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The two most important examples of axiomatic potential theory are the
harmonic space (R", #¥) of the solutions of the Laplace equation on open sub-
sets of R” and the space (R"*!, H¥) of solutions of the heat equation on open
subsets of R"*'. The sheaves of solutions of these two partial differential equa-
tions—and of a large class of other elliptic and parabolic differential equations—
behave similarly in many respects, which led to the development of a common
theory—the theory of harmonic spaces. In this paper we want to focus on two
properties with respect to which the Laplace operator A and the heat operator

Q=A—-9_differ:
ot

1) The Laplace operator A satisfies the bounded energy principle

® ]G5 u(@dv) uiy)=0

for every signed measure p such that the potential

xwgamwmmn

is bounded, where G, denotes the Newtonian kernel; on the ccntiary the heat
operator Q and its kernel Gy do not satisfy (E).

2) The Laplace operator A is a fine local operator, in contrast with Q which
is not (for the definition of fine local operators and the proof of this statement
see §1). It turns out that it is Axiom (D), introduced in axiomatic potential
theory by M. Brelot, which is responsible for the “fine local” property as well
as for the bounded energy principle. The purpose of this paper is to formulate
and prove this statement within the framework of the theory of harmonic spaces
in the sense of [2] or [5].

In the theory of harmonic spaces the starting-point is a sheaf of functions—
called harmonic or hyperharmonic functions—without the intervention of a de-
fining operator. In some situations however it is useful or even necessary to
have such a defining operator at one’s disposal—a substitute for the differential
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operators on R". This led F.-Y. Maeda to introduce the concept of measure
representations into the theory of harmonic spaces (see [11] and the bibliography
cited there).

By definition a measure representation of a harmonic space (X, 4*) is a sheaf
homomorphism o=(oy) of the sheaf R=(R(U)) of local differences of con-
tinuous superharmonic functions into the sheaf H=(M(U)) of signed Radon
measures determining completely the harmonic structure:

oy(f)=0«f is superharmonic (feR(U), U open).

Especiolly the kernel of o consists exactly of the harmonic functions.
In [19] it was shown that every harmonic space (X, #*) with a countable base
admits a measure representation. We recall the construction of o for the case
that (X, H*) is even a P-or strong harmonic space:

Let z be a (positive) Radon measure on X such that

0<Spd/7<oo

for every pe Py(X), the cone of continuous potentials having compact support,
»=+0, and let g be a strictly positive locally bounded Borel measurable function.
Then 7 and g determine o as follows: Let f&e R(U), U open, and let V" open
and relatively compact, ¥ CU. By definition of R and the extension theorem
there exist #, v € Py(X) such that

f=u—vonV.

For every (. (X) with Supp(p)CV we set

o(f) (9): = | (2p) © u—(20) © 0) dp

(where © denotes the specific multiplication). Then o(f)=ay(f) is a well-
defined signed measure on U and

o: fra(f)

is a measure representation for X.

It is possible and reasonable to allow for 7 not only Radon measures but also
strictly positive H-integrals (see [4]), i.e. additive, positive-homogeneous, increas-
ing functionals

7: Sy(X)— R,

defined on the cone S, (X) of all positive superharmonic functions on X, which
are continuous in order from below on §(X) and finite and strictly positive on
Py(X)\{0}. For f=p—p’, p,p'€S+(X), we use the symbols
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[£dm and w(r): = mo)—mr')

interchangeably, provided that z(p’)<<co.

At the Oberwolfach meeting on potential theory in 1984 I. Netuka sug-
gested to characterize certain special properties of harmonic spaces by suitable
additional properties of measure representations. In the first two sections of
this paper relations between Axiom (D), the fine local property of o and the
bounded energy principle are discussed. Finally in §3 it is shown that Doob’s
convergence axiom implies strong continuity properties of o. In particular
the following result is proved for a harmonic space having a Green function
G: If p,=G" is a sequence of potentials converging pointwise outside a semi-
polar set to a potential p=G"*, then the corresponding sequence of measures (x,)
converges vaguely to w (A similar result has been proved by R.-M. Hervé for
Brelot spaces).

The notations used are those of Constantinescu-Cornea’s book [5]. Es-
pecially S.(U) and P(U) denote the cones of positive superharmonic functions
and potentials on the open set U respectively. In contrast with [5] however we
denote by L(U), Lo(U), Py(U), Pu(U) respectively the subcones of all con-
tinuous, continuous with compact support, bounded, respectively of all potentials
with compact support. X will always stand for a locally compact space with a
countable base of its topology; C(X), R(X) denote the spaces of all continuous,
respectively continuous with compact support functions f on X.

