

Title	Some notes on the general Galois theory of rings
Author(s)	DeMeyer, F. R.
Citation	Osaka Journal of Mathematics. 1965, 2(1), p. 117-127
Version Type	VoR
URL	https://doi.org/10.18910/10680
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

DeMeyer, F. R.
Osaka J. Math.
2 (1965), 117-127

SOME NOTES ON THE GENERAL GALOIS THEORY OF RINGS

F. R. DEMEYER

(Received January 25, 1965)

Introduction

In [2] M. Auslander and O. Goldman introduced the notion of a Galois extension of commutative rings. Further work by D. K. Harrison [9] indicates that the notion of a Galois extension will have significant applications in the general theory of rings. T. Kanzaki, in this journal, proved a "Fundamental Theorem of Galois Theory" for an outer Galois extension of a central separable algebra over a commutative ring. We generalize, complete, and give a new shorter proof of this result. The inspiration for the improvements in Kanzaki's result came from a paper by S. U. Chase, D. K. Harrison and A. Rosenberg [4].

This author in [6] began the study of 'Galois algebras'. These are not necessarily commutative Galois (in the sense of [2]) extensions of a commutative ring. Here we continue that study by extending some of the results in [4] and by proving a generalized normal basis type theorem in this setting. This paper forms a portion of the author's Doctoral Dissertation at the University of Oregon. The author is indebted to D. K. Harrison for his advice and encouragement.

Section 0

Throughout Λ will denote a K algebra, C will denote the center of Λ ($C = \mathfrak{Z}(\Lambda)$). G will denote a finite group represented as ring automorphisms of Λ and Γ the subring of all elements of Λ left invariant by all the automorphisms in G ($\Gamma = \Lambda^G$).

Let $\Delta(\Lambda : G)$ be the crossed product of Λ and G with trivial factor set. That is

$$\begin{aligned} \Delta(\Lambda : G) &= \sum_{\sigma \in G} \Lambda U_{\sigma} && \text{such that} \\ x_1 U_{\sigma} x_2 U_{\tau} &= x_1 \sigma(x_2) U_{\sigma\tau} && x_1, x_2 \in \Lambda; \sigma, \tau \in G. \end{aligned}$$

This work was done while the author held a National Science Foundation Cooperative Fellowship.

View Λ as a right Γ module and define

$$\begin{aligned} j : \Delta(\Lambda : G) &\rightarrow \text{Hom}_\Gamma(\Lambda, \Lambda) \quad \text{by} \\ j(aU_\sigma)x &= a\sigma(x) \quad a, x \in \Lambda; \sigma \in G. \end{aligned}$$

Theorem 1. *The following are equivalent:*

A. Λ is finitely generated projective as a right Γ module and $j : \Delta(\Lambda : G) \rightarrow \text{Hom}_\Gamma(\Lambda, \Lambda)$ is an isomorphism.

B. There exists $x_1, \dots, x_n; y_1, \dots, y_n \in \Lambda$ such that

$$\sum_i x_i \sigma(y_i) = \begin{cases} 1 & \sigma = e \\ 0 & \sigma \neq e \end{cases} \quad \text{for every } \sigma \in G.$$

Following Auslander and Goldman, Kanzaki called Λ a Galois extension of Γ in case *A* held. Condition *B* was discovered for commutative rings by S. U. Chase, D. K. Harrison and A. Rosenberg in [4]. We call Λ a Galois extension of Γ with group G if either *A* or *B* holds.

Our proof of theorem 1 parallels the proof given for theorem (1.3) of [4]. First we prove that *B* implies *A*.

Define $f_i \in \text{Hom}_\Gamma(\Lambda, \Gamma)$ by $f_i(x) = \sum_{\sigma \in G} \sigma(y_i x)$ $x \in \Lambda, \sigma \in G$. For any $x \in \Lambda$

$$\sum_{i=1}^n x_i f_i(x) = \sum_{i,\sigma} x_i \sigma(y_i) \sigma(x) = x.$$

Thus by the Dual Basis lemma, Λ is finitely generated and projective as a right Γ module.

Now we show $j : \Delta(\Lambda : G) \rightarrow \text{Hom}_\Gamma(\Lambda, \Lambda)$ is an isomorphism. Let U_τ be a Basis element in $\Delta(\Lambda : G)$. Then

$$\begin{aligned} \sum_{i=1}^n j(U_\tau)[x_i] \cdot (\sum_{\sigma} U_\sigma) y_i &= \sum_{i,\sigma} x_i \tau(y_i) \sigma(x_i) U_\sigma \\ &= \sum_{\sigma} \tau(\sum_i x_i \tau^{-1} \sigma(y_i)) U_\sigma = U_\tau. \end{aligned}$$

Hence by linearity, for all $U \in \Delta(\Lambda : G)$

$$U = \sum_{i=1}^n j(U)[x_i] \cdot (\sum_{\sigma} U_\sigma) y_i.$$

Thus if $j(U)[x] = 0$ for all $x \in \Lambda$, then $U = 0$ so j is a monomorphism.

