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Introduction

Let (M, g™) be a (2 — 1)-dimensional oriented Riemannian manifold equipped
with a Spif structure introduced in [11]: SPinn(2- 1) = Spin(Zz — 1) xz,
Sp(1). Namely, the reduced structure bundRspp.—1) is assumed to have princi-
pal Spif (2 — 1)-, SO (3)-bundlesPspiv —1), Pso(z) together with a Spth @2— 1)-
equivariant bundle map

(0.1) &1 =&, &) 1 Pspim@—1) — Pso@i—1) X Pso(3)-

Using the canonical action of Sgin#(2- 1) on the quotient Spfh (2— 1)/ Spirf (2 —
1) = Sp(1)/U(1) =CP?L, we get aC P*-fibration

Spirf (& — 1)

(0.2) T . Z = Pspim (u—1) Xcanm — M,

whose total space is called a (Spin -style) twistor space ([12]). We will fix a con-
nectionasp(z) 0N Pso(z) and take the Levi-Civita connection” on Pspz,—1). Pulling
back the product connectiamM@aso(g) by &7, we obtain a connection ORspi (2:1—1),
which induces a splitting of the tangent bundle £f into horizontal and vertical com-
ponents

(0.3) TZ =Ha&V,

through which the given orientation oM  and the natural one on the standard fibre
CP?! induce an orientation o@ . Further we take a Riemannian metfion V asso-
ciated to the Fubini-Study metrids?> of CP?, and define a metrigZ (¢ > 0) on Z

by
(0.4) gl=ctrgM+ gV, wgM =gl

Now let AZ be the signature operator of the oriented Riemannian manifold
(z, g?), i.e., the tangential part of the usual signature operafor §).+of the even
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542 M. NAGASE

dimensional Z x [0, c0), gZ +dr?). The purpose of the paper is to investigate the lim-
iting behaviors where — 0 of the n-invariants of AZ and some intrinsically twisted
ones. The operation of blowing up the metgé =% +gV in the base space direc-
tion as in (0.4) is called passing to the adiabatic limit. The idea of extracting some in-
trinsic values by taking the adiabatic limit is originally due to Witten [15] who relates
the adiabatic limit of a certaim-invariant with the so-called global anomaly: refer to
[4, 6, 3, 7] for the rigorous treatment and certain extensions. Our argument depends
mainly on the general theory of Dai [7]. Essentially because the fibres are all totally
geodesic in the case (0.2), our results are fairly neat. Let us state here only the result
for the nontwistedAZ.

We take the Levi-Civita connectioW™ on TM and denote its curvature 2-form
by QM. Further we take the Levi-Civita on€“ associated tg@ and, by composing
the orthogonal projectio?Y : TZ — V, we obtain a connectio®WY = PYVZ on V),
whose curvature 2-form is denoted §3”. Define now theIﬂ—genus forms associated
to the curvatures by

R —10OM /4x
(0.5) L(QM) = det/? <tan\r{(;1—3152{”4 ; 47T)) ,

etc. Then we have

Theorem 0.1. The (adiabatig limit of the n-invariant lim._on(A%) exists and
there is an odd degree forrj on M such that

(0.6) Iimon(Af):Z”"l / LQM) A7,
E—> M
(0.7) dfij=2 / (QY),
Z/M
where fZ/M is the integral over the fibres.

There are some interesting ways of twistidg. We will discuss in§4 the adia-
batic limits of then-invariants of twisted ones.

1. Signature operators

Let us recall the definition of signature operator and some relevant facts related to
it ([1], [7, §4.1]).

Let (N, g") be a (2 — 1)-dimensional oriented Riemannian manifold. Denote the
x-operator, the exterior differential and its formal adjoint by *y, d = dy andé =
dn. Moreover, setr = 7y = (v/—1y"*?*Dx, called the complex-operator, acting on
the complex exterior bundlge?(N) = AP(T*N) of degreep . The signature operator of
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N is then defined by
(1.1) AN =7(d + ),

which acts on the spacd(N) consisting of C>°-cross-sections of\(N) = & A? (N).

The operator is just the tangential part of the signature operator of the even-
dimensional oriented Riemannian manifoltf+( g™*) = (N x [0, 00), gV + dr?) in the
following sense: Setry, = (vV—1)y""P(P~Dxy, acting onAP(N,). Note thatr? = 1.
Accordingly the signature operators of. are defined by

(1.2) AL = (dy, +0n,)x 1 AS(N:) — AF(VY),

where we putA®(N,) = {¢ € A(N+) | 7,6 = £¢}. It is well-known that this can be
expressed as

A =(exty, —int,)(0, + AL),
(1.3) N
Ap=(=1/2P Y exydy — dy*y) : AT(N2) — AE(NL),

where exp, ints, are the exterior and interior products ar &%(-,0,) and the
above expression for the tangential part is for forms of degree 2 (= 1) or of
degree 2 — 1 (¢ = —1) in the N -direction. Through the identification

(1.4) AN) = A"(No) = A"(N3)[r =0, ¢ = ¢+7v,0,

the operatorA, acting on.A*(No) corresponds now to the signature operatdt

Next, let us show thatA™ can be seen as a kind of twisted Dirac operator.
Take the complex Clifford bundI€!(T N) the Clifford multiplication of which is de-
noted byo, a locally defined Spin structur€ : Pspinai—1)(N) — Pso@n—1)(N) of
the reduced structure bundle and the associated locally defined spinor [S{nle
Pspina—1)(N) xa S2,—1. Here A is the complex spinor representation of Sping21)
so that dimSy,_; = 2*~1. Note that, since the global existence of a Spin structure
is not assumedN above ought to be replaced by its sufficiently small open sub-
sets. But, to simplify the description, we do not replace so. Similarly, we take those
for N.. Its locally defined spinor bundi&N.) = Pspin(N+) xa S2, has a split-
ting S(V.) = S'(N:) ©® S~ (N,) induced from the usual splittingn A* & A~ of
the complex spinor representation of Spn(2 ). 87T No) = CI(TN.)|r = O etc.
as above. We have natural inclusio@$(TN) C CI(TNy) (TN > X — Xo0,) and
Pspin@a—1)(N) C Pspinga: (No), Which induce a canonical isomorphism

(1.5) S(N) = S'(No)
as CI(T N)-module bundles. Hence we obtain isomorphisms

(1.6) A(N) = N"(No) = S"(No)® S(No) = S(N)® S(No)



544 M. NAGASE

as left CI(T N)-module bundles. FoX € TN C CI(T N) the left actionX. on (1.6) is
expressed consistently as gxtinty, (exty —intx)(exty, —ints,), Xod,o = (Xo0,o0) ® 1,
Xo = (Xo) ® 1 on each of it. Notice that (1.6) has also the right actioh of X €
TN C CI(TN) given as (ext +int ¥1)” (on AP(N)), —(exty +inty )(exp, +ints,),
(X00,)*0 =1® (0,0X5), (Xo0,)*o =1® (0,0X0o) on each of it.