1. Axiom (D) and the fine local property

Let (X, A*) be a P-harmonic space such that 1€ H¥(X). Let @ be a
Radon measure on X such that

0< S pdE<oco for every peEPy(X)\{0},

(or, more generally, a strictly positive H-integral) and g: X—R a locally bounded
strictly positive Borel function. To every bounded potential p on X a Radon
measure o(p) is assigned as follows:

o(0)(9): = | (¢9) Opdm, peRu(X).

The aim of this section is to characterize Axiom (D) via a fine local property
of o.

DErFINITION. o is called a fine local operator iff the following condition
holds: For any two potentials p, p’' € P,(X) which coincide on a finely open set
V the representation measures o(p) and o(p’) coincide on V.
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A typical example, where o is not a fine local operator, is the following

ExampLE. Let X=]—1,1[,  the Lebesgue measure on X and g=1.
For every open interval UCX let J{(U) denote the vector space of all continu-
ous functions f: U—R such that

1) fis locally affine on U\ {0}

2) fis constant on UN]—1, 1], provided that 0 U
([5], Exercise 3.1.7). 'Then X is a harmonic space.

The potential p:=1y,(x) (1—x) coincides on the finely open set ]—1, 0 with
0, but the restriction of the measure

a(p)=1/2 &
to ]—1, 0] is not the zero measure.

The main result of this section is the following theorem:

Theorem. o is a fine local operator iff Axiom (D) is satisfied.

The proof is divided into several lemmas. First of all the same argument
as used in the example shows that X cannot have non-trivial absorbent sets
provided that o is a fine local operator. More generally in that case it will be
shown that X is an elliptic space.

Lemma 1. Let U be an open subset of X, A a non-trivial absorbent set of
the harmonic space (U, H}y) and let V be an open, non-empty and relatively com-
pact subset of 0ANU. Then there exists a bounded potential p& P(U) with
compact non-empty support S(p) contained in V and vanishing on A.

Proof. Let f be continuous on 9(U\4), strictly positive on V" and vanish-
ing outside V. Since 4 is an absorbent set the function

,._{0 on A
pi= HM on U\A4

is superharmonic on U. The points of 34N U are regular boundary points of
U\A4, hence p’ is harmonic in small neighbourhoods of points x4 N U\V.
Let p be the potential part of p'S(U). By construction p is bounded, ¢+
S(p)CV and p vanishes on 4.

Lemma 2. Let U, A,V asin Lemma 1. Then there exists a bounded pot-
ential pE P(X) such that $=£S(P)CV and ﬁ=1@§” on A.

Proof. Let p be the potential defined in Lemma 1. According to an ex-
tension theorem of R.-M. Hervé ([9], Théoréme 13.2, [8]) there exists p= P(X)
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such that p— I%C”——p on U and S(p)=S(p). Since p is bounded on a neigh-
bourhood of S( p) it is bounded on X; p=0 on 4 implies p= I@CU on 4.

Corollary. If o is a fine local operator, then (X, H*) is elliptic.

Proof. Assume that (X, 4*) is not elliptic. Then there exist an open
subset UC X and an absorbent set ACU, A+¢, A+U. By Lemma 2 there is
a bounded potential  on X such that S($) is compact, non-empty and contained
in 94N U, and such that § and I% €Y coincide on the finely open set 4. Hence
the fine local property implies

o(Ba=o(RE)4=0,

since }QEU is harmonic on U.

But then o(p) is the zero measure, since p is harmonic outside a compact subset
of A. 'This implies f® p=0 for every continuous function f, hence the har-
monicity of p. 'This is a contradiction.

Lemma 3. If o is a fine local operator, then (X, H*) satisfies Axiom (D).

Proof. Since 1€ 4¥(X) it suffices to prove R;®=p for every bounded
(and not just locally bounded) potential p. Let p be a bounded potential and let
uE H¥(X), u=p on S(p). For every £>0 set p,:=inf(p, u-+&), hence p,=p in
a fine neighbourhood V, of S(p). By assumption this implies

a(Phve = o(Peive -

Since p=15» © p and p,< p we have (recall that g is the Borel function appear-
ing in the definition of o)

S L *lsp do(pe) = S ((g'L 1sp) O pe) dE<
g g

I

SS 1sp © pe d/_’-"l“j 1onsy ©pedm = SP: dﬁﬁypdﬁ
= S 1s(;o) QPdF = S é'ls(p) dO'(P) = S %‘ls(p) d"(Pe) )

hence S Lnstp © ped = 0, ie. S(p)CS(P) .

The next Lemma will show that the set 4:= {x& X: p(x)=p,(x)} is an absorbent
set of X. The Corollary then implies A=X, which finishes the proof of Lem-
ma 3.

Lemma 4. The set A:={x&X: p(x)=pe(x)} is an absorbent set.

