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DUALITY ON HARMONIC SPACES

Tervo IKEGAMI

(Received March 13, 1990)

Introduction

Our consideration of duality on harmonic spaces originates from the follow-
ing problem: given a Green function k(x, y), i.e. a system of extremal potentials
{k(x); y=X} on a harmonic space (X, U) in the sense of Constantinescu-
Cornea with additional properties, can we construct a harmonic structure
(X, U*) such that {k¥(y)=Fk(x, y); xX} is a system of Green functions on the
second space? (we call this harmonic space (X, U*) is the dual of (X, U)).
This problem was first considered by R-M. Hervé [9] in Brelot’s axiomatic
setting and then by J. Taylor [19] in the framework of Bauer. Later Taylor
gave an affirmative answer to the problem for general harmonic spaces in terms
of the probability theory.

The purpose of this paper is to give a purely potential theoretic proof of
the problem. We start from assuming the existence of a Green function ap-
parently less restricted to that of K. Janssen [10] though it turnes out to be
equivalent in the last section. Next we form a sweeping system Q*=({u}";
YEV})y, then define U* to be the sheaf of Q*-hyperharmonic functions. In
proving axioms of harmonic spaces, the axiom of convergence and the axiom of
resolutivity are crucial. In the former axiom, the Mokobodzki measure plays
an important role and in the second we use the idea of R-M. Hervé. In the
course of the proof it is revealed that (X, U*) satisfies the Doob convergence
property and later we can find it is also same for (X, U) as was pointed out by
U. Schirmeire [15].

The following two sections are devoted to establish the duality theorem for
the Green function and the measure representation of potentials by Green func-
tions in the dual space. Then it is concluded that the original space (X, U) is
the dual of (X, U*).

In the final section we make several remarks on duality and the equivalence
of measure representation of potentials by Green functions.

An important problem on duality of resolvents and the relation with the
duality theorem of H-cones will be discussed under a more general setting
elesewhere.
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The author wishes to express his hearty thanks to Ursula Schirmeier who
kindly read the manuscript and pointed out some error.

1. Preliminaries

Throughout this article, we use notations in [7] without any reference. Let
(X, U) be a P-harmonic space of Constantinescu-Cornea with countable base,
where U denotes a sheaf of cones of hyperharmonic functions. We assume
that X admits a Green function k(x, y) possessing the following properties:

1) (% y)—>k(x, y): XX X— R, is lower semicontinuous and finite con-

tinuous if x=F y,
2) x—k(x)=Fk(x, ) is a potential such that S(k,)={y} for every yEX,
3) for every potential p on X with compact S(p) there exists a unique

measure g such that p(x):S ky(x)du(y).
We write kﬂ(x)zg k(%)dpu(y) and E¥(y)=h,(x).

Remarks 1.1.
(1) K. Janssen [10] proved that if (X, U) satisfies
i) the Doob convergence property,
ii) (A): every point x X has a neighborhood V(x) such that
Axvin=2X,
iii) (P): the proportionality axiom
then there is a Green function which represents every potential on X by a meas-
ure and the mapping y—k, is continuous with respect to a topology on the
cone of positive superharmonic functions on X.

(2) If ku=kv is a potential then y=v. For, let K be a compact subset
of X and f be a continuous function on X with compact support such that f=1
on K, then the specific multiplication f-ku=~Fk(fu) is a potential and S(f-ku)
is compact. Thus fu=fv, i.e., u=v on K.

3) p(x):S ky(#)du(y) implies that the support of y is S(p).
(4) ku is a potential on X whenever p has a compact support.
(5) if k(x,y) is a Green function then for evrey finite continuous function

g on X which is strictly positive k(x, y)/g(y) is also a Green function.
(6) if (X, U) admits a Green function, then X has no isolated point.

We list up the notations used continuously in the following.

MH*(X)(M#%(X)): the set of positive Radon measures on X (with compact
support)

U,(S+): the set of non-negative hyperharmonic (superharmonic) func-
tions on X.
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C(E): the set of finite continuous functions on E.

C#(X)(C#(X)): the set of non-negative continuous functions on X with
compact support (bounded).
8A4: the boundary of 4.

We use the notations CA=X\4, R4u=R# and Ray— R4,

2. The measure &7.

In [14], G. Mokobodzki considered the smoothing of balayaged measures
and it revealed to be usefull for the consideration of the topology on S, ([1],

[14], [17], [19]).
Let o=C3(X). For every veU, we define

sup ¢
Vo) = g R (x)da .
0
It is easily checked that v, € U,, v, < (sup @)v, thus v, is superharmonic
(resp. potential) if v is superharmonic (resp. potential). For xesupp @ there is
&eM*(X) such that Sﬁ(v)zg vd&%=vy(x) for every v&€U, and supp & C
supp @.

ReMARK 2.1. In the same way the following result is proved: let @ be
a finite continuous function on X such that 0<@<1 and {p<1} is relatively
compact, and let yM%(X) be such that supp uC(the interior of {@=0}),
then we have p* e M*(X) satisfying

n | vq,(x)d,b(x):s v®)dpfx)  VoeU,,
2) supp pfC {0<p<1}.

We call (@, x) is a pair when @&Ck(X) and xesupp @. The family of
measures M= {€%; (@, x) is a pair} plays an important role in the article. For

£9€ ., let consider the function of y: &%(k,)= S ky(2)d £9(2) = S R¥(y)de?(z) =
R*EX(y).

Proposition 2.1. k*&% is continuous on X for every &€ M.

Proof. Let y,—y, We claim that }ll_)rg R®>*k, (x)=RE>*k, (x) if
aF@(y). For, (1) if a<e(y,) then y,E{p>a} for sufficiently large # and
RO>k, (x)=E, (x)—>k,(x)=R¥>*k, (x), since x+y, (2) if a>@p(y,) then
R“’”’kyn(x):S k, (2)de>*)(2) —»Skyo(z)de,‘,“’”’(z):R‘"’”’kyo(x), since supp £

is compact and disjoint with a neighborhood of y,. Also, we can prove that
{R®>*k, (x)} is uniformly bounded in [0, sup @], thus the proposition is proved
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by Lebesgue’s bounded convergence theorem.

ReEMARK 2.2. Let @ be a function in Remark 2.1. Then k*&f is conti-
nuous.