Now let us take a positively oriented orthonormal bagis} of TN, a connection
V™) on S(N) associated to the the Levi-Civita one @hV  , and, moreover, such a
connectionVS™) on S(N.). This restricts to connections’S™ ™) on SH(Ny). We
have then a twisted Dirac operator f8(N)® S(No)

(1.7) DM@ S(Ng) =) eqo (Vi@ 1+ 10 VM) .
It will be now clear that, through (1.6), we may have
(1.8) AN = DV ® S(N).

2. Signature operators ofZ

Let us take locally defined Spin structures fat (s VW, ¢¥), which give natu-
rally a locally defined Spin structure foZ(g# ). Accordingly we have locally defined
spinor bundlesS(M), S(V), S(Z) = m*S(M)® (V). Then, observing (1.6), we have the
following canonical identification:

(2.1) A(Z)=T'(S(2)) ® I'(S(Z0))
¥ (T T (S(M)) @ T(S(V))) @ (7 T'(S(Mo)) @ T (S(V)))
1 T(S(M) @ S(Mo)) @ T(S(V) ® S(V))
> AM) @ A(V).

Notice that, giveng € A(Z), its expression in terms of elements ofA(M) @ A(V)
through (2.1) does not coincide with the one naively gotten through (0.3).

The first purpose of the section is to express the signature opetétor acting on
A(Z) in terms of certain operators acting arfid(M) ® A(V) through (2.1).

Let us take a positively oriented local orthonormal framag, (.., e2,-1) =
(€1, ...,¢€5,_4) of TM, whose lift to H is dented by the same symbol. Also let
(e2n, ezn+1) = (€7, €5) be such a frame oP. We putr” = /—1e/ o}, called the com-
plex volume element ob.

Lemma 2.1. Through(2.1), the actionselo, ¢}, e/*o, ¢;/*o on A(Z) correspond
respectively to the actiongo®7%, 1Re o, e/*o®1, 0; (1Yo} )*o on T A(M)2.A(V).

The lemma is easily shown by rewriting the actions successively according to
(2.1). One may be convinced of the comment following (2.1) by the lemma.
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Bearing the lemma in mind, we denote b etc. the action/o @ 7% etc. on
™ A(M) @ A(V) to simplify the description. Let us then consider the following opera-
tors acting ont*A(M) @ A(V):

T AM =AM @ 7V = Z e,{o (ﬂ'* (V?M) R1I+1® VFSI_/(M")) ® 1) s
AV=10 AV =10 @+ i) =Y e (10 (VP 01+10 V)|
(22) Y eovi=Y o (10VY) = e (10 (VP 01+ 10 V).

c(T):Z ejoeioc(T) (e}, €}) = Z ejoelo Z g(T (e}, €). e)ef o,

i<j i<j k
- 1
C(T)ZE Z gZ(T(el{, e;), e,i’)(e,’(’oe,'-*oe;*o + Ze;oel/(l*oe;* o),

where T is the torsion tensor of the covariant derivafvé = 7*V” ¢ VY on TZ
and V) is the covariant derivative oS()) induced fromVY. Here AY acting on
A(V) can be seen as a family of signature operators along the fibres

(2.3) AV =(AY |x e M), AY =dy, + 6y, = de-10) + 6r-1()

and, according to the splittingl(V) = A*(V)®a A~ (V) = (ST (WV)SV))B(S™ (V)2S(V)),
it can be expressed as follows:

0 AY
(2.4) AY = (AV 0 > AY = (dy +y)+.
+

We will now expressA? acting ond(Z) in terms of operators (2.2) acting on
mA(M) ® A(V) through (2.1).

Lemma 2.2(cf. [7, (4.6)]). A7 =m"AM+30 e[V +AY — (1/4)c(T)+ (1/4)(T)

Proof. SetQ =VZ — V®. For horizontal vectors ¥ and a vertical vectdr
we have

(25)  gZEXU.Y)=—gX(Q(X)Y,U) =g*(Q)X.Y) = %gz(T(X, Y).U).

and gZ © ()-, -) vanishes for all other combinations of horizontal and vertical vectors
([12, Lemma 2.1(3)]). Hence, calculatir@e{ =V + 0(es), we have

1 .
V()Z’_, = W*Vﬂ? + V:,? -3 E g“(T (e}, eh). e )ef ® N e ® f”k),
(2.6)

1 ,. .
Vo =V + 2 > 4Tl €)). ef)e @ [ — el @ f).
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Here { "', f"'} is the dual basis ofe/, ¢/}. These imply

— v
VI = v+ v — Z §4(T (e}, ¢}). e)e}oe) o,

2.7)

VS(Z) S(V) + = ZgZ(T(el,e ), e )e,{oe;o.
Thus we have
28) Y e,fo(vffz’ ®1) +Zego(v§§?> ®1)

1
=3¢ (W*VSW’ @1+ e (VS(V) ©1)+Y e“o(vSW) ® 1)~ zel().
Similarly we have
(2.9) D efo(1@ VI + 3" el o(1@ V)
=Y eo(l@m VI + Y elo(1e VI + Y el o(1@ V)
1
+§ ZgZ(T(e,{, e), e){e o(1® efoe’;0) + 2¢;o(1 @ e oe’;0) }
1
= ‘s * 7 S(Mo) ‘s (V) " SV + ==
D eo(lan v )+ e 1oV, )+ e (1@ V") + ZET).