Proof. By [3] A must be shown to be closed and finely open. Since
p=p. on S(p) we have
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X\4 = {x€X: po(x) <p(x)} N(X\S(p)) -

On X\S(p) both p and p, are harmonic, hence A4 is closed. In order to show
that 4 is finely open let x€4. If x&S(p), then x€V,CA4. If x&S(p), then
x lies in one of the (open) components G of X\S(p). On G the function p—p,
is >0, harmonic and vanishes at x. According to the ellipticity of X we have
p—p«=0 on G, hence x&€GCA.

The Lemmas 1-4 show that the fine local property of o implies Axiom (D).
The proof of the converse implication relies on a decomposition lemma proved
by A. Cornea (unpublished) and D. Feyel [6].

Lemma 5 (Decomposition lemma). Let ECX.
a) Every s€S.(X) can be decomposed as s=sg-+s& where

sp = sup{t<s: RE—14,

b) The superharmonic function sy is the specific infimum of the sequence (u,), de-
fined by

Upt =8, Upypy: = u,,——R(u,,—kf”), n>0,

and

c) ﬁfust and ﬁf‘f:sé.
Corollary. Let s, 5&€S(X) such that
s=35on X\B(E), R = REon X\HE),
Then sp=3%.

Proof. Let (»,) and (#%,) be the defining sequences for the decomposition.
Then by induction

(*) R(u,—RE) = R@,—RE), n>0;

hence sz=35%.
In fact by assumption

ug—RE = s—RF = 5—RE = ﬁo—ﬁ';‘o on X\b(E) and=0 on b(E) .
This implies (*) for n=0. If (*) is true for all k<n, then
rat = 33 R(w—RE) = > R@—RE) =: 7,,

and
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§ = 7’,,+u,,+1 , §= ?n+ﬁn+l 5
(**) RE— RE +-kﬂ,,+1’ E= lérf-{—ﬁ“f o

The assumption s=3§ on X\b(E) and 7,=7, imply u,;=#,, on X\b(E); RE—
ﬁE on X\H(E) and (**) imply RE +1“k§n+ on X \b(E), hence #,;— Iéunﬂ =,

—Jég on X\b(E), and=0 on b(E).
n+1
Consequently (*) is true for n+1.

Lemma 6. Let V be a finely open set and s, § locally bounded potentials on
X such that s=5 on V. Then Axiom (D) implies

2) RIW — RO o X\KX\V);
b) fOs=f0OF§  for every bounded Borel function f vanishing on X\V .

Proof. a) follows from the fact (see [9], §28, [7], 4.7) that the measures
ELXW) for xe&h(X\V) are carried by the fine boundary of 5(X\V); this fine
boundary is contained in the fine closure of V, where s and § coincide. = Accord-
ing to a) and the assumption the Corollary of the Decomposition Lemma can be
applied to E:=5b(X\V), since s and § coincide on the fine closure of V, especially
on X\b(X\V) Hence s;=35% in the decomposition s=sz-+s&; §=8§+35%. But
Sg —R”‘X\V) implies f® s;=0 (and analogously f © 3;=0) for every bounded
Borel functlon f vanishing on X\V ([7], 11.13, 11.21).

Corollary. If Axiom (D) is satisfied, then o is a fine local operator.
The assertion follows immediately from the definition of o.

Remark (Existence of fine measure representations). If Axion}\ (D) is satisfi-
ed, then o can be extended to a defining operator of the sheaf R of fine-local
differences of finite finely hyperharmonic functions:

For every finely open set V and f: V=R
fER(Y) e for every point x&V there exist a fine neighbourhood W and

two finite finely hyperharmonic functions #,» on W such that
f=u—von W.
&  for every point xEV there exist a fine neighbourhcod W and
u, vEPy(X) such that f=u—v on W (due to the “local extension
property”, [7], 9.9).
To fe ER( V) a representing measure is assigned in the usual way:
If f=u—v on a finely open set W, u, v €P}(X), then define

&(Nw: = ac)w—a(®)iw -

According to the fine local property, & is well-defined and has the “measure
representation property”’
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&(f)iw=0=f is finely hyperharmonic on V.

ReMARK. If the assumption 1€ 4¥(X) does not hold, then the statement
of the theorem is still true provided that the cone of all bounded potentials is
replaced by the cone of locally bounded potentials.

2. Axiom (D) and the energy principle

In classical potential theory the energy of a potential

21 =00 = [ 1

respectively its measure g is defined by

E(p): = S G*du .

