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1. Introduction

Let K be a triangulation of compact 3-manifold M with V(K), E(K), F(K)
and T(K) the numbers of vertices, edges, faces, and tetrahedra in K,
respectively. Note that we distinguish a triangulation from a cell decomposition
into a union of 3-simplices, that is, such a cell decomposition is a triangulation
when the intersection of any two simplices is actually a face of each of them. The
order of an edge in K is the number of triangles incident to that edge. The
average edge order of K is then 3F(K)/E(K), which we will denote w(K). Feng
Luo and Richard Stong showed in [2] that for a closed 3-manifold M, u(K) being
small implies that the topology of M is fairly simple and restricts the triangulation
K. This is the following theorem.

Theorem 1 [2]. Let K be any triangulation of a closed connected 3-manifold
M without boundary. Then

(a) 3<w(K)<6, equality holds if and only if K is the triangulation of the
boundary of a 4-simplex.

(b) For any €>0, there are triangulations K, and K, of M such that
wK)<4.5+¢ and WK,)>6—e¢.

() If W(K)<4.5, then K is a triangulation of S3. There are an infinite number
of distinct such triangulations, but for any constant c¢<4.5 there are only finitely
many triangulations K with w(K)<c.

(d) If wW(K)=45, then K is a triangulation of S3, S*xS!', or S?%S".
Furthermore, in the last two cases, the triangulations can be described.

The purpose of this note is to establish similar results for compact 3-manifolds
with non-empty boundary. In fact we get the following theorem.

Theorem 2. Let K be any triangulation of a compact connected 3-manifold M
with non-empty boundary. Then

(a) 2<u(K)<6, equality holds if and only if K is the triangulation of one
3-simplex.
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(b) For any rational number r with 3<r<6, there is a triangulation K' of
M such that W(K')=r.

() If i(K)<3, then K is a triangulation of B3. There are an infinite number
of distinct such triangulations, but for any constant ¢ <3 there are only finitely many
triangulations K with w(K)<c.

(d) If W(K)=3, then K is a triangulation of B*, D*x S*, or D*% S'.
Furthermore, in the last two cases, the triangulations can be described.

We note that a result similar to Theorem 2(b) also holds for closed 3-manifolds.

Proposition 3 (A refinement of Theorem 1(b)). For any closed 3-manifold M
and for any rational number r satisfying 4.5<r<6, there is a triangulation K' of
M such that W(K')=r.

2. Proof of Theorem 2 (a)

This proof is similar to that of Theorem 1 (a) in [2]. Since each edge has
order at least 2, we have w(K)>2. Let N=Mu,,M be the canonical double of
M and K (resp. K;) denote the cell decomposition of N (resp. dM) induced by
K. Though Ky may not be a triangulation, the upper bound in Theorem 1 (a)
is valid for any cell decomposition of a closed 3-manifold consisting of
3-simplices. Hence we have

H(Ky)=3{2FK)—FK,)} / {2E(K)— E(K,)} <6,
and therefore

3AK)<6E(K)—3E(K;)+(3/2)HK,).
As 0M is a closed 2-manifold, 3R K,)=2E(K,). Thus
wK)=3MK)/EK)<6—2E(K,)/EK)<6.

Finally, suppose w(K)=2. Then every edge of K has order 2, and hence we see
K consists of only one 3-simplex. This completes the proof of Theorem 2 (a).

3. Proof of Theorem 2 (b)

Let r=q/p be a rational number with 3<r<6, where p and g are relatively
prime integers. Choose an integer a such that 3<a and ¢/p<6a/(x+1). Then
we can easily see that there is a triangulation K of M with three edges e,, e,,
and e; which satisfy the following conditions:

(1) the order of e, is 2, thus e, lies on M,

(2) the orders of e, and e; are a and a+ 1, respectively, and
(3) st(e) (1<i<3) have mutually disjoint interiors, where st(e) is the star
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neighborhood of e in K.