They certainly imply the lemma: see (1.7). Notice that, in our case, the term corre-
sponding to 21(S(e;)e;, fa)ei(e; fa +ej fy) in [7, (4.6)] does not appear. O

Next, we want to find out a similar expression faf. Note that the identification
(2.1) depends on the metrig” . We need hence to change it into the identification in-
duced bygZ. It will be obvious then that the result is

Z _ 12 [ s, M % v _ €& €~
(2.10) AZ=¢ [71' AM + Ze;ovpl_,] +AY = 2e(T) + Z8(T).
If we pull back the right side which acts arfA(M)®.A(V) through (2.1) (induced by

¢%), the resulting operatoA? does not coincide with the originalZ. Actually, AZ is
what we obtain by pulling backi? through the isomorphism

(211) it A@)ZAZ), Y cap(fN) AU =Y caple R EN AT,

where we set [/)* = f’”l A A f'% (o = (ag,...,q;)) etc. Concretely it can be
described asi? = ,(d. +4.) with

(212) &15 = L:dz = 61/27T*dM + dv, 85 = L:(S(Z,gEZ) = 51/27'('*51\4 + 51;.
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3. Proof of Theorem 0.1

The n-function of AZ is defined by

@1 pAf)s) = {6=D/2 Ty (Afe—'@*?)z) dt, Res >0,

1 (o)
I'((s +1)/2) /0
By analytic continuation to the whole complex plane we obtain a meromorphic func-
tion, which is regular as =0 ([1]). The-invariant of AZ is the value att =0, i.e.,

(3.2) U(Af):U(Af)(0)=\/l%/omll/2Tr (A?e*I(AEZ)Z) dt.

Note that TrdZexp(~1(A%)?) = O(t*/?) ast — 0 ([4, (2.13)]) so that the above inte-
gral expression is well-defined.

We begin with investigating the limiting behavior of Arfexp(—(A%)?)) when
e — 0. Let us take &@,-graded infinite dimensional vector bund&> = H>® @ H>
over M defined by

(3:3) HE, = A W)|r ()
at eachx € M. The obvious functorial isomorphism
(3.4) AWV) = T(H®), oD, 9E) =) 3z 9@)

induces a fibrewise hermitian metric d#> as (1, V2): = [, 1 1 A *p1ba. Now,
observing the expression (2.10) fa#, we will take a unitary superconnection @

1
4rt/2

(3.5) B, =By + tl/zB[o] + til/zB[z] =VY + 1124V — c(T),

where we set@?d; = (VY4 and(T) =3, TN fN@e(T) el €)) (a Cl(V)-valued
2-form on M').

Let us explain here the origin of (3.5): see [3, 4]. Consider an obvious functorial
isomorphism

(3.6) TAM) ® A(V) ¥ T(AM)® H®), 1601 < 6@
and take a superconnection
(3.7) B,=VM®1+1® B,

on the right side. Through (2.1) and (3.6) this may be seen as a superconnection on
NZ). A? — £&(T)/4 is then just the quantization ef-/?B,,., i.e., what is obtained
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by replacing the wedge products’A, f* A f'/A, etc. by the Clifford products/o,

e{oe;o, etc. The superconnection (3.5) was taken so that it fits such a framework.
If i #1, then we have

(3.8) By € T(M, N'(M) ® End (H™)).

Further, we may think of the curvatu®? as being (the operator given by) an element

of '(M, A(M)®ENd (H*)) so that the heat operatr*B/2 can be regarded also as (the

operator given by) an element of it ([2, Proposition 1.38]),

(3.9) e~B’ ¢ T(M, A(M) @ End (H™)).

We set End {°°) = Hom (HE°, HE) (if j=0), Hom(H°, HY) (if j = 1), and say

that the elements of" M, A'(M) ® End (H°°)) are of total degreé 4 . Thesy

(i # 1) is of odd total degree. Furthe®? is of even total degree and so is the heat
operatore*BI2 . The fibrewise supertrace

(3.10) 1(t) = str KAV + 8;—?> 631

on H® is thus an odd degree form o . We denote[§{t)],;_, its homogeneous
component of degree;j2- 1, and set

1
3.11 1) = EE— o
Then, in the same way as the proof of [3, (4.40)], we can prove

Lemma 3.1. We have uniform convergence as— 0
(3.12) TrAZe "4y = 20 /7 /M L(QM) A (1) + 0EY2(1+1Y))
for someN > 0.
Proof. A may be seen as a twisted Dirac operd#oS(My): see (1.7). Hence

it is easily shown in the same way as the proof of [3, (4.40)] that the left side of
(3.12) can be expanded when— 0 as follows:

NG A M S(Mo) R 1/2 N
(3.13) 7/ AQRTV—=1QM) Tr(exp25MN) A f(r) + O (Y21 +1V)),
(271'\/—1)” M
where A(zm/me) is the (renormalized)&-genus form associated t®Y | i.e.,

A@ry=10M) = det/? (@M /2)/ sinh@" /2)), and Q5™ is the curvature ofS(*o),
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Notice that the left side of (3.12) contains the tetfi{7") /4, which, however, does not
contribute to the first term in (3.13). This is because, in the Getzler’s transformation (a
rescaling method) which induces the first term, we only rescale the left Clifford vari-
ables but not the right ones. The first term is then equal to

\/E ni /—10M ~
/Ty /M 2'L27V—192M) A 7)(1)

=27 — = _Ler/=19")A ———

M2:+, Z, (@m F)z 2 \ﬁ)/ (7)) 21

=2"/x /M QM) A (). O

Next, let us consider the family of signature operators along the fibres given in
(2.4). It is easily verified by the fact Ke4l’'|H>) =~ Ker(dcp: + dcpr) = Hjip(CPY)
that its index bundle

(3.14) IndAY = T Ker(AV|H) =IndAY @ IndAY

xeM

is a trivial two dimensionalZ,-graded vector bundle oved/  with canonical cross-
sections (7 1J € T'(Ind AY), wherery, is the family of complex«-operators along
the fibres. The orthogonal projection 8" to the subbundle IndY gives its connec-
tion V', which obviously equals just the exterior differential # . Now let us take
a twisted signature operator

(3.15) AMgiIndAY =Y el (v§§’®1+1® v'e?d)
acting on A(M) ® T'(Ind AY).

Lemma 3.2. n(AM®IndAY)=0

Proof. Obviously we have an identification
(3.16) AM) @ T(IndAY) = A(M) & A(M)

given by ¢.® (1 +1p1J +¢_® (1 — 1v1) < (¢4, ¢_). Since the actiore- on the left
side meang/o ® 7Vo (refer to Lemma 2.1), we may identify accordingly

(3.17) AM@IndAY = AM g (- AM).

