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Abstract
In this paper we present sufficient conditions and necessaryconditions for a

single element to form ap-basis of a ring of constants of a derivation. We consider
some special cases, when these conditions are equivalent, and we analyze some
counter-examples, when the equivalence does not hold.

Introduction

If A is a commutative ring with unity, then we denote byA� the subset of all
invertible elements ofA. Two elementsa, b 2 A are called associated ifa = bc for
somec 2 A�, and we denote it bya � b.

Let K be a commutative ring with unity and letA be a K -algebra. A K -linear
map d : A ! A such thatd( f g) = d( f )g + f d(g) for every f , g 2 A, is called
a K -derivation of A. If A = K [x1, : : : , xn] is a polynomial K -algebra andd is a
K -derivation of A, then for every f 2 K [x1, : : : , xn] we have

d( f ) =
� f�x1

� d(x1) + � � � + � f�xn
� d(xn).

If d is a K -derivation of aK -algebraA, then its kernel

Ad = f f 2 A: d( f ) = 0g
is a K -subalgebra ofA, called the ring of constants ofd. If A is a K -domain of
characteristicp > 0, then a ring of constants of aK -derivation is always aK [ Ap]-
algebra, whereAp = fap, a 2 Ag.

Throughout this paperA and B will be domains of characteristicp> 0, such that

Ap � B � A and B0 \ A = B.

As the main example we will consider a polynomial algebraA = K [x1, : : : , xn] and its
subalgebraB = K [xp

1 , : : : , xp
n ], where K is a unique factorization domain of character-

istic p > 0.
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If R is a domain, thenR0 denotes the field of fractions ofR. For arbitrary f 2 A
we consider the subring

C( f ) = B0( f ) \ A,

where B0( f ) is the subfield ofA0 generated overB0 by f . It is easy to see that for
each f 2 A the ring R = C( f ) satisfies the conditions

B � R and R0 \ A = R.

Note that if a subringR of A satisfies these conditions and the field extensionB0 � R0

is of degreep, then R = C( f ) for every f 2 RnB. Moreover, if A is finitely generated
over B, then subrings ofA satisfying these conditions are exactly the rings of constants
of B-derivations ofA ([7], Theorem 2.5; [5], Theorem 1.1; see [11], Theorem 5.4 or
[10], Theorem 4.1.4 for original arguments in characteristic zero).

Nowicki in [9] proved that ifk is a field of characteristic 0, then the ring of con-
stants of every nonzerok-derivation of the polynomial algebrak[x, y] is of the form
k[ f ] for some polynomialf 2 k[x, y]. The properties of such generators in the case of
characteristic 0 were investigated by Nowicki and Nagata in[12] and by Ayad in [1].
The authors of [12] showed also that in the case of characteristic 2 rings of constants
of nonzerok-derivations ofk[x, y] are of the formk[x2, y2, f ] for suitable f .

For example, ifk is a field of characteristic 2 andf = xy 2 k[x, y], then

C( f ) = k[x2, y2, xy] = B[ f ],

where B = k[x2, y2]. On the other side ([12], Example 4.3), ifk is a field of charac-
teristic 3 and f = x2y 2 k[x, y], then

C( f ) = k[x3, y3, x2y, xy2] 6= k[x3, y3, x2y] = B[ f ],

where B = k[x3, y3].
If a subring R of A is generated overB by a single elementf =2 B, that is, R =

B[ f ], then R is a free B-module with a basis 1,f , : : : , f p�1 (Lemma 1.1). In this
situation we call f a one-elementp-basis of R over B (Definition 1.2). Note that the
existence of one-elementp-basis of a ring with respect to localizations and the module
of derivations was investigated by Ono in [13].

Our main question is, whenf is a one-elementp-basis ofC( f ). The answers,
under additional assumptions about some kind of homogeneity, were obtained by the
author in [5] and [6], and generalized for eigenvectors of a derivation in [7]. In this
paper we study one-elementp-bases consisted of an arbitrary element without addi-
tional assumptions.