To prove j is onto let $h \in \text{Hom}_\Gamma(\Lambda, \Lambda)$ and let

$$U = \sum_{i=1}^n \sum_{\sigma \in G} h(x_i) U_\sigma y_i, \quad U \in \Delta(\Lambda : G)$$

$$\begin{aligned} \text{for any } x \in \Lambda, \quad j(U)[x] &= \sum_{i=1}^n \sum_{\sigma \in G} h(x_i) \sigma(y_i x_i) \\ &= h(\sum_{i=1}^n \sum_{\sigma \in G} x_i \sigma(y_i x)) \quad (\sum_{\sigma} \sigma(y_i x) \in \Gamma) \\ &= h(\sum_{i=1}^n x_i f_i(x)) = h(x). \end{aligned}$$

Thus j is an isomorphism.

To prove the converse, we first show that

$$(*) \quad \text{Hom}_\Gamma(\Lambda, \Gamma) = j(t \cdot \Lambda) \quad \text{where } t = \sum_{\sigma \in G} U_\sigma.$$

Pick $a \in \Lambda$, $j(ta)[x] = \sum_{\sigma \in G} \sigma(ax) \in \Gamma$. So $j(ta) \in \text{Hom}_\Gamma(\Lambda, \Gamma)$. Suppose $f = j(y) \in \text{Hom}_\Gamma(\Lambda, \Gamma)$, $y \in \Delta(\Lambda : G)$. If $y = \sum_{\sigma} a_\sigma U_\sigma$, then for all $x \in \Lambda$, $\sum_{\sigma} a_\sigma \sigma(x) \in \Gamma$ so $\rho(\sum_{\sigma} a_\sigma \sigma(x)) = \sum_{\sigma} a_\sigma \sigma(x)$ for all $\rho \in G$. Thus $\sum_{\tau \in G} \rho(a_{\rho^{-1}\tau}) \tau(x) = \sum_{\tau \in G} a_\tau \tau(x)$, ($\tau = \rho\sigma$) but j is an isomorphism so $\rho(a_{\rho^{-1}\tau}) = a_\tau$ so $a_\sigma = \sigma(a)$, thus $y = \sum_{\sigma} \sigma(a) U_\sigma = \tau \cdot a_1$. This proves $(*)$.

Now we want to find $x_1 \cdots x_n$; $y_1 \cdots y_n \in \Lambda$ satisfying B . Let $x_1 \cdots x_n$, $f_1 \cdots f_n$ be given by the Dual Basis Lemma. By $(*)$ there exists $y_1 \cdots y_n \in \Lambda$ so that

$$f_i(x) = j(ty_i)x.$$

Let $U = \sum_{i=1}^n x_i t y_i \in \Delta(\Lambda : G)$. Then $j(U)[x] = \sum_{\sigma \in G} \sum_{i=1}^n x_i \sigma(y_i x) = \sum_{i=1}^n x_i f_i(x) = x$. j is an isomorphism so $U = \sum_{i=1}^n x_i t y_i = 1$. Thus $\sum_{i=1}^n x_i U_\sigma y_i = \begin{cases} 1 & \sigma = 1 \\ 0 & \sigma \neq 1 \end{cases}$ so since j is an isomorphism, $\sum_{i=1}^n x_i \sigma(y_i) = \begin{cases} 1 & \sigma = 1 \\ 0 & \sigma \neq 1 \end{cases}$ and this completes the proof.

Section I

In this section we prove a sharper version of Kanzaki's result. All notation is as it was in section 0.

Lemma 2. *Let Λ be separable over C , and assume G induces a group of automorphisms of C isomorphic to G and that C is a Galois extension of $C^G = K$. Then Λ is a Galois extension of $\Lambda^G = \Gamma$ and there exists a 1-1 correspondence between the K -separable subalgebras Ω of Λ containing Γ and the K -separable subalgebras A of C given by*

$$\begin{aligned} A &\rightarrow A \cdot \Gamma \\ \mathfrak{Z}(\Omega) &\leftarrow \Omega \end{aligned}$$

Proof. Λ is a Galois extension of Γ by B of theorem 1 and by the hypothesis that C is Galois over K .

