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1. Introduction

If we denote the conjugation b~'ab by acb or a”® in a group, it satisfies

(i) o(b) is a permutation on the group, (ii) aca=a, and (iii) (aob)oc=(aoc)
o(boc). Under the condition (i), (iii) is equivalent with a fundamental identity:
o[6"?1=0(c)'o(b)o(c). The present author called a binary system satisfying
these conditions a pseudosymmetric set in [2] and [3]. D. Joyce called it a
quandle in [1]. When every o(b) is of order 2, a pseudosymmetric set is called
a symmetric set (or an involutive quandle in [1], or a symmetric groupoid in
[4].) A pseudosymmetric set is called special if it is isomorphic with a pseudo-
symmetric subset of a group (=a pseudosymmetric set in the abovesense).
It is easily seen that a special pseudosymmetric set is isomorphic with a union
of conjugacy classes of some group. Its structure is determined to some extent
by its enveloping group ([3]). A pseudosymmetric set which is not special
is called exceptional by analogy with the thoery of Jordan algebras. The sim-
plest exceptional pseudosymmetric set is a set {a, b, ¢} with o(a)=0(b)=1
and o(c)=1 ([4], p. 72). The structure of general pseudosymmetric sets seems
to be more complicate, and our consideration will be restricted to the transitive
one; a pseudosymmetric set is called transitive when the group of permuta-
tions generated by all o(b) is a transitive permutation group on the set. The
object of this paper is to show a construction method of transitive exceptional
pseudosymmetric sets. In this direction, S. Doro discussed about the existence
of transitive exceptional symmetric sets in his unpublished paper. (See the
remark in the last part of this paper.) For the construction, we need an ex-
tension theory of pseudosymmetric sets, which will be given in 2. Let S be
a pseudosymmetric set and 4 a set (a trivial pseudosymmetric set). We intend
to make A X .S a pseudosymmetric set by introducing a suitable composition.
For (a, s), (b, )4 XS, we consider a composition (a, s)o(b, t)=(c, sot), where
generally ¢ depends on a, b, s and ¢, satisfying the three conditions of a pseudo-
symmetric set. But in this paper we condiser a simple but important case
that ¢ depends only on ¢, s and z. Denote c=a""", z(s, t) is a permutation
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on A. Inorder that A XS becomes a pseudosymmetric set by this composition,
it must satisfy two conditions (1) and (2) given in 2. In this case, we call the
mapping = of SX.S into P(4)=the group of permutations on 4 a factor set.
The pseudosymmetric set 4X .S given in this way is called a null extension
(of 4 by S). (“null” because ¢ does not depend on 5.) We can develop some
formalism on factor sets similar to that of group extension theory. This may
be useful in developing the structure theory, but for the purpose of this paper
we are rather interested in a special factor set. When ¢ is a homomorphism of
S into P(4), let z(s, t)=@(s)"'p(¢). It can be shown that this = is a factor
set. Especially, if S is a pseudosymmetric subset of P(4), we can take the
imbedding mapping as @. In 4, we specialize A={1, 2, 3, 4, 5, 6} and S=the
subset of P(A4) consisting of all permutations of order 2 that move every ele-
ment of 4. We shall show that the null extension 4X.S is a transitive excep-
tional pseudosymmetric set of order 90. To show that it is not special, we
need a criterion for a transitive null extension to be special, which will be given
in 3. Let X=AXS be a null extension. For s&S8, let G,={reG(X)|
(4, 5)"=(4, s)}, where G(X) is the group generated by o(x) (x€X). IfreqG,
it induces a permutation ¥ on 4 from (a, s)"=(a", s). Then, F,= {7|7€G.}
is a group of permutations on 4. The criterion we are looking for is that F,
is a regular permutation group if X is special and if S is an effective pseudo-
symmetric set, i.e., o(s)=3o(f) whenever s#¢. This example can be generalized.
In place of 6, we take an even number m>6, and let A={1, 2, ---,m}. S'is
the set of permutations of order 2 on A4 that move every element of 4. The
null extension 4 XS constructed as above can be shown to be a transitive ex-
ceptional pseudosymmetric set. Thus, we can construct infinitely many finite
transitive exceptional pseudosymmetric sets.

2. Null extensions and factor sets

Let S={s, ¢, -} be a pseudosymmetric set and A={a, b, ---} a set. Let
7 be a mapping of SX.§ into P(4), the group of permutations on 4. When
7 satisfies the following two conditions (1) and (2), we say that = is a factor
set (with respect to 4 and S).

( 1 ) 7Z'(S, S) =1 )

(2) (s, t)m(sot, u) = n(s, u)rw(sou, tou).