We present necessary conditions and sufficient conditions for an elementf to be a
one-elementp-basis of a ring of constants of a derivation in the case of positive char-
acteristic. We consider various levels of generality. In Theorem 1.4 we deal with an
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arbitrary domain, in Theorem 1.5 with a UFD, and in Theorem 2.3 with a polynomial
algebra over a UFD. We prove that in the latter case the condition

gcd

� � f�x1
, : : : , � f�xn

� � 1

is sufficient and the condition

gcd

�
f + h,

� f�x1
, : : : , � f�xn

� � 1 for every h 2 K [xp
1 , : : : , xp

n ]

is necessary.
In the case of characteristic 2 we prove that these conditions are equivalent. We

conclude it from the characteristic 2 version of the following Freudenburg’s lemma,
presented (for two variables overC) in [4] and generalized in [3].

Lemma ([4], Lemma; [3], Proposition 2.1).Given a polynomial f2 k[x1, : : : , xn],
where k is an algebraically closed field of characteristic zero, suppose g2 k[x1, : : : , xn]
is an irreducible non-constant divisor of� f =�xi for i = 1,: : : , n. Then there exists c2 k
such that g divides f+c.

Actually, the thesis of the above lemma can be strengthened such thatg2 divides
f + c ([3]). We can observe a similar fact in positive characteristic, see Lemma 2.1.

In the last section we discuss some counter-examples to a version of this lemma
in the case ofp > 2.

1. The case of an arbitrary domain

In this sectionA is a domain of characteristicp> 0 and B is a subring containing
Ap, such thatB0 \ A = B.

We start from some basic observations.

Lemma 1.1. For an arbitrary element f2 A n B the following holds:
a) B0( f ) = B0[ f ],
b) the elements1, f , : : : , f p�1 are linearly independent over B0,
c) the ring B[ f ] is a free B-module with a basis1, f , : : : , f p�1.

Proof. a) One can easily show this directly, but this also follows from the alge-
braic dependence off over B0 ([14], Theorem 2, p. 56).

b) The field B0( f ) is a purely inseparable extension ofB0 and, by a), the ele-
ments 1, f , : : : , f p�1 span B0( f ) over B0. Thus [B0( f ) : B0] = pe for somee ([14],
Corollary 3, p. 68) and 1< [B0( f ) : B0] 6 p, so [B0( f ) : B0] = p.

c) This follows from b), becausef p 2 B.
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The definition of ap-basis of a ring extension can be found in [8], p. 269. We
are interested in rings with one-elementp-bases, that is, rings of the form presented
in c) in the previous lemma.

DEFINITION 1.2. If a subringR of A is a freeB-module with a basis 1,f , : : : ,
f p�1 for some f 2 A, then f is called a one-elementp-basis of R over B.

The next lemma will be useful in the rest of this section. Recall that A, B are
domains of characteristicp > 0, such thatAp � B � A and B0 \ A = B.

Lemma 1.3. For an arbitrary element f2 A n B the following conditions are
equivalent:
(i) f is a one-element p-basis of C( f ),
(ii) C( f ) = B[ f ],
(iii) for everyw0, w1, : : : , wp�1 2 B0, if

w0 +w1 f + � � � +wp�1 f p�1 2 A,

thenw0, w1, : : : , wp�1 2 B.

Proof. The equivalence (i), (ii) follows from Lemma 1.1 c).
(ii) ) (iii) Assume thatC( f ) = B[ f ] and considerw0, w1, : : : , wp�1 2 B0 such

that g = w0 + w1 f + � � � + wp�1 f p�1 2 A. Then g 2 B0[ f ] \ A, so, by the assump-
tion, g 2 B[ f ], that is, g = v0 + v1 f + � � � + vp�1 f p�1 for somev0, v1, : : : , vp�1 2 B.
Hencewi = vi for eachi , because 1,f , : : : , f p�1 are linearly independent overB0 by
Lemma 1.1 b).