Hence we have)(A” ® Ind AY) = n(AM) — n(AM) = 0. U
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Now, applying [7, Corollary 4.1] toAZ, we will investigate the limit ofp(AZ%).
Since we have KeA? = Ker(dz +d(2,7)) = Hjx(Z), the dimension of KeAZ is con-
stant. Hence lim_qn(AY) really exists (refer to the argument following (3.21)) and
we have

™

1 Z\2
; Zy — —1/2 z ,—1(AZ) )
(3.18) llnol n(AE) = Ellllol —\/_ /0 t Ir (AEe dt

_ 1
V7 Jo

=2t [ 2@+ lim 3 sani..

o0
—1/2 i Z ,—1(AZ)? M % ;
1Y lim Tr (Ase i E))dt +n(AM @ IndAY) + €I|Ln0§ 0 SONA-

where the last equality is due to Lemmata 3.1 and 3.2 with
o [, dt
(3.19) 7= [ i

which is convergent because oft)’= Ot~ (t — ), O(1) ¢ — 0) ([2, Theo-
rems 9.23 and 10.32(1)]). Hence, to finish the proof of (0.6), it suffices to show that
lim. o), SgNA. vanishes.

Let us begin with the explanation of the (finite) summatn, sgnA. ([7, Theo-
rem 1.5]). The eigenvalues of? are analytic with respect to*/2 on ¢ > 0. Namely,
there exist (infinitely many) functiong. analytic with respect t@'/2 on ¢ > 0 such
that the spectrum ofiZ, Spec@?), equals{)\.} for eache > 0. Moreover,\. with
lim._gA: = 0 may be extended to a function smooth (may not analytic) with respect
to £1/2 up to /2 = 0 so that it has an asymptotic expansion whes 0

(3.20) A~ ciWEV2+ (W (EVD2 + ca(\(EVD -

The coefficientcy()\) is an eigenvalue oA ® IndAY and the map\. +— c1()\) de-
fines a bijective correspondence betwden | lim._o\. = 0} and Specd” ® IndAY)
(with multiplicity). Now, taking only \. corresponding to the zero-eigenvaluesA#®
IndAY, we set sgn\. = 1 (if A, > 0), = -1 (if \. < 0), or = 0 (if A. = 0), which
sum up to) , sgni.. Put

(3.21) pE) =D o SIN..

Since dimKerAZ is constant and\. are analytic, each\. in (3.21) is nowhere zero or
identically zero so thap(¢) is constant, which certifies the existence of ling n(AZ).
We denote the constant by i.e.,

(3:22) p=lim p(e) = lim >~ sgn)..
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Before studyingp, we want to make an important comment. It will be clear that,
in the argument above and below, we may repldaéeby Af given in (2.12) and, fur-
thermore, the study becomes quite manageable by replacing so. Actually, for example,
as explained in the comment preceding (2.11), though the inner produd{ ¥ on
which AZ acts varies according te, the inner product of4(Z) on which Af acts
does not vary fortunately. In the following we proceed with the argument uéifu,g
so that{)\.} = Specfi?) and, more important, the metric &f j&* (ngf).

Now we denote byE X.) the eigenspace associated)to (of Af) in (3.21). Take
r > 2 and defineE, ) to be the direct sum of’ )\() corresponding to\. with ¢;(\) =
0 for all i < r — 1 in the expansion (3.20). It is proved in [7, Proposition 4.2] that
E.(¢), €% > 0, is a family of finite dimensional vector space that depends smoothly
on %2 down toe/? = 0, that is, there exist smooth formsi ., ..., . (Y2 > 0)
which are orthonormal (with respect g& ) to each other and gendiatd for(each
€1/2 > 0. Hence the limit

(3.23) E, = lmE, ()

is a well-defined finite dimensional vector space. Further the following map is well-
defined (see the proof of [7, Theorem 0.2)):

(3.24) dr By — Er, ¢=1limo.—doo= |imoe*f/2£z€¢€,
whered. is given in (2.12). We may state now an important lemma.
Lemma 3.3 (Dai [7, Theorem 0.2]).
(1) {(E..d/)},>2 forms a spectral sequence.
(2) The Dai's spectral sequencf(E;, d,)},>» is isomorphic to the Leray spectral se-
quence{(E,, d;)},>2 of the fibration(0.2) through the canonical mag, > ¢ — [¢] €
E,.
By investigating the Leray spectral sequence we have
Lemma 3.4. The Dai’s spectral sequence degenerates at2 in our case.
Proof. It is obvious that the local coefficient systeH},,()) consisting of de
Rham cohomology rings};,(7—1(x)) (with coefficients inC) is trivial. The general
theory implies then that the Leray spectral sequence degenerates at =2. [

Now we can prove

Lemma 3.5. p=0
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Proof. The lemma follows directly from Lemma 3.4 and the Dai’s topological
formula ([7, §4.3]) for p, i.e., setE® =1lim._q E.(¢) N . A"*(Z), then we have

(3.25) p=Y_p =2 sgn(E" x EM — C)

r>2 r>2
where the pairing is given byg(v) — [,¢ Ad,yp (if 2n+1 = 4m — 1), (¢, ) —
V=1[,0Ad, ¢ (if 2n+1 = 4m+1). (The proof of the formula in the case 2 +1m 4 +1
is similar.) L]

(3.18) and Lemma 3.5 imply now (0.6). Next we will show (0.7) for (3.19).

Lemma 3.6 (cf. [2, Corollary 9.22 and Theorem 10.23], etc.).

(3.26) lim str ((37812) =0,
(3.27) lim str ((37812) =rv=D)' [ Ler/o1eY).

zZ/M

Proof. Since the connectiof™ on IndAV is trivial, its curvature2™ vanishes.
Hence [2, Corollary 9.22] implies

(3.28) lim str (e*Brz) =str(exp-Q") =1-1=0.

1—00

On the other hand, if we denote Wy the curvature ofvSV), [2, Theorem 10.23]
implies

(3.29) limstr (67812) vt A@evIIRY) Tr(expl SV,
t—0 z/M

which obviously equals the right side of (3.27). U

Proof of (0.7) for (3.19). The transgression formula ([2]) for the superconnection
B, says

SN ()
(3.30) asnr(e )_—dzﬂ/z.