Let 7 be a factor set. We define a composition on 4X S={(q, s)|acA4 and
se€S} by (a, 5)o(d, t)=(a"®"?, sot). It can be checked that 4 xS satisfies the
three conditions of a pseudosymmetric set. We call it a null extension (of 4

by S) with the factor set z and denote it by [AXS; #]. We have an example:
Let @ be a homomorphism of S into P(4). Define = by z(s, £)=gp(s) '@(2).
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m is a factor set. Since @ is a homomorphism, we have @(sof)=p(s)op(t)
=o(t)"'p(s)p(¢). Using it, we can check that both terms of (2) coincide with
() *p(t)p(1).

We derive some formalism on factor sets. Let [AXS; z,] and [4XS; 7,)
be nullexten sions with factor sets z; and =, respectively. Denote elements
of [AXS; =;] by (a, s); i=1, 2, and also let (4, s);={(a, s);|ac4}. When
there is an isomorphism f of [4XS; =] onto [AXS; z,] such that f[(4, s),]
=(4, s), for every s, we say that [AXS; =] and [AXS; =,] are equivalent,
or my~m, In this case, f[(a, 5),]=(a®", s),, where 0(s)=P(4). From f[(a, s),°
(b, t)]=fl(a, s).Jof[(b, t),], we can obtain (s, £)0(sot)=0(s)my(s, t), or

(3) s, 1) = 0(5) (s, )0(sod)

Conversely, if (3) is satisfied for a mapping 8 of S into P(4), then z;~=,
as we can see easily. We can also see that ‘““~”’ is an equivalent relation and
hence all factor sets with respect to 4 and .S can be classified to factor set classes.
Also note that if a factor set z, is given, define 7, by (3), and we can check
that 7, is a factor set. Iet &(s, £)=1 for any s and ¢. & is a factor set. When
m~¢&, we say that  is trivial or that [4 X S; z] is splitting. The condition for
n~¢€ is given by

(4) 7(s, t) = 0(s) ~'0(sot)

for some #. Especially, for a homomorphism @ of S into P(4), put =(s, t)=
@(s)"'p(sot). 7 is a trivial factor set. Since @(sot)=gp(s)op(t)=p(t) '@(s)p(t),
we have z(s, £)=[p(s), ¢(¢)] (a commutator). It is interesting to note that if
we use this 7 in (2), we get an identity in a group: [x, y][*’, 2]=[x, 2][x%, ¥*].
Lastly, we define F, for AxS. Let X=A4XS, a null extension, and G(X) the
group generated by all o(x), x€X. If reG(X) and (4, 5)'=(4, ), then 7
induces a permutation 7 on 4 by (a, s)"=(a", s). Let F, be the set of all such
7. It is a permutation group on 4. Suppose that z;~=, via (3). Let F{
be F, for [AXS; =], i=1, 2. We show that FP=0(s)"'F{P4(s). Let X;=
[AXS; z;]. The isomorphism f of X, onto X, induces in a natural sense an
isomorphism of G(X;) onto G(X,), which we denote by g, ie., f(x")=f(x)*"
for x€X, and T€G(X,). Let reG(X)) such that (4, 5s)=(4, s);. Then
(@, $h=(a, s)i. So, fI(@", h]=F[(@ I, and hence (), 5),=(a*®, )=
(a9, 5),, where m=g(T)&F®. Thus, m=0(s)"'70(s), or FP=0(s)"*F{"6(s) as
we asserted.

3. Transitive pseudosymmetric sets

Let X={x, v, -} be a transitive pseudosymmetric set, and let S={a(x)|
xeX}=0(X). S is a special pseudosymmetric set and & is considered as a
homomorphism of X onto S. Corresponding to the homomorphism o, we
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have a coset-decomposition (or a normal decomposition in [3]) of X; X=U X,
where X; is the set of inverse images of an element in S by . From now on,
x; indicate representatives of X;. So, X;={x&X |o(x)=0(x;)}. Every ele-
ment of G(X) induces a permutation on {X;}, the set of cosets. That X is
transitive implies that all X; are bijective each other. We choose a set 4 to
which all X are bijective. Then, X is bijective to 4 X .S, where X; is mapped
to (4, s;) for s;=ao(x;)eS. Through this bijection, we can make AXS
a pseudosymmetric set isomorphic with X. Then, 4X S is a null extension.
The different choice of bijections in the above only leads to an equivalent null
extension. Now suppose that X is special, and let K be its enveloping group
(the group generated by X). We show that 4 is a subgroup of C(KX), the center
of K. If o(x)=0c(y), then x 'zx=y~'2y for every 2 in X hence in K. Thus,
xy'eC(K). So, every element y of X is expressed as y=ux, with ue C(K).
Let N={uesC(K)|ux,eX,}. X,=Nx,, We show that N is a subgroup.
Let u and v&N. Take 7 in G(X) such that x]=ux,. Then, (vx) = v(x]).
Note that G(X) is the inner automorphism group of K. So, (vx)'=vux,€X,,
and hence vucN. In the above, x] '=u"'x,, and hence u"'€N. Thus, N
is a subgroup. We can also show X;=DNx; in the same way. We can take
A=N. Let s=o(x;). We consider F; for our Nx.S. The effect of elements
of F; on N is determined as follows. Let Gy ={reG(X)|X1=X,}. If
TEGy, then 7 induces a permutation 7 on N defined from (ux;)"=u"x;.
F={7|T1€Gy}. For T€Gy, let x{=wx, with w in N. Then, v*=uw. Con-
versely, for any element % in N, choose 7 in G(X) such that x7=wx,. Then
T7eF,. So, F, is isomorphic with NV and is of course a regular permutation
group on N. We have obtained