(iii) ) (ii) Assume that (iii) holds. ObviouslyB[ f ] � B0( f )\ A = C( f ). Now,
take an arbitrary elementg 2 C( f ). By Lemma 1.1 a)C( f ) = B0[ f ] \ A, so g =w0 +w1 f + � � �+wp�1 f p�1 for somew0,w1, : : : ,wp�1 2 B0. Thenw0,w1, : : : ,wp�1 2 B
by (iii), and g 2 B[ f ].

Note that the assumptionB0 \ A = B in the above lemma is important. Without
this condition Lemma 1.3, in general, is not true, as shown bythe following example.
(The author thanks the referee for this example.)

EXAMPLE . Let A = k[x, y, y2=x], B = k[x3, y3, y2=x], wherek is a field of char-
acteristic 3. Let f = xy. Then B0( f ) = B0 and B0 \ A = k[x3, y3, y2=x, xy] = B[ f ].
Meanwhile, x2=y, x=y2 =2 B and x2=y� (x=y2) � xy = 0 2 A.

The following theorem presents a sufficient condition and a necessary condition
for f to form a p-basis ofC( f ) over B. The proof of the implication (i)) (ii) is
motivated by the proof of Lemma 2.6 in [2].
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Theorem 1.4. Let A be a domain of characteristic p> 0 and B a subring of
A, containing Ap, such that B0 \ A = B. Let f 2 A n B. Consider the following
conditions:
(i) d( f ) = 1 for some B-derivation d of A,
(ii) C( f ) = B[ f ],
(iii) for every h2 B the element f+h is not divisible by a square of any element from
A n A�, nor by any element from Bn A�.

Then we have the following implications:

(i) ) (ii) ) (iii).

Proof. (i) ) (ii) Suppose that the condition (i) holds, butC( f ) 6= B[ f ]. Then,
by Lemma 1.3, there existw0,w1, : : : ,wp�1 2 B0 such thatw0+w1 f +� � �+wp�1 f p�1 2
A andwi =2 B for somei . Let l be the least nonnegative integer such thatw0 +w1 f +� � � + wl f l 2 A for somew0, w1, : : : , wl 2 B0, wherewi =2 B for some i . Of course
0 < l < p. Moreover,wl =2 B by the minimality of l . Let d be a B-derivation of A
such thatd( f ) = 1 and letd0 be the extension ofd to a B0-derivation of A0, defined
by d0(g=h) = (d(g)h� g d(h))=h2. Thend0(w0 +w1 f + � � �+wl f l ) = (w1 + 2w2 f + � � �+
lwl f l�1) d( f ), so w1 + 2w2 f + � � � + lwl f l�1 2 A, and we have a contradiction with
the minimality of l .

(ii) ) (iii) This is a special case of Proposition 3.3 a) in [7], justremember that
C( f ) = C( f + h) and B[ f ] = B[ f + h].

If A is a unique factorization domain, then the condition (i) of Theorem 1.4 can
be replaced by a weaker one.

Theorem 1.5. Let A be a UFD of characteristic p> 0 and B a subring of A,
containing Ap, such that B0 \ A = B. Let f 2 A n B. If all elements of the form
d( f ), where d is a B-derivation of A, have no common noninvertible divisors, then
C( f ) = B[ f ].

Proof. Similarly like in the proof of Theorem 1.4, we obtain that (w1 +2w2 f + � � �+
lwl f l�1) d( f ) = d0(w0 +w1 f + � � � +wl f l ) 2 A for every B-derivationd. Since, by the
assumption, the elements of the formd( f ) have no common noninvertible divisors,
hencew1 + 2w2 f + � � � + lwl f l�1 2 A.

The following example shows that ifA is not a UFD, then this weaker condition
may be not sufficient.