Hence, by putting; = [, /(t)/(2t*/?)dt, we have

t—00

(331)  dij=lim str(e‘Brz) — lim str (e_sz) = (rv/—1) L / / L2rv/=12Y).
t— Z/M

The second equality is due to Lemma 3.6. Thus we obtain (0.7). O
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4. Some twisted signature operators

(Z, g%) has a natural Spin structure ([12])

(4.1) £ = (5, £1) © Pspirr @ +1(Z) — Pso@a+1)(Z) X Py)(Z),

which is constructed as follows: The maspiv (2—1) — Z, px — [p«.[1]], Obvi-
ously has a structure of principal Spinz(2 1)-bundle, whose total space is denoted
by Pspirr :—1)(Z). This gives a Spin structure af* Pso(2,—1), Which is isomorphic by

7 to the reduced structure bundle & (g?|H),

(4.2) £ Pspir @i-1)(Z) — ™ Pso(an—1) X Ply(Z).

On the other hand, the reduced structure bungYg(z)(Z) of (V, ¢gY) has a canonical
Spirt structure ([10, Example D.6])

(4.3) £ 1 Poin o 2) — Pio) x Pluy(2).

Here P,}’(l)(Z) is the set of unitary frames with respect to the hermitian complex bun-
dle structure s, JV) induced from the canonical{{2, J/°*") of CPL. We may re-
gard Spifi (2 — 1) and Spifi (2) as subgroups of Spim(2 + 1) through the inclu-
sionsR¥*~1 R? — R?*1 and define a group homomorphism mult : Spim 21) x
Spirf (2)— Spirf (22 +1) by multiplication in Spin 2 + 1). Then we set

(4.4) Pspirt (2 +1ﬂZ) = (PSpin’ (2171)(Z) X PSvpir‘f’ (2)(2)) Xmute SPIrf (2 + 1)

We have hencePy)(Z) = P[{y)(Z) © P}y (2).
Further ¢, g7 ) admits remarkably a canonical Spin structure ([13])

(4.5) &1 Pspin@ +1(Z) — Pso@n+1)(Z),

which is uniquely determined (if it exists) by the condition that there exists an isomor-
phism

(4-6) PSpin" (2 +1XZ) = PSpin(Zz +1£Z) Xcan Spirf (2’1 + 1)

Thus (4.1) is just a trivial Spin structure induced from the canonical action of
Spin(z: +1) on Spif (2 + 1), so that we havgy(Z) = U(1), (trivial).

It will suffice to manage only (4.5) from the standpoint of studying only topolog-
ical invariants such as indices, bgtinvariant is not such a invariant, nor is its adia-
batic limit. Actually it is not permitted, in Theorem 0.1, to replaﬂf:@M), I[:(SZV) by
their cohomology classe}ﬁ(M), H:(V). Accordingly, if there exist some nontrivial in-
trinsic connections orPy(1)(Z) which is ftrivial, then certain intrinsic properties of Z
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will be reflected naturally in the signature operators twisted by such connections. In
particular in connection with Theorem 0.1, it will be of interest to investigate the lim-
its of their adiabatic versions.

Let us introduce now such an interesting connection onPiir@—1)(Z) =
Pspiy (,—1) Can be embedded as a subbundle inttPspiy (2,—1) by the mapp, —
([px,[10], p): see [12, Lemma 1.3]. Accordingl;P&fl)(Z) = Pspir —1)(Z) xec U(1)
can be embedded as a subbundle intdPso) = 7 Pspim (1—1) X g1 SO(3) naturally,
where ¢] is the adjoint action ofSp (1) omp(1) = R3. U(1) = SO (2) is then canon-
ically reductive in SO (3), i.e., there is a natural splitting(3) = u(1l) ® m with
Ad(U(1))m C m. Hence, theu(l)-component ofr*asos) restricted to the subbundle
gives its connectiom/f;;). On the other hand, since the Ehresmann connectioras-
sociated toVY is unitary with respect todsY, J¥) ([12, Lemma 2.1 (4)]), it induces
a connectiom‘,j(l) on Pl‘f(l)(Z). Thus we obtain a connection

(4.7) ) = agy ® 1+1® ayg
on Pya)(Z) = PJi(Z) @ PYuy(Z).

Let us twist A(ZE) using ayy. Using the standard representation U:. (&)
GL¢(C) = GL¢(C) we define a spinor bundle

(4.8) S(z) = Pspirt (2 +1XZ) Xa@re Sone1r Sma1= Sm+1® C,
to which we attach a covariant derivatie® () associated to the connectierf¢ =

E*(a” day)). Since Pspir @ +1Z) X r.C = Pspina +1{Z) X can(Spirf (21 +1)x,.C) = Cz
(trivial), we have

(4.9 S(Z2) ¥ YZ)®Cz = S(Z) = Pspin@ +1{Z) X A S2n+1-

S°(Z) with VS may be thus regarded &Z) with a twisted covariant derivative
V)< In this manner, we obtain a twisted signature operator

(4.10) A%C = D*® S(ZO)ZZ eao (VD@ 1+ 10 Vi)
= eqo (Vi(z)@@ 1+1® fozo))

on

(4.11) NZ) = SZ)® Zo) = S(Z)@ S(Zo).

In the following we want to investigate the limit of-invariant of its adiabatic version
AZ:<. But we face a problem here. Namely, the dimension of kernel of the twisted one
may vary according te. | hope it does not. (If it does not, then the following conclu-
sion can be more strengthened.) But | am not sure so far. We will lay down a scheme
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which relieves us from such a concern. To do so, let us assume for a moment that
the dimension varies really. Precisely, we assume that, foregny 0, it is not con-

stant on the interval (@). Take eigenvalues¢ of A%< and setp‘(e) = > 0 SANAS

as in (3.21). therp®(e) has no limit whene — 0, nor hasn(AZ) consequently. Thus

we cannot investigate lim.on(AZ) naively. Here it is wise to perceive the fact that
p°(e) + dimKerAZ< is constant modulo 2. Accordingly we will set

(4.12) n(AZ) = % {dimKerAZ< +n(AZ)},

called the reduced-invariant, and investigate its limit ifiR/Z. It will be obvious that
this limit (mod Z) may exist even if the limit ofp(¢) does not.
Let us take hermitian complex line bundles

(4.13) Lo = PJi0y(Z) %, C. Ly = PYg(2) x,.C

with covariant derivatives/"”, V'v induced fromajfy, ay,). We denote their cur-
vatures byQ™, @V, which take values iniy(1). (Note that we use the same sym-
bol QY to denote the curvatures 6f“v and VY because the latter covariant deriva-
tive is the underlying real one of the former.) Define then their first Chern forms by
c1(QM) = tr(v/—1Q" /27) = vV/-1Q" /21 etc. We have now

Theorem 4.1. The (adiabatig limit lim._o7(A%°) exists inR/Z and there is an
odd degree formy’ on M such that

(4.14) lim 7(AZ)=2" / L") A7 (modZ),
e—0 M
(4.15) dijl = /Z /M L(QY) A exp <%c1(sz") + %cl(QH)) .

