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1. Introduction

Let M be a compact, orientable, irreducible, δ-irreducible 3-manifold with a

fixed triangulation y. We are interested in the isotopy and projective isotopy

classes of compact, orientable, incompressible, δ-incompressible surfaces in M and
how they are represented in the projective solution space &? from normal surface
theory. Two surfaces belong to the same projective isotopy class if there exist
multiples of each which are isotopic. We show that &$- has maximal faces, called

complete Iw-faces, which have the following properties: (i) if a complete Iw-face
carries one surface in a projective isotopy class then it carries every least weight
normal surface in that projective isotopy class and (ii) every surface carried by an
Iw-face is least weight in its isotopy class. Each complete Iw-face is partitioned
by compact linear cells in such a way that the set of surfaces carried by such a

linear cell is precisely the set of all least weight surfaces in the corresponding

projective isotopy class.

In normal surface theory there is associated to the triangulation y a system of
matching equations whose admissible integral «-tuple solutions are in a one-to-one
correspondence with the normal surfaces in M. The projections of such solutions

to the unit sphere are called the projective normal classes of the corresponding

normal surfaces and are contained in 0*^ the compact, convex, linear cell of solutions
to the normalized matching equations for y. The weight of a normal surface F,
denoted by wt(F), is the number of points in which F interesects the 1-skeleton
of y and we say that F is a least weight surface if it is least wieght relative to its

isotopy class. It has been shown in [2], [3], and [4] that least weight surfaces

exhibit some strong and useful properties.

A face C of the compact, convex linear cell βPy is said to be an Iw-face if every

normal surface carried by C is incompressible, ^-incompressible and least

weight, A complete Iw-face C is an Iw-face with the additional property that if

a normal surface F is carried by C then every least weight normal surface isotopic

to Fis also carried by C. We show in Theorem 4.5 that there is a finite collection of

complete Iw-faces such that every compact, orientable, incompressible, δ-
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incompressible, least weight, normal surface is carried by one in the collection. A

important ingredient in the proof is Theorem 4.2 which states that if F is such a
surface then the minimal face CF of ^V carrying F has the property that every

normal surface carried by CF is also a least weight surface. This last theorem was
announced by Oertel in [6].

Let G and H be normal surfaces intersecting transversely such that each

component of Gn>H is a regular curve. There is the normal sum G-\-H defined
by canonical cut-and-paste operations (called regular exchanges) along the
intersection curves. Suppose that the normal sum G + H is a compact, orientable,

incompressible, ^-incompressible, least weight surface. The existence of complete

Iw-faces is used to prove (Corollary 4.3) that given any least weight normal surfaces

G' isotopic to G and H' isotopic to //, the normal sum G' + H' is defined and
isotopic to G + H. Applications to simplicical group actions are given in Section

6. For example, suppose G is a finite group of simplicial homeomorphisms of M and
F is a compact, orientable, incompressible, d-incompressible, least weight, normal
surface such that g(F) is homotopic to a surface disjoint from F for each g e G. Then

the normal sum S=Σgg(F) is a G-equivariant collection of pairwise disjoint normal
surfaces, one of which is isotopic to F. Moreover, if K is any normal surface carried

by the minimal face of 0*$- carrying 5, the normal sum Σgg(K) is defined and is itself a
G-invariant, injective, δ-injective, least weight, normal surface.

Consider a set {Fi9 -9Fk} of compact, orientable, incompressible, d-

incompressible, least weight, normal surfaces all in the same projective isotopy
class. Thus, a multiple of F{ is isotopic to a multiple of Fj for each pair /, / Let

V denote the subspace of Rn spanned by the normal classes {Fί9 9?k}. We will
show that every orientable normal surface carried by the linear cell A= Vr\2P$- is a
least weight normal surface in the same projective isotopy class as the F/s. If
{Fί9 "9Fk} is chosen to be a maximal linearly independent set then every least
weight normal surface in this projective isotopy class will be carried by A. We
obtain a similar result for branched surfaces as a byproduct of the proof of Lemma 5.2.

In Theorem 5.5 we show that each Iw-face C of 0*$- is partitioned by linear cells
associated with projective isotopy classes. A proper face D of C is said to be

C-ίndependent if no normal surface carried by D belongs to the same projective
isotopy class as one carried by £ Let 2 denote the union of all C-independent
faces of C. We construct a family of fcc-dimensional subspaces Kα such that
(i) each C-independent face D is a union of a subcollection of the linear
cells FαnC, (ii) the family {AΛ} of cells FαnC meeting 0 forms a partition of

C— 2 by linear &c-dimensional cells with the property that the collection of normal
surfaces carried by each AΛ is a complete projective isotopy class of surfaces carried
by C. Next consider a maximal cell D in 2 and let δ denote the union of all

D-independent faces. Just as for C, there exists a family of &D-dimensional subspaces
Vβ satisfying (i) each /^-independent face is a union of some of the linear cells
D n Vβ9 (ii) the family {Ba} of VβnD meeting D forms a partition of D — $ by
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Fig. 1. A model of elementary disks

linear /^-dimensional cells with the property that the collection of normal surfaces

carried by each Bβ is a complete projective isotopy class of surfaces carried by D

and also (iii) each cell VβnD is contained in some CnVa. Repetition of the

process gives rise to a partition {XΛ} of C, called a PIC-partition, where XΛ is a

linear cell in C such that the set of normal surfaces carried by each Xa consists

of all the surfaces carried by C and belonging to a given projective isotopy class.

In this paper all manifolds and maps are assumed to be PL and M is always

a compact, orientable, irreducible, 3-irreducible 3-manifold with a fixed triangulation

y.

2. Normal surfaces

A normal surface F in M is a properly embedded surface in general position
with the 1-skeleton ^~(1) and intersects each tetrahedron Δ of &~ in properly embedded

elementary disks which intersect each edge in at most one point and each face in

at most one straight line. If E is an elementary disk then dE is uniquely determined

by the points /sn^"(1) and it is convenient that E itself be uniquely determined
by these points. Thus, we require that each elementary disk E in Δ be a planar

disk if Er\2Γ(l} is a planar set and otherwise require that E equal the cone b*dE

where b is the centroid of the 3-simplex in Δ spanned by £Ό^(1). With this

convention, a normal surface F is uniquely determined by the set of points

Fr\y{l). A normal isotopy of M is an isotopy which leaves the simplices of ZΓ

invariant. An elementary disk is determined, up to normal isotopy, by the manner

in which it separates the vertices of Δ and we refer to the normal isotopy class

of an elementary disk as its disk type. There are seven possible disk types in

each tetrahedron corresponding to the seven possible separations of its four vertices;



1090 J.L. TOLLEFSON

four consisting of triangles and three consisting of quadrilaterals. The normal
isotopy class of an arc in which an elementary disk meets a 2-face of Δ is called an

arc type.

After fixing an ordering of (dl5 ,d7ί) the disk types in 2Γ, we assign to a

normal surface F a 7f-tuple ^=(x1? ,.x7f), called the normal coordinates of F, by

letting Xi denote the number of elementary disks in F of type dt. A normal surface
is uniquely determined, up to normal isotopy, by its normal coordinates. Among
7Muples of non-negative integers x = (̂ :1, ,Λ:7ί), those corresponding to normal

surfaces are characterized by two constraints. The first constraint is that it must

be possible to realize the required 4-sided disk types d{ corresponding to nonzero
x?s by disjoint elementary disks. This is equivalent to allowing no more than one
4-sided disk type to be represented in each tetrahedron. The second constraint

concerns the matching of the edges of elementary disks along incident 2-faces of
tetrahedra. Consider two tetrahedra meeting along a common 2-face and fix an

arc type in this 2-face. There are exactly two disk types from each of the tetrahedra

whose elementary disks meet this 2-face in arcs of the given arc type. If the
7Muple is to correspond to a normal surface then there must be the same number
of elementary disks on both sides of the incident 2-face meeting it in arcs of the
given type. This constraint is given as a system of matching equations, one

equation for each arc type in the 2-simplexes of 2Γ interior to M.