EXAMPLE . Let k be a field of characteristicp > 0, let K = k[a, b]=(a3 � b2),
A = K [x, y], B = K [xp, yp], and let f = bx + a2y. The elements� f =�x = b and� f =�y = a2 have no common noninvertible divisors, so all the elements of the form
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d( f ) have no common noninvertible divisors. On the other hand, (a=b) � f = ax+by 2 A
anda=b =2 B, soC( f ) 6= B[ f ] by Lemma 1.3.

2. The case of a polynomial algebra

In this section we consider a polynomial algebraA = K [x1, : : : , xn] over a unique
factorization domainK of characteristicp > 0, and a subalgebraB = K [xp

1 , : : : , xp
n ].

The following two lemmas are analogical to some well-known facts from charac-
teristic zero.

Lemma 2.1. Let f 2 K [x1, : : : , xn] and let g be a prime element of K[x1, : : : , xn],
not belonging to K[xp

1 , : : : , xp
n ]. If g j f and g j � f =�xi for every i, then g2 j f .

Proof. Let f = gr h, where r > 1, h 2 K [x1, : : : , xn], g ∤ h. Then � f =�xi =
gr�1(r (�g=�xi )h + g�h=�xi ) for eachi . By the assumption�g=�xi 6= 0 for somei , so
g ∤ �g=�xi , because�g=�xi has lower degree with respect toxi than g. This implies
that, if p ∤ r , then g ∤ r (�g=�xi )h, so gr�1 j � f =�xi and gr ∤ � f =�xi , hencer > 2.
Note also that, ifp j r , then obviouslyr > 2.

Lemma 2.2. Let f 2 K [x1, : : : , xn] n K [xp
1 , : : : , xp

n ]. Then

gcd

�
f ,
� f�x1

, : : : , � f�xn

� � 1

if and only if f is not divisible by a square of any polynomial from K[x1, : : : , xn] nK �,
nor by any polynomial from K[xp

1 , : : : , xp
n ] n K �.

Proof. ()) It is easy to see that ifg2 j f for someg 2 K [x1, : : : , xn] n K � or
g j f for someg 2 K [xp

1 , : : : , xp
n ] n K �, then g j � f =�xi for every i .

(() Assume that gcd(f , � f =�x1, : : : , � f =�xn) ≁ 1 and consider a prime element
g 2 K [x1, : : : , xn] nK � such thatg j f and g j � f =�xi for every i . If g =2 K [xp

1 , : : : , xp
n ],

then g2 j f by the previous lemma.

The following theorem presents a sufficient condition and a necessary condition for
a polynomial f to be a one-elementp-basis ofC( f ). The implication (i)) (ii) is a
positive characteristic analog of Proposition 14 in [1].

Theorem 2.3. Let K be a UFD of characteristic p> 0, let f 2 K [x1, : : : , xn] n
K [xp

1 , : : : , xp
n ]. Consider the following conditions:

(i) gcd(� f =�x1, : : : , � f =�xn) � 1,
(ii) C( f ) = K [xp

1 , : : : , xp
n , f ],

(iii) gcd( f + h, � f =�x1, : : : , � f =�xn) � 1 for every h2 K [xp
1 , : : : , xp

n ].
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Then we have the following implications:

(i) ) (ii) ) (iii).

Proof. (i)) (ii) If gcd(� f =�x1, : : : , � f =�xn) � 1, then, obviously, all elements
of the form d( f ), whered is a K -derivation of K [x1, : : : , xn], have no common non-
invertible divisors, soC( f ) = K [xp

1 , : : : , xp
n , f ] by Theorem 1.5.

(ii) ) (iii) Assume thatC( f ) = K [xp
1 , : : : , xp

n , f ]. Then, by Theorem 1.4, for
every h 2 K [xp

1 , : : : , xp
n ], the polynomial f + h is not divisible by a square of any

polynomial from K [x1, : : : , xn] n K �, nor by any polynomial fromK [xp
1 , : : : , xp

n ] n K �,
so gcd(f + h, � f =�x1, : : : , � f =�xn) � 1 by Lemma 2.2.

