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Introduction

In 1960-61, Constantinescu-Cornea [3] and Doob [6] investigated the
Martin compactification of open Riemann surfaces and obtained the theorem
of Riesz type on the boundary behaviour of analytic maps. Constantinescu-
Cornea extended that theorem in an axiomatic system, where they considered a
harmonic map of a harmonic space satisfying the axioms of Brelot, together with
a resolutive compactification of the space®. In the case of the Martin space,
it seems that the effort to obtain a result concerning fine filters by using their
argument would meet inevitable difficulties. One of the reasons is as follows.
They considered the trace filters consisting of neighbourhoods of boundary
points. A fine filter of the Martin space is not a trace filter. In order to connect
fine filters with trace filters, we have to consider a larger compactification, e.g.,
the Wiener’s one. In the Wiener compactification, however, we know a case
where any Wiener boundary point which lies over a Martin boundary point
and possesses neighbourhoods, whose traces intersect every fine neighbourhood
of the underlying Martin boundary point is not contained in the harmonic
boundary.

The purpose of this paper is to get rid of this obstacle. We shall consider
a compactification of a harmonic space X and filters &, converging to boundary
points x. For a harmonic map @ of X into another harmonic space X’, we
define the cluster set

P**) = N _o(0),
UeZ,

where the closure is taken in an arbitrary compactification X’* of X’. Our
main theorem asserts that under some additional conditions, if the set @*(x)
falls in a polar set of X’* for every point x of a boundary set A4, then there
exists a positive superharmonic function s on X such that

1) Cf. [5], Theorem 4. 10, p. 43.
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lims = 40 for every xe A.

Zs
From this theorem, we may derive some theorems of Riesz type including an
extension due to Constantinescu-Cornea and Doob.

In §1, we list up the hypothesis for harmonic spaces and the notations
which will be used in this paper. §2is devoted to the main theorem and its
proof. Applications of our main theorem yield theorems of Riesz type sharper
than those of Constantinescu-Cornea [5], which are stated in §3. An extension
of the theorem of Constantinescu-Cornea and Doob concerning the Martin
compactification and fine filters can be derived from our main theorem as well.
To see this, we define first the Martin compactification of a harmonic space.
The Martin space may be constructed in various manners®. Here we shall
define it along M. Brelot [2] as we do not need Martin kernels in the following.
The definition of the Martin space and some results are stated in §4. In the
last section, we shall give a theorem of Riesz type concerning fine filters, which
gives another proof of the theorem due to Constantinescu-Cornea and Doob in
the case of open Riemann surfaces.

1. Preliminaries and notations

Let X be a harmonic space in the sense of Brelot, i.e., X is a locally compact
connected Hausdorft space satisfying the axioms 1,2 and 3 of Brelot [1]. In the
sequel, we shall always assume the following:

1) X is non-compact,

2) X has a countable base for open sets,

3) Xe P, ie., there exists a positive potential on X,

4) 1€9Y(X), i.e., the constant functions are Wiener functions [5].

Let X’ be a second harmonic space in the sense of Brelot, which may be
compact. The assumptions for X’ are

1) X’ has a countable base for open sets,

2) X'ePUd, ie., there exists a positive superharmonic function
on X/,

3’) when X'e H— P, i.e., X’ has no positive potentials, there exists
a non-polar subset E’ of X’ each point of which is polar.

Let @ be a non-constant harmonic map [5] of X into X’. In an arbitrary
compactification X’* of X’ we consider a polar set A’.

We denote by X* a compactification of X and A=X*—X. For each
point x& AC A, let &, be a filter on X converging to x. We define

2) Cf.[2] and [10].
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P**) = N o(U)
UeZ,

where the closure is taken in X’*.
Let Y be a subset of X, s be a positive superharmonic function on Y and

E be a subset of Y. We define
(RE)y = inf {v; positive superharmonic on Y dominating s on E}
and
(RE)y = the lower semi-continuous regularization of (RE)y,
ie., (RE)y(x)=lim inf (RF)y(y). When Y=2X, we write simply R¥ instead of
(AR'SE)X. I
2. The main theorem

2.1.

Theorem 1. Let X' have no positive potentials and A’ be a polar set in an
arbitrary compactification X'* of X'.