Put a=FE(K) and b=FK). Let K' be the steller subdivision of K obtained
by adding /, m, and n vertices in the interior of e, e,, and ej, respectively. Then
we have the following (see Figure 1).

WK')=3{b+3l+2am+2(a+ 1)n} /{a+ 3+ o+ D)m +(x + 2)n}.

(a) (b)
Fig. 1.

The proof is completed if we show the following lemma.

Lemma 4. There exists a non-negative integers I, m, and n satisfying W(K'y=q/p,
that is,

(1) 3Bp—q)l+{6ap—(a+1)g}m+ {6(x+ 1)p —(a +2)q}n=aq —3bp.

Proof. Let A be the greatest common divisor A of 3(3p—gq), 6ap—(a+1)g.
Since p and ¢ are relatively prime, we have

A=(3(3p—q), 6ap—(x+1)gq, 6(xx+ 1)p—(x+2)q)={3p,q)=(3,9).

This shows that A divides aq—3bp, because ag—3bp is a multiple of 3 when
(3,9)=3. Hence we have an integral solution [/,,m,n,] of Equation (1). Put
l,={6ap—(o+1)g} + {6(cx+ 1)p—(x+2)g} and m,=n,=—3(3p—¢q). By the defini-
tion of p, ¢, and a, all of /,, m,, and n, are positive. Therefore, for a sufficiently
large positive integer k, the triple [/, +kl,,m, +km,,n,+kn,] is a solution of (1)
consisting of non-negative integers. O

REMARK 5. Proposition 3 can be proved similarly by taking three edges e, e,,
and e, with the orders 3, a, and a+ 1, respectively.

4. Proof of Theorem 2 (c) and (d)

Let K be a triangulation of a compact 3-manifold M with non-empty boundary
and & the 1-skeleton of the dual cell complex of K. For each vertex v (resp.
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edge e) of &, let A(v) (resp. f(e)) be the 3-simplex (resp. face) of K dual to v (resp.
e). For each subcomplex & of &, let D(¥) be the cell complex obtained from
the disjoint union of the 3-simplices {A(v)},.y( by identifying their faces along
{f(€)}eess). Here ¥ (%) and (%) denote the vertex set and the edge set of &,
respectively. Then we see K=D(%). Though D(%¥) may not be a triangulation,
we can define the average edge order of D(%) by u(D(¥))=3FD(¥))/ E(D(¥)). Put
ED(®))= F(D(¥))— E(D(¥)). Then the following is obvious:

REMARK 6. p(D(%)) is greater than (resp. equal to) 3, if and only if &D(%)) is
positive (resp. 0).

In the following we choose an increasing sequence of the subcomplexes of &,
Co<b,< - =€,=,

and estimate £(D(%;)) successively. To do this we need the following notation. Let

% and €’ be subcomplexes of & such that &(@)NE(€")=0 and ¥ (¥)=7*"(¢"). Then

D(€u®) is obtained from D(%) by identifying their faces along {f(€)}ecss)- SO

we say that D(€U®’) is obtained from D(%) by gluing operations corresponding
<

to the edges of ¢’, and we denote D(%) - D(€ U¥’). Suppose further that &%) = {e}
where e=[v,,v,] is an edge of . For i=1,2, let f(e,v;) be the face of the 3-simplex
A(v;) of D(¥) which projects to the face f(e) of D uU¥%’). Let d be the number
of the common edges of f(e,v,) and f(e,v,) in D(¥). Then d=0,1,2, or 3, and we
say that the edge e is of type d with respect to €. It should be noted that the
intersection of f(e,,v,) and f(e,,v,) in D(¥) may contain isolated vertices beside d
edges when d=0 or 1.

Lemma 7. Let % beasubcomplex of & and e an edge of & such that € ne = 0e.
(1) If e is of type d with respect to €, then

{DE L {e})=L¢D(B) +2—d.