Proposition 2.2. For every compact subset K of X, the family {k*€Z|y;
& € My is total in C(K), where + | x denotes the restrictionon on K.

Proof. We prove that for positive Radon measure A, g on K, if MkE*€%)=
w(k*€?) for every &€& M then A=pu. Since A(E*E%)=\ANM=2)dEL(R)=
ry Iz

sup ¢ sup ¢ sup ¢

S RI>*(x)da, we have g R (x)d o = S RIC¥(x)da. Let yr—
0 0 0

inf (@, £) with t<sup ¢, then

sup ¢
S R (w)d o = S R (x)d et .
0 0

Hence, R$>#(x)=R}>#(x)da-a.e., and thus RCUk)»(x)zRCUk,u.(x) for a funda-
mental system {U} of neighborhoods of x, which implies A\ (x)=Fku(x) and
finally A=y, since kA and ky are potentials on X such that S(AA)=S(ku) C K.

Let {f,} CCg(X) be a countable family which is uniformly dense in Cr(X).
Each f; and f; can be approximated uniformly on supp f, by affine combinations
of k*gf, ie., é c;R*¥e%i (¢,>0, %€ M). We have thus a countable family of
measures ﬂo';ch that

Proposition 2.3.

(1) ﬂo= '{Ilm} CMI-:;(X)!
@) VfeCHXIVE>0pn, u'c My f—(k*u—k*p’)| <& on supp f.

The following property of &% is of fundamental importance in [19], and is
derived from the topology on &,. We prove it without using 7-topology.

Proposition 2.4. Every measure &, of M does not charge on every semipolar
set.

Proof. It is sufficient to prove &%(A4)=0 if A is compact and totally thin.
A:{ﬁ‘p<RAp} for a continuous strict potential p on X. Let {O,} be a

decreasing sequence of relatively compact open sets with N 0,=A4 and 5,=R%p.

Then from the continuity of p it is easily seen that s,=R4p=infs,. Since the
decreasing function of o R®¥>*p(x) admits only countable discontinuities,
g =gz = [*<*d q-a.e., where x*<* is the harmonic measure of {p<<a}.
On the other hand, since HJ¢<*)'=h, where h=H¥<¥ and a'<a, we have
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p<*)(§)> p{?<*)(s) whenever @’<a. From these we conclude that, for >0,
sup ¢ sup ¢
[ sd&&"’”’)dasg ([ s> naa = exs)
n 0
and letting » —0

sup ¢

52(§)2$ ’ (ssdeﬁ,"”’)da — Tim &%(s,) = £%(s)

0 u-»oo

which proves the proposition.

3. The dual sweeping system
Let V be a relatively compact open set. By the property (3) of a Green
function, there exists p}" €M *(X) such that

RV () = | R)du(3).

We note that u}V concentrates in 8V (Remark 1.1 (3))

We form a sweeping system on X, Q*:= {(u¥"),ey; V' is a relatively
compact open subset of X} and define, for every open set U

U*(U) = {u*; locally Q*-hyperharmonic functions on U},

ie., w*eU*U) if and only if #* is lower semicontinuous and lower finite on
U, and for every relatively compact open set V such that ¥ CcU we have
piV(w*)<u*(y) for every yeV.

In the following we shall prove that U*: U— U*(U) defines a sheaf of
cones of functions and that (X, U*) is a P-harmonic space of Constantinescu-
Cornea, which we call the dual of (X, V).

We note that

Proposition 3.1. For every x and for every subset A of X, the function of
¥, k¥(y) and R* k(x) are non-negative and belong to U*(X). Further, for every
compact set K and y,€ X there is u* € U*(X) such that u*(y,)<< oo and infy u*>0.

The first assertion is easily seen from the definition of the sweeping system.

For the second, by the properties (1), (2) of a Green function for every yeK

there is x=x(y)=y, y, with k,(x)=Fk¥(y)>0, hence there is a neighborhood

U(y) of y such that k>0 on U(y). Now the compactness argument implies

the existence of a finite system {x;=x(y;); i=1, 2, .-+, #} and u*( y)="2 kX ()
i=1

satisfies the requirement.
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Proposition 3.2. U*(X) separates points of X.

Proof. For y,, y,€X, y,%y,, let V be a relatively compact open set with
W EV, y,&V. Then there is x& V such that k,(x)% REVE, (x). Setting
uw*(y)=k¥(y) and v¥*( y)=IA{C'Vk,(x) we have
u*(y) = R¥(3n) = k() F Rk, (x) = 0*(7),
wH(32) = hyy(®) = RVh () = 0¥(35)

and thus, w¥*(y,)v*(y2) Fu*(32)v(y) if k,,(x)30. The other case is much sim-
pler.

Lemma 3.1. sup S wiV<<oo for every relatively compact open set V.
revV
Proof. From the same argument as in the proof of Prop. 3.1, we have
sup { S dut’; yeK} < oo for every compact subset K of V.

If the lemma is not valid, we have {y,} CV such that p}’(1)—oco. Above
consideration implies {y,} has no limit point in ¥, and we may assume that
Y., E0V. But this is absurd since in the proof of Prop. 3.1 we can take
x(2) & {y,; n=0, 1, 2, ---} for each zaoV.

Lemma 3.2. Let V be a relatively compact open set and feC(0V). Then
g()=u¥V(f) is bounded and *harmonic on V, i.e., g is continuous on V and
u*V1(g)=g for every open set V, with V,C V.

Proof. First, we consider the case where f=£k*&%|y, for a pair (@, %)
i.e., the restriction of k*¢f on 0V. Then, g(y)=p¥"(f ):S IA{cvky(z)d &(2)=
S ky(2)d(&9)¢V(2). Since supp (€2)CY C 8V U (supp €\V), g(») is continuous on
V. Letting W be open satisfying y,e WCWCV,

(2237 0) = [ REVR, ()€ V() = [ BV (2) = 200

which means that g is *harmonic on V.

Next, we proceed to the general case. Given €>0, by Prop. 2.3, there exist
w1 w2 E M, such that | f—(k*p,—k*u,)<<€ on 0V. By the previous observation
p*¥¥(g’) is *harmonic on V, where g'=Fk*yu,|oy—Fk*u,|oy and g()=p¥"(f) is
*harmonic since it is the uniform limit of *harmonic functions. The bounde-
dness of g is an immediate consequence of Lemma 3.1.