Matching Equations

(1)

The non-negative solutions to the matching equations (1) form an infinite

linear cone £f g- e RΊt. The normalizing equation Σ/ί 1x i= 1 is added to form the
system of normal equations for 3~ . The solution space 0* ̂  c: tf ^ becomes a
compact, convex, linear cell and is referred to as the projectile solution space for
^~. The projectile normal class F* of a normal surface F is the image of the
normal coordinates of F under the projection 9* g -> &?. A rational point ~ze8Py is
said to be an admissible solution if corresponding to each tetrahedron there is at
most one of the quadrilateral variables which is nonzero. Every admissible solution
is the projective normal class of an embedded normal surface.

The carrier of a normal surface F is the unique minimal face CF of 0*? that

contains the projective class of F and a normal surface is said to be carried by CF if its
projective normal class belongs to CF. The normal surfaces G which are carried
by Cp are characterized by the property that there exists a normal surface H such

that mF= G + H for some positive integer m. Each rational point in CF is an
admissible solution since its coordinates are zero in any variable corresponding
to a disk type not already represented in F.

If two elementary disks Fl5 E2 in a tetrahedron Δ intersect transversely then
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is an arc α properly emebedded in Δ and α spans the interior of distinct

2-faces of Δ. We say that α is a regular arc of intersection if there exists a pair
of disjoint elementary disks having the same disk types as E1 and E2. This is
equivalent to the property that the union of the vertices of Eί and E2 span a
disjoint pair of elementary disks and this is alwasy the case except when Eγ and
E2 are quadrilateral disks of different disk types. Two normal surfaces G and H
are said to intersect transversely if each pair of elementary disks from G and //,
respectively, intersect transversely. Let G and H be normal surfaces intersecting

transversely such that each intersection curve of GnH is regular in that it is a
union of regular arcs. The points (Gu//)n^(1) determine a unique (embedded)
normal surface G + H called the normal sum of G and H. The normal coordinates of
G + H coincide with the vector sum of the normal coordinates of H and G, that

is G+H=G + H. It follows that the normal sum is an associative operation.

A regular intersection curve α is always orientation preserving [3]. The unique
cut-and-paste operation along α which preserves the normal isotopy classes of the
elementary disks is called a regular exchange. The normal sum G-f//, as defined

above, is the surface which results from performing a regular exchange along each

(regular) intersection curve of Gn// and then straightening by a normal

isotopy. The trace curves associated to the sum G + H are the curves in the
surface G-f H that result from the identification of the curves in G and H along

which the cuts are made during the cut-and-paste operation.
It is sometimes useful to notice that regular exhanges are completely determined

by the corresponding regular exchanges between the arcs in which the surfaces

meet the 2-simplices of 9~. Since a regular exchange does not introduce new disk
types, irregular intersection curves are never introduced during the process.

Consider an intersection curve α of two normal surfaces G and H and suppose

one performs a cut-and-paste operation along α that is not a regular exchange. In
this case there exists a tetrahedron Δ containing elementary disks E' c G, E" ci H

which intersect in an arc E' c\E" c= α such that one of the disks produced by the

cut-and-paste operation along E'r\E" meets a 2-face of Δ in an arc β where dβ

fold
Fig. 2. Fold created by cut-and-paste along a irregular curve
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Fig. 3. Branched surface constructed from a normal surface

is contained in a 1-simplex. We call such an arc β a fold. More generally, a

surface K that intersects ^"(2) transversely is said to contain a fold if there exists
a 2-simplex σ such that some component of σr\K is an arc with both endpoints
in a 1-simplex of σ. Whenever a surface contains a fold there exists an isotopy
removing the fold and decreasing the weight of the surface.

Given a pair of normal surfaces G and H which intersect transversely, a

component α of Gr\H is called an inessential intersection curve if α is the frontier of

a disk in either G or H. In certain cases one can eleminate all inessential

intersection curves by regular exchanges which exchange pairs of innermost disks. A
disk D in G with fr(Z)) c GnH is called an innermost disk iϊDnH=fΐ(D) and fr(Z>)

is connected. A least weight innermost disk is an innermost disk which has

minimal weight relative to all other innermost disks in G and H.

3. Branched surfaces constructed from normal surfaces

Let S' be a compact, orientable, incompressible, δ-incompressible, least weight
normal surface carried by the interior of a face C of &$-. We modify slightly the
construction in [5] to from a branched surface from the normal surface S'. Let
5=25" be the boundary of a regular neighborhood of the two-sided surface S'. The
branched surface &s is obtained by taking one disk of each type found in 5, identifying
all the edges of the same arc type in each 2-simple of "̂, and flattening
appropriately. This flattening to achieve a generic branch locus may create some

very thin sectors which lie within a small ragular neighborhood of the

2-skeleton. The surfaces carried by $s are precisely the normal surfaces carried by

the face C. If G is a two-sided normal surface carried by the interior of C then
the branched surface J?G constructed from G, using this procedure, is identical to
J?, up to normal isotopy. There is a fibered neighborhood N for $ts which intersects
both the 1-skeleton and 2-skeleton in fibers and such that dh(J^) c S.

The construction of the incompressible branched surface & = &s from $ is
accomplished by removing disks of contact from $ as follows. Form the /-bundle
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L by cutting TV on the closure in S of Snint(TV) and taking the fibers to agree
with the fibers of TV. A component / of L is trivial if every properly embedded
curve in dhJ bounds a disk or half-disk in S. Every trivial / has the form
J=CxI a L, where C is a punctured disk and there exist disks £0, E^ in S such
that C x O c E0, C x i c Ei9 dE0 = a x O c δCxO, and 3£1=ax 1 c δ C x l . Define
the fibered neighborhood TV of the branched surface ̂  by TV= TV—interiors of fibers
of trivial components of L. 38 carries S with positive weights and, since S is a
least weight, incompressible, 3-incompressible surface, it follows as in Lemma
4.6 [5] that $ is a RIB (Reebless incompressible branched surface).

In our contex we do not allow TV to vary beyond a normal isotopy. Thus,
if a surface G is carried by J* then G is a normal surface carried by the face
C. Although all surfaces carried by C are carried by Jf, not all need be carried by
38 since it may not be possible to eliminate intersections with trivial components of
L by a normal isotopy.

Lemma 3.1. If S is a compact, orientable, incompressible, d-incompressible least
weight, normal surface then every normal surface carried by the carrier Cs of S is
isotopic to one carried by the branched surface &s obtained from S.

Proof. Suppose G is a normal surface carried by Cs and hence by J .̂ Assume
that G intersects S transversely in such a way that the number of components
of 5ΌG is minimal relative to normal isotopy. If G is not carried by 38 then G
intersects a trivial component of L and hence Sn G has an inessential component. It
follows from [9] that there exists a pair of innermost disks D c S and E d G which
are switched by a regular exchange along the curve Dr^E, which is the common
frontier of D and E. Replace G by the isotopic surface (G-E)uD and pull it
off S along ίr(E). Repeating this construction, we eventually obtain a surface G'

carried by 38 and isotopic to G. Π

Let 38 denote a branched surface constructed as above from a normal surface
and assume that 38 has s sectors. If Fis carried by 38 then we \etf=(fi,'-,fs)GRs

denote the integral invariant measure associated to F and write F=38(f). An

invariant measure v$=(wί9 ,ws) on 38 is a nonnegative solution to the system of
branching equations wi-\-wj = wk. The set ^(β] of all invariant measures on 38 is

called the cone of invariant measures and is the cone over Jt(β\ the
subset of <€(β} satisfying the additional equation Σlvt^l. The convex compact
polyhedron M(38) is called the cell of invariant projective measures. We let vv*

denote the projection of the invariant measere w into M(38\
The surface F=38(f} can be viewed as a normal surface and its normal

coordinates ?=(xl,--,xn) are related to the invariant measure/by a linear function
p. ($(β) _> R» Associated to each sector of 38 is a string of normal coordinates

corresponding to the elementary disks comprising the sector. If VVE^(^) define
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ρ(w) = Σp(wl) where p(w^ = (wiml9- 9wimt) and m^ denotes the number of elementary

disks of type j in the ι'-th sector of &. If the /-th sector is one of the thin sectors

created by flattening then p(wl) = (09 90). Thus, if /=(/l9 - ;fs) is integral then

p(f)= Ogives the normal surface coordinates of the normal surface F=&(f). There

is also the affine map p* : Jί(0ί) -> &$- induced by p.