Proof. First of all, let us attach the standard fibre metric to the trivial line bundle
Cz. Then we have a natural hermitian line bundle isomorphismm® Ly, = C; and,
hence,

(4.16) Ly = L3

Furthermore, it follows from [13, Proposition 3.3] that the covariant derivatvés,
Vv (induced fromV-v) restricted to the fibres coincide with each other through
(4.16), i.e.,

(4.17) V= (x) = VEV ().

Let us take locally defined spinor bundI&M) and S(V) with S(Z) = 7*S(M) @ S(V)
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and, moreover, locally defined vector bundles
(4.18) I = Pspirr —1)(Z) X7 C. 1y = Poi o Z) %, C

with S'(H) = Pspirr - 1)(Z) X a8 = T S(M)@13; and S (V) = Py 2 Z) X arcS¢ =
S(V) ® Iy,. Then it will be clear that there exist global canonical hermitian line bundle
isomorphisms

(4.19) Iy @Iy Ly, Lyl =Ly, [=Ix®ly=Cz, Iy=1.

The connections oPspir (—1)(Z) and Ps‘é,m. (2)(2) induce unitary covariant derivatives
Vi, Vv on Iy, Iy. Through (4.19), we can identify as follows:

Vngl+loVin=vtr, vivgl+lgVh =v-y,

(4.20) .

Vi |~ x) = VIV [~ H(x).
The third one is due to (4.17). We will end the preparation here: refer to [13] for more
information.

Now, as is easily understood, to prove the theorem, it suffices to modify the proof
of Theorem 0.1 a little bit. Namely, we have only to twisf using the trivial line
bundle! =l; ® I, with nontrivial covariant derivativ&/! = V@ 1+1Q V.

Let us take now a covariant derivatié”! = VV® 1+ 1® V/ acting on A(V) =
AV ®1), which induces a covariant derivativés»)! on S(V). We define then an op-
erator

(4.21) AV =3l (1 ® (v;’f’f}’)*’@@ 1+10 vif?)))

acting onm*A(M) ® A(V) as in (2.2). It will be obvious now that we have the expres-
sion

Ze _ 12 [ _sqM I Vil vi_ & €~
(4.22) AZC=¢ {71' AY + Zeiov()’, } + A 4c(T) + 4C(T),

corresponding to (2.10). Following the comment around (3.7) we take a unitary super-
connection

1
4¢1/2

(4.23) B! =V 4124V &(T)

on the infinite dimensional hermitian vector bundt&>/ = H>°. Similarly to (3.10)
and (3.11) we defing'(r) ands(r). Then we have uniform convergence as- 0

(4.24) Tr@Zce Uy = 20/ / L@M) A7 (1) + OEY2(1 +1Y))
M
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for someN > 0 as in Lemma 3.1. Moreover, since the third equality in (4.20) implies
AV H>! = AV|H>, Lemma 3.2 asserts

(4.25) T](AM® Ind AV,[) =0.
Thus, similarly to (3.18), we have
@.26) Im (129=2" [ L@y 7
£— M
* "mo% {dimKer(4" @ Ind A¥) + () + dimKerAZ<} |

where we set

* dt
N - ~I
@27) 7= [ 0555

Precisely stating, (4.26) acquires a meaning only when the limit in the right side exists
(in some sense) and, as explained before, the limit may not exigt However, since

the term 21{dimKer(A¥  Ind AV') + p°(¢) + dimKerAZ:} is obviously an integer,

the limit exists inR/Z. Accordingly the limit lim._o7(A%°) exits inR/Z and equals

the first term in the right side of (4.26). That is, (4.14) was proved. Next it will be
obvious that (4.15) follows from the similar formulas as in Lemma 3.6, i.e.,

i —(B)?) =
(428) lim str(e ) 0,

I _(B/,)Z =
(429) lim str(e )

(ry/=1)1 /Z | Ler/Ti2n exp(%cl(wa/—_l(QV . QH))) .

(4.28) is just a reformation of (3.26) because M and IndAY coincide with each
other including hermitian metrics. By noticing that the curvatureMdfis equal to
QY+ Q™) /2, (4.29) is shown similarly to (3.27). O

Second, let us defin& (Zo) (= S(Zo)) with VS %) (= v(Zo)c) similarly to (4.8)
and take a twisted signature operator

(4.30) AP = D@ S (Zo)=) ) eas (VED @ 1+ 10 V)

=> e (Vf:(z)(g) 1+1® vg'(zo))
on

(4.31) NZ) = S(Z)® S(Zo) = S(Z)® S(Zo).
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In contrast toA%¢ which isA? twisted with &,®1y, this is gotten by twistingd?
with L = Ly®Ly. The proof of the following is quite similar to the proof of Theorem
4.1.

Theorem 4.2. The (adiabatig limit lim._o7(A%<) exists inR/Z and there is
an odd degree formj- on M such that

(4.32) Iimoﬁ(Af*"")EZ” / L") Ait  (mod Z),
E—> M
(4.33) di- =2 / L(QY) A exp(ca(RY) +ca(27)) .
Z/M
Third, let us discuss an extraordinary twisting. We put Spim (2 +1) = Spin(2 +
1) xz, Sp(1) xz, U(1), which has a double covering homomorphism
(4.34) &1 Spif(2n +1)— SO2n +1)x SO(3) x U(1)

with g2¢ = (&8, &1, €2°) = (€, &1, &). Note that the Lie groupSp (1xz, U(1) =
SU(2) xz, U(1) plays a significant role in the Weinberg-Salam theory which unifies
weak and electromagnetic interactions. The twistor spates4 ) has a twisted Spin
structure, say, a Spifi  structure,

(4.35) €9° 1 Pspinee @ +1(Z) — Pso(u+1)(Z) X 7 Pso@) % Pay(Z)

with  Pspire (2 +1(Z) = (W*Pspm[ (@—1) X PSVpirT (2)(Z)) X mutt SPINf© (22 + 1): see [12§5].
This produces a spinor bundle

(4.36) S(Z) = Pspirpe (1 +1£Z) X A@ry ®r¢ Sg;j+1’ S%:_,_l: Son+1® H ® C.