For a relatively compact open set I and x, y&V we define
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(%, ) = k(x, )—RCVE ().

The function of x, g(x,y) is a potential on V for every y&V. The following
lemma admits the existence of ¥*Evans functions.

Lemma 3.3. Let V be a relatively compact open set and y,&V. Then,
for every xEV, there exists a finite continuous w¥ € U*(V) such that

1) w¥(y)<1,

2) if {y}CV, y,—z<dV, limg(x, y,)>0 then lim w¥(y,)=co.

> 1>00

Proof. Letting {V,} be a sequenc of open sets satisfying V,cCV,_,
V=U V, and x€V,, we consider {p,} CC(X) such that 0<¢,<1, ¢,=0 on

n=1

V., @.=10n CV,,,, and define u¥=~k*€?». Then, u¥ is continuous (Remark
2.2) and from f{cvky(x)zpj',"’(k;"), w¥(y)=uk( y)—f{cvk,(x) is finite continuous
and w¥eUXV).

wi(y) = || RO ()da—REVh, (1) <REVok, (9)— RV, (v)

implies lirE w¥(y)=0 and the convergence is locally uniform in V. Thus,
there isu-:l sequence of integers {m(n)} such that wEn<2"* on V,. The
function w;"(y)zi wkwm(y) is clearly finite continuous and belongs to U*(V).
Let {y}CV be ”s;ch that y,—»z€dV, 11112 g(x, y,)>0 and let-llijg wi(y;)<oo.

Then, for sufficiently large /, g(x, y,)=a>0 and y, &V, +1 Where 7y is an
integer such that nya>sup w¥(y,). Now a contradiction w¥(y,)>n,a is derived
1

since g(x, y;)=k(x, y,)—lA{Ckal(x)zw,’,'f(,,)(y,) for every n<m,. We may find
¢>0 so that cw¥ satisfies 1).

Given a relatively compact open set V, let consider a countable dense
subset {x;} of 7 and define w*(y):i (1/2))w¥(y), where w¥(y) is the func-
j=1

tion in the previous lemma. We have therefore w*eU*(V), w*>0 and
w*(y,)<<oo. In view of this function we have

Lemma 3.4. Let feC(0V) and £>0. Then the function *(y)=pu¥"(f)+
Ew*(y) satisfies lim inf 9*(y)> f(2) for every z€0V.

Proof. Fix 20V and consider {y;} CV such that y,—=z. First suppose
that g(x, y;)— 0 for every x&V and prove p}’ —§, vaguely. To see that it is
sufficient to show ¥ (k*&7)—k*&%(2) for every pair (¢, x) such that z€supp @
since the family {k*&%|qy; E4 € M, and zeEsupp @} is total in C(0F). In this
situation it is proved lim RCVk, (£)=Fk, (&) for d&%-almost all . For, if £V
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then REVE, (£)=k, (E) and RCEVR, (E)=k,(£)—g(£, y;) for EEV. Thus we have
lim REVE, (£)=k,(E) for EEV'CV. For E€aV, let A:E}l {REVR, <RCVR,}.

The set 4 is semipolar, then by Prop. 2.4 with our assumption &7(4A U {z})=0,
and REVE, (€)=, (£) whenever E€8V\(AU {2}). As the function REVE, () of
£ is uniformly bounded on supp &% for sufficiently large /, p,’y","(k*e‘,‘,’)z(RCkal)»
Ei(k,)=Fk*E%(2).

Next, suppose that 111_)12 g(x, ,)>0 for some x&V. Then there is x;€V
such that ;lfg g(x;, y)>0. For if &1:11 g(x;, y;)=0 for every x;, then since the

family {g(, y,); I=1, 2, -} is locally uniformly bounded in V for sufficiently
large [ it is equi-continuous, which implies that lim g(x, ¥,)=0 on V. Hence, by
J>o0

Lemma 3.3, we have for suitable M, lim inf 2*(y,)> —M+€ lim inf w*(y;) >
I>o0 I>oo

—M+¢&(1/27) lim inf w¥(y,)=cc. Hence, we have lim inf 2*(y) > f(2) in any
I>o y>z
case.

We can now prove that U*(U) possesses the sheaf property, that is

Lemma3.5. Let U,, U, be open and u|,, € U*(U,) (i=1, 2) then p*¥(u)<u
for every relatively compact open set V with V. U, U U,

For, let feC(0V) with f<u and w* be the function in Lemma 3.4, i.e.,
w*eU*(V), w*>0 and w*(y,)<<oo, where y, is a fixed point of V. Consider
a(y)=u(y)—[p¥"(f)—&w*(y)]. For every yeV, we may find a relatively com-
pact open neighborhood W of y such that WV NU, or WCV N U, In both
cases u¥%(m) <a(y)and lil}’l zinf u(y) 2li1§1 iznf u( y)—lirrylgup [F7(f)—ew*(y)]=

w(2)—f(2)=>0 for every 2=dV. Hence, by Prop 3.1, Prop. 3.2 and [7] Th. 1.3.1,
we have >0 on V. Especially, u(y,)+Ew*(y,)>p¥’(f) this implies u(yo)>
n3) (f) since & is arbitray and w*(y,)<<co, and finally we have u¥ (1) <u(y,).

Here, it is clear that U*: U—-U*(U) defines a hyperharmonic sheaf and
every relatively compact open set is an MP-set with respect to U*. Further
we have

Proposition 3.3. Every relatively compact open set V is resolutive with
respect to U*. The *harmohic measure of V at y is u¥".

In order to obtain the convergence property of *harmonic functions, we
follow the idea of R-M. Hervé [9], Lemma 29.1 and Lemma 29.2

Throughout the following lemmas, let U be an open set, y,&€U and V,
V, be relatively compact open sets such that y,eV,cV,cVcV cU. We as-
sume that V' is connected.
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Lemma 3.6. For every >0 there exists a neighborhood Y of y, such that
YV, and sup {|[k,(x)—REVk,(x)] — [k,,(x)—RE VR, (x)]|; x€ 0V} <& for
yEeY.

