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1. Introduction

A strongly regular graph with parameters (n,4,c,d) is a graph with # vertices
whish is regular of valency @ and has the property that the number of vertices
adjacent to p, and p, (p,=p») is ¢ or d acsordihg as p, and p, are adjacent or not.

In this paper we consider the strongly regular graphs which can be parti-
tioned into two strongly regular subgraphs with equally many vertices. The
strongly regular graphs with d=0 (d=a) having this property are the disjoint

unions of two complete graphs on é—ﬂ vertices (their complementary graphs).

So we are interested in the strongly regular graphs with 0<<d<a.
In section 2 we first prove the following

Theorem 1. Let a strongly regular graph T whose parameters are (n, a,c,d)
with 0<d<a be partitioned into two stromgly regular subgraphs T, and T, with
parameters (n,, a,, c,, dy) and (ny, ay, ¢;, dy) where my=n,. Assume that a=a,+a,
by taking the complement of T if necessary. Then either of the following holds ;

(1) The parameters of T' and T'; (i=1,2) are expressed in terms of two para-
meters s(<0) and t(>0) with —s=1*+2t as follows.

n— 2(s—12)? (2ts+s+£2+2¢)
(Fs) (Pt 21—s)
o= s(2st—1£24-s)

242t —s
¢ — t(s—++1) (s+£42¢)
24-2t—s ’
g— D (E4s)
242t —s

" — = (s—12)? (2ts+s+124-2¢)
e (B+s5) (B+21—s)
st(s+1)
P+2t—s

a, = =

I
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o —=c _ (P+2t+s) (£#4-st4-3t—s)
P 2(#+2t—s) ’

d—=d — t(s+t+2) (s+17) .
e 2(£+2t—s)

Here s and t are the eigenvalues of the adjacency matrix of T different from a.
(2) The parameters of T and T; (i=1,2) are expressed in terms of one para-
meter t(>0) as follows.

n = 2(204-2¢t+41),

a= (2t+1) (t+1),
c=(t+2),

d= (t+1)?,

ny = ny, = 22-1-2t--1,

a, = a6, = t(t41),
a+6=ctd—1=~+t-2,
d+d, = dy+e+1 = £+¢.

Here t is the eigenvalue of the adjacency matrix of T different from a.

The strongly regular graph with the parameters of Theorem 1(1) is refered
to as a Smith graph and has the property that its subconstituents are both strongly
regular (see [2], Theorems 5.4, 6.1 and 6.6). The Higman Sims graph has a
partition as in Theorem 1(1) with (s,£)=(—8,2) (see [2], page 40). The strongly
regular graphs with the parameters (112, 30, 2, 10) and (162, 56, 10, 24) which are
the subconstituents of the Mclaughlin graph ([5], pp. 109-111) also have such
partitions with (s,)=(—10, 2) and (—16, 2). See a result of P.J. Cameron
described in the last part of this section. It was proved in [1] that a generalized
quadrungle with parameters (¢,¢°) gives rise to a strongly regular graph as in
Theorem 1(1) with s=—¢*—1 and t=¢—1. The above graph with 112 vertices
is associated with the generalized quadrungle with parameters (3, 9) (see [1]).
The complement of the Petersen graph has a partition as in Theorem 1(2) with
t=1.

In section 3 we consider the construction of the strongly regular graphs
having partitions as Theorem 1(2) and prove the following.

Theorem 2. Let B be the adjacency matrix of a strongly regular graph
with parameters (2£-+2t-+1, ¢(t+1), %t(t-{—l)—l, —;—t(t—l—l)) for some positive
integer t. Assume that there exists a (0,1)-matrix C such tnat BC=CB and CTC=
TCC=t2E+-;—t(t—— 1)(J—E). Then
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B, C
4= (Tc, ]-B-E)

is the adjacency matrix of a stromgly regular graph with the parameters (2(2£4
2t4-1), (2t+1), #—1, ). Here J is the matrix whose entries are all one.

