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Abstract
In this paper, we give an example of a finitely generated 3-dimensionalC-algebra

which has infinitely generated Derksen invariant as well as Makar-Limaonv invariant.

1. Introduction and tools

The Derksen invariant and Makar-Limanov invariant are useful tools to recognize if
two varieties or rings are not isomorphic. Both invariants use locally nilpotent deriva-
tions: if A is a commutativek-algebra (wherek is a field of characteristic zero), then
D is a derivation ifD is k-linear and satisfies the Leibniz rule:D(ab) = aD(b)+bD(a).
A derivation is locally nilpotent if for eacha 2 A we can find somen 2 N such that
Dn(a) = 0. The kernel of a derivation, denoted byAD, is the set of all elements that
are mapped to zero under the derivationD. The Makar-Limanov invariant is defined
as the intersection of all kernels of locally nilpotent derivations, while the Derksen in-
variant is defined as the smallest algebra containing the kernels of all nonzero locally
nilpotent derivations.

In the paper [4] the question was posed if the Derksen invariant could be infinitely
generated. In this paper we give an example of an infinitely generated Derksen in-
variant of a finitely generatedC-algebra. It will be at the same time an example of an
infinitely generated Makar-Limanov invariant, as in this example, the Derksen invariant
is equal to the Makar-Limanov invariant. By now, there are many examples of cases
of “nice” subrings that are not finitely generated [1, 3, 5, 6,7]. In regard of this,
the author would like to remark that it will pay off to consider theorems as general as
possible (with respect to not restricting to finitely generated algebras).

NOTATIONS. If R is a ring, thenR[n] denotes the polynomial ring inn variables
over R. We will use the letterk for a field of characteristic zero, andK for its al-
gebraic closure. Denote by�x the derivative with respect tox. By LND(A) we will
denote the set of all locally nilpotent derivations on a ringA.
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The technique used for constructing this example, is based on the following gen-
eral idea: grab a locally nilpotent derivationD on a polynomial ringK [n] having the
required properties (non-finitely generated kernel). Thenconstruct an equationf (or
several equationsfi ) which forces A := K [n]=( f ) (or A := K [n]=( f1, : : : , fm)) to be
a ring that has only one locally nilpotent derivation (up to multiplication with an ele-
ment of A), namelyD mod (f1, : : : , fm). Hopefully it still has the required properties
(infinitely generated kernel).

Well-known facts that we need are the following:

Lemma 1.1. Let D 2 LND(A) where A is a domain.
(1) Then D(A�) = 0.
(2) If D(ab) = 0 with a, b both nonzero, then D(a) = D(b) = 0.
(3) If f D 2 LND(A) where f 6= 0 then D( f ) = 0 and D2 LND(A).

2. The example

This example is inspired by the example of Bhatwadekar and Dutta in [1]. We
will write small letters for capital letters modulo a relation: for example,a below is
defined asA + (A3 � B2).

Define R := C[ A, B]=(A3 � B2) = C[a, b] �= C[T2, T3] � C[T ]. Define S :=
R[X, Y, Z]=(Z2� a2(aX + bY)2� 1) = R[X, Y][z]. We leave it to the reader to check
that S is a domain. We will first try to find all locally nilpotent derivations on this ring.

Lemma 2.1. Let D 2 LND(S). Then D(a) = D(b) = D(aX + bY) = D(z) = 0.

Proof. Since (z� a2X� abY)(z+ a2X + abY) = 1, we have by Lemma 1.1 Part 1
that D(z� a2X � abY) = D(z + a2X + abY) = 0, and thus sinceD is C-linear, D(z) =
D(a2X + abY) = 0. Because of Lemma 1.1 Part 2, we haveD(a) = D(aX + bY) = 0.
Since 0 = 3a2D(a) = D(a3) = D(b2) = 2bD(b) we haveD(b) = 0.

Lemma 2.2. LND(S) = SD � D where D:= b�X � a�Y.

Proof. Let D 2 LND(S). Then aD(X) = �bD(Y) by Lemma 2.1. SeeingS as
a subring ofB := C � Cz̄ = C[Z]=(Z2 � T8(X + T Y)2 � 1) whereC := C[T ][ X, Y],
we write D(X) = f0 + z̄ f1, D(Y) = g0 + z̄g1 where f0, f1, g0, g1 2 C. Since D(X) =�T D(Y) we see thatT divides f0 and f1. But since both are inC[T2, T3, X, Y]
we know that evenT2 divides them. So,D(X) = T2h0 + T2z̄h1 where hi := fi T�2.
But now T(h0 + h1z̄) = �g0 � g1z̄, so T divides thegi . Again, we have that even
T2 divides gi , which then gives thatT divides hi . In the end,T3 divides D(X) and
T2 divides D(Y). Write D(X) = T3 f = T3 f0 + T3z f1, D(Y) = T2g = T2g0 + T2zg1.
Then T3 f = D(X) = �T D(Y) = �T3g so f0 = �g0, f1 = �g1, and thus f = �g, and
D(X) = bf , D(Y) = �a f . Since D(z) = D(a) = D(b) = 0, D = f (b�X � a�Y). By
Lemma 1.1 we have thatf 2 SD and so we are done.
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Proposition 2.3. Let D := T3�X � T2�Y on S as before. Then SD is not finitely
generated as aC-algebra.

Proof. Examining the natural extension ofD on B := C[T ][ X, Y][z] it is easy to
determine thatBD = C[T , z, X + T Y]. Now SD = BD \ S, as can be easily checked.
Defining P := X + T Y, we are done if we show thatC[T , z, P] \ C[T2, T3, z, X, Y]
is not finitely generated. We will do this by writing elementsin a unique way in a
representant system.

Claim. If F 2 SDnC[T , z], then F2 (T2, T3)S.

Proof of Claim. SD mod (T2, T3) = C[T , X+T Y,z]=(T2,z2�1)\C[z, X,Y]=(z2�1).
If F 2 SD is nonzero, then

F mod (T2) =
nX

i =0

fi (T̄ , z̄)(X + T̄ Y)i =
nX

i =0

fi (T̄ , z̄)(Xi + i T̄ Xi�1Y)

where fn 6= 0. But sinceF mod (T2, T3)S2 C[z̄, X, Y], this implies n = 0. So F 2
C[T , z] + (T2, T3)S, which proves the claim.

If SD is finitely generated, thenSD = C[T2, T3, z, F1, : : : , Fn] where Fi 2 (T2)B
(by the Claim). Letd be the maximum of theX, Y-degree of theFi . Take T2Pd+1,
which is in SD. Write T2Pd+1 = f (F1, : : : , Fn) where f has coefficients inC[T2, T3]�
C[T2, T3]z. Computing modulo (T4)B (or (T4, T5, T6)S) we see thatT2Pd+1 = f0 +
f1F1 + � � �+ fnFn modT4 where fi 2 C[T̄2, T̄3]�C[T̄2, T̄3]z̄, as Fi F j 2 (T4)B for all
i , j . Now comparing theX, Y-degree from the right hand side (which is at mostd) to
the X, Y degree on the left hand side (which isd + 1) we get a contradiction, showing
that the assumption “SD is finitely generated” is wrong.

REMARK . The example in this paper is no UFD. In the paper [2] an example
of a C-algebra UFD of dimension 6 is given, which has infinitely generated Derksen
and Makar-Limanov invariant.
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