Proof. For x=0dV, there correspond a neighborhood U(x) of x and a
neighborhood U(y,) of y, such that x’€U(x) and y€ U(y,) implies |k(x")—
ky(x")] <&/2 and IRV (x")—RCVE, ()| <&/2. For the latter fact, we note that
the family {RCVk,: ye U(y,)} 1s equi-continuous on a relatively compact open
set W such that U(y,) N W=@. The compactness argument derives the result.

Now, let O be a dense subset of U. Then for each x&dV, there is ye
(V\ {x} )N O such that &,(x) 4=Rcvky(x), thus we have a potential {I=§‘_“ k,,, where
y,€(V\{x})N O, fins q>RqCV on dV,. Select ¢>0 so that ¢ inf {q(';c;—RfV(x);
x€0V.} >€& and put p=cq. By the above lemma,
| [k,—REVk,)—[k,,—RCVR, ]| <p—REY  on 8V, for every ye V.
We define:
v, = Rcvk,O—RCka+RfV for every yeY .

Lemma 3.7. v,<k, —k,+p on CV, for every yEY.

This is an immediate consequence of boundary minimum principle (cf. [10]
Lemma 2.2), since s=k, —k,+p—wv, is superharmonic on V\V,, dominates
—(ky—RCka) on V where k,—RCVk, is a potential on ¥ and lim inf s>0 at
every point of 9V.

For every x€ X, let 9/, be a family of relatively compact open neighborhood
W of x such that (1) WcCV if x€V (2) W CV if xV 3) WnV,=¢ if
x€9V, and let W={W,; xX}. Then

Lemma 3.8. o, is W-nearly hyperharmohic for every y€Y, ie., H) =
w¥ (v,)<v, on W for every WEW. Thus 0, U(X).

Proof. It is clear that v, is harmonic or superharmonic on W in the case of
WcV or WCCV respectively. For a delicate case where We 9, and x€oV
we follow the idea of [9] lemma 29.1. Since by Lemma 3.7, v,<k, —k,+p on
OW we have pf(v,)<v,(2) whenever k€W\V. On the other hand, when
2eW NV we define

(v, on awWnV)ynow
H’I:”, on (WNV)NW

Then HY""=HY, ([7]. Prop. 2.4.4) and, since v'<v, by the above observation,
W (o) B < A ()= HE, sy ose)=0,(2).
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Lemma 3.9. There exists a measure v M %(X) satisfying
p¥ <p¥ +v  for everyyeY.

Proof. ©,+R‘Vk,—RCVk, + R Vp by definition, which implies also
ﬁy—kRCVk,:Rcvkyo—}—RCV . Thus 4, is a potential and S(d,) C 9V, hence

d -
d,=Fkn, for some A, €M*(X). Since p=3}ck, (3,€V)RVp(x)=Fn(x),
where v=é cu’. 'Therefore we may conclude the assertion from the equality
i=1
Ayt pfl =l +v.

Proposition 3.4. Let U be an open subset of X and let {hf} be an increasing
sequence of functions in H*¥(U)=U*(U)N[—U*U)] such that g*=sup, h¥ is
finite on a dense subset Q of U. Then g*c H*(U), i.e., the harmonic sheaf H*
possesses the Doob convergence property.

Proof. Let y,&U NQ and let I’ be a relatively compact open neighborhood
of y, such that ¥ U. By Lemma 3.9, there exist a neighborhood Y of y,, a
finite set {y;: =1, 2, ---,d} CQNV and ¢>0 such that p}" <p¥’ 4¢3 p}’
for every y€ Y. For >0 there is an integer n, such that 0<A¥(y,)—h¥(y,)<&
for i=0, 1, 2, +--,d whenever m>n>n,. Then, if yEY and if m>n>n, we have

0<kE(y)—ki(y) = | Gs—md s <| s —rawsy +o 33 | (—ntyd gy
<(1+cd)e .
This implies that g* is the locally uniform limit of {A}}.
As a consequence of the above consideration, we conclude:

Theorem 3.1. (X, U*)is a P-harmonic space in the sense of Constantinescu-
Cornea which satisfies the Doob convergence property.

Proof. We shall check the axioms of the harmonic space.

Axiom of positivity: this is derived from the following fact; for every yeX
and for every neighborhood U(y) of y there is a point x& U(y)\ {y} such that
k¥(y)>0, since k¥ is *harmonic on X\ {x}.

Axiom of Convergence and Axiom of Resolutivity: they are a consequence
of Prop. 3.4 and Prop. 3.3 respectively.

The definition of dual sheaf U* implies Axiom of Completeness. Hence,
it is enough to show that k¥ is a potential on X. Let {X,} be an exhaustion of
X, i.e., an increasing sequence of relatively compact open sets such that X, c X,

and "L=JIX,,=X. Then for every yE X, p¥*(k¥)=R %"k (x)—>0 as n—>oo.

REMARKS 3.1.
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(1) if we denote by (X, U*) the dual harmonic space with respect to the
Green function k(x, y)=Fk(x, ¥)/g(y), where g is continuous and strictly positive
on X, then YU*=U# ([7], Excercises 1.2.3). For, by

[ Eam () = REVE, ) = RER, ()lg () = | Rohbla)lg()d s’ (2)

we obtain d7F" (+)=g(=)/g(y)d u}” (2)-

(2) later (§6), we shall show that (X, U) possesses the Doob conver-
gence property if X has a Green function ([15]), and if (X, U) is a Brelot space
then so its dual (X, U*) is also a Brelot space

4. Duality of Green functions and semipolarity

In this section, we establish a fundamental relation of the duality of Green
functions: for each subset E of X and for every x, yeX

REE (x) = R*ER¥(y).
First we consider a special case where E is open in the above relation.
Proposition 4.1. Let G be an open subset of X and x, yeX. Then
ROk (x) = R*k¥(y) .

Proof. Let x be fixed and consider the function of y: Rk,(x). It is non-
negative and *hyperharmonic on X (Prop. 3.1). Further, by the property of
Green functions, R°k,(x)=k,(x) if yEG. Thus, R (x)=Fk¥(y) for every yEG,
which implies R*¥¢k¥(y) <Rk (x). Similarly we have Rk (x) <R*Ck¥(y).