In particular, &D(€ U {e})) < E(D(¥)) if and only if e is of type 3.
(2) If € is a tree, then {(D(€))= —2.

Proof. (1) This follows from the facts that each gluing operation decreases
the number of faces by 1 and that the type d gluing operation decreases the
number of edges by 3—d.

(2) Put T=T(D(¥)). Then D(%) is obtained from LI TA? by gluing operations
of type O corresponding to the edges of ¥. Since ¥ has (T—1) edges,
ED(®)=—2T+2(T—1)=—2 by using (1) of this lemma. O
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For an edge [ab] in D(¥), let N([ab], D(¥)) (or simply N[ab]) be the star
neighborhood of [ab] in D(¥), and let L([ab], %) (or simply L[ab]) be the 1-skeleton
of the dual cell complex of N[ab], ie., L[ab] is the subcomplex of € consisting
of those cells whose duals contain [ab]. By the construction of ¢ and the fact
that K is a triangulation of a 3-manifold, we see L[ab] is either a simple cycle
or a simple edge path in &. In the former case, we call L[ab] an edge cycle (see
Figure 2).

L[ab]

N[ab]

Fig. 2.

Lemma 8. For two distinct edges [ab] and [a'b'] of D(¥), LLab]nL[a'b"] is
an empty set, a vertex, or an edge.

Proof. Suppose L[ab]n L[a'b’] is neither an empty set nor a vertex. Then
it contains two vertices, say v, and v,, of & and both A(v,) and A(v,) contain
both edges [ab] and [a'b’]. If [ab]n[a'b’]=¢, then we must have A(v,)=[aba’b’]
=A(v,) since K is a triangulation, a contradiction. So we may assume a'=a and
b’ #b. Then A(v,)nA(v,) is the 2 simplex [abb'], and hence v, and v, span an
edge [v,v,] in L[ab]nL[a'b"]. Suppose L[ab]nL[a’'b’] has another vertex v,
then the corresponding 3-simplex A(v,) also has [abb’] as a face. This contradicts
the fact that K is a triangulation of a 3-manifold. Thus L[ab]nL[a'b’] is an
edge [v,v,]. O

Let e be an edge of €, and put [abc]=f(e). Then ZL(e,%) (or simply L(e))
denotes the subcomplex L[ab]uL[bc]uL[ca] of ¥ (see Figure 3). Note that
the intersection of any two of the three summands of £(e) is equal to e
by Lemma 8.
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&>

(a) L(e) (b) N(e)

Fig. 3.

Lemma 9. If e€¥ is an edge of type d with respect to € —e, then
AD(ZL(e,6))=d—2.
Proof. Let .# be a maximal tree of D(Z(e,%)). Since D(Z(e)) consists of d

edge cycles and 3—d edge paths, Z(e)/.# is the set of d edges of type 1 with
respect to .# (see Figure 4). Therefore by Lemma 7, we have

ED(ZL(e)=ED(M))+d=d—2.

(a) (b)
Fig. 4.

Now we choose an ordering e,,---,e, of the edges of &, and let €,,---,%, be
the increasing sequence of the subcomplexes of & defined by €,=7(¥), and
%, =%;_,u{e]} (1<i<n). Then we obtain the following sequence of cell complexes:

e

ey e2 e3 n
Ko=D(%,) - D(€,) = D(€,) = - = D(¥¢,)=K.

Here K, is the disjoint union of the 3-simplices of K. The edge e; is said to be
of type d in this sequence if e; is of type d with respect to €;_,.
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The following is the key observation for the proof of Theorem 2 (c) and (d).

Cramm 10. (a) If w(K)<3, then there are no edges of type 3.
(b) If (K)<3, then there are no edges of type 2 nor those of type 3.

We will postpone the proof of Claim 10 until the end of this section.