More generally, for a harmonic space with a Green function G the energy of a
signed measure p could be defined as the quantity SG" d,u.=H G(x, y) p(dx)

#(dy). But unfortunately this real number is not always positive—as it is true
in classical potential theory for the usual Newtonian kernel as a Green function.
As we shall see, the deeper reasons for this misbehavior are:

1) Positivity can only be expected if G is “normalized in a suitable way”’.

2) Positivity for normalized Green functions is equivalent to Axiom (D).

For PB-harmonic spaces X having no Green function a natural definition of
energy would be

E@p): = | pdo(p),

where o is a suitable chosen measure representation of X.

HistoricaL REMARKS. 1) The fact that Axiom (D) implies the bounded
energy principle

(E) E(p):=$ pdp,>0 for all differences p of bounded potentials, where pu, is
the Revuz measure,

has been established by P.A. Meyer [12] in the framework of Hunt processes
with an absolutely continuous proper potential kernel; see also [14] and [15]
(The Axiom (D) of the theory of harmonic spaces is just the bounded maximum
principle in the language of Hunt processes).

2) 1In [16], M. Rao showed the converse for a class of Lévy processes. The
proof carries over to more general situations provided that E(-) is definite

E(p)=0=p=0.
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In our proof, we use Rao’s idea and add some considerations ensuring the de-
finiteness. Unfortunately the proof as it stands uses tools from the theory of
harmonic spaces and does not work immeditaely for general Hunt processes
with absolutely continuous resolvents or for standard H-cones.

The following example will show that the validity of (E) can only be expected
for suitably normalized Green functions or—more generally—for measure re-
presentations o of “standard form’:

a(p) (p) = w(p O p)
and not for those defined by

a(p) () =m(gPOp) (PELAX), pERL(X))

where g is an arbitrary strictly positive continuous function, as considered be-
fore.

ExamPLE. Let X be the harmonic space of the solutions of the one-
dimensional Laplace equation on ]—1, 1[. A Green function for X is given by

G(x,y) = min((1+x) (1—y), (1—x) (1+y)) for x,yEX.

With respect to this Green function

SS G(x,y) p(dx) p(dy)=0 for all signed measures pu.

Let now g: ]—1, 1[—R be a strictly positive bcunded continuous function such

that g(%):l, g(—%)=a. By

Gl(x’y): = '_'1— G(x.v.y)’ x’yEX)
{6)

another Green function G, is given. For p€P(X) we have

P = Gules) ) = |5 G, 9) ald) = G, i)

i.e. the measures p=0(p) and p,=a,(p) corresponding to G and G, are related
by

b= 1 B
= u,,
g
the corresponding measure representations o and o, by

g=—°0,.

4
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If g:=4 G(o, %)—G(-, ——%), then an easy computation shows that for p,=
o4(9)
[ gdo(a) = [§ Gl 3) meld) i) = ([ G2 ) 205 o10) (@) o(a) ()

=1-<,
4

and this quantity is <0 for a>44. The measure representation o which as-
signs to each Greenian potential

p=G"={G(,5) may)
the corresponding measure p can be represented in standard form

a(p) () = m(p O p), pERL(X),

where 7 is the normalizing H-integral for G:
1 4 /
A(p): = 5 (PH(—D—pL(1)

(right and left derivatives at —1, 4 1); (@ is determined by the fact, that
1= m(G(+,y)) forevery yeX).
Consequently, if p=G*, then

o) (@) = 5| 6, 3) 9(9) (@) = | pdn, pR.(X),
Le.o(p)=p.

The measure representation o, corresponding to the Green function G, is not

representable in standard form; this will follow from the next Theorem.

The follownig remarks will show that:

1) Measure representations o corresponding to a pair of resolvents (U,)x4o and
(V4)azo in duality with respect to an excessive measure & are representable in
standard form (see remark 2)). For a potential p=U,f we have

o(p)=1-£
and E(p) = | (0 () f(5) E@).
This situation has been studied by P.A. Meyer for general Hunt processes.

2) (special case of 1)) Measure representations corresponding to Green func-
tions defining a duality between a pair of harmonic spaces (for the exact for-
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mulation see remark 1)), especially
3) measure representations corresponding to symmetric Green functions are
representable in standard form.
As in the example the functionals z normalizing G

wG( ) =1 (for all yEX)
are in general no longer Radon measures on X but strictly positive H-integrals.

Remarks. 1) J.C. Taylor showed in [21]; Let X be a harmonic space
with a Green function G’ such that the constant function 1 is hyperharmonic.
Then there exists a strictly positive continuous function g and a Radon measure
£ such that the kernels

Uy, dy): = G(+,9) E(dy), Vi(+, dx): = G(x, +) E(dx)
1
8(»)
markovian resolvents (U,),> and (V,),>o in duality with respect to &, which

define two Hunt processes on X in duality.