We remark that the strongly regular graphs appearing in Theorem 2 are
the complements of those appearing in Theorem 1(2).
As an application of Theorem 2 we have the following

Theorem 3. Let g=2£+2t+1 be a prime power, and N the additive group
of the field GF(q) with q elements. Assume that N has a difference set X with £
elements. Then there exists a strongly regular graph with the parameters (2q, 26*-+
t, #—1, ) admitting a partition into two strongly regular subgraphs with equally
many vertices.

In the cases t=2 and 3 N has a difference set X with # elements (see [4],
pp- 291-292). So there exist strongly regular graphs with parameters (26, 10, 3,
4) and (50, 21, 8, 9) which admit partitions into two strongly regular subgraphs.

We use the same notation and terminology for strongly regular graphs as
in [3]. For difference sets the reader is refered to [4].

Acknowledgement. The author wishes to thank Doctor P.J. Cameron
for his helpful suggestions. The following beautiful result was communicated
by him to the author.

Theorem (P.J. Cameron). Let a strongly regular graph T have the parameters
of Theorem 1(1) with —s=1*(2t+3). For a vertex v of T" let A(v) and A’(v) denote
the set of vertices adjacent and nom-adjcaent to v respectively. Then the strongly
regular graph A(v) and A’(v) both have partitions into strongly regular subgraphs
with equally many vertices as follows;

(1) A®) = {A@) N A@)} U{A@)NA@)

where w is an arbitrary vertex of A’(v).
(2) A(v) = {A(v)NA@)} U{A(v)NA(w)},
where u is an arbitrary vertex of A() .

2. Proof of Theorem 1

We begin with elementary results on strongly regular graphs.

Lemma 2.0 Let T be a strongly regular graph with parameters (n, a, c, d)
and A the adjacency matrix of T'. Then

(1) a(a—c—1)=(n—a—1)d,

(2) O<d<a if and only if T' and its complementary graph are connected.

(3) The eigenvalues of A consist of a and the solutions of x*—(c—d)x+(d—



382 R. Nopa

a)=0.
4) If (s(£0) and t(=0) are the solutions of x*—(c—d) x+(d—a)=0 then
(i) s+t=c—d and st=d—a.
(ii) nd=(a—s) (a—1t).
(i) s=—1 and if s=—1 then d=0.
(iv) 0=t=a and if t=a then d=0.

For the proof of Lemma 2.0, see [2] and [3].

Lemma 2.1. Under the assumptions of Theorem 1

a=a,, (2.1)
Bay—a) ¢ = ay(c,+¢,) , and (2.2)
(@—a) (a—a—1) = aic—e) +H(m—a,—1) (d—d)) . (2.3)

Proof. Counting in two ways the number of the edges joining the vertices
of T, to those of I', we have

n(a—a,) = ny(a—a,), and hence a, = a, .

The number of triples (u,, v,, w,) of distinct vertices with #,, v, in T} and
w, in T, such that any two of them are adjacent is equal to #, a,(c—c,;). Also
the number of triples (u,, v, w,) of distinct vertices with %, in I'; and v,, @, in
T, such that any two of them are adjacent is equal to ma,(c—c;). Countihg in
another way the total number of these triples we have

n, ay(c—c))+n, ay(c—c;) = ny(a—a,) ¢, and hence
c(3ay—a) = a(c;+¢p) .

Finally counting in two ways the number of triples (u, v,, w,) of distinct
vertices with #;, v; in T, and w, in T, such that w, is adjacent to both %, and
v, we have

ny(a—a,) (a—a,—1) = ny ay(c—c¢))+m(n,—a,—1) (d—d,) , hence
(a—a) (a—ay—1) = a\(c—e))+(m—a,—1) (d—d)) .
Lemma 2.2. In the situation of Theorem 1 put
s = 2a,—a. (24)

Then s is the negative eigenvalue of the adjacency matrix of T.