There are simple relationships among the three commonly used measurements

on normal surfaces carried by the branched surface .̂ If we let /=(/i, »/5)
denote the invariant measure for F=0S(f)9 we have the ^-complexity of F defined

by yΛ(F) = Σfi. Viewed as a normal surface with normal coordinates F=(xί9 9x^9

the complexity of F is defined by cp(F) = Σxί} which is just the total number of

elementary disks contained in F. The weight of F is the number of points in the
intersection of F with the 1 -skeleton of F .

Lemma 3.2. (1) Let p denote the minimum number of disk types occurring in

any one sector of & and let P denote the maximum number. Then cp(F)/ P<γ<%(F)

(2) Let d denote the maximum number of 2-simplices in 2Γ containing any single
d

l-simplex. Then cp(F)<~wt(F). If F is a surface with χ(F)<0 and dF=9 we also

heve wt(F)<cp(F).

Proof.

(1) cp(F) = Σρ(fl) = Σpifi, where p{ denotes the number of elementary disk types

that occur in the /-th sector of &. Since p<p{<P we have py^s(F)=pΣfi<cp(F)

(2) Consider the cell decomposition of F defined by the elementary disks and

let (53, <54 denote the number of 3-sided, 4-sided, respectively, elementary disks in
F. Then cp(F) = δ3 + <54 and wt(F)>(3δ3 + 4δ4)/d>3cp(F)/d. For the second

inequality, compute the Euler characteristic χ(F) from the induced cell decomposition

to obtain the equation wt(F) = cp(jp) + χ(F) — δ$ / 2 + b / 2, where b denotes the number
of edges of the elementary disks in F which lie in dM. Thus wt(F) < cp(F) when

b = 0 and χ(F)<Q. Π

4. Least weight incompressible surfaces

Suppose F is a compact, orientable, incompressible, δ-incompressible, least

weight, normal surface in M and CF is the carrier of F in 9y. It is known that

all normal surfaces carried by CF are incompressible [2] and ^-incompressible

[4]. In this section we apply [6] to show that such surfaces are also least
weight. This leads to the existence of a complete Iw-face C carrying F which is
maximal in the sense that if a normal surface G is carried by C then every least
weight normal surface isotopic to G is also carried by C.
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Lemma 4.1. Suppose G and H are compact, orientable, incompressible,
d-incompressible normal surfaces in M such that the normal sum F=G + H is a
compact, orientable, incompressible, d-incompressible, least weight surface. If K and
L are normal surfaces isotopic to and having no greater weight than G and H,
respectively, then every intersection curve of Kr\L is regular and the normal sum
K+L is isotopic to F.

Proof. Assume that G and H intersect transversely. The intersection Gr\H
is said to be simplified if
(1) Gn// contains no inessential intersection curves,
(2) there are no products in M between surfaces in G and H,
(3) there are no products in dM between arcs of dG and dH.

Step A. We construct surfaces G4 and H4 isotopic to G and H, respectively,
such that the intersection G4n//4 is simplified and a double-curve sum G4 cxα H4

(not necessarily a normal sum) is isotopic to F. (In fact, G4 txα H4 will coincide
with the normal sum G + H outside a collar neighborhood of dM, but this is not used.)

(1) If there exists a contractible simple closed curve in Go// then (from the
proof of Lemma 2.1 in [2]) there exists a pair of innermost disks of equal weight
which are switched by a regular exchange along their common boundary. We
may assume that all such exchanges have been made and that we have F=Gί+Hi,
where Gί9 H± are isotopic to and have the same weight as G, H, respectively,
and there are no contractible simple closed curves in Gγr\H^. Similarly, if there
exists an arc component of Gl r\H± that is inessential then (from the proof of Lemma
6.6 in [4]) there exists a pair of innermost disks of equal weight switched by a
regular exchange along the arc forming their common frontier. Therefore we can
write F=G2 + H2, where G2, H2 are isotopic to have the same weight as G, H,
respectively, and there are no inessential intersection curves in G2r\H2.

(2) Suppose there exists a product in M between subsurfaces of G2 and
H2. Then there exists a compact connected surface Wand a compact 1-submanifold
y of dW such that if we let P = (Wx I)/ ~ denote the product with intervals x x 1

collapsed to points for each xεγ, then (P,(dW— y )x/) is embedded in (M,dM)
with WxQ c: G2, Wx 1 ci H2 and Pπ(G2u7/2)= W x O u Wx 1. Consider the set
of cut-and-paste operations along the intersection curves γ / ~ which result in the

switching of IV xQ and IV x 1. We will show that these particular cut-and-paste
operations are regular exchanges along each component of γ / ~ and thus coincide
with what occurs along γ/ ~ when forming the normal sum F= G2 4-H2. It will then
follow that after performing regular exchanges along all such products we can
write F=G3 + /f3 where G3, H3 are isotopic (by isotopies across the products) to
G, H, respectively, there are no inessential intersection curves in G3n//3, and no

products between subsurfaces of G3 and 7/3.
Suppose there exists a component α of y / ~ along which the above cut-and-paste
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operation switching IV xO and IV x 1 is an irregular exchange. We will show that

this assumption leads to a contradiction.

First consider the case there exists an essential arc λ in W with endpoints in α,

where λ is essential in the sense that it does not cobound a disk in W with a subarc

of α. Since switching Wx 0 and Wx 1 is associated with an irregular exchange along

α and in the construction of F as the normal sum G2 + H2 a regular exchange along

α is used, it follows that D = ( λ x l ) / ~ is a compression disk for F. Since F is

incompressible, dD bounds a disk D' c /*. Now D'n(WxO) is a disk-with-holes
and must contain a component of G2n//2 —α since A is essential in W. This is

impossible since G2n//2 has no contractible simple closed curve components.
Therefore there does not exist an essential an essential arc λ in W with endpoints
in a component of y/ ~ along which the cut-and-paste operation switching IV xQ

and IV x 1 is an irregular exchange.

It follows that either W is a disk or W is an annulus where each component
of y I ~ along which the cut-and-paste operation switching WxO and Wx 1 is an
irregular exchange must be a component of dW. Since we have already eliminated
inessential intersection curves, it follows that when W is a disk, each components

of γ I ~ is an arc and there must be at least two components.

Suppore that IV is a disk and γ/ ~ has three or more components. Let β,
δ denote the two components of γ/ ~ which are adjacent to α along dWx 0. Since

F cannot have any contractible boundary components, the cut-and-paste operation
along y/~ switching W x O and IV x 1 is a regular exchange along each of β and

δ. Choose an arc λ in W with one endpoint in α and the other in IVndM such

that β and δ lie in different components of W—λ. The disk Z) = ( Λ , x / ) / ~ is a
^-compression disk for F. Since F is 3-incompressible there exists a disk D' c F
with ϊr(D') = DnF. Then D' contains a trace curve of either β or 5, say /?' of
β. There exists a disk Ef c: D' such that dE' = βv(E'r\dM). Now £" cannot
contain a simple closed curve trace curve of G2 + H2. Thus there exists an
outermost trace curve / in E' corresponding to an inessential intersection curve

y in G2n7/2, which is impossible.
Suppose that W is a disk and y / ~ has just two components, α and a second

arc /?. As before, the cut-and-paste operation along y/~ switching IVxQ and
IV x 1 is a regular exchanges along β. There exists a 0-weight disk B containing

β such that Br\F consists of two disjoint trace curves β', β" in dB parallel to β

and B n dM=dB — (βf u β"). Splitting F along Br\F and capping with two copies

of B produces a compressible annulus component A and a surface F' isotopic to
F. Described another way, the disjoint union of A and F' is be obtained from
G2u//2 by performing regular exchanges along all intersection curves except β

and an irregular exchange along β. Since the annulus component A has nonzero
weight, it follows that the surface F', which is isotopic to F, has less weight than
F. This contradicts the assumption that F is least weight.