2) Let X be a P-harmonic space and let (U,),>, be a submarkovian resolvent
with proper potential kernel U, such that the excessive functions coincide with
the positive hyperharmonic functions. For every excessive reference measure
£ it is possible to choose a density # such that

Uy(+, dy) = u(+, y) E(dy)

(where G(x,y)= G'(x,9), x,yEX) are the potential kernels of two sub-

and such that
Vi, de) = u(x, +) E(de)

is the potential kernel of a dual resolvent (¥,). Then there exists a strictly
positive H-integral 7z such that the corresponding measure representation o

defined by
a(p) (9): = m(e O p), (PERHX))

assigns to a potential p= U,L=Su(-, ¥) p(dy) the measure p: In fact, the func-

tional =L, defined in [12], p. 435, satisfies all required properties. It is the
unique H-integral extension of the functional

U f Sfdf.

Some easy considerations or [4] (Proposition 4.2.3 and p. 98) show that 7 is
finite on LPy(X).
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3) P.A. Meyer showed the following [12]: Let (U,),>, be the resolvent of a
Hunt process on X, such that U, is proper and absolutely continuous with re-
spect to an excessive measure &.

Let u be a density function on X X X such that Uy(+, dy)=u(-, ) £(dy) and such
that the kernel

Vs, dx) = u(x, +) E(dx)
is the potential kernel of a dual resolvent (V,),>. If fis a Borel function such
that U, f is finite and the integrals Uoff dE exists (more generally: if p is a
signed measure such that both Uy, and U,u_ are regular potentials and such
that the integrals Uope dp exists) then this integral is positive [12, p. 441].

As we have seen by the example and the remarks it is reasonable to concentrate
on measure representations ¢ in standard form

o() () = B(p O p), (PEL(X), pERL(X))

where 7 is a strictly positive H-integral. Again o can be extended in a natural
way to the cone Py(X)—P,(X) of differences of bounded potentials.
Now we can state the main result:

Theorem. Let (X, H*) be a P-harmonic space with a countable base such
that 1€ H*¥(X). Then Axiom (D) is valid if and only if

(E) S p do(p)=0 for every pe Py(X)—Py(X) holds.

Lemma 1. Axiom (D) is equivalent to the following condition : (D¥*). Let
PEPYX) such that the restriction p s, to its superharmonic support S(p) is
continuous and let u€ Py(X) such that u< p, u=p in a fine neighbourhood of S(p)
and u continuous on X\S(p). Then u=p.

Proof. Axiom (D) is equivalent to the condition
(*) R;P=p

for every locally bounded potential p. Hence Axiom (D) clearly implies the
above condition (D¥).

Conversely, since every locally bounded potential is the countable sum of a
sequence (p,) of bounded potentials whose restrictions to their supports are
continuous (according to [5], Theorem 8.2.2, and taking into account that 1€
(X)) it suffices to prove (¥) for all p&Py(X) such that pis is continuous.
Let vEeA%(X) such that v>p on S(p). Since p-1g, is upper semicontinuous
and inf (v, p) is lower semicontinuous there exists a continuous function @ such
that
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Pelsy <@<inf (v,p).

But then v’:=Rgp is a continuous potential, v'=p on S(p) and o’'<inf (7, p).
For every €>0

u,: = inf ('€, p)

satisfies the assumptions of (D¥*): #,=p on the fine open set [p<<v'+E]. Hence
u,=p. Since this is true for every €>0 we conclude

inf (v, p) = p, ' =p
and finally
v=p.

Proof of the implication (E)=>(D*). Let p, u& P,(X) such that u< p, u=p
in a fine neighbourhood V" of S(p), and such that % is continuous on X\S(p).
The condition (E) for p—u&E Py(X)— Py(X) implies

0<{ (p—u) Wo(p)—do(w) = —{ (p—w) dow) <0,

since p=u on Supp o(p) and p—u>0 on X. (Thisis M. Rao’s trick. If S fdo

(f)=0 would imply f=0 for f&€ P;(X)—P;(X), then the proof would be finished
at this point: we could conclude f=p—u=0, u=p. The following considerations
show u=p without this assumption). Using the continuity of # and p on
X\S(p) and the fact that u=p on S(p),

[ (p—u)dowy =0
implies
u = p on Supp o (u),
i.e. both % and p are harmonic on the open set
U= {xeX:u@®)<p(x)} = xEX\S(p): u(x)<p(x)} .

The next Lemma 2 will show that all boundary points of U are regular, i.e.
F:=X\UCH(F).