Hypothesis: 1) there exists a relatively compact domain D’ of X’ such that

D'NA'=¢,
2) there exist a point 2z, of a set E' (described in 3') of §1),

a non-polar compact set F'C D', a positive superharmonic
Sfunction v on X and a positive number o satisfying
a) U'NF’ is non-polar for every neighbourhood U’ of z,’,
b) v is continuous in a neighbourhood of ¢~*(F'),
¢) for each x& A there exists V,= <, such that itgf v>a,

d) R¢7'FD is g potential,
3) @*(x)c A’ for every x= A.

Conclusion: there exists a positive superharmonic function s on X such that

lims = +oo for every x A.

x

To prove the theorem we shall prepare some lemmas.

Lemma 1
Under the hypothesis of Theorem 1, we have a decreasing sequence of compact
non-polar sets {F,'} such that F/CF’" and

RYEO(y) <14 (n=1,2, ),

where y, is a point of X —p~'({2,}).



250 T. IgkeGam1

Proof. It is known that @~ *({2,}) is polar®. Let X=X — @ '({2,/}) and
let {X,} be an exhaustion of X, i.e., X, are relatively compact, X,C X;,, and
UX=X. By the hypothesis 2), a) of Theorem 1, we may take a sequence of
k=1
regular neighbourhoods {D,’} of 2, such that
DI/ =D,
D/DD,,,,
ﬁDv, = {2’0/} ’
v=1

F'ND, = F,” is compact and non-polar.

@.1)

We can find a sequence of integers {v(k)} so that
¢(Xk) r‘l)/w(lz) = 4) (k:l, 2, '")'

In fact, if we have ¢()?,,0)0D_\,’ +¢ for some k&, and for all », then we would
have by (2.1)

¢+ N {p(Xe) D} = (X)) N {20}

which would imply

'2‘0/E ¢(Xko)c ¢(Xko+1) >
i.e.,

o '({z’H N Xk0+1=¥=¢ )
which is absurd.

Next, we shall show that the restriction g of R¢™"#” to X is a potential on

X. o see this, let u be the greatest harmonic minorant of g on X. The u is
bounded on K N X, where K is a compact set of X. Since ¢ *({z,'}) is polar,
u has a harmonic extension on X. The extension is the greatest harmonic

. P
minorant of a potential R *”, Thus #=0.
. . BN op—1 . .
Finally, since R¢ ™" is bounded and harmonic on X,, we have

on Xk.

~ -1 ~
RY "Fvary = HEk
’ ARy

From the evident facts
X I,
Hﬁ‘,‘,’ Ty <H;

and

3) Cf. [5], Theorem 3.2, p. 21.
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lim HX+ = 0

k>0

it follows that there exists an increasing sequence {»(k,)} such that
R¢Ead(y) <14 (n=1, 2, ---).
Thus, {F,’} with F,/=F,", , is the desired one, q.e.d.

Lemma 2.

Under the hypothesis of Theorem 1, we have a decreasing sequence of closed
sets {Q,} such that

0,09 '(F,), where F,/ is the set constructed in Lemma 1,

(2.2) P, = R is continuous,
Do) <1/47.
Proof. Since v is continuous in a neighbourhood of ¢™*(F,’), we have
R¢"F(y,) = inf {R%(y,); o is open and w D@ (F,/)}*.
Thus, by Lemma 1, we have a decreasing sequence {G,} of open sets satisfying

{ P (F,)CG,,

@3) fa(y) <147

We may assume that v is continuous in G,. Let {X,} be an exhaustion of X.
We shall fix # and put

24 { K,= @ \(F,)) m?i

K= @ "(F)N(Xppi—Xp-)  for k>2
and

w, = X,NG,,
(2.5) v, = X,NG,,

op= Xprs—Xp_) NG, for k>3 .

Obviously, K, are compact, o are open, o, DK, (k=1, 2, ---) and
UK, = o™'(F,).

In a sufficiently small neighbourhood ¥V, of each point y of K, there exists a
compact set U, containing y in its interior and each boundary point of U, is

4) Cf. [1], Theorem 23, p. 122.
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regular with respect to the Dirichlet problem on V,— U,®. A finite union W,

of these U, covers K,. Q,= EJ W is closed. From ¢ '(F,))CQ,C G, we have
£=1

R&(y,) <1/4".

We may construct successively O, 20,D50,D+-. It is easily seen

Ro = HF %  in X,—Q,,
where
v on X,NaQ,,
=1 re on 0X,N(X—0,).

Since each boundary point of Q, is regular with respect to the Dirichlet
problem® on X,—0Q,,
lim R¥(s)= lim HF(z) = f(3) = v(3)

25y
2EX-Qn 2EX ;- Qn

at each y=90,,.
This means that p,=R%=R% and p, is continuous, q.e.d..