Suppose that IV is an annulus and dW=y/ ~, where dW consists of the two
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simple closed curves α and β. The cut-and-paste operation switching W x O and
Wx 1 must be an regular exchange along β for otherwise F would have a

compressible torus component bounding a solid torus approximated by

Wxl/ ~. Thus, if we perform regular exchanges along all intersection curves
except β and an irregular exchange along β, we obtain from G2u//2 an compressible
torus A' with positive weight and a surface F' isotopic to F. But then F' has
less weight than F, a contradiction.

Finally suppose that W is an annulus and dW^y / ~. Then there exists an

arc λ in W with one endpoint in α and the other endpoint in Wr\ dM. The disk

D = ( λ x l ) / ~ is an essential 3-compression disk for F since λ does not separate
W a F. Again this is impossible.

Thus the above cut-and-paste operation switching Wx 0 and Wx 1 corresponds
to regular exchanges along each component of y j ~. It follows that after performing

regular exchanges along all such products we can write F= G3 + H3 where G3, H3

are isotopic to G, //, respectively, all intersection curves in G3n7/3 are essential, and
there does not exist any products between subsurfaces of G3 and H3.

(3) Suppose there exists a product /? = (μ + /)/~ in dM such that the arc
μ x O ci G3, the arc μx 1 c: H3 and Rn(G3vH3) = dR. Let α and β denote the

intersection curves of G3n//3 which have an endpoint in δμxO. We will first
show that a regular exchange along αu/? interchanges μ x O and μx 1. Suppose
that α = β. A regular exchange along α must either switch μ x 0 and μ x 1 or form
a contractible boundary component of F from μ x O u μ x l . Since F is
incompressible, the arcs μ x 0 and μ x 1 are switched.

Suppose that α^/?. There are three possibilities to consider: (i) irregular

exchanges along both α and β exchange μ x 0 and μ x 1, (ii) an irregular exchange
along one, say α, and a regular exchange along β exchanges μ x O and
μ x l , (iii) regular exchange along both α and β exchange μ x O and μ x l . As
before, (i) can be ruled out since otherwise a contractible boundary component of

F would result.
Suppose we have (ii). Let r be the arc in dF arising from the cut-and-paste

operation on μ x 0 and μ x 1 produced by regular exchanges along α and β. There

exists a 0-weight disk B containing β such that dB = avbvβ'vβ", where /?',/?" are
the two trace curves Br\F and Bc^dM=avb with notation chosen such that

da = dr. Then αur bounds a disk R' a R. Fix a collar neighborhood dMx [0,1]

of 8M = dMxQ such that £ndMx [0,l]=(fluZ?)x [0,1] and Fn(dMx [0,1])

= 3Fx[0,l], The disk D = R x iu(B-(ax [0,1)) is a 3-compression disk for

F. Thus there exists a disk D' c F with dD' = xuy, where x = DnF and y = D'n dM.
If r x [0,1] ci D' then let E be the closure of the component of D'-r x [0,1]

for which β' c £. We then have dE=β'v(EndM). If the disk E c F does not

contain any trace curves other than /?' then β would be an inessential intersection

curve. If there are other trace curves in F (relative to the sum F= G3 4- 7/3) then

an outtermost one relative to β' corresponds to an inessential intersection
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curve. Since G3n//3 contains no inessential curves, this cannot occur. Thus

rx[0,l] <£D'. In this case E=D'v(r x [0,1]) is a disk such that EnB = β'vβ".

We then have the compressible annulus BuE and the surface F' = (F—E)vB is

isotopic to F. But this is impossible since wt(F') < wt(F). We are left only with
(iii) as the only possibility.

We have shown that regular exchanges along both α and β exchange μ x O

and μx 1. Use an isotopy with support in a neighborhood of R to move G3 to
a surface G3 by pulling μ x O across R to the other side of μ x l . That is, we

want G3 u7/3 to coincide with G3 u//3 outside R x [0,1] and, in effect, the endpoints
of α, β in R are joined and pushed into M. The sum G3 cxj H3 obtained by

cut-and-paste operations agreeing with those of the normal sum outside a

neighborhood of R is clearly isotopic to F and no inessential intersection curves

have been introduced in G3 n H3 since products between subsurfaces have already
been eliminated. Repeating this construction, we eventually obtain surfaces G4,

H4 isotopic to G, //, respectively, such that a double-curve sum G4 cχι H4 is
isotopic to F and the intersection G4n//4 is simplified and G4 oo //4 coincides

with the normal sum G3 + //3 off δMx[0,l].
Step B. The next step is to find surfaces K', L', isotopic to and having no

greater weight than K, L, respectively, such that the intersection K' r\L is almost
simplified. The products in dM cannot be eliminated without the possibility of
increasing weight.

(1) If there exists an inessential intersection curve in Kr\L then we can find
an innermost disk D in either K or L such that fr(Z)) is a component of KnL and

D is least weight among all such innermost disks in K and L. We suppose D c K
as the argument is the same for D c= L. There exists a disk E c L such that
DnL = ϊr(E). The disks D and E are parallel so we can isotope L to (L-E)uD

and then pull it off from K along fr(D). Since wt(D) < wt(£) we do not increase
weight by this construction and we have reduced the number of intersection
curves. Repeating this construction we eventually obtain surfaces Kί9 L^ isotopic

to and having no greater weight than K, L, respectively, and such that all intersection

curves in Kίr^Lί are essential.
(2) Suppose there exists a product (P,(dW-y)xI) embedded in (M,dM) with

^xOcz^ and WxlaL^ Choose notation such that wt(WxO)<wt(^x 1).
Consider the cut-and-paste operation along the intersection curves γ/~ on L^

which replaces Wx 1 by WxQ. After an isotopy with support in a neighborhood
of H^xO, one obtains isotopic surfaces of no greater weight and the number of

intersection curves is decreased. Repeating such constructions we eventually obtain
the desired surfaces K' and L'.

Step C. We now associate with K', L' isotopic surfaces K", L" which have
simplified intersections. The surfaces K", L" are constructed from K', L by isotopies
which remove product regions in dM in a controlled manner. Assume that we
have already removed / product regions and in the process we have constructed
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the surfaces K{, L\. Suppose there remains a product Ri = ( μ i χ l ) / ~ in dM with

μi x 0 c= K[, μ{ x 1 c= L\ and Rt n (K u LJ) = dRt. Let αf and βt denote the intersection

curves of ^Γ/nLJ which have an endpoint in θμjxO. Form K +l9 L'i+ί by using
an isotopy with support in a small neighborhood of Rt that slides each of μ{ x 0
and μi x 1 across to the opposite side. Let y, denote the new intersection
curve resulting from the ends of α i + 1 and βi+i being joined after this

isotopy. Continuing in this way, we eventually obtain surfaces K", L", which are
isotopic to G, //, have simplified intersection K" nL", and coincide with K', L off
δMx[0,l].