By theorem (A.3) of [2], $K = \{\sum_{\sigma \in G} \sigma(x) \mid x \in C\}$ so

$$\begin{aligned} \Gamma &= K \cdot \Gamma \\ &= \{\sum_{\sigma} \sigma(x) \mid x \in C\} \cdot \Gamma \\ &= \{\sum_{\sigma} \sigma(xt) \mid x \in C, t \in \Gamma\} \subseteq \Gamma, \quad (\Lambda^G = \Gamma). \end{aligned}$$

Thus $\Gamma = \{\sum_{\sigma} \sigma(x) \mid x \in \Lambda\}$ and there exists $f \in \text{Hom}_\Gamma(\Lambda, \Gamma)$ ($f = \sum_{\sigma \in G} \sigma$) and there exists an $a \in \Lambda$ so that $f(a) = 1$. Thus Γ is a direct summand of Λ as a Λ - Γ module.

We now show Γ is separable over K by showing Γ is a projective

$\Gamma \otimes_K \Gamma^0$ module. $\Lambda \oplus \Lambda' \cong \Lambda \otimes_K \Lambda^0$ as $\Lambda \otimes_K \Lambda^0$ modules since Λ is separable over K . Since Γ is a direct summand of Λ and the hypothesis insure that Λ is projective over K (Λ is finitely generated projective over C and C is finitely generated projective over K) the sequence $0 \rightarrow \Gamma \otimes_K \Gamma^0 \rightarrow \Lambda \otimes_K \Lambda^0$ is exact. Thus $\Lambda \oplus \Lambda' \cong \Lambda \otimes_K \Lambda^0$ as $\Gamma \otimes_K \Gamma^0$ modules. By the symmetry of condition B of theorem 1, Λ is projective as both a left and right Γ module. (Λ is $\Gamma - \Gamma$ projective.) So $\Lambda \otimes_K \Lambda^0$ is projective as a $\Gamma \otimes_K \Gamma^0$ module. Hence Λ and thus Γ is projective over $\Gamma \otimes_K \Gamma^0$.

Now define a homomorphism $h: \Gamma \otimes_K C \rightarrow \Lambda$ by $h(t \otimes c) = t \cdot c$; $t \in \Gamma$, $c \in C$. Since C is Galois over K , by theorem (1.7) of [4] or a glance at B of theorem 1, one sees that $\Gamma \otimes_K C$ is Galois of Γ with the same group G . ($\sigma(t \otimes c) = t \otimes \sigma c$). By lemma (1) of [6] or by a computation using B of theorem 1, h is an isomorphism.

Thus the center of Γ (denoted $\mathfrak{Z}(\Gamma)$) is K , for if $x \in \mathfrak{Z}(\Gamma)$ then $x \in \mathfrak{Z}(\Lambda)$, ($\Lambda = h(\Gamma \otimes_K C)$) so $x \in C$. But $x \in \Gamma$ implies $x \in C^G$ so $x \in K$.

Now we prove the 1-1 correspondence of the lemma. Let Ω be a K -separable subalgebra of Δ containing Γ . Let A be a K -separable subalgebra of C . Define

$$\begin{aligned} \psi: \Omega &\rightarrow \mathfrak{Z}(\Omega) \\ (\gamma: A &\rightarrow h(\Gamma \otimes_K C)) \quad \text{(notice } \Gamma \otimes_K A \subseteq \Gamma \otimes_K C) \end{aligned}$$

If $x \in \mathfrak{Z}(\Omega)$ then x belongs to centralizer in Λ of Γ so $x \in \mathfrak{Z}(\Lambda)$ and $\mathfrak{Z}(\Omega) \subseteq C$. $\mathfrak{Z}(\Omega)$ is separable over K by theorem (3.3) of [2] thus ψ is well defined.

Since Γ is a central separable K -algebra, $A \otimes_K \Gamma$ is a central separable A algebra (theorem (1.6) of [2]) thus $h(A \otimes_K \Gamma)$ is a separable K -algebra, central over A and containing Γ . Thus γ is well defined and $\psi \gamma(A) = A$ for all K -separable subalgebras A of C .