The rest of this paper is devoted to partial answers to the following two questions.

Question I. When are the conditions (i) and (ii) of Theorem 2.3 equivalent?

In Theorem 3.7 we will give an affirmative answer to the above question in the
case of characteristicK = 2. Moreover, it is easy to see that the equivalence (i), (ii)
holds in Theorem 2.3 for arbitrary characteristic in the case of one variable. Namely,
for f 2 K [x] the condition (i) means thatf = ax + b for somea 2 K �, b 2 K [xp].
And this is equivalent to (ii), becauseC( f ) = K [x].

Question II. When are the conditions (i) and (iii) of Theorem2.3 equivalent?

The answer to this question is obviously affirmative if gcd(� f =�x1, : : : , � f =�xn) j f +
h for someh 2 K [xp

1 , : : : , xp
n ]. This is the case whend( f ) = f for someK -derivation

d of K [x1, : : : , xn] (compare [7], Theorem 4.4 with a single eigenvector), in particular,
if K is a field and f is homogeneous of a nonzero degree with respect to any weight
vector ([6], Proposition 2). Another situations when we have an affirmative answer to
Question II will be presented in the next section.

3. Some special cases

In this section we observe the cases when the conditions (i),(ii) and (iii) of Theo-
rem 2.3 are equivalent. More precisely, in Propositions 3.1,3.3, 3.5 and 3.6 we present
conditions, which are stronger than the negation of (i), andwhich imply the negation
of (iii). Such implications have the form of simpler versions of the Freudenburg’s
lemma ([4], [3]) in positive characteristic. The first one isobtained when a prime fac-
tor has some special form.

Proposition 3.1. Let K be a UFD of characteristic p> 0. Let f 2 K [x1, : : : , xn]
and let g2 K [x1, : : : , xn] be a polynomial of the form g= x j + r , where r2 K [x1, : : : ,
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x j�1, x j +1, : : : , xn], for some j. If g j � f =�xi for i = 1,: : : , n, then g2 j f + h for some
h 2 K [xp

1 , : : : , xp
n ].

Proof. We may assume thatj = 1, that is, g = x1 + r , wherer 2 K [x2, : : : , xn].
By easy induction on the degree off with respect tox1 we obtain that f = ag+ b for
somea 2 K [x1, : : : , xn], b 2 K [x2, : : : , xn], so � f =�x1 = (�a=�x1)g + a and � f =�xi =
(�a=�xi )g + a(�g=�xi ) + �b=�xi for i > 1. From these equalities we deduce that if
g j � f =�xi for eachi , then g j a and g j �b=�xi for i > 1. Since�b=�xi is of degree
0 with respect tox1, hence�b=�xi = 0 for eachi > 1, sob 2 K [xp

2 , : : : , xp
n ]. Finally,

g2 j f + h for h = �b.

The other particular version is obtained when we consider a factor (not necessarily
prime) from the subalgebra generated byp-th powers of variables. We need the fol-
lowing obvious lemma.

Lemma 3.2. Let K be a domain of characteristic p> 0 and let f 2 K [x], f =
a0 + a1x + � � � + ap�1xp�1, where ai 2 K [xp] for i = 0, 1,: : : , p� 1. If b 2 K [xp] and
b j f , then bj ai for i = 0, 1,: : : , p� 1.

Proposition 3.3. Let K be a UFD of characteristic p> 0. Let f 2 K [x1, : : : , xn]
and g2 K [xp

1 , : : : , xp
n ]. If g j � f =�xi for i = 1, : : : , n, then gj f + h for some h2

K [xp
1 , : : : , xp

n ].