Step D. At this stage we have the two pairs of surfaces G4, H4 and K", L"
such that (a) the intersections G4n//4 and K" r\L" are simplified, (b) K" and

G4 are isotopic to G, (c) L" and H4 are isotopic to H, (d) a double-curve sum
G4 txα 7/4 is isotopic to F. By Theorem 3 [6] there exists a double-curve sum
F"=K" txα L" which is isotopic to F. We will show that there is a corresponding
double-curve sum K' txi L which is isotopic to F. It is sufficient to show that

for each of the intersection curves yt formed in Step C, the cut-and-paste operation
involved in K" ixi L" along yt agrees outside of dMx [0,1] with the cut-and-paste

operation of K' and L along αf, βt which interchanges μ ( x O and μtx 1.
Consider a product region Rt — μt x I/ ~ and suppose that we have already

established that the two cut-and-paste operations agree near each product region

interior to R{. Thus, performing the cut-and-paste operations of the sum K" rχι L"

in the interior of Rt has the same result as an isotopy pulling the curves K" nRt

apart from the curves L"nRt. There exists a disk D such that dD = x\jyvz
where x, y, z are arcs with disjoint interiors, Dndλf = DnRi = x, DnK"=y,
Z>nL" = z, and ynzeyt. In performing the sum K"τ>~*3L"9 there are just two
possibilities for the cut-and-paste operation along y f. One agrees outside of

dM x [0,1] with the cut-and-paste operation on K' and L' along the intersection
curves αf, βt in K'c^L which interchanges μ t x O and μ f x l . The other results
in D becoming a 3-compression disk D' for F" = K" txi L". In the latter case, since

F" is d-incompressible, there exists a disk D" c F" with fr(Z>") = I>'n,F". As in Step

(A), one can show that the disk D" c F" leads to the existence of inessential
intersection curves in K"r\U'. Since this is impossible, the only alternative is that

the cut-and-paste operation involved in K" txi L" along yt agrees outside of

dM x [0,1] with the cut-and-paste operations along αί? βt which interchanges μt x 0

and μ t x 1.
Step E. From Step D it follows that there is a double-curve sum F' = K' cxi L

isotopic to F such that wt(K')<wt(K) and wt(L')<wt(L). Hence wt(F)

= wt(Kr) + wt(L') < wt(^) + wt(L) < wt(G) + wt(//) = wt(F). But F is least weight and

hence wt(F) = wt(F'). It follows that wt(G) = wt(/0 and wt(//) = wt(L). Because K

and L are arbitrary surfaces isotopic to and having no greater weight than G and

//, respectively, we can conclude that both G and H are least weight surfaces. At

this point in the proof we are also able to cunclude that K and L are least weight
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surfaces.

Step F. It remains to show that every intersection curve of Kr\L is regular

and the normal sum K+L is isotopic to F. We return to Step B and start over

using the new information (from Step E) that K and L are both least weight.

(1) If there exists inessential intersection curves in KnL then it follows from

Proposition 1 of [9] or Proposition 3.4 in [3] that regular exchanges along the
inessential intersection curves yieled surfaces K', L isotopic to and of the same

weight as K, L, respectively, and such that all intersection curves of K'nL' are
essential.

(2) Suppose there exists a product (P,(SW— y )x/) embedded in (M,dM) with
WxQ<^Kf and Wx\ ci ZΛ Since both K', L' are least weight it follows that
wt( W x 0) = wt( W x 1). The cut-and-paste operation along all the intersection curves

y I ~ on K and L which interchanges H^xO and IV x 1 does not change the weight

and decreases the number of intersection curves. By repeating this construction

we eventually produce surfaces K" and L" isotopic to having the same weight as

K and L, respectively, such that all intersection curves of K"nL" are essential

and there do not exist any products between surfaces of K" and L".

(3) By Steps (C) and (D) there is a double-curve sum F" = K" cxi L" isotopic to

F. If any of the cut-and-paste operations used are not regular exchanges then a
fold exists in the sum K" cxα L" (see Lemma 1 [8]) and the weight can be
reduced. But this is impossible since F is already least weight. Thus every
intersection curve in K" txi L" is regular and the double-curve sum K" txα L"
is a normal sum. Since K"vL" was obtained from KuL by a sequence of regular

exchanges, it follows that K+L = K" + L". Therefore, the normal sum K+L is

defined and is isotopic to F. Π

For a surface F in M let N(F) denote a regular neighborhood of F. We say

that F is infective if dN(F) is incompressible and d-injective if dN(F) is
<9-incompressible. Thus an orientable surface is injective (d-injective) if and only

if it is incompressible (3-incompressible).

Theorem 4.2. Let F be α compact, orientable, least weight, incompressible,
d-incompressible, normal surface in the compact, irreducible, d-irreducible, orientable

^-manifold M. Then every normal surface carried by CF (the carrier of F) is

injective, d-injective, and least weight.

Proof. Let G be any normal surface carried by CF. There exists a surface
H also carried by CF such that mF=G-\-H for some positive integer m. If either

G or H is nonorientable we can consider 2mF=2G + 2H, where both 2G and
2H are orientable boundaries of regular neighborhoods of G and H, respectively.
Thus, we may assume that both G and H are orientable. It follows
that G and H are incompressible by Theorem 2.2 in [2] and δ-incompressible by



INCOMPRESSIBLE SURFACES IN IRREDUCIBLE 3-MANIFOLDS 1101

Theorem 6.5 in [4].

Consider a normal surface Λ^ isotopic to G and suppose that wt(K)< wt(G). By

Lemma 4.1 it follows that K+H is defined and isotopic to mF. But

wt(^+//) = wt(A:)-hwt(7/)<wt(G)-hwt(//) = wt(mF), contradicting that mF is least
weight. Therefore G is also a least weight surface. Π

Corollary 4.3. Let G, H be orientable normal surfaces such that the normal

sum G + H is defined and is a compact, orientable, incompressible, d-incompressible,
least weight surface. If G' and H' are least weight normal surfaces such that G'
is isotopic to G and H' is isotopic to H then the normal sum G' + H' is defined
and is isotopic to G + H.

Proof. By Theorem 4.2, both G and H are compact, orientable, incompressible,
δ-incompressible, least weight surfaces. Hence the conclusion follows directly from
Lemma 4.1. Π

Corollary 4.4. Let F be a compact, orientable, incompressible, d-incompressible,

surface. Suppose G l 5 G2 are least weight normal surfaces isotopic to n±F, n2F,
respectively, where « l 9 n2 are positive integers. Then every intersection curve in
G±r\G2 is regular and G 1-fG 2 is a least weight surface isotopic to (nί-[-n2)F.

Recall that a face C of &? is an Iw-face if every normal surface carried by C is

incompressible, 3-incompressible and least weight. A complete Iw-face of 2P^ is an

Iw-face C with the additional property that if G is any normal surface carried by
C then every least weight surface isotopic to G is also carried by C.

Theorem 4.5. Let M be a compact, orientable, irreducible, d-irreducible,

3-manifold. There exists a finite collection of complete Iw-faces of 0* $- carrying
compact, orientable, incompressible, ΰ-incompressible, least weight, normal surface in

M.

Proof. Suppose F is a compact, orientable, incompressible, δ-incompressible,

least weight surface. Let Ft, ,Fk be a set of normal surfaces representing all normal

isotopy classes of least weight normal surfaces isotopic to F. By Corollary 4.4,

the normal sum H=Fl + ••• +Fk is defined and is a least weight normal surface

isotopic to kF. It follows from Lemma 4.2 that the carrier of H, which we denote

by Cl9 is an Iw-face. Let Gj be an orientable normal surface carried by 01 and
suppose that K± is isotopic to G t and least weight. Then Hί = G1+Kί is least

weight and isotopic to 2Gt. Moreover, if C2 is the carrier of Hv then C2 is an

Iw-face and Cί c C2. Suppose we have constructed the sequence Cί c C2 c -••
ci Ct of Iw-faces. If there exists a compact, orientable, incompressible, θ-

incompressible, least weight surface Kt isotopic to a surface G, carried by £t then
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Fig. 4. Branched surface formed from SvAvB in M=SxSl

set H^Gi + Ki. Ht is a least weight surface isotopic to 2Kt. The carrier Cί+1

of Ht contains C, and is an Iw-face. Since 0*^ nas onty a finite number of faces,

we eventually obtain an Iw-face C with the property that if G is carried by £

then every least weight normal surface isotopic to G is also carried by C.