2.2,

Now, we shall proceed to the proof of our main theorem. We shall fix a
point y, and assume @(y,)&EA’UF’ and v(y,)=1. Let {v,’} be a sequence of
positive superharmonic functions such that

o,/ is defined on X'—F,’,

2.6) lim v,/(y") = + oo for every x’€4’,
Y
v, [p(y)]<1/2",

and let

Ve = {yeX; p.(3)>G/4)-v(y)}
and

VP = {yeX; p.(y)>1/2)-0(»)},

where F,/ is the closed set in Lemma 1 and p, is the function in Lemma 2.

We have

ViosrePnXoreo0,.

Since p,>p,.1 it is readily seen

5) Cf.[9]. Lemma 7.1, p. 439.
6) Cf. [1], Theorem 22, p. 118.
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Vmopy e (z=0, 1).
We define
v on V”NX,

Sn = v (R v{m

RT+(R

. )
. "))x ) on X—V,

min(?%he

In the following it will be shown that
s =21 (u+ 22

fulfills the requirement of Theorem 1.

. (m
(1) o >RIVH R on X—V

=
min(ed, (/4 v))x Ve

In fact, (1/2)-0>p, on X—V{ implies v—(1/4)v>p,/(3/4) on X—V{”. From
2,/(3/4)>RI5” on X we deduce v—(1/4)o>R7” on X—V{, that is, v— R
>(1/9)v>=min (v, @, (1/4)v) on X—V{”. Since o—R7” is non-negative and

superharmonic on X— V7§, we have

x-VE") ) o
min(ot, 17430y XV

_*ngn)2 (R
(2) s, is lower semi-continuous.
The only point in question is the boundary of V§”. Let yedV{, o, be a
regular neighbourhood of ¥ and w=w,—V{®. The function
v on IV{’ Nw,

=R  on B0, N (X— V)

is resolutive for w with respect to the Dirichlet problem. Clearly we have
RIP>He =He  in o.
Since y is a regular boundary point with respect to the Dirichlet problem,
lim ﬁlf H(x) _>_1i131 ,inf f(®)=>v(y).
sew sc0
Thus, we have

Z(nd)

hm 1nf RYo"(x)>2(y),

rex- —(n)
which means
lim inf s,(x)>s,(y)
Ty

sex-v{m
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at each yeolV .
From (1) and (2) we know that s, is superharmonic on X.

B) s(yo) < +oe.
From p,(y,) < 1/4"<1/2=(1/2)-v(y,) we see y,& V{®. Hence,

5a(90) =RI(yp)+min (v, [p(9)], (1/4)0(3,)
< 4/3)p ()0, [y
<(@4/3)(A/4+1/27
and

s <(713) 53 (1423 127 < oo,
Finally, we shall show
() limg s=+-oo for every x A.
Let B= Fj(A N V{) and B be an arbitrary positive number. First, we consider
the case :;e A—B. Then, there exists an integer m so that
2.7 x€A—-V™

(and x€A—V{ for all I>m). Let N be a positive integer so large that
N>(4/a)-B. From the hypothesis of the theorem, there exists V,e <, such
that

(2.8) v>a on V,.
We can find U,e ¥, so that
(2.9) v/op>al4  on U, for n=1,2, -+, N4-m.
In fact, since by (2.6)
’l’irg 0,/ (y) = +oo for every ¥’ 4,
there exists a neighbourhood P’ of 4’ such that
v, >al4 on P’NX’ for n=1, 2, +--, N+-m.
On the other hand, @*(x)C A’ implies the existence of U, <, satisfying
o(U)C P .
From (2.7), we have a neighbourhood W of x such that
wnve =é¢

and naturally
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wWnvy =¢ for I>m.

Therefore we have
s,=>min (v, op, (1/4)v) on W for n>m.
Consequently, in view of (2.8) and (2.9) it follows
S,=>af4 on V.NU,NW for n=m-1, .-, m+N.
If we take W, F, so that W, V,NU,N W, then
s>(a/[)N>B  on W,.
Next, let x< B, then there exist ¥, and U, in &, such that

v=>a onV,
(2.10) ,

v, cp>al4 on U, for n=1, 2, ---, 2N.
If we prove
(2.11) s>QB onany W,e <, such that W,cV, NU,,

the proof will be completed. ~
To prove (2.11), we consider first ye W,— V. Since yeW,—V{® for
I>N,

su(y)=min (v, [@(y)], (1/4)2(y))  forn=N.
By virtue of (2.10) we have
s,(y)=>al4 for n=N-+1, ---, 2N,
then, we conclude
s(y)=pB on W,— V.
If yeW,NV{, then ye W, NV for all n< N, which implies
23 =(1/2)0(»)=(1/2)c  for n=1, 2, -, N,
Thus, we have
s(y)=>pB on W,.NV{, q.ed..