Remark 4.1. For peMx(X) we have
Rékpu(x) = ku*®(x) ,
R*Ck*p(y) = k*p(y) .
In fact,
Rep() = | [| k() n()1de2() = | RO, ()
= [ Reowr(3)d u(y) = [ BEIE () = [ (@) w2o(5) = Rwr(e)
Similarly we can derive the second equality.
Here we introduce a countable family £, of measures: let
L = {peMi(X); ku is finite and continuous}

and let £, be a countable subfamily of _£ such that
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i) S(k\) is sompact VA E L,
i) VfeCg(X)Ve>0a\', V' e L,| f—(RN —kA\")| <€ on X.
The existence of £, is assured by [7], Th. 2.3.1.

Lemma 4.1. For every relatively compact E of X there is a decreasing
sequence {G,} of relatively compact open sets containing E and such that

(4.1) RERX =Tnf, ROEX VAL,
(4.2) sup, A¥or(X)<<oo vael,.

Proof. Let Ly={\;;j=1, 2,:-}. If k\ is finite and continuous
RERA = inf {RkN; G DE open}
and using Choquei’s lemma ([7], p. 169) there is a sequence {U,} of open sets

such that EcC U, and R’%)\:M We may assume that {U,} is a de-
creasing sequence of relatively compact open sets. Thus we have {Gi; i, j=
1, 2, ---} such that

GiDE, relatively compact, 7, j =1, 2, -+,
REkn, — inf, ROAA, i=1,2, .

Clearly the set G,= N G/ satisfies (4.1). For (4.2), we consider a finite system

i,j=1

{x;; 1=1, 2, ---, N} such that
%k;‘jzc>0 on G,
i=1

Since supp A*¢»C G, for every ALy, by Prop. 4.1,

N

STRE()IN(y) = 31 [ RERE()IN)

i=1 i=1

N

5 [ ROk () () <3 RoAA)S B M) <0

i=1

AFO(X) <

Lemma 4.2. Let {v,; n=1,2, -} be a sequence of measures in M#x(X)
such that
i) supp v,CK for all n, where K is a compact subset of X,
i) {kv,; n=1, 2, ---} is decreasing,
i) v,— v vaguely.
Then kvzm

Proof. Let X. be the one-point compactification of X and feC*(X..).
It is readily seen ([7], Th. 8.1.1.1)
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fho(@) = { o)k, 5)dv,(9)

and f-kv, is non-negative and harmonic on X\supp f. Since, for a compact
set L with L N Supp f=0,

sup { | f(9)k(x, 9)dv,(y); veL}
<(sup {k(x, 3); x€L, ye(supp /)N K} [ f(5)dna(3)< oo

{f-kv,; n=1, 2, ---} is equi-continuous on X\supp f. From iii) we deduce
f-kv,—f-kv on X\supp f, therefore the convergence is locally uniform on
X\supp f, which implies that T-lim kv,=kv ([7], p. 288) and finally kuzﬁk\yn
(7], Prop. 11.2.8). e

REMARK 4.2. After proving Theorem 4.1, we may conclude, under the
assumption of Lemma 4.1, that

A¥Gr < A*E  yaguely for every AE L, .
For, using the same notations as in Lemma 4.1, it is clear that {\*%"} satisfies

the hypothesis i) of Lemma 4.2. Now suppose that A*®*— p vaguely. Since

RA¥Cn(x)=ROnkn(x), {kA*¢7} is decreasing. Hence kvzm =RERA =
kA*E, which implies v=2\*F by the property of Green functions.

Now we prove

Theorem 4.1. Let E be an arbitrary subset of X and x, y&X. Then
REE,(x) = R*EkH(y) .

Proof. From a property of balayage functions it is sufficient to prove the
case where E is relatively compact. Let {G,} be a sequence in Lemma 4.1.
Then the set

A= U m<inf,, ROkN; vE Ly}

is semipolar. We assert that &f»—&7 vaguely for every x€X\4. In fact, if
x&A and AE_L, then inf, ROE\(x) =m=f15kx(x) by Lemma 4.1.
Thus S kad el "—>S EAdEE and the assertion is derived,since {k\; MNE Ly} is total
in Cx(X). Applying Lemma 4.2 to the dual harmonic space (X, U*), k*&;(y)=
lim inf [nll{.n k*eCn(y")] for each x € A, that is RFk(x)= lig\aiynf [inf, Ré"k,/(x)]

>y

./\
for every x€X\4 and yeX. In the same way, letting A'= U {inf, R*"k*p <
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inf, R¥¢nk*y; ue M}, where M, is the family of measurex measures defined
in §2.
R*“"k;“(y):lirp inf [inf, R*¢*k¥(y)] for every yeX\ A4’ and x€ X. Thus,

for x4, yeX we have REky(x)zlirrlx inf [inf, R*¢nk¥(y’)] =m2

R*2k¥(y). And, similarly, for y&A’, x€X we have R*2E¥(y)> REk,(x).
Therefore REk (x)=R*Ek¥(y) whenever x& X\ 4 and ye X\ 4, i.e., the theorem
is proved except semipolar sets.

Next, we shall remove the restriction. Let, for arbitrary x, yEX, u,(x)=
R*ER¥(y) and v,(x)=REZk,(x). The function u, and v, are hyperhar-harmoinc
since u,=kEF*, and u(x)=v,(x) if x4 and y&A'. Now, fix yeX\4' 4,
coincides with v, except the polar set 4, hence REk,(x)=R*Ek¥(y) for every
x€X and yeX\A4'. In the same way, u¥(y)=R**k¥(y)=u,(x) and v¥(y)=
REk (x)=v,(x) are *hyperharmonic and u¥=v¥* except the *polar set A’ thus
u¥(y)=v¥(y) for all y, which proves the theorem.

We conclude this section with the theorem that the sets are semipolar if
and only if they are *semipolar.

Before proceed the problem we remark that the polarity and the *polarity
are same. This is a direct consequence of Th. 4.1.