Proof. Let A be the adjacency matrix of I We may asume that A4 has

the form,
4, C
A= , 2.5
(e ) 23
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where 4; are the adjacency matrix of I'; (7=1,2). Then it is easily checked
ny ny
that (a—a,, -+, a—a,, —(a—a,) -+, —(a—a,)) is an eigenvector of A with eigen-
value 2a,—a. By the assumption of Theorem 1 s=2a,—a=<0.
We proceed with the proof of Theorem 1. By (2.5) we have

2_(A§+CTC, AIC—l—OAz)
—\rc4,4+-47C, T0C+43)

Then since A?=aE+cA+d(J—A—E) and Ai=a,E+c;A;+d(J—A,—E) (i=
1, 2) we have

C7C = (a—a) E+(c—¢;) Ay+(d—dy) (J—A,—E) (2.6)
A,C+CA, = cC+d(J—C), and (2.7)
TCC = (a—a,) E+(c—¢) Ay+-(d—dy) (J—A,—E) . (2.8)

Let s; and #; be the eigenvalues of A; different from a,(=1, 2). First assume
that c—c¢,+d,—d=+0. Then by (2.6) and (2.8) we may assume that s, and s,, ¢,
and ¢, have the same multiplicities respectively and that

(a—a)+(c—¢) s+ d—d) (—s, —1)

= (a—ay)+(c—c3) s+ (d—dp) (—s; —1), and 2.9)
(@a—a)+(c—e) ti+(d—d) (=t —1)
= (a—ax)+(c—¢;) t,+(d—dp) (—t, —1). (2.10)

By (2.1) and (2.9) we have

(c—¢) si+(d—d) (—s, —1) = (¢—¢3) $;+(d—d;) (—s; —1) , hence

sl(c._cl——d+dl)+dl == SZ(C—Cz—d-l‘dz)"i“dz .
Then since ¢;—d;=s;+t; and d;=a;+s; t,(i=1, 2), we have

si(c—d—s,) = s(c—d—s;), hence

(5—$,) (c—d—s,—5,) = 0. (2.11)
Similarly by (2.10) we have

(ti—2t) (c—d—t,—1,) = 0. (2.12)

Then by (2.11) and (2.12) we have either s,=s, and #,=1, or s;-+s,=t,+t,=c—d.
Note that s,=s, implies #,=t,, and conversely because trace 4,=0. If c—c,+
d—d,=0 then by (2.6) and (2.8) c—c;+d;—d=0, a—a,—d+d,=a—a,—d—d,,
hence ¢,=c,, d,/=d, and we may assume that s,=s, and #,=t,.

We now prove
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Lemma 2.3. In the above situation if s,+s,=t,~+t,=c—d then s,+s,=t,+
ty,=c—d=—1 and the case 2 of Theorem 1 occurs.

Proof. Let f be the multiplicity of s;(i=1, 2). 'Then since trace 4;,=0 we
have

f= (m—1) ti+a, _ (m—1) t,+a, )

th—s; t,—$,

Then since s,+s,=¢,+1%, we have (n,—1) (¢,+%,)+2a,=0. Then since (n,—1)>
a,, and t,+t,=c—d is integral we have #,+#,=—1, hence s,+s,=c—d=—1, and

n—1 = 2a,. (2.13)

Then it follows from the equality a;(a;—c;—1)=(n;—a;—1) d; that ¢;+-d;+1=
aft=1,2). Also we have

dy= a5t = ay+-(—s, —1) (—t, —1) = ay+-s,+-tp+5, 1,1 = ¢, +1.
Therefore we have
et = e td—1 = a—2. (2.14)

Then by (2.2), (2.4) and (2.14) we have

(3a,—a) ¢ = (a,+5) ¢ = ay(c,+¢,) = a(a,—2). (2.15)
Also by (2.3), (2.4), (2.13) and (2.14) we have

(a,—s) (a,—s—1) = ay(c—c,+d—dy) = a(2c—a,+2).
Then using (2.15) we have
(=) (a,—s—1) (a,+s5) = &, {2a,(a;—2)—(a,—2) (a;+5)}