3. Consequences

In this section, we shall give some theorems of Riesz type as an applica-
tion of our main theorem.

Theorem 2.
Let @ be a non-constant Fatou map” from X into X’ and A’ be a polar set

7) Cf. [5], p. 52.
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in an arbitrary compactification X'* of X'. In case X'€ I —P, we assume
further that there exists an open set E’ each point of which is polar. In a com-
pactification X* of X, let A be a boundary set satisfying

o*x)= N p(UNX)cA"  for every x€ A4,
UevU,

where U, is a base of neighbourhoods of x in X* and the closure is taken in X'*
Then, the set A is polar.

Proof. If X’& P the proof is easily carried out. We shall be concerned
with the case X' 4 —P. Let 2’€E'—A’, and {D,’} be abase of neigh-
bourhoods of 2.

Putting

A, = {xe4; p*(x)ND, = ¢},
we have

A= UA,.

n=1

Therefore, in order to prove the theorem it is enough to show that A, is polar.
Thus, we may assume A’ND,/=¢ (the hypothesis 1) of Theorem 1). Let u,
be positive and harmonic in D, and p, be a finite continuous positive super-
harmonic function in D,’ not harmonic in a regular neighbourhood D,” of 2’

(D/C D). Put
Pll = (Rﬁ/’)m'
where K’ is a compact neighbourhood of 2" contained in D,/, and set
0 on X'—D,,
f ={ (p/—H%)u’ onD,.
The f’ is finite continuous and non-constant on X. Further we see that f’
is a Wiener function on X’®. Since @ is a Fatou map f'op is a Wiener

function on X. From a theorem of Constantinescu-Cornea®, except for a
countable set of constants ¢y

Rcf“(r-/)
is a potential, where
F/={x'eX'; f(*)=}.

We note that F,’ is non-polar and compact, and for each point y’ of F,’ the

8) Cf.[5], p. 16
9) Cf. [5], Theorem 2.6, p. 14,
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intersection of every neighbourhood of y’ with F’ is non-polar. We may take
2’ so that &’ F)/
Let V be an intersection of a neighbourhood of 4 with X satisfying

VNg™(FY) = ¢.
The reduced function
v=RY
is continuous in a neighbourhood of ¢™'(F,’) and v=1 on V. We assert that

RY7'Y> is a potential. In fact, since, by hypothesis, 1€ P(X) (see § 1, 4)),
we have

where ¢ is a Wiener potential'®, therefore

lgl <p
for some potential p. Form

we infer
0<142p
and
(3.1) RETTFVORETIEYV 4 2p

The assertion follows from the fact that the last two terms of (3.1) are potentials.
Thus, the hypothesis of Theorem 1 is satisfied by

D/, A, %, F/,v and a = 1.

The filter &, converging to « is the filter of the intersections of neighbourhoods
of » with X. Hence, 4 is polar, g.e.d. .

Theorem 3.

Let @ be a non-constant harmonic map from X into X' and A’ be a polar set
in an arbitrary compactification X'* of X'. In a resolutive compactification X*
of X, let A be a boundary set satisfying

p*(x)= N (UNX)CA  for every x€ A,
UevU,

where U, is a base of neighbourhoods of x in X* and the closure is taken in X'*.
Then, A is polar from inside, that is, every compact subset of A is polar.

10) Cf. [5], p. 16.
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Proof. We shall consider only the case of X' 4 — 2. Indeed, when
X' P, the map @ is a Fatou map and Theorem 3 is reduced to Theorem 2.
Let B be an arbitrary compact subset of 4, and let 2,/ E’'—A’, where E’ is a
non-polar set each point of which is polar. We can find a neighbourhood V' of
B in X* and a relatively compact domain D’ containing z,” such that

(3.2) Ve (D)=¢.