To prove the theorem, we introduce some notations and lemmas that were
considered by Talyor [18]. For a set E and u€ U, (X), let (RE)’u=u, (RE)u=
REy and (REY M u=RE[(RE) 4] for j >1. Then:

Lemma 4.3. ([18] Prop. 4.7.) Let B be a relatively compact and totally
thin. Then, for every ucU.(X) which is bounded on B there exists {B,; n=1,
2, -} suchmthat

B= U B, and lim (R2#) u = 0 for every n.
u=1

jroo

Proof. Let p be a continuous strict potential on X and let w=RZu+p.
The function  is finite and R#u<w, thus (R®’#<RPw. On the other hand,
REw<RPu{REp<RPu-+p=w, since B is totally thin and p is strict. Now let

B,={x€B; R2w(x)<(1—1/n)w(x)}. We have clearly B= °L;J B,. By induction,

(RE*R8)/w < (1—1/n)'w, which implies (RZ»)**u < (RERE)1RE(REPu <
(RBRE)w<(1—1/n)’w. This completes the proof since {(RB*)/u;j=1, 2, -}
is decreasing.

For the simplicity of notations, we write <\, f> instead of S fdx. By

Th. 4.1 and by induction, we can easily prove:

Lemma 4.4. For A M (X), AC X and for every integer n we have
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Ny (RARp) = py (R¥)R¥A) .
Theorem 4.2. Semipolarity coincides with *semipolarity.

Proof. We prove that a semipolar set 4 is *semipolar. The converse
is similar. We may assume that 4 is relatively compact and totally thin. Let
{a;; i=1, 2, -~} be dense in X, {W;; j=1, 2, ---} be a base of relatively com-
pact open sets for the topology of X. We consider pairs such that ¢, W;.
They form a countable family of pairs {(2,, V,); n=1, 2, ---}. Fix a relatively
compact open set G with ACG. Since kefﬂcv"zRCV"k,” is bounded on G for
each pair (2,, V,), we may find a sequence {c,} of positive numbers such that

i‘, c,,Ej‘”CV"(X)< oo and i} c,,kEiCV"SM <oo on G.
n=1 n=1

Letting ,u,*=é c,,&icv", we have ku*eU,(X), and by Lemma 4.3, there is
{4,} satisfying A= GA,, and lim (R4*)’ku*=0 for all n. The proof will be
n=1 jroe

completed if we show that A, is *semipolar. From now on we fix 4,. Itis
easily seen that there exists A& M x(X) such that A, ku*)><<co and F*A>0 on
A. Putting wf=(R*4)k*\ and define w}=inf; w¥=limw}. We claim that

w¥=0; for w¥ is nearly *hyperharmonic and, by Lemma 4.4,
<[L*, w;l\‘> = lim </"*) w;k> = lim (), (RA”)jkl"*> =0,
jroo oo

that is, <E:,CV", w¥>=0 for every n. If we consider a subsequence {(2,(m> Vaim);
m=1, 2, -} of {(z,, V,)} so that 2,,y=y and V,q,, tends to y, we have

w¥(y)=lim <8;l<CV,,<,,,)’ w¥>. Thus we obtain #%¥=0 on a dense subset of X,
m-»oe

hence w¥=0. The fact that {w¥>0} = {w¥>w¥} is *semipolar implies 4,N
{w¥ >0} is *semipolar. On the other hand, since we have w}¥=R*4syw¥ on 4,
and w¥, , =R*4w¥ B.=A4,N {wf=0} N {w}f,<wf} is *semipolar. On account

of A, N {w¥=0}= GB,-, A,=[{w¥>0} N4,]N DOB,, is *semipolar.
j=0 n=

5. The bidual

In the previous sections we have developed the duality theory of harmo-
nic spaces, that is, given a Green function k(x, ) on a harmonic space (X, U),
we can construct a dual harmonic space (X, U*) such that the function k(x, y)=
k¥(y) of y is a *potential with carrier {x} for every x€X. In this section we
prove that k¥ satisfies the condition 3) of Green functions. Thus we may
consider the dual of (X, U*), and it is revealed that this bidual coincides with
(X, U).
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To this end, we follow the idea of [19] to make *potentials more restrictive,
which corresponds to consider a quotient sheaf of the original U*.

Proposition 5.1. ([19], Prop. 1.5) There exists a strict positive g, C(X)
such that k(x, y)=k(x, y)/g/(y) satisfies, besides 1)~3) in the definition of Green
functions,

4) there is a measure nE M*(X) with k*p=1,
5) E*peCyX) for every u€ M,.

The proof is carried out as in [19]: so we only sketch the outline. Since,
by Prop. 2.3, every continuous function with compact support is approximated
by the difference of *potentials on the support, there exists o & M, such that
k*ac>0 on a given compact set. Hence, letting {X,} be a compact exhaustion
of X, we may obtain ¢,>0 and o, ¥, satisfying c,o,(X)>1/2" and 0<c,k*c,

<1/2"on X,. Let p,ozi ¢yo,.  On the other hand, for each ;€ M, there is
v;EM*(X) such that k*:leC(X) and k*y;€o0(k*v;). We select 5;>0 so that
2 b} (sup {k*v;; X;})<oo, i biv(X;)<oo and biT'<b}; and then let vo=§ biv;.
:I_‘lhe measure 7= o+, ané—tlhe function gy=Fk*y are the required. .

Corollary 5.1. For each compact K there is u& M, such that k*peCy(X)
and k* >0 on K.

In the following, we assume that Green functions k(x, y) satisfy
1) lower semicontinuous on X X X and continuous off the diagonal,
2) x—>k(x, y) is a potential on X with carrier {y} for every yeX,
3) every potential p possessing a compact carrier can be represented

uniquely by u&M*(X), i.e., plx) = | k(x, )dn(y),
4) there exists nE M (X)) with k*y( y)=s k(x, y)dyn(x)=1,
5) k*pneCyX) for each pe M,.
We note that 1 is *superharmonic.
Lemma 5.1. Let y&M™*(X) with u(X)<<oco, then ku is a potential on X.

Proof. We prove first that RCUk,u, is continuous on U for every relatively
compact open set U. Let x,& U, x;—x, and let W, I be open such that x,&
wWcWcvcVPcl.

RVkp(@) = | REUR,)dn(y) = | REUR,@dn(r)+ |, RERx)du().