= ay(a,—2) (a,—s) .
Then since a,—s>0 because of s<<0 we have
(a,—s—1) (a;+s) = ay(a;—2), and hence
a = s(s+1) = (—t—1) (—2) = #(t+1).
Then it follows that
a=2a,—s = 285 = 268+3t+1,
ny = 2a,+1 = 2t(t+1)+1
d = a+st = (t+1),

¢ = a+ts+t+st = 2+2¢,
ate =a—2 = t*4+t—2, and
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d1+d2 = CI+C2+2 = t2+t .

This completes the proof of Lemma 2.3.
By Lemma 2.3 we may assume for the remainder of this section that

$;=S8,t,=1,, hence ¢, =¢, and d;, = d, .
By (2.7) we have
A,C4,+CA} = (c—d) CAy+dJ A, = (c—d) CAy+da, ], and

AiC+A4,CA, = (c—d) A,C+dA, ] = (c—d) A,C+da, J, whence
CAI—A3C = (c—d) (CA,—AC).

Then
(c—d) (CA,—A4,C)

= C((a,—d,) E+-(c;—dy) Ap+d; ])—((ay—dy) E+-(e,—dy) A, +d, ]) C
= (,—d,) (CA,—A,C)+-d(a—a) J—d, (a—ay) ] ,

hence
(c,—dy—c+d) (CA4,—A,C)=0.

Then we have either c—c¢,=d—d, or CA,—A,C=0. We treat these two cases
separately.

Case 1. ¢—c;=d—d,.
By (2.2) and (2.4) we have cl=(3a1—a) c_(at35)¢ , and hence

2a, 2(a+s)
c—ey=d—d, — ¢ (1— a+3s ) _cla=s) (2.16)
! ' 2(a+s)  2(a+ts)

Then (2.3), (2.4) and (2.16) yield

(a—s) (a—s—2) (a-+s) = c¢(a—s) (n—2), hence
(a+s) (a—s—2) = (n—2)c. (2.17)

On the other hand since T is strongly regular we have
nd = n(a+st) = (a—s) (a—t), (2.18)

where ¢ is the eigenvalue of 4 different frcm a and s.
By (2.17) and (2.18) we have

(a+-s5) (a—s—2) (a+-st) = {(a—s) (a—1t)—2 (a+st)} (a+s+t+st).

Arranging this we have
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t(s+t+2) (s+1)a = st (s+1) (s—t), and hence
a(s+t+2)=s(s—t). (2.19)

By (2.18) and (2.19) we have

(n—a—1) (s4-1) = {(“ a‘jr(ft f_ 1} (s48) = (s+1) (t—s)  (2.20)

Since s<<—1 and #>0 the right hand sides of (2.19) and (2.20) are positive and
negative respectively, and hence we have s+¢+2>0 and s+4¢<<0, whence s+
t=—1.
Then
— S6=1) 411y (264-1) by (2.19

a= 20— (41 @) by 219),

¢ = a+s+it+st =t (t+2),

d = a+st = (t+1),

n = 2 (2£+2t+1) by (2.18),

n, = 2024-2t4+1,

a, = l (a+s)=(+1)¢,

t (t+1)—1 by (2.2) and

dy = —t(t+1).

Case 2. A,C=CA,.

By (2.7) we have 24,C=(c—d) C+d], and hence

{24,—(c—d)E} C = dJ.
If C is non singular then 24,—(c—d) E is of rank 1, so 2a¢,=c—d=s-+t, and
hence a=2a,—s=¢. This implies d=0, contrary to the assumption. There-
fore C is singular. 'Then by (2.6) we may assume that

(a—a)+(c—c) it+-(d—d)) (—t,—1) = 0.
This reduces

(a—d)—(a,—d))+(c—d—c,+d) ¢,
= —st4s; tH(s+t—s,—1) 4
= —(t,—s) (t,—t)=0. (2.21)