Here ry is the standard complex representationSpf (1) given by left multiplica-
tion on H, ry : Sp(l) — (GLu(H) <—)GLc(C? = GLc(H). The connection
a? @ asoE@ay on the right side of (4.35) induces a covariant derivatw@?)4¢

on (4.36). We obtain thus a twisted signature operator

(4.37) A% =DPIR Y(Zo) = Y eqo (VAR 1+ 10 VIH)
on S°(Z)® S(Zy). Let us take a locally defined vector bundle
(4.38) H = Pspi (2—-1) Xy H

with §'(M) = Pspiv i—1) Xaery S @ H = S(M) ® H. (Notice thatS(M) was taken in
the proof of Theorem 4.1 and has been fixed.) Thén ® [, is globally defined and
we have

(4.39) NZ)@ m*H ®@ Iy = S1(Z)® S(Zo).
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Accordingly (4.37) is justA? twisted withm*H ® [, having covariant derivative
m™VH® 1+1® V. Here V! is a covariant derivative ofl induced fromago (). In
the following we want to investigate the limiting behavior of the redugedvariant
of its adiabatic versiomZ-4¢.

The locally defined vector bundleEM ® H andV ® [, have covariant derivatives
VMH = VMg 1+10 VM and VY = VWV ® 1+ 1® V. These induce covariant
derivativesVSM)-H SV).hv on the locally defined spinor bundl&M)2H, SV)21y.
Let us consider now twisted signature operators

AMH =3 ele (VM@ 1410 VW) = AV e H,
(4.40) ' '
AV =3 el (VYo 1+ 10 V) = AV0

acting onA(M)2T'(H) = I'(S(M)®RH)RT(S(Mo)), AV)RT (Iy) = T'(S(V)R1,)QT(S(V)).
Regarding these as operators actingro4(M)® I'(H)) @ A(V) ® T'(l,), we obtain a
similar expression as in (2.10),

(4.41) AZAe = M2 [ AMH 4 37 eV |+ AV = Ze(T) + ZHT).

Let us define a locally defined infinite dimensional hermitian vector budte’r =
HW @ H>™ over M by H(} = AX(V)@T(Ily)|7~*(x). Again following the com-
ment around (3.7), we will take its unitary superconnection

1

ly — V.l 1/2 4V,
(4.42) BY = VI 2400

(1)

Similarly to (3.10) and (3.11), we defingv{t) and v (¢). Since Endd>" is glob-
ally defined, these odd degree forms &h  are globally defined. We have now uniform
convergence as — 0

(4.43)  Tr(aZace— APy = o1\ /z / L(QY) A ch@™) A7V (1) + O(EY?(1 +1V))
M

for some N > 0 as in Lemma 3.1. HereQ" is the curvature 2-form of
VvH and ch@") is the (globally defined) Chern character form, i.e., @t =
trexp(y/—1Q" /2r). Denote byQso ) the curvature 2-form ofvso s and take its first
Pontryagin formp1(Qs0@3) = —c2(Qs03). Then it follows from [12, (4.9)] that we
have

1
(4.44) ch@") =2 COSh(éPl(QSO(a))l/ 2) .

We will next regardAY-" as a family of twisted signature operators along the
fibres and investigate its index bundle A8, The bundlel,, restricted to each fibre
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7~%(x) has a holomorphic line bundle structure induced from the structur€ Rf.
Let us denote the spaces of their holomorphic cross-sectionsoly, |7 ~1(x)), which
together form a (locally defined) vector bundtml(ly)).

Lemma 4.3. We haverankHol(l,,) = 2 and
IndAY» = (1 +7m,1) @ Hol(ly), IndAY™ =o.

Proof. Ly|r~%(x) is canonically isomorphic to the canonical tangent bundle (or
the holomorphic tangent bundlef’,, = TCP! = AM(TcCPY) and iy|r~(x) is
canonically isomorphic to the hyperplane bundfg,:. Moreover, the covariant deriva-
tive V/v restricted to the fibrer=%(x) can be identified with the covariant derivative
associated tals? through the isomorphism: see [13]. Accordingly let us take the co-
variant exterior differentialD and its formal adjointD* acting onT" A(CPY)® Hgp1)
and consider a twisted signature operator

(4.45) O +D*)4 : T(ANT(CPY® Hep) — T(AT(CPYH® Hepr).
From the above, it will suffice to investigate its kernel. We have decompositions

A*(CPY @ Hepr = (1 +7¢p11) © Hepr) ® (Kepr® Hepa),
(4.46) _
AT(CPY® Hepr = (1 — 7cpr1) ® Hepr) @ (Kepr® Hepa).