Now we prove Theorem 2 (c) by assuming Clain 10. Suppose u(K)<3, and
put T=T(K). Let .# be a maximal tree of /. Then K is obtained as the final
term of the sequence

M FL\M
Ko=D(%,) » D(M) » D(¥)=K.

By Lemma 7, {D(#))=—2. By Clain 10, any edge of &\ A is of type 0 or
1. Since we have {(K)<O0 by Remark 6, we see, by Lemma 7, either &S\ .# is
empty or consists of only one edge of type 1. If &#\.# is empty, then K= D(.#),
ie., it is a boundary connected sum 8TA® of T 3-simplices along their faces; in
particular, M=B3. If &\ consists of only one edge of type 1, then K is obtained
from D(.#)=1TA> by applying a type 1 gluing operation exactly once. Since D(.#) is
a triangulation of B3, two fases in D(.#) which will be identified by the next
type 1 gluing operation hold only one edge in common: so we see D(¥) is a
triangulation of B3. Thus we have obtained the first half of Theorem 2 (c). To
see the latter half, note that u(K)=3{3T+1—,}/{3T+3—2j}, where j is the number
of the edges in #\.#. Since j=0 or 1, we see u(K)<3 for any 7. Hence there
are infinitely many K with y(K)<3. Let ¢ be a constant less than 3 and suppose
wWK)=3{3T+1—;}/{3T+3—-2j}<c. Then we get T<{3(c—1)+(3—2c)}/{3(
—c¢)}. Thus the number of K with y(K)<c is finite. This completes the proof of
Theorem 2 (c).

Next we prove Theorem 2(d) by assuming Claim 10. Suppose w(K)=3, and
put T=T(K).

Case 1. None of ¢; (1<i<n) is of type 2. Consider the sequence in the
proof of Theorem 2(c);

M SL\M

Ko=D(%,) » D(M) —» D(&)=K.

Then by Lemma 7, {(D(A#)=—2. By Lemma 7 and the assumption, &\.#
consists of either two edges of type 1 or only one edge of type 0.

In the former case, K can be obtained from 47A3 by applying type 1 gluing
operations twice. Let {e,,e,} be the set of two edge of type 1 in &\ and put
[vy1,01,]=€; and [v,,0,,]1=e€,. As we mentioned before, since D(#) is a
triangulation of B, f(ey,v,1) Nf(ey,vy,) consists of only one edge. Thus D(.# U {e,})
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is a cell-decomposition of B3. If f(e,,v,1)Nf(esv,,) consists of an edge and an
isolated vertex v, then the point v in D(.# U {ee,}) cannot have an Euclidean
neighborhood, a contradiction. Therefore f(e,,v,;)Nf(e,,v,,) consists of only one
edge. Hence D(¥)=D(# U D{ey,e,}) is a triangulation of B3,

In the latter case, K can be obtained from 87A3 by applying a type 0 gluing
operation once. Since M = D(¥) is a 3-manifold, the faces in dD(.#) to be identified
by the last type O gluing operation are disjoint. Thus M is D>x S! or D*% S!
according to whether the operation is compatible with the orientation or not.

Case 2. Some ¢; is of type 2. Then we reorder the edge of & so that
{ey, e} =L(e;). We call a subcomplex & of & an extended maximal tree
containing € if & is the inverse image in & of a maximal tree of the graph & /%,
where & /€ denotes the graph obtained from & by collapsing each connected
component of € to a point. Let & be an extended maximal tree containing #(e;),
and consider the following sequence;

Zei) Z\Z(ei) T
Ko=D(%o) - D(%) — D) — D&)=K,

where €,=%(e)u¥,. Put t=T(K)—T(L(e;)), then
D(%))=D(Z(e)) L1 (LLA).

By Lemma 9, we have &(D(£(e)))=0. Therefore
ED(%) = ED(L(e) + &A% = —2t.
Since &\.Z(e;) consists of ¢ edges of type 0, we have
D))= E(D(L(e;)) + 2t =0.