Proof. Induction. Letn = 1, f 2 K [x], f = a0 +a1x + � � �+ap�1xp�1, whereai 2
K [xp] for i = 0, 1,: : : , p�1. Consider an polynomialg 2 K [xp] such thatg j � f =�x.
Since � f =�x = a1 + � � � + (p � 1)ap�1xp�2, henceg j ai for i = 1, : : : , p � 1, by
Lemma 3.2. Theng j f � a0.

Now, let n > 1 and assume that the statement holds forn � 1. Consider poly-
nomials f 2 K [x1, : : : , xn] and g 2 K [xp

1 , : : : , xp
n ] such thatg j � f =�xi for i = 1,: : : , n.

Put Kn = K [x1, : : : , xn�1]. Since g j � f =�xn, henceg j f � h0 for someh0 2 Kn[xp
n ],

by the case ofn = 1. Then obviouslyg j � f =�xi ��h0=�xi for i = 1,: : : , n�1, because
g 2 K [xp

1 , : : : , xp
n ], so g j �h0=�xi . Put K 0 = K [xp

n ]. By the induction assumption for
h0 2 K 0[x1, : : : , xn�1] we obtain thatg j h0 +h for someh 2 K 0[xp

1 , : : : , xp
n�1], so finally,

g j f + h.

The next proposition is especially useful in the case of characteristicK = 2. First,
note the following consequence of Lemma 1.2 in [7].

Lemma 3.4. Let K be a UFD of characteristic p> 0. Let g be a prime element
of K[x], g =2 K [xp], g j a, where a2 K [xp]. Then gp j a.
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Proposition 3.5. Let K be a UFD of characteristic p> 0. Let f 2 K [x1, : : : , xn]
be a polynomial such that�2 f =�x2

i = 0 for i = 1, : : : , n, let g be a prime element of
K [x1, : : : , xn], such that�g=�xi 6= 0 for i = 1, : : : , n. If g j � f =�xi for i = 1, : : : , n,
then gp j f + h for some h2 K [xp

1 , : : : , xp
n ].

Proof. PutK i = K [x1, : : : , xi�1, xi +1, : : : , xn] for i = 1, : : : , n. The assumptions
imply that � f =�xi 2 K i [x

p
i ] and g 2 K i [xi ] nK i [x

p
i ] for each i , so, if g j � f =�xi , then

gp j � f =�xi by Lemma 3.4. Sincegp 2 K [xp
1 , : : : , xp

n ], hence the statement follows
from Proposition 3.3.

The characteristic 2 version of the Freudenburg’s lemma is the following.

Proposition 3.6. Let K be a UFD of characteristic2. Let f 2 K [x1, : : : , xn]
and let g be a prime element of K[x1, : : : , xn], not belonging to K[x2

1, : : : , x2
n]. If

g j � f =�xi for i = 1, : : : , n, then g2 j f + h for some h2 K [x2
1, : : : , x2

n].

Proof. Induction. Letn = 1, let f 2 K [x], f = ax + b, wherea, b 2 K [x2]. Con-
sider a prime divisorg of � f =�x = a such thatg =2 K [x2]. Then g2 j a by Lemma 3.4,
so g2 j f � b.

Now, let n > 1 and assume that the statement holds forn � 1. Consider poly-
nomials f , g 2 K [x1, : : : , xn] such thatg is prime, g =2 K [x2

1, : : : , x2
n] and g j � f =�xi

for i = 1,: : : , n. From Proposition 3.5 we know that the statement is true if�g=�xi 6= 0
for every i , because�2 f =�x2

i = 0 in characteristic 2.
Now assume that�g=�x j = 0 for some j , for example,�g=�xn = 0. Then g 2

Kn[x2
n], where Kn = K [x1, : : : , xn�1]. Put fn = f � xn(� f =�xn), so also fn 2 Kn[x2

n].
For eachi , since g j � f =�xi and �g=�xn = 0, henceg j (�=�xn)(� f =�xi ). For i < n
we have� fn=�xi = � f =�xi � xn(�2 f =�xi �xn), so g j � fn=�xi .