Now $\gamma \psi(\Omega) = h(\mathfrak{Z}(\Omega) \otimes_K \Gamma) \subseteq$ and $\gamma \psi(\Omega)$ is a central separable over $\mathfrak{Z}(\Omega)$. If $\Omega \neq \gamma \psi(\Omega)$ then by theorems 3.3 and 3.5 of [2] there exist a central separable $\mathfrak{Z}(\Omega)$ algebra Ω' such that

$$\Omega \simeq \gamma \psi(\Omega) \otimes_{\mathfrak{Z}(\Omega)} \Omega' \quad \text{and}$$

thus Ω' is contained in the centralizer in Λ of Γ . But then $\Omega' \leq C$. Thus $\Omega' = \mathfrak{Z}(\Omega)$ and $\gamma \psi(\Omega) = \Omega$. This proves the lemma.

Here is the generalization of Kanzaki's result:

Theorem 3. *With the notation and hypotheses of lemma 2, assume C has no idempotents except 0 and 1. Then there is a one-one correspondence between the K -separable subalgebras of Λ containing Γ and the subgroups H of G .*

If Ω is a K -separable subalgebra of Λ containing Γ then there exists a subgroup H of G so that $\Omega = \Lambda^H$.

Moreover for all subgroups H of G , Λ is Galois over Λ^H and if H is a normal subgroup of G then Λ^H is Galois over Γ with group G/H .

Proof. By theorem (2.3) of [4] there is a one-one correspondence between the K -separable subalgebras of C and the subgroups of G given by $H \leftrightarrow C^H$. By lemma 2 there is a one-one correspondence between the K -separable subalgebras of C and the K -separable subalgebras of Λ containing Γ by

$$A \rightarrow h(\Gamma \otimes_K A),$$

Combining these two facts, we have the one-one correspondence, thus every K -separable subalgebra Ω of Λ containing Γ is of the form Λ^H for some subgroup H of G .

If H is a subgroup of G then by theorem (2.2) of [4] C is a Galois extension of C^H with group H . The same elements which satisfy B of theorem 1 for C over C^H satisfy B of theorem 1 for Λ over Λ^H . The same theorem in [4] and the same reasoning apply when H is a normal subgroup of G . This completes the proof.

Section II

Now we expand our point of view. Let Λ be a faithful K -algebra and G a finite group represented as ring automorphisms of Λ so that $\Lambda^G = K$. Then all the elements in G are K -algebra automorphisms of Λ . As before, Λ is Galois over K or a Galois K -algebra in case either A or B of theorem 1 hold. In [6] the author showed :

Lemma 4. *Assume Λ is a Galois K -algebra with group G . If $C = \text{Center of } \Lambda$ contains no idempotents except 0 and 1 then $C = \Lambda^H$ where $H = \{\sigma \in G \mid \sigma(x) = x \text{ for all } x \in C\}$ and H is a normal subgroup of G so that C is a Galois extension of K with group G/H .*

Proof. See theorem (1) of [6].

We now prove a lemma which allows us to extend the range of application of Lemma 4.

Lemma 5. *If K contains no idempotents except 0 and 1 and Λ is a Galois K -algebra then*

$$\Lambda = \Lambda e_1 \oplus \cdots \oplus \Lambda e_n \quad (e_i \text{ minimal central idempotents})$$

and Λe_i is a Galois extension of K with group $J_i = \{\sigma \in G \mid \sigma(e_i) = e_i\}$. Moreover $\mathcal{B}(\Lambda e_i) = C e_i = \Lambda e_i^{H_i}$ where H_i is a normal subgroup of J_i .

Proof. C is finitely generated projective and separable over K since Λ is finitely generated projective and separable over K . By theorem (7) of [8] since K has no idempotents but 0 and 1

$$C = \bigoplus \Sigma C e_i \quad e_i \text{ minimal idempotents in } C.$$

$$\text{thus} \quad \Lambda = \bigoplus \Sigma \Lambda e_i \quad e_i \text{ minimal central idempotents in } \Lambda.$$

Let $J_i = \{\sigma \in G \mid \sigma(e_i) = e_i\}$. By the minimality of e_i , $\sigma(e_i) \cdot e_i = \begin{cases} 0 & \sigma \notin J_i \\ e_i & \sigma \in J_i \end{cases}$ so by theorem (7) of [8] Λe_i is a Galois extension of K with group J_i . $C e_i = \mathcal{Z}(\Lambda e_i)$. Let $H_i = \{\sigma \in J_i \mid \sigma(x) = x \text{ for all } x \in C e_i\}$. Then by Lemma 3 H_i is a normal subgroup of J_i and $\Lambda e_i^{H_i} = C e_i$. This completes the proof.

We note that if K has no idempotents except 0 and 1 this lemma reduces the study of Galois K -algebras to those already considered in Section 1 and to the study of central Galois algebras, i.e., Galois algebras Λ over K with group G so that $\mathcal{Z}(\Lambda) = K$. We now give the structure of a broad class of central Galois algebras.