To finish, consider a normal surface G carried by the boundary of C. G is

a least weight surface and we can find least weight orientable normal surfaces H

and X carried by £ such that H=2G + X. Suppose K is a least weight normal

surface isotopic to 2G. By Lemma 4.1 the sum K+X is defined and isotopic to

H. Since wt(K+X) = wt(H) it follows that K+X is least weight and hence carried

by C. Therefore K is also carried by C, proving that C is a complete Iw-face. Π

Corollary 4.6. Let Cl9 C2 be complete Iw-faces of 0*$-. Suppose G is an

orientable normal surface carried by C± and G is isotopic to a surface carried by

C2 Then G is carried by C\ n C2.

5. Projectίve isotopy classes

The following example illustrates the PIC-partitioning in a simple case. This

example is essentially Example 1.5 in [5] presented from our point of view.

EXAMPLE. Let M=SxSl where S is a closed orientable surface of genus 3

and α, b are simple closed curves in S as shown in Figure 4. A=axSl and

B = b x S1 are non-isotopic vertical tori in M. We let S = S x *, where * is a point in

S1. The branched surface 3ft is formed from SuAuB with six sectors labeled
$ 1? , $6 as shown schematically in the figure. Thus A=&(a) with <?= (0,0, 1,0, 1,0)
and B = with b = (0,0,0, 1,0,1). For each positive integer n we have the pair
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of isotopic surfaces Fn = @(\,\,n-\$,n,\] and Gn = @(\,\$,n-\,\,n\ The isotopic
between Fn and Gn is obtained by repeating n - 1 times the simple isotopy associated

to^=(l,0,0,lAl)-(l,0,lAl,0) = (0,0,-l,l,-l,l). (Simple isotopies are described in
the proof of Lemma 5.2.) Observe that we can write Fn = C+(n — \)A and
Gn = C+(n- \)B where C= #(1,1,0,0,1,1). Looking at the projective classes in Jί(3S)
we see that as n -> oo we have Fn* = (l,l^ι-l,0,/ι,l)*->α* and Gw* = (l,l,0,«-l,l,rt)*
-»ό*. Although Fn is isotopic to Gn, the torus &(a) carried by ~a* is
not in the same projective isotopy class as the torus J*(?) carried by F*.

From the branching equations *1+x3 = x5, xi-\-x4=x6, X2 + X3 = X5^ and
*2 + x4 = χ6 one computes that the cell of invariant projective measures Jt(@ϊ) is
a 2-simplex with vertices a*9 b* and ~c*. Let μ:«/^(#)-» [0,1] be the linear map
defined by μ(cί*) = μ(b*) = Q and μ(c*)=l. For each f>0, every surface carried by

the fiber μ~Hθ belongs to the some projective isotopy class. Surfaces carried by
different fibers do not belong to the same projective isotopy classes. However,
in the fiber μ~l(Q)> which is a proper face of Jl(β\ we find that distinct rational
points correspond to distinct projective isotopy classes.

To view this example in the context of normal surfaces, triangulate M such

that H=F2 + G2 = #(2,2,1,1,3,3) is a least weight normal surface &H and the branched
surface J*H as constructed in section 3 is the branched surface J* described above with
$5 and ^6 the thin sectors arising from flattening. It is easy to see that the

carrier CH of H is also a 2-simplex in which the vertices are the projective normal
classes A*9 JB*, and C*. CH is an Iw-face and the linear cells of the PIC-partition
for CH coincide with the fibers of the linear map μ:CH-»[0,l] defined by

μ(A*) = μ(B*) = Q and μ(C*) = l, except for μ~l(0) where the cells of the partition
are points. The face μ-1(0) is the only maximal C^-independent face. Π

The remainder of this section is devoted to considering the representation of

projective isotopy classes in &y and proving that the behavior exhibited in the above

example is typical.

Lemma 5.1. Suppose that G1? G2 are compact, orientable, incompressible,
^-incompressible, least weight, normal surfaces in the same projective isotopy
class. Let L denote the line segment in & $- with endpoints G* and G2*, that is the

intersection of&g- with the straight line passing through G? and G2*. Every orientable

normal surf ace carried by int(L) is in the same projective isotopy class as Gt and G2.

Proof. Let H be an orientable normal surface carried by int(L). If H* lies

on L between G* and (?2* then there exist positive integers m, nv, n2 such that

mH=nlGl +n2G2 and the conclusion follows from Corollary 4.4. If//* does not lie
between Gf and G2* then choose notation such that ϊί* is between G2* and the
endpoint G3* of L. Since Gf = tGf + (l-t)(*} and G3* has at least one zero

coordinate that is not zero in Gf it follows that t, and hence Gf, is rational. We
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will construct a sequence of surfaces Sk such that S* is a sequence in L converging

to (j3* and Sk belongs to the projective isotopy class of Gi. The conclusion will
then follow from Corollary 4.4 as before.

There exist positive integers a, b, c such aό2=bG^-\-c^^ where (/3 is an integral
tt-tuple which is a multiple of G3*. To simplify notation we let F=bGi9 S=aG2,

G=cG3. Then F and S are compact, orientable, incompressible, d-incompressible,
least weight, normal surfaces where S=F+G and mF is isotopic to nS for some
positive integers m, n. Set SQ — S and recursively define a sequence of normal
surfaces using the formula Sk+ί=mk+ίG + nSk.

The following induction argument shows that Sk is isotopic to mkS. Assuming
Sk is isotopic to mkS, appply Corollary 4.3 once, replacing nS by mF, to see that Sk+ί

is isotopic to mk+lG + nmkS and again to see that Sk+i is isotopic to

A computation based on the recursion formula shows that Sk = (n
+ ' +mnk~l + nk)G -f nkF. Hence S? = (1 - λk)&* 4- λk?*, where λk = nkcp(F) /

\_(mk + mk~ln+ mnk-l + nk)cp(G) + «kcp(F)]. Rewrite λk as

1

If m/n>\ then it is clear that Ak converges to 0 and S* converges to the
endpoint G* of L. To show that m/n>\, first observe that since mF is isotopic
to nS it follows from Corollary 4.3 that mS=mF-\-mG is isotopic to nS+mG. Since
all surfaces involved are least weight we have wt(mS') = wt(«5')4-wt(mG). Hence
w[wt(S)]>fl[wt(S')] and thus m>n as required. Π

Next we consider normal surfaces carried by an endpoint of the line segment
L. Using the construction described in section 3, construct a branched surface
&s from a normal surface S carried by int(L). Recall that Jΐ(&s) denotes the
cell of invariant projective measures on &s and is obtained by projectivizing the

cone of invariant measures

Lemma 5.2. Let & = $s be a RIB constructed from a compact, orientable,
incompressible, d-incompressible, least weight, normal surface S and assume that
dhN(&) c S. Suppose that F=^(f) is an orientable surface in the projective isotopy
class of S and S=&(s). Let L denote the line segment which is the intersection of
Jί(β) with the line through ~s* and f*. Every orientable surface G = $(g) carried
by L belongs to the projective isotopy class of S.