Let now f:=p—u&P,(X)—Py(X), then f>0, Supp o(f)CF and S fdo(f)=0.
If u==p, then U=¢; and it is possible to choose a continuous bounded potential
¢ such that

$=+S(q) = Supp o (9)c U .
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Let g:=q—Rf €@,(X)—Py(X), then g0, g=0 on F; hence | g do(f)=0
(since Supp o(f)CF)
and

[faoe=|ras@>0

(since f=0 on FOSupp a(ﬁf ) and f>0 on the non-empty set Supp o(q)).
But then (E) applied to af—g is violated for sufficiently large >0

[ (@f—8) (o (af)—do (g)) = a-0—a | fio(q)—a-0+ [ gdoe)

={ gdo(e)—a | faotq).
Hence U=¢, u=p.
Lemma 2. F:=X\U is not thin at any of its points.

Proof. Let 2€0F. If 2&S(p), then 2 belongs to the fine neighbourhood
V of S(p), where u=p. By definition of F

zEVCF.
If 2¢£S(p), then p—u is continuous at 2:

0 = lim p(x)—u(x);

i.e. p—u is a barrier function for 2 and Uj; in other words: 2 is a regular bound-
ary point of U, hence 2€d(F).

Proof of the implication (D)=(E). This implication has been proved by
Meyer [12], since by (D) all bounded potentials are regular (see remark 3).
The proof uses the machinery of processes and additive functionals and is valid
in the more general context of Hunt processes with absolutely continuous potential
kernel.

A second proof relies on a result of F.-Y. Maeda [11, p. 41]. He proved—
under the assumption 1€ 4¥(X)—that for every f€ P(X)—L(X)

2fo(f)—o(f)=0.

hence 2f © f—f? is superharmonic, and—as it is easily seen—even a (continuous)
potential.

Let now f=p—p’, where p and p’ are bounded and hence rgeular potentials.
Then p and p’ are countable sums of continuous potentials

=Xt P =320
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Maeda’s result applied to
P,:= hZ:; (px—p%), nEN,

yields
2P,OP,—PieP(X).

It turns out that 2f © f—f? is the pointwise limit of the sequence (2P, © P,—
P}),ey of these potentials (since | fO f—P, O P,|=|fO 0,+0, ®© P,|, where
0,=0,—01, Qw=p—Py, Os=p'—P; and | fO O,| <(lIpll=+11ll=) (Qut02),

19, © P, | <(Qx+07) © (p+2")).
Hence by Lebesgue’s theorem

2{10f dp—{ fap=tim {2P, © P.~P}) dz

= lim 51 do(2P, © B,—P%)>0,

fn-ro

ie. Sfda(f) — Sf@fdpz%gf dE=0.

RemarRk. The quantity @(f?) can be zero even if f is not identically zero.
For instance in the example of the one-dimensional Laplace equation on ]—1, 1]
7 is the H-integral

H(p) = (PA(—D—p1D), PERAX).
Hence 7(f?)=0 provided that f vanishes near 1, —1.

3. Doob’s convergence axiom and continuity of measure repre-
sentations

Let (X, 9*) be a P-harmonic space with a countable base, let % be a
Radon measure on X such that

0< {pdp<oo forall pe@(X)

(or: a strictly positive H-integral), and let g be a strictly positive continuous
function on X. The given data # and g determine a measure representation
o on X, as explained in the introduction.

For every open set U the map o=oy can be extended in a natural way
to the cone S, (U) of all superharmonic functions>0 on U, but—unless all
potentials with compact support are integrable with respect to m—a(g) is in
general not a Radon measure for a discontinuous superharmonic function g.
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In [19] it was shown that o is a continuous map from the cone S/(U) of all
continuous superharmonic functions with the topology of locally uniform con-
vergence to the set ¥, (U) of all (positive) Radon measures endowed with the
vague topology.
The cone Sy (X) of all positive superharmonic functions on X is usually
endowed with much coarser topologies:
1) The topology of graph convergence introduced by Mokobodzki in order to
prove the existence of integral representations (see [13] and [1]).
2) The topology 7 introduced in Constantinescu-Cornea’s book [5], p. 288,
defined by the semi-norms

PKJ:SI’—'SUPKIfQSl ’

where f is a continuous and positive function on the Alexandroff compacti-
fication X,, of X and K is a compact subset of X\Supp f.
3) The natural topology ., on standard-H-cones (see [4]).
The topologies 1) and 3) coincide on cones of positive superharmonic functions.
A sequence ($,)pen in S4(X) is T4,-convergent to s€ S (X) iff for every subse-

quence ($,,)ien

/\

s=liminf s, .
k>
Especially sequences converging pointwise on the complement of a semipolar
set converge with respect to the natural topology. In general the topology 7
is finer than 7_,,; the two tpologies coincide, provided that the harmonic space
satisfies Doob’s convergence axiom; in that case the specific multiplication map

s fOs, feCi(X.),

i8 T4q¢-continuous (see [18] and [20]).

