(\bigoplus_{n=1}^{\infty} Qe_n \cap Qe' = 0 \). Let \(re' = a_1e_{a_1} + \cdots + a_k e_{a_k} \) be an any element of \(\bigoplus_{n=1}^{\infty} Qe_n \cap Qe' \). Since \(e_n = e_{a_1}e_n, e_n = e_n e' \), we have that
COMPLETIONS AND MAXIMAL QUOTIENT RINGS

\[e'e_n = e'(e'e_n) = 0. \] Now \(re'e_n = a_re_n \), so \(re' = 0 \), as claimed. Thus \(e' = 0 \), so that \(e = 0 \). This shows that \(\bigoplus_{n=1}^{\infty} e_nQ \) is an essential right ideal in \(Q \). Therefore by assumption, \(N_Q(J) = 1 \), which is concluded to that \(N_Q(K) = 1 \). In this case, the maximal left quotient ring of \(Q \) is embeded in \(R \) as a subring. Now in order to prove this Theorem, it suffices to show that \(R \) is a left essential extension of \(Q \). Let \(x \) be any element of \(R \). Since \(R \) is complete, for any positive number \(\varepsilon \), there exists an element \(x' \) of \(Q \) such that \(\overline{N}(x - x') < \varepsilon /2 \). We put \(x - x' = y \), where \(y \) is an element of \(R \). With respect to \(y \), there exists an element \(x_i \) of \(Q \) such that \(\overline{N}(y - x_i) < \varepsilon /2 \cdot 3^n \). Put \(y = x_i = y_1 \). In general, there exist elements \(x_i \) of \(Q \) such that \(\overline{N}(y_n - x_n) < \varepsilon /2 \cdot 3^n \). We put \(y_n - x_n = y_n \). Now we have that \(\overline{N}(y - \sum_{i=1}^{n} x_i) < \varepsilon /2 \cdot 3^n \). Thus \(\sum_{i=1}^{n} x_i \) is a Cauchy sequence. Since \(R \) is complete, \(\sum_{i=1}^{\infty} x_i = y \). Furthermore, \(\sum_{i=1}^{\infty} \overline{N}(x_i) < \overline{N}(y) + 2 \{ \overline{N}(y_1) + \overline{N}(y_2) + \cdots \} < \varepsilon /2 + \sum_{i=1}^{\infty} \varepsilon /3^i = \varepsilon /2 + \varepsilon /2 = \varepsilon \). Let \(I \) be a right ideal generated by \(x', x_1, \ldots \). Since \(\sum \overline{N}(x_i) < \varepsilon \), \(\overline{N}(I) < \varepsilon \). On the other hand, since \(\sum_{i=1}^{n} x_i = y \in R \), \(y \) is in \(\overline{I} \), where \(\overline{I} \) is the \(N_Q \)-closure of \(I \). Let \(e \) be an idempotent element of \(Q \) such that \(I \subseteq (1 - e)Q \), then \(eI = 0 \). And since \(I \oplus eQ \subseteq Q \), \(N_Q(I \oplus eQ) = N_Q(I) + N_Q(e) = 1 \). Hence \(N_Q(e) = 1 - \varepsilon \). Furthermore since \(\overline{l}(I) = \overline{l}(I) \), \(e \overline{I} = 0 \), where \(\overline{l}(I) \) means the left annihilator ideal. In particular, \(ey = 0 \). Now since \(y = x - x' \), \(ex = ex' \). Finally, we shall show that \(ex' \neq 0 \). Since \(ex = x - (1 - e)x \), \(\overline{N}(ex) > \overline{N}(x) - \overline{N}((1 - e)x) > \overline{N}(x) - \overline{N}(1 - e) > \overline{N}(x) - \varepsilon \). If we set \(\varepsilon = \overline{N}(x) > \varepsilon \), then \(N(ex) \neq 0 \), so \(ex = ex' = 0 \). Therefore \(\overline{R}x \cap Q = 0 \), hence \(\overline{R} \) is a left essential extention of \(Q \). This completes the proof.