Proof. The image of L under p* : Ji(^^ -» Cs is the line segment through
S* and P*. Thus if g*eint(L) then it follows from Lemma 5.1 that &(g) is in
the projective isotopy class of S.
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Assume that g* is an endpoint of L and choose notation such that/* lies between
~s* and ^f* on L. There exist positive integers a, b, c such that aj*=frs + cg. Then
aF=bS+cG and there exist positive integers m, n such that mF is iso topic to
nS. Since S has positive weights in J>, it follows from Theorem 1 in [5] that
there exists a sequence of simple isotopies and fiber-preserving isotopies in N($)
(which are normal isotopies) carrying nS to mF. A simple isotopy (relative to

is associated with a component P of M — N(β) endowed with a product
structure P=lVxI which extends the I-bundle structure of L (the I-bundle obtained
from ΛΓ(#) by splitting it along S). Furthermore, dW*I=dvP c dvN(@) and
WxdI=dhP c dhN(&). Let ί?=(fll5 ,0s) and ΐ> = (bi9 9bj denote the weights in
7V(^?) correponding to PFxO and PFx 1, respectively. If J^(vv) is a surface carried
by 38 such that w — a has no negative entries, then there is an obvious isotopy
across P9 called a simple isotopy, moving ^(vv) to ^(vv + 6 — α). Observe
that the weights αt, if can take on only the values 0, 1 or 2 and fl + 6^2.

The sequence of simple isotopies carrying nS to mF corresponds to a sequence
of weights ~Pι=bί—ίΐί9 9pq = bq—'aq associated with products P—W^I which
support the simple isotopies. Thus n^+'pί 4- — \-~pq = mfand rϊs+ ̂  4- — h A — fli + 1
>0 for each i.

Let H0 = &(h0) denote a multiple of S such that wt(//0)>7V0, where N0 is a
fixed positive integer to be chosen later. Assume that for 0</<r we can construct
Hj = &(hj) from //,._ ! = &(hj_ t) by the above sequence of simple isotopies associated

to the weights ^ , ĵ . Then /ζ. = A^ _ ί -f^ H — +/?β = 0̂ +7(P i + — l ^i) an^
^/ -ι+?ι+ '" +K"~3i+i^0 f°r each ί Observe that A * is on the line L between
Hf-i and g*. Because all surfaces carried by & (and hence by the carrier
Cs of S) are least weight, it follows that wt(//j) = wt(//0). Thus, from Lemma 3.2
we have γ<%(Hj)<(d/3p)wt(HQ). It follows that there exists a (5>0, independent
of 7, such that the distance on L between and hf and A*_ t is greater than
δ. Consequently, we eventually reach an Hr in the construction such that the
sequence of simple isotopies cannot be carried out on Hr to construct the
next surface Hr+ 1. Let H' be the last surface that can be constructed from Hr in the
attempt to form Hr+1. We shall show that by making a suitable choice for the
number N0 we can arrange matters such that (i) there exists a surface S' carried
by dM(38\ where either S' = H' or S' is obtained from 2H' by applying the next
simple isotopy in the sequence, and (ii) G is carried by the minimal face of ^*(B)
carrying 5". The construction can then be repeated in the proper sub-branched

surface M(3$).
Choose an ε-neighborhood U in Rs about the straight line passing through

~s* = h* and ]f* and set U*= UrιJf(8f). We may assume that is chosen such that
the component d+U* of U*ndJΐ(&) containing g* meets only faces of ΰJt(3$)
which also contain g*. This is equivalent to requiring that if the /-th coordinate
of g* is positive then every point in dUf has a positive /-th coordinate.

We choose the integer N0 sufficiently large so that for any orientable surface
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with fc* on L between ?* and g*, the vectors (A:-h^H — +/?/)* and
— \-pj—'aj+ΐ)* (for y = l, •••,#) all lie in [/, and none meet t/*

} — d+U*. With this choice of Λ/Q we return to Hr and determine the
surface S". If ζ* has a zero coordinate then we let S' = Hr. Otherwise, set K0 = Hr

and let K{ = &(k^ denote the surface constructed from K0 by using the first i simple

isotopies of the sequence. The next surface Ki + l=&(ki+i), with ki+i=ki+^i+l9

can be formed provided that ki — cϊi+i>Q. Let t be the first index such
that kt — at+ί has a negative coordinate, say the y'-th coordinate. If the y'-th
coordinate of £f is O then let S' = Kt. If the y'-th coordinate of kt is greater than
0 then the y'-th coordinates of Z?ί+1 and bt+i are 2 and 0, respectively. We let

S' = 3S(s) where ~s' = 2Ϊct-\-bt+ί— *ζ+1. In each case, the surface 5" has some

multiple xS' iso topic to some multiple yS and~3*edJί(&). Because of our choice

of NΌ, G is carried by the minimal face of Jt(β) carrying 5".

Form the surface F = xS' + G. It follows from Corollary 4.3 that F' = xS' + G

is isotopic to yS+G and from Lemma 5.1 that a multiple of yS+G is isotopic
to a multiple of S. Thus a multiple of F' is isotopic to a multiple of S. Let $' be

the sub-branched surface of 38 carrying F' with positive weights (obtained by
deleting the sectors of & in which F' has weight 0). It follows from Theorem 2.3

in [7] that $' satisfies the properties to be a RIB except it may have disks of
contact. Let ffi be the RIB obtained from $' by removing disks of contact as
described in section 3 in such a way that F' is carried by &' with positive

weights. Although G is carried by $' it may not be carried by &' in which case

we isotope G to another least weight surface G' that is carried by ffi, say G' = J"(f').
Again we have F' + G' and F' isotopic to a multiple of S. If g'* is not in

ΰJt(β'} then we are done by Lemma 5.1. Otherwise we repeat the above argument
using F\ G' and 8' in place of F9 G and S. After each repetition, the number

of sectors in the branched surface strictly decreases. It is certainly the case that the

sub-branched surface $' has fewer sectors than @t and removing disks of contact
to form &' does not increase the number of sectors but rather enlarges existing

ones. Thus, we eventually obtain a surface S" in the project! ve isotopy class of

5, and a branched surface &" carrying S" with positive weights such that either

gf* is not on dJί(&") or a multiple of 5"' is equal to a multiple of G. In either

case we are finished. Π

Theorem 5.3. Suppose Fί9 9Fk are least weight normal surfaces in the projective
isotopy class of a compact, orientable, incompressible, ^-incompressible surface F. Let
V denote the subspace spanned by the normal classes Fί9 9Fk in Rn. Then every
normal surface carried by the linear cell Kn^^- is least weight and in the
projective isotopy class of F.

Proof. Let C denote the complete Iw-face carrying F. It is sufficient to

prove that if Sί9 S2 are least weight, orientable, normal surfaces each with a multiple
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isotopic to a multiple of F then every orientable surface G carried by the line L
in C passing through 3f and Ϊf2* has a multiple isotopic to a multiple of F. If G
is carried by the interior of L then this follows from Lemma 5.1. Suppose then
that G* is an endpoint of L. Let S be an orientable normal surface carried by
the interior of L between S? and G*. Form the branched surface & = &s. There
exist integers a, b and c such that aS=bS^ + cG. If G is carried by 3$ then, by
Lemma 5.2, a multiple of G is isotopic to a multiple of F. If G is not carried
by & then, by Lemma 3.1, there is a surface G' isotopic to G and carried by
J*. Since S+G is in the projective isotopy class of F it follows from Corollary
4.3 that F' = S+G' also belongs to the projective isotopy class of F. But now
F, S and G are carried by 3ft and we apply Lemma 5.2 as before to conclude
that G' is in the projective isotopy class of F. Π

Corollary 5.4. Suppose C' and C" are Iw-faces of ^^ such that C' r\C" is a
proper face of each. If Cf n C" is not C' -independent then there exists an Iw-face
C such that C' and C" are both faces of C and C" is not C-independent.

Proof. Since C'nC" is not C'-independent there exist rational points
jteC'nC" and yε£' associated to the same projective isotopy class. Let ? be
any rational point in £". Then, by Theorem 5.3, (jc-h~z)/2 and (y+~z)/2 represent
the same projective isotopy class. It follows from Theorem 4.5 that there exists
a complete Iw-face C carrying both (3c4-"z)/2 and (y + z)/2. Let C be the face of
C containing (/+z)/2 in its interior. Then C', C" are both faces of C since C
carries an interior point of each, namely j^and ?. Moreover, C" is not C-independent
since (3?-Kz)/2eC is in the same projective isotopy class as (y + z)/2e& Π

The notion of a PIC-partition was defined in the introduction and the next
theorem gives the existence of such a partition for each Iw-face of ^^-.