The class group “ $P(K)$ ” of a commutative ring K was defined by A. Rosenberg and D. Zelinsky in [11] and they showed

1. If Λ is a central separable K -algebra and σ is an algebra automorphism of Λ of finite order n such that no element in $P(K)$ has order dividing n then σ is an inner automorphism of Λ , i.e., there exists a $U_\sigma \in \Lambda$ such that $\sigma(x) = U_\sigma x U_\sigma^{-1}$ for all $x \in \Lambda$.

2. If K is a field, Principal Ideal Domain or local ring, then $P(K) = 0$.

If Λ is a central Galois K -algebra, then Λ is separable over K , theorem (1) of [6]. Assume the elements of the Galois group G are inner on Λ . Then for each $\sigma \in G$ there is a $U_\sigma \in \Lambda$ so that $\sigma(x) = U_\sigma x U_\sigma^{-1}$ for all $x \in \Lambda$. Pick a U_σ for each $\sigma \in G$ and define $a(\cdot, \cdot)$ mapping $G \times G$ to $U(K) = \text{Units of } K$ by

$$a(\sigma, \tau) = U_\sigma U_\tau U_{\sigma, \tau}^{-1}$$

From the associative law in Λ ,

$$a(\sigma\tau, \rho)a(\sigma, \tau) = a(\sigma, \tau\rho)a(\tau, \rho)$$

for all $\sigma, \tau, \rho \in G$. Thus $a(\cdot, \cdot)$ is a 2-cocycle of G ($a(\cdot, \cdot) \in Z^2(G, U(K))$).

A twisted group algebra KG_a is a free K module with basis $\{U_\sigma\}_{\sigma \in G}$ and multiplication given by $U_\sigma U_\tau = U_{\sigma\tau} a(\sigma, \tau)$, $a(\cdot, \cdot) \in Z^2(G, U(K))$.

Theorem 6. *If Λ is a central Galois extension of K with group G , and if G is represented by inner automorphisms on Λ then*

$$\Lambda = KG_a, \quad a(\cdot, \cdot) \in Z^2(G, U(K)).$$

Proof. This is theorem 2 of [6].

This result gives a very clear picture of the central Galois algebras over K with Abelian group G if no element in $P(K)$ has order dividing that of an element in G .

Let Λ be a central Galois extension of K with Abelian group G , and assume all the automorphisms in G are inner on Λ . Then $\Lambda = KG_a = \bigoplus \Sigma KU_\sigma$ with $U_\sigma U_\tau = U_{\sigma\tau} a(\sigma, \tau)$, $a \in Z^2(G, U(K))$. If $\tau \in G$ then $\tau(U_\sigma) = U_\tau U_\sigma U_\tau^{-1} = U_\sigma a(\tau, \sigma)/a(\sigma, \tau)$. Let $\eta: G \times G \rightarrow U(K)$ be defined by $\eta(\sigma, \tau) = a(\sigma, \tau)/a(\tau, \sigma)$. One checks easily that

$$\begin{aligned} \eta \in \text{skew}(G \otimes G, U(K)) = \\ \{\gamma \in \text{Hom}(G \otimes G, U(K)) \mid \gamma(\sigma, \sigma) = 1 \\ \text{for all } \sigma \in G\}. \end{aligned}$$

Moreover since $\Lambda^G = K$, $\eta(\sigma, G) = 1$ implies $\sigma = e$. That is η is a non-singular skew inner product on G .

In [6] a classification of central Galois extensions with Abelian groups was obtained employing this information. Here we extend one of the basic results in [6] and obtain some additional information about Galois extensions with Abelian groups. We notice at once

Corollary 7. *If Λ is a central Galois extension of K with Abelian group G , and if all the automorphisms of G are inner on Λ , then there exists a primitive n^{th} root of 1 in K where n is the exponent of G .*

Proof. $\text{Hom}_{\text{skew}}(G \otimes G, U(K)) \neq 0$.

If G is an Abelian group and $G = H_1 \oplus \cdots \oplus H_n$ is its decomposition into sylow p -subgroups let

$$H_i^\perp = H_1 \oplus \cdots \oplus H_{i-1} \oplus H_{i+1} \cdots \oplus H_n.$$

In [6] we showed

Theorem 8. *If Λ is a central Galois extension of K with Abelian group G and all the automorphisms of G are inner on Λ then $\Lambda = \Lambda_1 \otimes_K \Lambda_2 \otimes_K \cdots \otimes_K \Lambda_n$ where Λ_i is a central Galois extension of K with group H_i and $\Lambda_i = \Lambda^{H_i^\perp}$.*

By means of the next lemma we will remove the restriction in theorem 8 that all the automorphisms in G be inner on Λ .