Put K 0 = K [x2
n]. Observe thatfn, g 2 K 0[x1, : : : , xn�1], g is prime in K 0[x1, : : : ,

xn�1], g =2 K 0[x2
1, : : : , x2

n�1]. By the induction assumption, sinceg j � fn=�xi for every

i < n, henceg2 j fn +h for someh 2 K 0[x2
1, : : : , x2

n�1], that is, h 2 K [x2
1, : : : , x2

n]. Then

g j f +h, becauseg j � f =�xn, and finally, by Lemma 2.1, we obtain thatg2 j f +h.

Now we obtain, in the case of characteristic 2, the equivalence of sufficient and
necessary conditions for a polynomialf to be a one-elementp-basis ofC( f ).

Theorem 3.7. If K is a UFD of characteristic2 and f 2 K [x1,:::, xn]nK [x2
1,:::,

x2
n], then the following conditions are equivalent:

(i) gcd(� f =�x1, : : : , � f =�xn) � 1,
(ii) C( f ) = K [x2

1, : : : , x2
n, f ],

(iii) gcd( f + h, � f =�x1, : : : , � f =�xn) � 1 for every h2 K [x2
1, : : : , x2

n],
(iv) for every h2 K [x2

1, : : : , x2
n] the polynomial f+h is not divisible by any polynomial

from K[x2
1, : : : , x2

n] n K �.
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Proof. The implications (i)) (ii) ) (iii) were obtained in Theorem 2.3. The
implication (iii) ) (i) follows from Propositions 3.3 and 3.6. And the equivalence
(iii) , (iv) follows from Lemma 2.2, because, in the case of characteristic 2, a square
of a polynomial fromK [x1, : : : , xn] n K � belongs toK [x2

1, : : : , x2
n] n K �.

4. Some examples forp > 2

In this section we analyze some counter-examples to the “p> 2” version of Propo-
sition 3.6.

Let K be a UFD of characteristicp> 2. We are looking for pairs of polynomials
( f , g) such that f , g 2 K [x1, : : : , xn] nK [xp

1 , : : : , xp
n ], satisfying the following conditions:8>>><

>>>:
g is a prime element of K [x1, : : : , xn],

g
� f�xi

for i = 1, : : : , n,

g ∤ f + h for every h 2 K [xp
1 , : : : , xp

n ].

(�)

Of course, every pair (f , g) satisfying (�) is a counter-example to the “p > 2”
version of Proposition 3.6. On the other side, all counter-examples satisfy (�), because
for g =2 K [xp

1 , : : : , xp
n ], if g j � f =�xi for i = 1, : : : , n and g2 ∤ f + h for every h 2

K [xp
1 , : : : , xp

n ], then g ∤ f + h (Lemma 2.1).
We will consider a special case, wheng � gcd(� f =�x1, : : : , � f =�xn). In this case

f is a counter-example to the implication (iii)) (i) in Theorem 2.3. The following
examples have been found using a computer.

EXAMPLE . Let K be a UFD of characteristic 3. The following pairs of poly-
nomials (f j , g j ) satisfy the condition (�):

f1 = x5 + x2 + x, g1 = x4 + x � 1, f1, g1 2 F3[x],
f2 = x5 + xy3, g2 = x4 � y3, f2, g2 2 K [x, y],
f3 = x3y2 + x4y + x5 + y4 � xy3, g3 = x4 � x3y + y3, f3, g3 2 K [x, y],
f4 = x5y + x2y4 + xy5, g4 = x4 + xy3 � y4, f4, g4 2 F3[x, y].

The fact, that eachg j is prime, could be verified by hand, but the last condition of
(�) is obtained by the following lemma.