Assume that t,(=2,)=s. Then since I" and T, are strongly regular
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a—s _ .m _ _2m _ m _ a—t _ 2a,—s—t . whence
a,+-s, s a,—s 2a,—2s a—s a--st 2a,—s-+st
ay(t—2s,) = —ss;. (2.22)

On the other hand (2.2) and (2.4) give
(arts)c = 2a,¢,,
(a1 +5) (2a+-st+-t) = 2a,(a,+s,+s-+ss;), and hence
a(t—2s,) = —st. (2.23)

By (2.22) and (2.23) we have s;=¢ and then a,=s(<<0) by (2.23), a con-
tradiction. Therefore it follows from (2.21) that #,=¢. Then (2.2) and (2.4)

yield
(a1+5) (2a,+-st+t) = 2a,(a,+s, t+5,+t), hence
ay(2s4-st—t—2s, t—25)) = —st(s+1). (2.24)

Also since T and T, are strongly regular we have

1 (a—s)a—t) _ n _  2n __n _ a—t
a,—s a,+s, t a,—s 2a,—2s a—s a-t-st
2a,—s+st
{2s5)(t+1)—2s—st+2} af— {s,(2st+2t+4-s+15)—st2—s%} a,
+s,ts(s+1) = 0. (2.25)

Eliminating a, from (2.24) and (2.25) we have

st (s+1) (2+1) {252 —(3s+¢) s;+s (s-+£)} = 0, whence
(25y—s—1t) (5,—s) = 0.

If s,=s then (2.24) yields a,=s5(<0), a contradiction. So we have 2s=s+t¢.
Then

= SttD) by 224,

1=

t2+-2t—s
a=2a—s = S(TZ:%ES) :
2
d= a+st = —S(tt;:zt(t_ ':s) ,
.
¢ =dtstt= t(s+tt2 1-22;)_(;+1) ,

_ 2(s—t)? (2st+s+12+4-2¢)

(#+5) (FB+2t—s)
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_ _ t(s+2t+2) (s+7)
d, = a;+s,¢ 2 (Fr2i—s) , and

- _ (£428+s) (Pf-st+3t—)
€ = di+5+t > (t2—|—2t—s) .

Finally ¢=0 implies —s=72+2t.
This completes the proof of Theorem 1.

3. Proofs of Theorems 2 and 3

Proof of Theorem 2. Put B—=]J—B—E. Then by the assumption of
Theorem 2

2 __ (2 1 — 1 B
B = (1 —l—t)E—I—(Z 1(t-+1)—1) B t(t+1) B,

CTC=1CC= tzE—l—% t(t—1) (J—E),

BC +CB= BC+0J—CB—C = £ J—C = (#—1) C+#(J—C), and
B2 — 1 1) B+ L

B2 = (A+1) E+(2 121 1) B+ 1(t+1) B

Then
. ( BC7C, BC—;—CE)
'"CB+BT™C, TCC+ B?
_ ((2t2+t) E+(#—1)B+# B, (#—1)C+# (]_—C') )
#-1)TC+~7(J—-C), (282+t) E+(—1) B+ B
= (2884-t) E4-(#—1) A+#(J—A—E).
This completes the proof of Theorem 2.
Proof of Theorem 3. Since ¢g=2£+2t+1 is a prime power there exists
the Paley graph P(q) with parameters (g, %(q«l), %(q—S), %(q— 1)) and N

acts on it by addition as a group of automorphisms (see [3], pp. 19). On the
other hand by the assumption on N a prir (GF (¢), {X+k|heN}) forms a 2—

(¢, & % t(t—1)) symmetric design 4. Let B be the adjacency matrix of the

Paley graph P(q) and C the incidence matrix of &) whose rows has the same
numbering as those of B and whose j-th column is numbered by X-x; if the
J-th row of C is numbered by x; (0=<j=g—1). Then C is the sum of the per-
mutation matrices representing the elements of —X acting on P(q). Then C
commutes with B. Hence Theorem 2 applies.
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