Lemma 9. *Let S be a central separable algebra over a commutative ring K . Let S_i ($i = 1, 2$) be separable subalgebras, finitely generated and projective over K . Assume that for every prime ideal ϕ of K*

$$\begin{aligned}
 (K_\phi \otimes_K S_1) \otimes_{K_\phi} (K_\phi \otimes_K S_2) &\simeq K_\phi \otimes_K S \quad \text{by} \\
 \psi_\phi(s_{1\phi} \otimes s_{2\phi}) &= s_{1\phi} s_{2\phi} \quad \text{then} \\
 S &\simeq S_1 \otimes_K S_2 \quad \text{by} \quad \phi(s_1 \otimes s_2) = s_1 s_2.
 \end{aligned}$$

Proof. By theorem 3.5 of (2) and the fact that the S_i are finitely generated and projective, the $K_\phi \otimes_K S_i$ are central separable subalgebras of $K_\phi \otimes_K S$, and the centralizer of $K_\phi \otimes S_i$ in $K_\phi \otimes S$ is $K_\phi \otimes S_j$ ($i \neq j$). The exact sequence

$$\begin{aligned}
 0 \rightarrow K \rightarrow \mathfrak{Z}(S_i) \rightarrow \mathfrak{Z}(S_i)/K \rightarrow 0 &\quad \text{gives} \\
 0 \rightarrow K_\phi \rightarrow K_\phi \otimes_K \mathfrak{Z}(S_i) \rightarrow K_\phi \otimes_K \mathfrak{Z}(S_i)/K \rightarrow 0
 \end{aligned}$$

$\mathfrak{Z}(S_i)$ is finitely generated over K since S_i is finitely generated projective and separable over K so since $K_\phi \otimes \mathfrak{Z}(S_i)/K = 0$ for all prime ideals ϕ of K , $\mathfrak{Z}(S_i) = K$.

By theorem 3.3 of (2), $S \simeq S \otimes_K S^{S_1}$, $(S^{S_1} =$

$$\{x \in S \mid ax = xa \text{ for all } a \in S\},$$

via the map $\psi(s \otimes t) = st$.

Let $x \in S^{S_1}$, then as above for every prime ideal ϕ of K we obtain the exact sequence

$$0 \rightarrow K_\phi \otimes_K Kx \rightarrow K_\phi \otimes_K (Kx + S_2) \rightarrow K_\phi \otimes_K (Kx + S_2)/S_2 \rightarrow 0$$

and by theorem 3.5 of (2) together with the hypotheses, $K_\phi \otimes (x + S_2)/S_2 = 0$; thus $x \in S_2$.

Dually $S_2 \subseteq S^{S_1}$. Again by theorems 3.5 and 3.3 of (2) $S \simeq S \otimes_K S_2$ by $\psi(S_1 \times S_2) = S_1 S_2$.

Theorem 10. *If Λ is a central Galois extension of K with Abelian group G then $\Lambda = \Lambda_1 \otimes_K \cdots \otimes_K \Lambda_n$ where Λ_i is a central Galois extension of K with group H_i and $\Lambda_i = \Lambda^{H_i^\perp}$ (the H_i as before are the sylow p -components of G).*

Proof. Let ϕ be any prime ideal of K , then $K_\phi \otimes_K \Lambda$ is a central Galois extension of K_ϕ with group G . Since K_ϕ is local, all automorphisms of G are inner on $K_\phi \otimes_K \Lambda$, thus $K_\phi \otimes_K \Lambda \simeq (K_\phi \otimes_K \Lambda)^{H_1} \otimes_K \phi(K_\phi \otimes_K \Lambda)^{H_1}$ via $\psi_\phi(s_\phi \otimes s_{2\phi}) = s_1 \phi s_2 \phi$. Thus the hypothesis of lemma 9 are satisfied and $\Lambda \simeq \Lambda^{H_1} \otimes_K \Lambda^{H_1^\perp}$. By induction on the number of sylow p -components of G , the theorem follows.

We now obtain the following amusing result first observed in the situation where K is a field by D. K. Harrison.

Theorem 11. *Let Λ be a (non necessarily central) Galois extension*

of the commutative ring K with cyclic group G . Then Λ is commutative.

Proof. First observe that if for every prime ideal ϕ of K , $K_\phi \otimes_K \Lambda$ is commutative, then Λ is commutative. A quick way of seeing this is observing that the K submodule $E = \{xy - yx \mid x, y \in \Lambda\}$ of Λ is finitely generated over K . Since $K_\phi \otimes_K E = 0$ for each prime ideal ϕ , $E = 0$ and Λ is commutative.