Since &(D(S))=0 by the assumption and Remark 6, we see, by Lemma 7 and
Claim 10, that £\ is empty or consists of only edges of type 2. Let m be the
number of edges of ¥\%.

If m=0, ie. \Z =0, then K=D(%)=D(Z(e;))8(5A% and M= B>,

Suppose m=1, choose an edge ¢ of £\Z, and put [abc]=f(e;) and
[ab'c]=f(e). Since e; is of type 2, we may assume L[ab] and L[ac] are edge
cycles and L[bc] is an edge path. Similarly, we may assume L[{a'b’] and L[a'c"]
are edge cycles and L[b'c'] is an edge path. It should be noted that L[ab] and
L[ac] are considered in %, whereas L[a'h’] and L[a'c’] are considered in
Zou{e}. Let &, be the union of these four edge cycles. Then we have the
following sublemma which is proved later.

Sublemma 11. %, is as illustrated in Figure 5.
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Fig. 5.

By this sublemma, we have K= D(Z,)4(8A% and M is B>.

Suppose m>2, ie., S\ has another edge e” of type 2. Then ¢” has its
endpoints in %, and e"¢.%,. But this contradicts Sublemma 11 and the fact
that K is a triangulation. Thus m <1 and we have proved the part (d) of Theorem 2.

O

Proof of Sublemma 11. Put J=(L[a'b'JuL[a'c'])\{€’}. Then J is a simple
cycle in & by Lemma 8. By the construction of &, the cycle J is contained in
PLle). So J is contained in L[ab]uL[ac]. Hence the endpoints of ' lie in
Llab]uL[ac]. Suppose de¢’ lies in L[ab]. Let de' be the sub-edge path in
L[ab]\{e} cut off by de¢' as in Figure 6.

Fig. 6.

Then one of L[a'b’] and L[a'c’], say L[a'b'], is d¢'. Since de'=L[ab]NL[a'b],
0é’ consists of one edge by Lemma 8. So it follows that ¢'=0¢’ since K is a
triangulation; this contradicts the fact that ¢’ is not contained in 2. Hence 0Je’
does not lie in L[ab]. Similarly de’ does not lie in L[ac]. Hence €' has its
endpoints in each of L[ab] and L[ac]. By Lemma 8, any two of the edge cycles
L[ab], L[ac], L[a'b'], and L[a'c'] intersects in an edge. Therefore, we see that
the union &, of these four cycles is as illustrated in Figure 5. O

Proof of Claim 10 (a). Suppose u(K)<3 and some edge e¢; is of type 3. Put
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oA =%(e,¥;-,). Then we reorder the edge of & so that {e,--,e}=/, and
consider the following sequence;

er+1

o en
Ko=D(%o) > D(€) - D(%,4,) > --- > D(®,)=K.
We need the following sublemma which is proved later.

Sublemma 12. By further reordering S\ ={e,, ,-+*,e,}, we may assume no
e{l+1<i<n) is of type 3.
Put t=T(K)—T(D(=«¢)). Then D(%,)=D(</) I (11'A%. By Lemma 9,
ED(E) = UD(A) +tEA%)=1-21.

By Lemma 7 and Sublemma 12, the sequence {&(D(%))},<i<n is not decreasing. Since
D(%)) has (t + 1) components, there are ¢ edges of type 0 among {e,, ,---,e,}. Hence,
by using Lemma 7, we see

EK)>ED)+2t=1>0.

Then u(K)>3 by Remark 6, contradiction. Thus Clain 10 (a) is proved. O
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Proof of Sublemma 12. Suppose there are edge of type 3, say e, coming
first, in the subsequences &\.«/ and put #={e; ., ,e,}. Here we regard %
as an ordered set. In the following, we show that we can reorder # so that
there are no edges of type 3 in the new ordered set %.

