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Abstract
In this paper, we give an example of a finitely generated 3edsionalC-algebra
which has infinitely generated Derksen invariant as well agavhimaonv invariant.

1. Introduction and tools

The Derksen invariant and Makar-Limanov invariant are ustefois to recognize if
two varieties or rings are not isomorphic. Both invariange docally nilpotent deriva-
tions: if A is a commutativek-algebra (wherek is a field of characteristic zero), then
D is a derivation ifD is k-linear and satisfies the Leibniz rul®(ab) =aD(b)+bD(a).

A derivation is locally nilpotent if for eacta € A we can find somer € N such that

D"(a) = 0. The kernel of a derivation, denoted &P, is the set of all elements that
are mapped to zero under the derivatibn The Makar-Limanov invariant is defined
as the intersection of all kernels of locally nilpotent #@ations, while the Derksen in-
variant is defined as the smallest algebra containing theekerof all nonzero locally
nilpotent derivations.

In the paper [4] the question was posed if the Derksen inwadauld be infinitely
generated. In this paper we give an example of an infinitelyeged Derksen in-
variant of a finitely generate@-algebra. It will be at the same time an example of an
infinitely generated Makar-Limanov invariant, as in this e, the Derksen invariant
is equal to the Makar-Limanov invariant. By now, there are ynaramples of cases
of “nice” subrings that are not finitely generated [1, 3, 5, 8, In regard of this,
the author would like to remark that it will pay off to considiheorems as general as
possible (with respect to not restricting to finitely genedaalgebras).

NoTATIONS. If Ris a ring, thenR™ denotes the polynomial ring in variables
over R. We will use the letteik for a field of characteristic zero, and for its al-
gebraic closure. Denote by the derivative with respect ta. By LND(A) we will
denote the set of all locally nilpotent derivations on a riag
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The technique used for constructing this example, is basethe following gen-
eral idea: grab a locally nilpotent derivatidd on a polynomial ringk™ having the
required properties (non-finitely generated kernel). Thkenstruct an equatiorf (or

several equationd;) which forces A := KIM/(f) (or A := KIM/(fy, ..., fn)) to be
a ring that has only one locally nilpotent derivation (up taltiplication with an ele-
ment of A), namelyD mod (fy,. .., fn). Hopefully it still has the required properties

(infinitely generated kernel).
Well-known facts that we need are the following:

Lemma 1.1. Let D e LND(A) where A is a domain
(1) Then OA*) =0.
(2) If D(ab) = 0 with a, b both nonzerpthen D(@) = D(b) = 0.
(3) If D € LND(A) where f# 0 then D(f) =0 and D e LND(A).

2. The example

This example is inspired by the example of Bhatwadekar anttaDa [1]. We
will write small letters for capital letters modulo a retati for example,a below is
defined asA + (A3 — B?).

Define R := C[A, B]/(A3 — B%) = C[a, b] = C[T?, T% < C[T]. Define S :=
R[X,Y, Z]/(Z? —a?(@aX +bY)? — 1) = R[X, Y][z]. We leave it to the reader to check
that Sis a domain. We will first try to find all locally nilpotent degtions on this ring.

Lemma 2.1. Let D e LND(S). Then Oa) = D(b) = D(aX+bY) =D(2) =0.

Proof. Since £ —a?X —abY)(z+a?X +abY) =1, we have by Lemma 1.1 Part 1
that D(z— a?X — abY) = D(z+a?X +abY) = 0, and thus sinc® is C-linear, D(z) =
D(a®X +abY) = 0. Because of Lemma 1.1 Part 2, we hdéa) = D(aX +bY) = 0.
Since 0 = &?D(a) = D(a®) = D(b?) = 2bD(b) we haveD(b) = 0. O

Lemma 2.2. LND(S) = SP - D where D:=hdy — ady.

Proof. LetD € LND(S). ThenaD(X) = —bD(Y) by Lemma 2.1. Seein® as
a subring of B := C @ Cz=C[Z]/(Z%? — T8X + TY)? — 1) whereC := C[T][X, Y],
we write D(X) = fo+Zzf;, D(Y) = go +zag where fo, f1, go, g1 € C. Since D(X) =
—TD(Y) we see thatT divides fy and f;. But since both are irC[T?, T3, X, Y]
we know that evenT? divides them. So,D(X) = T?hg + T?zh, whereh; := ;T2
But now T(hp + h1Z) = —go — g1z, so T divides theg;. Again, we have that even
T2 divides g;, which then gives thal divides h;. In the end, T2 divides D(X) and
T2 divides D(Y). Write D(X) = T3f = T3y + T3zf;, D(Y) = T?g = T?gg + T?zg.
ThenT3f = D(X)=-TD(Y)=-T3g so fo = —go, f1 =—gi1, and thusf = —g, and
D(X) = bf, D(Y) = —af. SinceD(z) = D(a) = D(b) = 0, D = f(bdy — ady). By
Lemma 1.1 we have that € SP and so we are done. O
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Proposition 2.3. Let D:=T33x — T2y on S as beforeThen & is not finitely
generated as &-algebra

Proof. Examining the natural extension Bf on B := C[T][ X, Y][Z] it is easy to
determine thatB® = C[T, z, X+ TY]. Now SP =BP N S, as can be easily checked.
Defining P := X + TY, we are done if we show thaE[T, z, P N C[T?, T3, z, X, Y]
is not finitely generated. We will do this by writing elementsa unique way in a
representant system.

Claim. If F € SP\C[T, 7, then Fe (T?, T3S,

Proof of Claim. SP mod (T2, T%) =C[T, X+TY, 7]/(T?,22—1)NC[z X, Y] /(Z*—1).
If F e SP is nonzero, then

Fmod ()= fi(T,AX+TY) =} fi(T. X +iTXY)
=0 i=0

where f, # 0. But sinceF mod (T?, T3)Se C[z, X, Y], this impliesn=0. SoF e
C[T, Z1 + (T2, T3)S, which proves the claim. O

If SP is finitely generated, the®® = C[T?, T3, z, Fy, ..., F] where F; € (T?)B
(by the Claim). Letd be the maximum of theX, Y-degree of theF;. Take T2P%*1,
which is in SP. Write T2P%*1 = f(Fy,..., F,) where f has coefficients irC[T?, T3] ®
C[T2, T3]z. Computing modulo T#)B (or (T*, T5, T%)S) we see thaff2P*1 = f, +
fiFi+-- -+ f,Fn modT* where fi € C[T2 T3]@C[T% T3]z, asFFj € (T%B for all
i, j. Now comparing theX, Y-degree from the right hand side (which is at md¥tto
the X, Y degree on the left hand side (whichds-1) we get a contradiction, showing
that the assumptionsP is finitely generated” is wrong. ]

REMARK. The example in this paper is no UFD. In the paper [2] an exampl
of a C-algebra UFD of dimension 6 is given, which has infinitely gexted Derksen
and Makar-Limanov invariant.
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