Lemma 4.1. Let f 2 K [x1, : : : , xn] n K [xp
1 , : : : , xp

n ], where K is a UFD of char-
acteristic p> 0. Assume that g� gcd(� f =�x1, : : : , � f =�xn) is a prime element of
K [x1, : : : , xn], not belonging to K[xp

1 , : : : , xp
n ]. Let � f =�xi = ui g, ui 2 K [x1, : : : , xn],

for i = 1,:::,n. If ui =2 (g,�g=�xi ) for some i, then g∤ f +h for every h2 K [xp
1 ,:::, xp

n ].

Proof. Suppose thatg j f + h for someh 2 K [xp
1 , : : : , xp

n ]. Then g2 j f + h by
Lemma 2.1, sof +h = g2s for somes 2 K [x1, : : : , xn]. Hence� f =�xi = 2g(�g=�xi )s+
g2(�s=�xi ), so ui = 2s(�g=�xi ) + (�s=�xi )g, that is, ui 2 (g, �g=�xi ).
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Actually, the examplesf1 and f4 are not very valuable, they just show that in
general we needg to be irreducible over the algebraic closure ofK (when K is a
field), like in the characteristic zero case ([3], Remark 2.4). So it is remarkable that, as
we observed in Proposition 3.6, the Freudenburg’s lemma in the case of characteristic
2 is valid over any UFD, we do not even needK to be a field!

One can see that our examples are not so arbitrary. Note that the polynomial f1

is of one variable, butf2 in some sense is also of one variable, since it belongs to
K [x, y3] = K 0[x], where K 0 = K [y3]. And f3 is the same, becausef3 2 K [z, t3] for a
linear change of coordinates:z = x � y, t = x + y. This is the reason whyf1, f2, f3

are not counter-examples to the implication (ii)) (i) in Theorem 2.3.
The common property off1, f2, f3 is that � f =�x j � f =�y. We can generalize

these examples in the following way.

Proposition 4.2. Let K be a UFD of characteristic p> 2 and let f 2 K [x1, : : : ,
xn] be a polynomial with zero coefficients of xi0 and x2

i0
for some i0. Assume additional-

ly that � f =�xi0 is a prime element of K[x1, : : : , xn], not belonging to K[xp
1 , : : : , xp

n ],
such that� f =�xi0 j � f =�x j for every j. Then the pair( f , g), where g= � f =�xi0, sat-
isfies(�).

Proof. By Lemma 4.1 it is enough to prove that 1=2 (g, �g=�xi0). Since f has
zero coefficients ofxi0 and x2

i0
, hence g and �g=�xi0 have no constant terms, so

(g, �g=�xi0) � (x1, : : : , xn).

The polynomial f4 from our examples does not fit in with the above proposition,
because it is homogeneous of degree 6 and the relation between its partial derivatives
is of the form x(� f =�x) + y(� f =�y) = 0 (note that f4 is neither a counter-example to
the implication (ii)) (i) in Theorem 2.3, see [5], Proposition 4.4, whenK is a field).
We can generalize this example in the following way.

Proposition 4.3. Let K be a UFD of characteristic p> 2. Let a, b 2 K [xp, yp]
be polynomials without constant terms, such that g= axp�2 +byp�2 is a prime element
of K[x, y]. Then, for f = axp�1y� bxyp�1, the pair ( f , g) satisfies(�).

Proof. We havea, b 2 (xp, yp), so (g, �g=�x) � (xp, yp). But � f =�x = �yg and�y =2 (xp, yp), so the statement follows from Lemma 4.1.

Note that for p > 3 the condition thata and b have no constant terms may be
omitted in the above proposition.

Finally, let us emphasize that it is not clear whether the counter-examples dis-
cussed in this section are in some sense special and the “p > 2” version of Propo-
sition 3.6, as well as the implication (iii)) (i) in Theorem 2.3, holds under some
natural additional assumption. Remark also that we do not know any counter-example
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to the implication (ii)) (i) in Theorem 2.3. It seems to be possible that this impli-
cation holds.
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