Theorem 5.5. Each Iw-face C in has a PIC-partition into compact linear cells
XΛ which have the property that the set of normal surfaces carried by an Xx is
precisely the set of surfaces carried by C and in the corresponding projective

isotopy class.

Proof. Suppose Cis an Iw-face and let 2 denote the union of all C-independent
faces of C. Thus each face in 2 does not carry a surface in the same projective

isotopy class as a surface carried by <?. The first step is to construct a family of
fcc-dimensional subspaces VΛ such that C— 2 is partitioned by the fcc-dimensional
cells Fαn C meeting £ in such a way that the projective isotopy classes correspond
to the rational cells in the partition. We then repeat this construction for each
maximal C-independent face D of C to extend the partition to £>-<?, where δ

denotes the union of all D-independent faces of D. This process is continued



1108 J.L. TOLLEFSON

until we have constructed a partition of the entire face C.

Start with an orientable normal surface Fί carried by 0 and choose a maximal
collection of normal surfaces {Fί9 ,Fk} carried by C and in the same projective

isotopy class as Fί such that the set of vectors {Fi9 9?h} is linear independent. By

taking appropriate integral multiples, we may assume that the surfaces Ft are

mutually isotopic. Let V denote the /:-dimensional subspace spanned by the

vectors {?ί9 9Pk} and consider the compact linear cell A=Vc\C. By Theorem
5.3, every normal surface carried by A belongs to the projective isotopy class of

Fίt The maximality of the set {Fί9 ,Fk} ensures that every normal surface carried
by C and in the projective isotopy class of Ft is carried by A.

To construct the first family of linear cells in the PIC-partition, choose an

arbitrary orientable normal surface H carried by C—A. Let t be a fixed rational

number with 0 < f < l and choose a positive integer m such that mt is an

integer. Form the normal surface Gi = mtH+m(\ — t)Ft for each i. We may assume

that the G, are orientable by replacing m with 2m if necessary. It follows from
Corollary 4.3 that G{ is isotopic to Gί for each i. The vectors {G^---,^} span
a λ>dimensional subspace V. As before, every normal surface with projective

normal coordinates in the linear cell A—V c\C belongs to the same projective
isotopy class as Gj. A dimension argument in which the roles of V and V are
reversed shows that every normal surface S in the projective isotopy class of Gt

and carried by C is carried by A'. If A" = V" n C is any other linear cell construced
in this way then A" meets ίand it follows from the previous comment that either A' —

A" or A nΛ" = 0. Consider the family {V a} of λ -dimensional vector subspaces which

intersect C and are spanned by vectors {ά\,-',ak} of the form ά*=tϊ?i + (l — t)H,

f>0, where H is any orientable normal surface carried by C. If we let {Aa}
denote the linear cells of the form AΛ=VΛr\C which meet £ then we obtain the

PIC-partition {AΛ} of C—3 into linear cells of dimension kc=k.
If the given C is a face of an Iw-face C then each cell AΛ is contained in one

of the λ^-dimensional subspaces used to form the PIC-partition of C. To see this,

let H be any orientable normal surface carried by the interior of C. Then the
normal surfaces Fί=H+Fί, ,Fn = H+Fn are isotopic, carried by the interior of

C, and the collection can be enlarged so as to span a linear cell in the PIC-partition

of C.
The PIC-partition for the remainder of C is obtained by repeating this

construction for the maximal C-independent faces of C, and then continuing the

process until a partition is obtained that covers all of C. Π

6. Applications to finite group actions

Let G be a finite group of simplicial homemorphisms of the compact, orientable,

irredudible, 3-irreducible 3-manifold M with a fixed triangulation .9~. Assume that

¥i\(G)={x\g(x) = x for some geG} is a subcomplex of 2Γ. A surface F is
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G-equvariant if for each component K of F and each geG either g(K) = K or
g(K)r\K=Q. A G-invariant face of &y is one invariant under the linear action

of G on 0*3- n Qn defined by g(F*)=g(F)*. If a compact, orientable, incompressible,
δ-incompressible, least weight, normal surface F is G-equivariant then the carrier
of ug (F) is a G-invariant Iw-face of &#. On the other hand, if F is a
normal surface carried by a G-invariant Iw-face C then it is always the case that
the normal sum ΣgeGg(F) is defiend.

Theorem 6.1. Let F be a compact, orientable, incompressible, d-incompressible,
least weight, normal surface carried by an \w-face C such that g(F*)eC for all
gεG. Then the normal sum S = ΣgeGg(F) is an injective, d-injective, least weight
surface which is invariant under G and S * is fixed by G. Moreover, the isotoppy class

of S depends only on the isotopy classes of the surfaces g(F).

Proof. Since each g(F) is carried by C the normal sum S=ΣgeGg(F) is
defined. It follows from Theorem 4.2 that S (or else 25) is an orientable,
incompressible, ^-incompressible, least weight, normal surface. By Corollary 4.3,

the isotopy class of S (or 25) depends only on the isotopy classes of the surfaces g(F).
It remains to show that the normal sum ΣgeGg(F) is G-invariant. First consider

the case in which G is acting freely. The normal surface ΣgeGg(F) is obtained by

forming the geometric sum of all the images of F under G. But this is the unique

normal surface determined by the G-invariant collection of points [(JgeG^(^Γ)]r>^(1)

and is automatically G-equivariant.

If Fix(G) φ 0 then the normal surfaces F and g(F) do not intersect transversely (in
our sense) along Fix(g)nF. However, there is a unique (up to normal isotopy)

geometric sum F+g(F) obtained by first moving the surfaces by normal isotopies

to make them intersect transversely and then forming the geometric sum. This

regular

exchange

Fig. 5. Equivariant regular exchange along Fix((/)
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can be done in such a way that the resulting sum will be G-equivariant. Choose
a small neighborhood Iυ in ^(1) about each point 0eFix(G)nFn^~(1) such that
the family of neighborhoods {/„} is G-equivariant. Now the argument is the same
as in the free case if, when forming the geometric sum, we relace each v by the two
end points z/, v" of Iv as shown in Figure 5. Π

Corollary 6.2. Suppose that F is an orientable normal surface. The normal
sum S=Σgg(F) is defined and 2S is a G-equivariant compact, orientable,
incompressible, c^incompressible, least weight surface if and only if there exists a
G-invariant Iw-face C of &p carrying F.

Proof. If 25 is G-equivariant then the carrier Cs of S is a G-invariant Iw-face
of ^V carrying F. Π

Corollary 6.3. Suppose G is homotopically trivial. Then every Iw-complete
face in &$- is G-invariant. If F is any compact, orientable, incompressible,
d-incompressibe, least weight, normal surface then S=Σgg(F) is a G-equivariant
collection of pairwise disjoint normal surfaces isotopic to F.

Proof. By [10], each geG is isotopic to the identity. Π

Corollary 6.4. Suppose F is a compact, orientable, incompressible, d-
incompressible, least weight, normal surface such that for each gεG, the normal
surface g(F) is isotopic to a surface disjoint from F. Then F is carried by some
G-invariant Iw-face C and the normal sum S = Σgg(K) is defined and is a G-equivariant
collection of pairwise disjoint surfaces. Moreover, if K is any compact, orientable,
incompressible, d-incompressϊble, least weight, normal surface carried by C then the
normal sum Σgg(F) is a G-equivariant, infective, d-injective, least weight surface.

Proof. It follows from Proposition 3.7 in [3] that the normal sum S=Σgg(K)
is defined and is least weight. Therefore the carrier of S is the desired G-invariant

Iw-face. Π
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