Theorem. Let X be a transitive special pseudosymmetric set. Then, X
is isomorphic with a null extension NX S, where N is a subgroup of C(K) and
S=a(X). In this case, F, is isomorphic with N and is a regular permutation
group on N.

In the above, we found that every transitive pseudosymmetric set X is
isomorphic with a null extension [4XS; z]. However, even if X is a null
extension itself, i.e.,, X==[4'X S’; =], we can not say that S’ is isomorphic

with S and A4’ is bijective to 4. But if S’ is effective, i.e., S';a-(S'), we can
conclude it. For, let X=[4'XS’; z'] be transitive and suppose S’ is effec-
tive. Then, o(X) is isomorphic with S’. As a matter of fact, the mapping
a[(a’, s')]—s" gives the isomorphism, where a’A4’ and s'€S’. On the other
hand, S=o(X). So, §'==S. Also, (4’, s’) corresponds to (4, s) in the iso-
morphism X ==[4 X S; =], where s’ corresponds to s in the above isomorphism.
So, A’ is bijective to 4. We may replace S’ by S and 4" by A4, and we have
X=[AXS; n"]. The isomorphism X =[4XS; =] gives z'~n=. Especially, if
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X is special, we have X=[NX S; z']=[N X S; =] where z’'~z. Using the last
discussion of the previous section, we can conclude that F, for [NXS; z] is a
regular permutation group on N. We obtained

Corollary. Suppose that a null extension [AXS;x] is transitive and
special.  Suppose also that S is effective. Then, F is a regular permutation group
on A for every s.

4. An exceptional pseudosymmetric set

Suppose that S is a pseudosymmetric subset of P(4) for a set 4. Define
a mapping p of SX.S into P(A) by u(s, t)=s""¢. We have shown in 2 that
[4XS; p]is anull extension. Denote (sot)ou by sotou, etc. It can be shown by
induction that, in [4XS; u], we have (a, s)o(b, t;)o--o(c, t,)=(a’, sotjo-++ot,),
where p=s~"t,---t,. Now we specialize 4 and S as follows. Let A={l, 2,
3, 4, 5, 6} and S=the set of all permutations of order 2 that move every
element of 4. S consists of all conjugates of s=(12) (34) (56) and contains
15 elements. So, the order of 4XS is 90. Denote this [AXS; u] by Xi.
We show that X is transitive and exceptional. First, note that S is transitive
and effective. To show that Xj is transitive, it is enough to show that F| is
transitive. Let #,=(13)(24)(56), ¢,=(14)(23)(56), t;=(12)(35)(46) and ¢#,=(12)
(36)(45). Then, (1, s)o(1, #)o(1, #,)=(1°, sotyot,)=(2, 5), where p=sTtit,=tt,
and 1°=2. We have also (1, 5)o(1, #,)o(1, #;)o(1, s)o(1, £,)=(3, 5). In this way,
we can show that 1 is mapped to any elements by elements of F, and F; is
transitive. Next, we show that X is exceptional. Due to Corollary, it is enough
to show that F| is not regular. We have already shown that (1, s)o(1, #,)o(1, 2,)
=(2, 5). On the other hand, (5, s)o(1, #,)o(1, £,)=(5, s) as we can check. This
implies that there is an element 7 in F, such that #=1 and 5"=5, and hence
F; is not regular. Therefore, X, is transitive and exceptional. It is not hard
to generalize this example. In place of 6 in the above, we take an even
number m>6, and construct X, in the similar way. We can show that X, is
transitive and exceptional.

RemARk. X is actually a symmetric set. However, we do not call it
an exceptional symmetric set. We did not define an exceptional symmetric
set in this paper. Usually, a group is considered as a symmetric set via the
composition acb=ba'h. So, the structure of a group considered as a pseudo-
symmetric set is different from that considered as a symmetric set. For the
latter, see [5].
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