Remark. Recently, H. Kambara [2] constructed the counter example of Roos conjecture (= Is every directly finite right self-injective ring necessary left self-injective?). He constructed the simple regular ring which is directly finite right self-injective and satisfies the assumption of above Theorem 1, but not left self-injective. By virtue of this example, Theorem 1 is not abstract non-sence.

If \(N \) is a pseudo-rank function, then we have the following theorem.

Theorem 2. Let \(R \) be a regular ring with pseudo-rank function \(N \). If for any essential right ideal \(I \) of \(R \), \(N(I) = 1 \) and \(ker(N) \) is a prime ideal, then \(N \) is an extreme point and is extended to the maximal right quotient ring \(Q \). In this case, \(Q/ker N_Q \) is the maximal right quotient ring of \(R/ker N \), where \(N_Q \) is the extension \(N \). Furthermore, the completion of \(R \) is isomorphic to the left maximal quotient ring of the right maximal quotient ring of \(R/ker(N) \).

Proof. Let \(\overline{R} \) be the \(N \)-completion of \(R \). Then since \(\overline{R} \) is a right and
left self-injective regular ring, \mathcal{R} is injective as a right R-module. Now there exists a R-module homomorphism f from Q to \mathcal{R} such that the following diagram commute,

$$
\begin{array}{c}
Q \xrightarrow{f} \mathcal{R} \\
\uparrow \\
R \xrightarrow{} R/\ker(N)
\end{array}
$$

In this case, by using the same proof of Theorem 1, we can see that \mathcal{R} is a non-singular right R-module and f is a ring homomorphism. We extend N to Q as follows, for any element x of Q, we define that $N_Q(x)=N(f(x))$. Note that $\ker(f)=\ker N$ and $\ker N_Q \cap R = \ker N$. Clearly $R/\ker N$ has a rank function \mathcal{N} which is induced by N. We note that $\mathcal{N}(K)=1$ for any essential right ideal K of $R/\ker N$. Therefore we apply Theorem 1 to $R/\ker N$, that is \mathcal{R} is the maximal left quotient ring of the maximal right quotient ring of $R/\ker N$. Next we claim that $Q/\ker N_Q$ is a right essential extension of $R/\ker N$. Given non-zero element x of $Q/\ker N_Q$, since x is in Q, there exists essential right ideal I of R such that $xI \subseteq R$. Assume that $xI \nsubseteq \ker N$, then $xI=0$. In this case, we have that $x=0$, which is a contradiction. Therefore $xI \nsubseteq \ker N$, that is for some non-zero element t of I, $0 \neq xI \subseteq R/\ker N$. So $Q/\ker N$ is essential right extension of $R/\ker N$. Note that $\ker N_Q$ is a prime ideal of Q. Since Q is a self-injective regular ring, there exists a central idempotent e of Q such that $\ker N_Q \subseteq eQ$. Thus $\ker N_Q \oplus (1-eQ)$ is an essential ideal of Q, so $N_Q(\ker N_Q \oplus (1-e)Q)=1$. This shows that $N_Q((1-e)Q)=1$. Now $N_Q(e)=0$, hence $\ker N_Q = eQ$. Therefore $Q/\ker N_Q = Q/eQ$ is a regular right self-injective ring. Consequently, $Q/\ker N_Q$ is a maximal right quotient ring of $R/\ker N$. Thus $Q/\ker N_Q$ is a prime regular self-injective ring with rank function. In this case, [1, Proposition 8.6] shows that $Q/\ker N_Q$ is a simple ring. Therefore $R/\ker N$ is also a simple ring. Now [1, Theorem 19.14] implies that N is an extreme point of $P(R)$. Thus the proof is complete.

References

Department of Mathematics
Naruto University of Education
Naruto, 772, Japan