In fact, since 2,/ £ @*(x) for each xE B, there exist an open neighbourhood U’
of @*(x) and an open neighbourhood U,’(2,) of 2, such that

UNT/(=) = &
For some open neighbourhood W, of x in X*, we have
o(W,NX)CU’.
We may take a neighbourhood V, of x in X * so that
V.cW,.

By the compactness of B, a finite set of such ¥V, covers B, i.e.,

N
BC UV, =V.

=1
It is easily seen that
N
D'=n Ualr:;(zo,)
i=1

and the set V defined above satisfy (3.2).
From (3.2), we know

min (R}, R¢7'®?)

is a potential'.

Let F’ be a compact neighbourhood of 2, contained in D’. The funciton
9=RY is continuous in a neighbourhood of @ *(F’). We shall show that
R¢7'F" is a potential. For, as (3.1),

RO <RTI4p,
where p, is a potential. On the other hand,

RY 0 <q = R,
Therefore,

11) Cf. [5], Theorem 4.6, p. 37.
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RS <min (R4 p,, RY)
<min(R¢7'%, RY)+p, .
The hypothesis of Theorem 1 is satisfied by
D', Up*(x), 2/, F/,v and a = 1.
*EB

Thus, B is polar, q.e.d. .

4. The Martin compactification and the Dirichlet problem

4.1. The definition of the Martin space in an axiomatic system was indicated
briefly in [2]. For the sake of completeness, we shall define the Martin space.
We list up the hypothesis for the harmonic space X we shall consider here:

Axioms 1, 2 and 3 of Brelot.

X is non-compact and has a countable basis of open sets,
Xe®,

< 1leP(X),

Proportionality axiom, i.e., potentials with one point support

{y} are all proportional, for every ye X .

Existence of a completely determining domain J§,.

Let S* be the set of all non-negative superharmonic functions and E be the
set of all potentials with one point support. By Hervé [9], we know that under
Hervé’s topology the positive cone S* is metrizable and has a compact base
A4, and ENA4 is homeomorphic to X.

The Martin space X* is defined to be the closure of EN A4 in A Extreme
points of 4 are contained in X*. Every s&S* can be expressed by a regular
Borel measure » on X* (Choquet-Hervé):

59) = | p()an(2) .

Clearly X* is a compactification of X, i.e., X* is a compact space containing
X as a dense open set. A=X*—X is called the Martin boundary of X and
the set of extreme points of the set of all positive harmonic functions # with
u(y,)=1 is denoted by A,. A, is a Gyset. A harmonic function u can be
expressed uniquely by a regular Borel measure p onA;:

u(y) = | w()du(w).

w is called the canonical measure of u. The point of A, is a positive minimal'®,

12) Cf.[11].
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harmonic function w on X with @(y,)=1. For the sake of convenience, the
point of A are indicated by the letter x, whereas they are harmonic functions
in A. We use also the letter w, to emphasize the fact that a point xEA is a
harmonic function on X. Thus, the kernels k(x, y)=w,(y) are defined for
(#, )€ A X X and they correspond to the original Martin kernels'. The
construction of Martin spaces in an axiomatic setting by means of Martin
kernels is given in [10], but we shall not use kernels in this paper.

4.2. Here we discuss the Dirichlet problem with respect to the Martin
compactification.

Theorem 4. The Martin compactification is resolutive.

Proof. In order to prove the theorem, it is sufficient to show that every con-
tinuous function f on X* is harmonizable'®. We may suppose 0< f<1. Put

4= (€ A,; (—1/2)/n< f) <(+1/2)/n}
G, = {YEX; f()<Gi—D)3n} Y {ye X; f(3)>Gi+2)[3n}.
(i=0, 1, ---, n)

*.1) {

By the hypothesis 1€ 9(X), u=h7 is positive and harmonic. The canonical
measure of u is denoted by pu,,:

u(y) = |, w9l
Set
w(@) = | 2O (=01, ).

It is readily seen that RY is a potential for every x A4, therefore the regulariza-
tion of

R% () = || REG)pa@)

is a potential.
From

(3i—2)/3n-[u,— R < fu, <(3i+2)/3n-u;4+R¥ on X
we derive
g, (3i—2)/3n- [u;—R%] sgj fus = fu<3 (3i+2)/3n-u,.+z"=10Rf;.

We have 1=u+gq, where ¢ is a Wiener potential, thus [¢|<p for some
potential p.