We may thus assume K is local. By lemma 5, $\Lambda = \Lambda e_1 \oplus \cdots \oplus \Lambda e_n$, e_i minimal central idempotents in Λ and each Λe_i is a Galois extension of K with group J_i , J_i a subgroup of G and thus also cyclic.

Continuing to apply the results of lemma 5, there exists a normal subgroup H_i of J_i so that

$$\mathfrak{B}(\Lambda) e_i = \mathfrak{B}(\Lambda e_i) = \Lambda e_i^{H_i} \quad (H_i \text{ cyclic.})$$

Now Λe_i is a central Galois extension of $\mathfrak{B}(\Lambda e_i)$ with group H_i . Let μ be a maximal ideal in $\mathfrak{B}(\Lambda e_i)$, then $\mathfrak{B}(\Lambda e_i)/\mu$ is a field and by theorem (2) of [6], $\mathfrak{B}(\Lambda e_i)/\mu \otimes_{\mathfrak{B}(\Lambda e_i)} \Lambda e_i$ is a Galois extension of $\mathfrak{B}(\Lambda e_i)/\mu$ with cyclic group H_i . By Harrison's result for fields, or by theorem 2 plus the fact that if H_i is cyclic, then $\text{Hom}_{\text{skew}}(H_i, U(K)) = \emptyset$ we must have $H_i = \{e\}$ so $\Lambda e_i = \mathfrak{B}(\Lambda e_i)$ and Λ is commutative.

Section III

In this section we deal exclusively with central Galois extensions Λ of a commutative ring K whose group G is Abelian, and such that all the automorphisms in G are inner on Λ . The principal purpose of the section is to prove the Normal Basis Theorem in this setting.

Proposition 12. *Let Λ , K , G be as above. Then $\Lambda = KG_a$ $a(\cdot, \cdot) \in Z^2(G, U(K))$ and $KG_a = \{\Sigma_\sigma \alpha_\sigma U_\sigma \mid \alpha_\sigma \in K\}$. Then set $\{U_\sigma^{-1}/[G : 1], U_\sigma\}$ satisfy "B" of theorem 1.*

Proof. By lemma (1) of [6] together with theorem 6, $\varepsilon = \Sigma_\sigma U_\sigma^{-1}/[G : 1] \otimes U_\sigma^0$ is an idempotent in $\Lambda \otimes_K \Lambda^0$ such that $(1 \otimes x^0 - x^0 \otimes 1)\varepsilon = 0$ for all $x \in \Lambda$.

Since Λ is a Galois extension of K , $\Lambda \otimes_K \Lambda^0 \simeq \bigoplus \Sigma_\sigma \Lambda V_\sigma$ as K modules under $l(s \otimes t) = \Sigma_\sigma s\sigma(t) V_\sigma$ (theorem (1.3) of [4]).

$$l(\varepsilon) = \Sigma_\tau \Sigma_\sigma \eta(\tau, \sigma) V_\tau \quad \text{where } \tau(V_\sigma) = U_\sigma a(\sigma, \tau),$$

$\eta \in \text{Hom}_{\text{skew}}(G \otimes G, U(K))$ since $(1 \otimes x - x \otimes 1)\varepsilon = 0$. We have for all $x \in \Lambda$ and $\tau \in G$.

$$(*) \quad x \Sigma_\sigma \cdot \eta(\sigma, \tau) = \Sigma_\sigma \eta(\sigma, \tau) \tau(x)$$

thus $(x - \tau(x))\Sigma_{\sigma} \eta(\sigma, \tau) = 0$, for all $x \in \Lambda$. Since $\Delta(\Lambda : G) \simeq \text{Hom}_K(\Lambda, \Lambda)$ by theorem 1, A;

$$[\Sigma_{\sigma} \eta(\sigma, \tau) \cdot 1 - \Sigma_{\sigma} \eta(\sigma, \tau) \cdot \tau]x = 0 \quad \text{for all } x,$$

$$\text{so } \Sigma_{\sigma} \eta(\sigma, \tau) = \begin{cases} [G : 1] & \tau = 1 \\ 0 & \tau \neq 1 \end{cases} \quad \text{which proves the}$$

proposition.