Let f( y)=RCUky(x,-), Jj=1, 2, -, and let each term of the last integrals be u(x)
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and o(x) respectively. It is trivially seen that f;(y)—f,(y) for every y. It
is also easily seen that sup; (sup {f;(¥); yEV})<<co. As the remaining
case, sup; (sup {f{(y); yECV})<sup; (sup {k,(x,); yECV)})=sup; (sup {k¥(y);
YECV}), since R¥EE=Fk¥ and sup; (sup {k¥(y); y€0(CW})<oo in view of
1€U*(X). Thus the Lebesgue convergence theorem is applied to obtain
v(x;) — v(%,) and u(x;)—u(x,). The remainder of the proof is routin, i.e., RCka,
is harmonic in U and R“Eku—0 when the compact sets K tend to X increasingly.

ReMARK 5.1. Above proof shows also that ky is a potential if it is finite
and superharmonic, and under the assumption that 1 is superharmonic, if
w(X)<oo then k*y is a *potential.

Let F={k*c%; &= M} and A be the family of finite linear combina-
tions of &F. Suggested by the proof of [19], Th. 2.5, we have

Lemma 5.2. ] is uniformly dense in Co(X).

Proof. Let &£ M. Then K=supp &% is compact and k*&7 is finite con-
tinuous on X. By Cor. 5.1, there is a measure o such that k*o>k*&? on K and
k*ac=Cy(X). Further k*a>k*E% since k*€% is a *potential which is *harmonic
on CK and k*c € U¥(X). Hence k*e2€Cy(X). To prove the assertion of the
lemma, let X.. be the one-point compactification of X and let H= {u*+a;
u*eJ, a is real}, where all functions of (A are defined to be 0 at the infinity
co. Suppose uy, p;EM¥(X.) and py=p, on H and let pi=p;| X, pi'=p;l (=)
(=1, 2). Then O0=pi'(W*)=ps’'(u*) for every u*A. Thus, for u*eJ,
pi(W*)=ps(u*). We have, in particular, <{&%, kul> = ui(k*&%)= uj(k*&%) =
&%, ku%) for every i M. It follows that kui=Fkuj, thus we may conclude
that ui=uj on account of Remark 1.1 (2), since, by Lemma 5.1, kui and
kuj are potentials on X, pi(a)+ pi(a)= p(a)= pa)= uj(a)+ u’(a) for
real o implies pi’=pu%. Thus p, = u, which is just to say that the set H is
uniformly dense in C(X.). In particular, for f&€Cy(X) and for £>0 there is

f*€H such that | f—f*| <€ on X... Since f* is of the form }:’:} c;uf+a, where

wfed, and f(m)zf} c;u¥(o0)=0, this means |a|<& and |f—zm‘, c;uf|<2¢e
on X. = =

Approximating functions of a uniformly dense countable subfamily of
Cy(x) by functions in A, we can obtain a countable family of positive measures

{i c; &%}, which is denoted by (M, again since there is no serious confusion.
Let HMy={u,} and, select ¢,>0 so that ;{] €y in(X)<< oo and 2 ¢, sup (k*p,)<oo,
we define pzi ooy and V*(y, dx)=k¥(y)d p(x).

Proposition 5.2. p*=V*1 is a bounded continuous strict *potential.
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There exists a sub-Markov resolvent V*=(V¥) such that V§=V* and
Ey«=U¥(X), where Eys is the set of V*-excesseive functions. Further V*fe
CoX) if fEB(X) (i.e., f is a bounded Borel function on X).

The only essential part to be proved is that p* is a strict *potential. The
other assertion is a consequence of the theory of balayage (cf. [3]), II. Th,. 7.8).
It is clear that p*=k*peCy(X) and p* is a *potential. To show that p* is
strict, let, A, vEM*(X) such that M(u*)<p(u*) for every u* e U¥(X) and
AMp*)=v(p*)<<oo. From these relations it follows that <\, k*pu,>=<v, k*pu,>

for all n. In fact, A(p*)— S [ g ()du(dn) = |1 S k() dN(9))d ()=
i IA>=3 i INS=3 €0y K, > < S 000, B > =0(p¥)=M(p¥).  Thus
we have (n, p>=<v, @) for every pEC(X), i.e., A=v.

Lemma 5.3. Let {o,} be a sequence of measures in M*(X) converging to
oo vaguely. If there exists c>0 and a finite system {x;; i=1, 2, ---, N} of points
N
such that k*a,<ck*(X €,) for all n, then lim supS pda,,gg pda, for every finite
i=1 npoo
continuous potential p on X.
Proof. Let p be a finite continuous potential. Then there is a finite
continuous potential p, with po(p,) ([7], Prop. 2.2.4). Thus, given £€>0

there is a compact set K such that p<&p, on X\K. Consider o= x(X) such
that 0<@<1 and =1 on K. It is trivially seen that

lim | ppdo, = | ppdos<| pda,.

n»

On the other hand, S (1—¢)pda,,ss( . ,pda,, <é& Splda,,sec ﬁpl(xi); for,
¢<1 i=1

let {g.} be a sequence of potentials with compact carrier and tends to p, increa-
singly (e.g., ¢=RZ*»p, for a compact exhaustion {X,} of X), and let g,=kv,,.

Then <oy, gud>—=<vms K*a,><clm, k*(gj{ &) =c i () <c f‘, p(x). Thus,

we have
. N
lim sup Spdcr,, < gpdo'o—f-&‘ ,?.-:Px(xi) s

and, since & being arbitrary, we completes th proof.

Proposition 5.3. If g* is a *potential with compact carrier K, then there
exists a unique measure T&MY(X) such that g*=Fk*r, i.e., kRE(y)=Fk(x,y) is a
Green function of (X, U*).

Proof. First, we restrict ¢ ourseleves to the case where g* is bounded. Let
G be a relatively compact open set with KCG. Then it is clear that R¥¢g*—=g*.
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Since ¢*€ Ey+, ¢*=sup, k*s,=lim k*o,, where o,=f,p and f,=ng*—n?V }g*.
n-»oo
We may suppose that suppo, C G, for otherwise since o, E A consider o instead
of o,. There exists a finite system {x;;7=1, 2, .-, N} of points such that
k*8>0 on G, where 3:% &.. We then select ¢>0 so that ck*§>sup ¢* on G.
i=1
Let E be a relatively compact open set with GU {x;; i=1, 2, ---, N} CE and let
kA=RE1, then
ou(G) <oy, RAY = O\, k¥o, > <N, D<A, k¥8> = <8, IAY

=c§}k7\(x,.)<oo, n=1,2, .