The aim of this final section is to prove the continuity of measure representa-
tions with respect to 7=, for harmonic spaces satisfying Doob’s convergence
axiom.

Theorem. Assume that Doob’s convergence axiom and the following condi-
tion (A) hold
(A). Evwery point x€X has an open neighbourhood V, such that the smallest
absorbing set Acy, containing CV, is the whole space X.
Then for every open set U

o=ay: S4(U) = H(U)

is continuous with respect to the topology T on S, (U) and the vague topology on
M+(U) for a suitably chosen measure Tz.
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Especially if (s,) is a sequence in S.(U) converging pointwise outsidde a semipolar
set to some s€S.(U), then the sequence of Radon measures (o (S,))sen converges
vaguely to the Radon measure o(s).

Remarks. 1) Condition (A) was introduced by K. JanBen in [10] in the
study of harmonic spaces with Green functions.
2) In the presence of Doob’s convergence axiom condition (A) is even neces-
sary for the convergence property of o (see Lemma 4).
3) It is clear that the result cannot be valid for an arbitrary measure z; for if
(s,) is a decreasing sequence in S (X) such that the semipolar set

A= {x m<inf su(x)}

is non-empty and 7 charges 4, then (o(s,)),en does not converge vaguely to o(s).
4) Itis open whether the convergence property of o conversely implies Doob’s
convergence axiom (or at least nuclearity).

Doob’s convergence axiom is needed on three occasions: first in proving con-
tinuity properties of a “localizing process” (Lemma 2), then for the construc-
tion of 7 (Lemma 4) and finally it is responsible for the crucial coincidence of
the different topologies on the cone S, (X).

For every open set UCX let

Pu(U): = {pEeP(U): S(p) compactC U}
and, for LC U,
PU): = {peP(U): S(p) compactCL} (CPy(U)).
By [9], Théoréme 13.2 and [8] the restriction map
Q: Ly(X) — Lu(U)
P > potential part of piy = Biy— Ry

is bijective, additive and positively homogeneous, the extension map T=Q*

T: Ly(U) = Lu(X)

is also bijective, increasing and respects suprema of increasing sequences.
The following lemma follows immediately from these properties and from
the definition of the specific multiplication.

Lemma 1. Let f€C.(X) such that Supp (f) is a compact subset of U and
let pe Py(X). Then Q(f © B)=(fv) © Q(D).

Lemma 2. If Doob’s convergence axiom is satisfied and 0U is compact, then
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a) the restriction of Q to Py(X) is continuous for every compact subset L of U,
b) The restriction of T to P(U) is continuous for every compact subset L of U.

Proof. Continuity of Q on P,(X). Let us first remark that the trace of the
topology = on 2;(U) is defined by the seminorms pg ;, where fE€C,(X) with
compact support contained iz U and K a compact subset of U\Supp f. Let
(Dn)sen be a sequence in P;(X) converging to some = P (X) and let fEC.(X)
such that Supp (f) is compactCU. By definition of 7 we must show that
(fiv © O(B,))sen converges locally uniformly to fiy © Q($) on U\Supp f.

For neN let p,:=f O p,, p':=f O p. Then

p=r7r—Ilimp,

n-yc0

implies the local uniform convergence of ($;) to p' on X\Supp f; especially this
sequence converges uniformly on the compact set 0U. But then

7n-»00

lim Ry (x) = lim Sﬁ,f, de?? = RS (x) for every x€U ;
i.e. the potentials

fis © Q(F) = Q(B%) = B, — Re”
g
converge pointwise to fiy © Q(p) on U\Supp f.
According to [10], (2.1) (which uses Doob’s convergence axiom), this convergence
is even locally uniform. This completes the first part of the proof.

Continuity of T on P (U). Let (p,) be a sequence in L,(U) converging to
pEP,(U), and let p,:=T(p,); p:=T(p). If (d,) does not converge to P, there
exists a subsequence () converging to some p’=p.

From the definition of 7-convergence follows S(p")C L, hence p'€%P,(X). But
then by the continuity and bijectivity of Q

lim Q(54) = Q(B)+Q(B) =,
which is a contradiction.

Lemma 3. Let K’ be a compact subset of X, v a measure on X with support
disjoint from K' and such that all pEP(X) are v-integrable, and let (s,) be
sequence in Py/(X) converging pointwise on X\K'. Then

lim S S,dv = S lim s,dv<oco .

oo >0
X\K’ X\K’

The assertion follows immediately from [10], (proof of) Theorem (2.4).
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Lemma 4. For a B-harmonic space X satisfying Doob’s convergence axiom
condition (A) is equivalent to the following condition
(R) There exists a measure & on X such that
*) 0< S pdE< oo for all p= Py X)\{0}
which is continuous on the sets Py(X), K compact; (i.e. the map p g pdm is

continuous with respect to v and real-valued).