We want to show
(4.47) KerQ + D*)y = (L +71¢p1l) @ HOl(Hep1), Ker(D+D*)_ =0,

where Hol(H¢p1) is the space of holomorphic cross-sectionsHyfp:1. To show these
let us take canonical holomorphic local cross-section®f the universal bundled
over local coordinate neighborhood®( = {[zo,z1] | z¢ # O}, we(= z1/20 (¢ = 0), =
20/z1 (¢ = 1)), i.e., ue(we) = (wo, (L wo))(¢ = 0), (w1, (w1,1))(¢ = 1). An ele-
ment ¢ = ¢g + ¢1 of I'(A*(CP) ® Hep1) can be expressed oW(w ) 3(, w,) as
¢o = f(A+rcp)®u*, ¢1 = gdw@u*, whereu* = uj is the dual ofu,. Then it is eas-
ily shown thatg belongs to Kerp+D*). if and only if D"(f ®@u*) = D"(gdw @u*) =
D*(gdw ® u*) = 0. Here we use the usual decompositidns D’ + D" (D" = 9) and
D* =D™* +D"*. D"(f ® u*) = 0 means thatpy belongs to (1 +¢p1l) ® Hol(Hgp1),
and D"(gdw ® u*) = 0 means thatp; belongs to the spacé®(CPL, QY (Hgp1))
of holomorphic 1-forms with coefficients il/:p:. By the Kodaira vanishing theorem
the spaceH%(CP?*, QY(Hcp1)) = HYCPY, O(H{:p1)) equals{0}. Thus we obtain the
first equality in (4.47). Next, an elemert = ¢¢ + ¢1 of I'(A~(CP') ® Hgpi) can
be expressed onW(, w ) =W, wy) as ¢o = f(1 — 1cprl) @ u*, ¢1 = gdw Q u*.
Then ¢ belongs to KerD + D*)_ if and only if D'(f ® u*) = D(gdw ® u*) =
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D*(gdw @ u*) = 0. D'(f ® u*) = 0 means thatfr¢p:1l ® u* belongs to KeD” N
KerD" (2 HYCP, QY Hcp1)) = 0), andD(gdw @ u*) = D*(gdw ® u*) = 0 means
that ¢, belongs to KeD” N KerD"*(=~ HY(CP*, O(Hcp)) = HY(CPY, QYH 1)) =
HO(CP', O(3H},,)) = 0). Thus we get the second equality in (4.47). Finally, as is
well known ([9]), we have dinkHol(H¢p:) = 2. U

Now we take a locally defined hermitian infinite dimensional vector burigfle
over M defined bylj?,, = T(ly|x*(x)). This has a unitary connectiok’> de-
fined by @i}o’c& = (Vy) as in (3.5). Its orthogonal projection to the subbundle
Hol(ly) give's its connectioriVHv), whose curvature 2-form is denoted fgytolth),

H @ Hol(ly) is a globally defined vector bundle ovaf  with connectidH @ 1+ 1®
vHov) | Twisting AM with it we obtain a twisted signature operator

(4.48) AM @ H @ Hol(ly) = AMH @ Hol(ly).
Then we have

Theorem 4.4. The (adiabatig limit lim._o7(A%9) exists inR/Z and there is
an odd degree forni’v on M such that

(4.49) |im077(A§-q6)52" / L(QM) A ch@") A i
E— M

+n(AM ® H @ Hol(ly)) (mod Z),

(450) dﬁlv = 2/ i(QV) A eXp(}Cl(QV)) — ch (QHol(lv)).
zZ/M 2

Proof. SinceVV»((1 +my1J®¥) = (1 +my 1) ® V¥4, we have
(4.51) AM)@H @ IndAYY >~ A(M) @ H @ Hol(ly)
by deleting (1 +r,1) as in (3.16). Through it we hava™-H @ IndAYv = AMHg

Hol(ly). Thus, by considering the same formula as in (3.18) or (4.26), we obtain
(4.49) with

o dt
Ny — ~
(452) 7= [ POz

Next let us investigate str(exp(B'~)?)). The orthogonal projection oV to the
subbundle IndiY!v gives its covariant derivative, whose curvature 2-form is equal to
QHolv) Hence, [2, Corollary 9.22] implies

(4.53) lim str (e‘(Bf]V)z) = tr (exp(- Q")) = ch(2rv—1Q"M),

E— 0O
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On the other hand, since the curvature 2-formvdf equalsY /2, we can show

(4.54) |irgstr(e*<va>2):(7rﬁ)*1 ﬁ,(ZwﬂQV)Aexp(%cl(ZwﬂQV))

z/M

in the same way as in the proof of (3.27). Thus we get (4.50). ]
Fourth, we consider a bundle

(4.55) SZ)@ S(Zo) ¥ NZ)@m*"H@H)® Ly

and a twisted signature operator on it

(4.56) AL9¢1¢ = pZac e SI1°(Z0) = Zeao (szz)’qc® 1+1® Vesfzf’)"fc) .

We want to investigate the limiting behavior of the reduegthvariant of its adia-
batic versionAZ-7¢¢, H®H with VH®H can be decomposed into symmetric and anti-
symmetric parts

(4.57) HoH=SH®AH, VHeH =ySH g yrH

Let us consider the standard representatipn SO: «3)GLc(C%) = GLc(E) and
take a vector bundle ovev/

(458) E= P50(3) Xrg E
with covariant derivativeVE associated t@vsoz). Then canonically we have

SH=~E, V=vE,

(4.59)
AH = Cy, VM =4y,

Accordingly we have the decomposition
(4.60) AZc4c = AZEV ¢ AZY = (A2 m*E @ Ly) @ (AZ® Ly).

It suffices now to investigate their reduceenvariants respectively.

Similarly to Hol(/,)) we take a bundleHol(Ly,). This is obviously globally de-
fined and its rank equals 3. Further, similarly lgo(@l\ofo) we define (57, @L\afo), and,
in the same way as before, take a unitary covariant derivaiV@-») on Hol(L ),
whose curvature 2-form is denoted B*°v). Then we have

Theorem 4.5. The (adiabatig limits lim._o7(A%EY) and lim._o7n(A%Y) exist
in R/Z and there is an odd degree forij*v on M such that



(4.61) Iimoﬁ(Af'EV)

(4.62) Iimoﬁ(Af’V)
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2”/ L(QM) A ch@s0@) A 7Y
M

+7(AY® E) + n(AM® E® Hol(Ly)) (mod Z),

2”/ L") A7y + g(AM) + g(AM @ Hol(Ly))  (mod Z),
M

(4.63) di-v = 2 / (eY) Aexp(%cl(ﬂv)> — ch@"oltv)y — 1.
Z/M

Proof. Let us take a twisted signature operator

Y.Ly — " S(V).L SV)\ = 4V
(4.64) AVE =3 el (Ve 1+ 10 VEY) = aVa Ly

acting on A(V) ® T'(Ly) = I'(S(V) ® Ly) @ I'(S(V)) and investigate the index bundle
Ind AY:Lv. Similarly to Hol(Ly) we defineHol(L}, ® Ly). Then, in the same way as
in the proof of Lemma 4.3, we can show

IndAY"tv = ((1 +7y1) ® Hol(Ly)) @ Hol(L}, ® Ly) = Hol(Ly) @ Cy,

(4.65)

IndAY"tv = 0.

The covariant derivative on IndY""> induced fromVY:v is then equal tovHolt-v)g
dy. Thus, similarly to Theorem 4.4 we obtain the theorem. O

(1]
(2]
(3]
(4]
(5]
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(7]
(8]
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