Let intD(/) be D(«/)\0D(s/) in D(%,), and we can regard this subcomplex in
D(%) as that of in D(%,). In D(%,), we define 0D(=/) by D()\intD(s/). Note
that D(«/) in D(%,) may be different from D(&) in D(¥)) (see Figure 7). Thus
0D(s/) in D(%,,) may be different from dD(s#) in D(%)), but it satisfies the following
property:

(*) for any two faces f and f”, there is a sequence of faces f=f,,f1, . fi=f"
of the complex such that f; and f;,, are adjacent.

Let D be the connected component of D(%,,) containing f(e,). Let f and f’
be any faces in D\intD(s/), there is sequence of faces f=fq,f, . fi=f" of D such
that f; and f;,, are adjacent. Suppose there is a subsequence f;,f; 4y, ---,f; whose
elements are in intD(of). Since 0D(of) satisfies the property (), there is a

aD

[N

Fig. 8.
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subsequence f7,f/ y, ---.fy in D(f) such that any of (f;_,,f7), (fi,fes1) (<s<r—1),
and (fy,f;+1) is a pair of adjacent faces. Thus D\intD(s#) satisfies property (*). So
we can take a sequence of faces f,=f(e,).f1, ".f; in D\intD(s/) satisfying the
following conditions:

(1) f; and f;,, are adjacent, and
(2) f; lies on 0D.

Let f, be the first face in this sequence which has edges in 2. These conditions
are illustrated in Figure 8.

Now we define 29={e{’),,---,e®} (0<i<k—1) inductively as follows. We
regard # as BV ={e{?,,---,e’} and suppose we have constructed #?. Let ¢

mi+

be the dual of fi.,, ie. f(e{), )=fi+;. Note that e? e# because f(m;,,)

mi+y

e D\intD(s/). To make a new sequence #/*", we shift ef)  to the last of B¢,
that is, if

BO=(ef) s, ool
then we set

'%(i+ 1)= {eﬁ- " ‘_"é(i)

mi+

el e®

Strictly speaking, we deifne e{'* ) as following:

‘ e§.f> (+1<j<myy —1)
6’;"“): 3%1 (miy<j<m—1)
ey (j=m).

Now we prove the following by induction of i €{) (/I+1<j<m—1) is not of type
3 (1<i<k). Since € (I+1<j<m—1) is not of type 3 in L UBY, €f+V
(I+1<j<m—2)is not of type 3 in L/ UAB*D. By the condition (1), e and e |
belong to the same edge cycle. Thus we see e*}) is not of type 3 in o/ UA* Y. By
the condition (2), L(e%, o/ UB) does not consist of three edge cycles containing
e,. Thus e is not of type 3 in o/ UB®. Therefore we get a subsequence
o UB® without edges of type 3 in #%®.

If there are edges of type 3 in e, ,e,, we proceed in a similar fashion,
changing the orders again. After making finitely many changes, we can get a
sequence without edges of type 3 in ey, €, O

Proof of Claim 10 (b). Suppose u(K)<3 and some edge e¢; is of type 2. As
we observed before in the proof of Theorem 2(d),

D) =ED(L )+ 2t =0.
By Claim 10 (a) and Lemma 7, we have

SK)=&D(F) = {DX) =0.
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This contradicts wu(K)<3. O

5. Concluding Remark

Prof. S. Kojima kindly suggested to the author that the more natural
generalization of the average edge order of closed manifolds to that of manifolds
with boundary is to count simplices on the boundary with weight 1/2, ie.
E(K)=E(K)+E{K)/2 and A{K)=F(K)+ F4K)/2, where E; (resp. F;) is the number
of edges (resp. faces) in K\JK, and E, (resp. F) is the number of edges (resp. faces)
on 0K. This suggestion is based upon the fact that the average edge order is a
geometric interpretation in terms of a global average of the curvature. The author
conjectures a result similar to Theorem 2 also holds in this case.
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