ReMArRk. K. JanBen showed in [10] the existence of measures 7 operat-
ing continuously on a cone Px(X) for a given compact set K. The important
point here is the existence of a measure  which works for all compact sets K
simultaneously. Obviously condition (R) is necessary for the continuity pro-
perty of o stated in the Theorem.

Proof. (A)=(R). Let (V,),ex be a covering of X of relatively compact
open sets such that x€V, and

Aey,= X forevery x€X,

let (V,) be a countable subfamily still covering X and let (@,) be a subordinate
locally finite partition of the constant 1. For every nE N there exists a measure
u, satisfying (¥) with support Supp (z,) disjoint from Supp @, (for example pu,
= g}xk &, where {x,;: kEN} is dense in X\V, and \,; are suitable strictly

positive real numbers).
For pe Py(X) set
oo 1 »
w(p):=Sa| | RV du, da,

where the sequence (a,) of strictly positive numbers is chosen such that z(p)<<
oo for all pe P,(X). Then by [5], p. 160, = can be extended to a unique Radon
measure on X, also denoted by 7.

Let now K be a compact subset of X. In order to prove the continuity and
finiteness of 7z on Py(X) let (p;) be a sequence in Px(X) converging to p,. Then
by [1] and [13] the potentials

1
@ . ¢>a
b = So R da
converge to
? ' presa)
.Rpo: = SORPO da

pointwise on X \Supp @ for every p=R(X), 0<p<1.
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Since the partition (@,) is locally finite eventually all @, vanish in a compact
neighbourhood L of K: there exists 7, &N such that Supp @,NL=¢ for all
n>n,. We apply now Lemma 3 to
1) K’'=Supp (@,), v=p, (for n<m,) and the sequence (R}*);en and get

tim | RS ds, = | RSy dpu<oo

and then to
2) K'=K, v=p,, defined by

Illo(s): =’§ a” [b“(R?”), SE@O(X) >
0
and the sequence (p;)zen and get
113_} o Pr) = to( Po) < o0

1) and 2) together imply the continuity and finiteness of z on Py(X).

(R)=(A4). If (A4) is violated, then there exist x€X and a sequence (V,) of
relatively compact open neighbourhoods of x decreasing to x such that X== 4.y,
for every nEN. But then we can find bounded potentials p, vanishing on

Acy, such that S p.dm=1. The sequence (p,) converges to 0 with respect to 7,

which contradicts the continuity of 7 on Py (X).

Proof of the Theorem. Let (s,) be a sequence in S.(U) converging to s,E
8+(U) with respect to the topology 7, and let f&(,(X) such that K:=Supp (f)
is a compact subset of the open set U. Without loss of generality we can assume
that U is relatively compact and each s, is a potential which is harmonic outside
some fixed compact subset L of U, LDK (if not, replace U by a relatively
compact open neighbourhood V of K and s, by ¢ ©s,, where @ is a continuous
function on ¥ with compact support in ¥, 0<@<1 and ¢=1 on K).

Then

’T“lij{} (Bw O sy = (fDw Os

(g is the continuous function appearing in the definition of o) and by Lemma
1and 2

7—lim (f2) © T(s,) = =—1lim T((fg)w © ) = T(f&)ws @)
= () O T(s).

Let 7 be a measure on X satisfying the condition (R) of Lemma 4. Then the
measure representation o determined by g and % has the required properties:



SIDE-EFFECTS OF IMEASURE REPRESENTATIONS 701

lim y(5,) (f) = lim { () © T(s) 45 = [ (f6) © T6) di = 0(5) () -

Corollary. Let (X, H*)be a harmonic space with a Green function G. Then
for every sequence (p,) of potentials p,—G"r= S G(+, y) na(dy) converging pointwise

outside a semipolar set to a potential p=G", the sequence of measures (u,) is vaguely
convergent to the measure .

Proof. According to [17] every harmonic space admitting a Green func-
tion satisfies Doob’s convergence axiom; by [10] condition (4) is fulfilled.
Let 7 be a measure on X satisfying the properties of Lemma 4 and let

g X— R\ {0}
v [ GC.y)dm.
The continuity of 7 on the cones P(X), K compact, implies the continuity of
g. The measure 1epresentation o on X determined by % and 1 corresponds to
g

the given Green function: for pe P(X), p=G*, and pER,(X) we have

1
o = —— G(x, dy) m(dx) = ,
) @)= [[ 2) 5 Gl ) wta) pld) = (o)

ie. o(p)=p.
The assertion follows now immediately from the Theorem.
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