Using the same argument as above, one can show in the case where G is an arbitrary finite group that $\{U_{\sigma}^{-1}/[G : 1], U_{\sigma}\}$ forms a set satisfying B of theorem 1 if and only if

$$\Sigma_{\sigma \in G} \sigma(U_{\tau}) = \begin{cases} [G : 1] & \tau = e \\ 0 & \tau \neq e \end{cases} \quad \text{for all } \tau \in G.$$

Finally we have the normal basis theorem in this setting.

Theorem 13. *With the same hypothesis as in Proposition 12, there exists an $x \in \Lambda$ such that $\{\sigma(x) | \sigma \in G\}$ are a set of free generators of Λ as a K module.*

Proof. $\Lambda = KG_a = \bigoplus \Sigma KU_{\sigma}$ with the $U_{\sigma}U_{\tau} = U_{\sigma\tau}a(\sigma, \tau)$ and $a(\cdot, \cdot) \in Z^2(G, U(K))$, and $\eta(\sigma, \tau) = a(\sigma, \tau)/a(\tau, \sigma)$. Let $x = \Sigma_{\sigma \in G} U_{\sigma}$.

1. $\{\sigma(x)\}_{\sigma \in G}$ generates Λ . Since for each $\tau \in G$, $\tau(x) = \Sigma_{\sigma \in G} \eta(\sigma, \tau)U_{\sigma}$ it will suffice to show that for all $\tau \in G$ there is $\alpha_{\tau} \in K$ and $\tau \in G$ so that

$$\Sigma_{\tau \in G} \alpha_{\tau} \eta(\gamma, \tau) = \begin{cases} 1 & \text{if } \gamma = \sigma \\ 0 & \text{if } \gamma \neq \sigma \end{cases}$$

By Proposition 12, $\Sigma_{\tau} \eta(\gamma, \tau) = \begin{cases} 1 & \gamma = 1 \\ 0 & \gamma \neq 1 \end{cases}$ for all $\gamma \in G$. Thus

$$\Sigma_{\tau \in G} \eta(\sigma^{-1}, \tau) \eta(\gamma, \tau) = \Sigma_{\tau \in G} \eta(\sigma^{-1}\gamma, \tau) = \begin{cases} [G : 1] & \text{if } \gamma = \sigma \\ 0 & \text{if } \gamma \neq \sigma \end{cases}$$

so we just let $\alpha_{\tau} = \eta(\sigma^{-1}, \tau)/[G : 1]$.

2. $\{\sigma(x)\}_{\sigma \in G}$ are linearly independent. Assume $\Sigma_{\tau \in G} \alpha_{\tau} \tau(x) = 0$. Then $\Sigma_{\sigma \in G} \Sigma_{\tau \in G} \alpha_{\tau} \eta(\sigma, \tau)U_{\sigma} = 0$ so $\Sigma_{\tau} \alpha_{\tau} \eta(\sigma, \tau) = 0$ for all σ . By the non-singularity of η , the characters $\eta(\cdot, \tau)$ are linearly independent over K . Thus $\alpha_{\tau} = 0$ for all τ . This proves the theorem.

Employing theorem (4.2) of [4] together with this result, one may obtain several generalized normal basis type theorems.

Bibliography

- [1] E. Artin, *Geometric Algebra*, Interscience Tracts in Pure and Applied Mathematics, Vol. 3, Interscience Publishers, Inc., 1957.
- [2] M. Auslander and O. Goldman, *The Brauer group of a commutative ring*, Trans. Amer. Math. Soc. **97** (1960), 367–409.
- [3] H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton, Princeton University Press, 1956.
- [4] S. U. Chase, D. K. Harrison, A. Rosenberg, *Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc. No. 52, (1965).
- [5] C. W. Curtis and Irving Reiner, *Representation Theory of Finite Groups and Associative Algebras*, Interscience Publishers, 1962.
- [6] F. R. DeMeyer, *Galois theory in algebras over commutative rings*, Illinois J. Math. (to appear)
- [7] D. K. Harrison, *Abelian extensions of arbitrary fields*, Trans. Amer. Math. Soc. **106** (1963), 230–235.
- [8] D. K. Harrison, *Abelian extensions of commutative rings*, Trans. Amer. Math. Soc. (1965).
- [9] D. K. Harrison, *Finite and infinite primes for rings and fields*, Trans. Amer. Math. Soc. (1965).
- [10] T. Kanzaki, *On commutor rings and Galois theory of separable algebras*, Osaka J. Math. **1** (1964), 103–115.
- [11] A. Rosenberg and D. Zelinsky, *Automorphisms of separable algebras*, Pacific J. Math. **11** (1957), 1109–1118.
- [12] S. Williamson, *Crossed products and hereditary orders*, Nagoya Math. J. **23** (1963), 103–120.