13) Cf. [5], Theorem 4.4, p.35.
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From
h¥,<hf=0
it is derived
4.2) b5 <hf.<h}, =0,
hf, >h¥ = —h% =0,

that is, h;=0. Inequalities

h% = h+h% <h%u.,, = h¥ <hF = B <hi+B = hL
imply
hf—hF<hi —hi <3 4/3n); = (4/3n)-u.
Since # is arbitrary, we know that f is harmonizable, q.e.d..

Corollary. For any continuous function f on X*, f and fhi are harmoni-
zable and

hf = hfhlx .
Theorem 5. For any continuous function f on X*, we have
his = (D,Wu,

where u=h{ and 9, , is the u-Dirichlet solution for the boundary function f with
respect to the Martin compactification™.

This is a straightforward consequence from the construction of upper and
lower solutions of the relative Dirichlet problem. We omit the proof.

By Theorem 4, there exists a harmonic measure w, such that

H,(y) = h3(y) = | fda,

for every continuous function f on X*, where H, is the Dirichlet solution for
the boundary function f with respect to X *.

Combining this with the results of Gowrisankaran', we know that for any
continuous function f on A

[ @0, = [ @R

that is,

14) CE. [7], p. 349.
15) Cf. [8], Theorem 6, p. 464 and Theorem 7, p. 465,



262 T. IKEGAMI

dwy(x) = wx(y)dﬂu(x) .

This implies that w, and y, are mutually absolutely continuous for each ye X.
For, since w,(y,)=1 for every x€A,, we can find a constant C >0 so that
1/C <w, (y)=w,(y)|w.(y,)<C for all k& A,. The measure theoretic properties
of boundary sets (for example, the nullity of the exceptional sets) are therefore
unaltered for p, and w,. In view of this fact, we shall denote a harmonic meas-
ure by » without suffix.

Theorem 6. (i) u= h{ has a fine limit 1 dw-almost everywhere on A.
(it) amy positive superharmonic function v has finite fine limit dew-almost
everywhere on A.

Proof. (i) is an immediate consequence of
(4.3) 1—plu<lju<l+plu

and the fact that p/u has a fine limit zero du,-almost everywhere on A'. (4.3)
is derived from

1 = u+gq, where |g| <p for some potential p .
(i1) follows from (i) by a theorem of Gowrisankaran'” and

v = (v/u)-u.

5. The theorem concerning fine filters

In this section, let X* be the Martin compactification of X. We shall
be concerned with the theorem of Riesz type with respect to fine filters.

Theorem 7. Let ¢ be a non-constant harmonic map from X into X', and
A’ be a polar set in an arbitrary compactification X'* of X'. In the Martin
compactification X* of X, to each point x of a boundary set A we assign a filter
S, consisting of all sets E C X such that X —E is thin at x'. If we have

p*(x)= N @(E)YcAd’  for every x4,
Ee9,
then A is of harmonic measure zero, and consequently a polar set.

Proof. We may of course assume ACA, Let p, be the canonical
measure of u=h¥:

u(y) = |, ..

16) Cif. [8], Theorem 2, p. 458.
17) Cf. [8], Theorem 8, p. 467.
18) Cf. [8], p. 456.
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Suppose w*(4)>0. =z, /€E’'—A’, where E’ is a non-polar set each point of
which is polar, and let {U,’} be a system of neighbourhoods of 2,
Putting

A4,= {xcd; p*¥(x)c 4’ U},
we have

A= UA,.

n=]

Thus »*(A4,,)>0 for some n. Let F' be a compact neighbourhood of z,’ con-
tained in U}, and

B = {xeA,; ¢ '(F’) is thin at «} .

It is known B is dy,-measurable'® (therefore B is dw-measurable) and 4, C B.
We define a positive harmonic function v

v = Swa du(x)

R¢7'®" is a potential®. The fine limit of v is 1 dw-almost everywhere on B.
This is an easy consequnce of

o(3) = | Xawm i)

(1) ] fine lim [ | X)) |[un)=Xolx)  dpueac,

fine limu(y) =1 du,-a.e.,
>

where X is the characteristic function of B on A.
Thus the hypothesis of Theorem 1 is satisfied by

U’ A'—IT,’,O,z,,’,F','v and a=1/2.

7”0

Applying Theorem 1 to 4, , we have a positive superharmonic function s on X
possessing the fine limit +-co at almost all points of A4, , which contradicts
with (ii) of Theorem 6. Thus the proof is completed.

OsakaA City UNIVERSITY

19) Cf. [8], Lemma 2, P. 457.
20) Cf. [8], Corollary to Theorem 1, p. 458.
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