Therefore, there exists a subsequence of {o,} which is convergent vaguely to
g, We denote this subsequence by {o,} for simplicity. Then it follows from
the lower semicontinuity of Green functions

Ko <lim inf B*o, = g* .

n>ro

On the other hand, by Lemma 5.3,

lim sup S pdo, < S pd o, for every finite continuous potential p .

n->

Fix ye X, and consider seqeunce {p;} of finite contnuous potentials with com-
pact carrier, tending to k, increasingly. Then, since g pida, =<\, k¥a,) is

increasing, where p;=k\;

7*(y) = lim | k,(9)do,(x) = sup, | k@)do,(x) = sup, sup; | psdo,
== sup; sup, SpjdanSSUP, SP,-d oo = k¥ay(y) .

Hence, we have ¢*=~k*a, with supp o, S(q*).

For a general case, let G be as above. The relation q*:R*‘Eq*:H::cc on
CG with the fact that 1€U*(X) implies ¢* is bounded on X\G. Letting
M=sup {¢g*(y); y& G}, for n>M we define g¢F=inf(¢g* n). gFf is a
bounded *potential with S(¢¥)CG. Thus, by the previous consideration, there
is 7,& M*(X) such that ¢¥=Fk*r, and supp 7,CG. Itis trivial that g¥ 1 ¢* and
A={g¥*=0o0} is a *polar subset of K. As usual, we may find a finite system
{yp +++, yar €X\4 of points and ¢>0 satisfying ¢ ﬁ k¥(y,)=M for every xEG.
The inequalities =

M (X)< [ ¢ SR p)an(x) = ¢ T hrr(p)<e Sa(p) <o
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imply that the total mass of 7, is bounded. Then we may select a subsequence
{r7} of {r,} tending to 7 vaguely. Itis evident
k*r<lim inf k*, = ¢* .

n>oo

Let {p;} be as above and let p=Cx(X), 0<p<1, p=10n G. Since

<Ttln P1> = <T£) Pi ¢>+<Ti/ls P1(1—¢)> - <T’ Pj¢>£<’r7 PJ>

we have as in the previous case lim k*r, <k*r.

Finally we shall prove the unicity of 7. Suppose that g*=Fk*r=Fk*r’ for
7, 7' €M*(X) with compact support. It follows then

{ry A = 0 RE7D = O\, R¥D = {7/, R\ vaeM*(X).
Let p=Cx(X). Since for each €>0 there exist A, AEM ¥(X) such that 0<
RA—EN <p<kX—EkMN' & we have
[<7, @>—<7', @) | = [<m, RA—RN'+4r>—<7", EA—RN 44|
<éE(X)+7'(X)],
where Yy»=@—(kA—kA’). This concludes r=7".

Coming back to the original difinition of Green functions (§ 1), in view
of Remark 3.1 (1), we have proved that k*(x, y)=Fk(y, x) is a Green function of
(X, U*), ie.,

1*) (%, y)—k*(x, y) is lower semicontinuous and continuous if x=y,

2%)  y—>k¥(y)=Fk*(y, x) is a *potential on X with carrier {x} for every

xeX,

3*) for every *potential ¢* with compact carrier there exists a unique

Tr&M*(X) such that ¢¥=Fk*r.

Hence, we can construct the dual (X, U**) of (X, U*), that is the bidual

of (X, U). In view of this bidual we obtain

Theorem 5.1. (X, U**)=(X, ).

Proof. The hyperharmonic sheaf U** is defined by a family of sweep-
ings {u¥*; Vis a relatively compact open set, x&V}. The balaged function
can be expressed by

R¥CVRE() = [ B2 () = Rh ) = [ @ dul (1) = [ K G)ul(a),
which implies that p¥*V=y! by 3%).

6. Consequences

In this section we give several supplementary remarks. Some of them
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contain the known results.

Proposition 6.1. Suppose that there is a function k(x, y) satisfying 1), 2), of
the Green function in § 1. Then 3) is equivalent to the following :
3") for every potential p on X there exists a unique measure w such that p(x)=
ku(x),
3") for every continuous potential p on X there exists a unique measure y such
that p(x)=Fku(x).

Proof. First we consider the measure representation.

3)=3'): let {U,} be a locally finite open covering of x consisting of
relatively compact open sets and {f,} be the decomposition of the unity cor-
responding to {U,}, i.e.,

anCK(X)s ngnsly SuPanCUm ifn =1.

Now since the specific mutiplication f,+p is a potential with compact carrier,
there is p,&M*(X) such that f,-p=Fkpu, and supp p,=S(f,-p)supp f,<U,.

We define p,:i} w,€EM*(X). Then p=kyu. For, let ;‘zﬂzi w; and f,,zéfi.
n=1 i=1 i=1
We have ku=sup, k@, and f,-p=(21))-p=2 (fi*p) =) ku; = km, Hence,
i=1 i=1 i=1

V k@,=1-p=p since sup, f,=1 ([7], Th. 8.1.3) and p<ku. On the other hand,
kg@,< p implies ku=p.

3")=3") is trivial.

3")=3): let p be a potential with S(p)=K is compact, U be a relatively
compact open neighborhood of K and let {f,} CC#(X) such that f, increasingly
tends to ply. Then it is easily seen that Rf, is a continuous potential with

S(Rf,)cU and Rf, 1 p. Thus, by the assumption, there is u, & M*(X) such
that Rf,=kpu, and supp p,CU. The next step is routin: we may find ¢>0 and

a finite system {x;; i=1, 2, ---, N} of points such that p(x;,)<<ec and ¢ EN} k¥>1
i=1
on U. Since p,(X)=p(0)<c EN} p(x;)<<oo for all n, {u,} has a subsequence
i=1

convergents to u vaguely. We suppose u, —pu for simplicity. Then supp pCU.
Recall that k*€% is finite continuous on X, where &7 is the measure defined in
§2. Then,

<&, pp = lim <&, kp,» = lim<p,, k*€2) = {p, R*€7> = <&, ku

for every pair (@ ,x) implies p=Fkpu.

For the unicity of measures we follow [8], [4], [11]. The crucial point is
the following: if kA=0 for A& M *(X) then A=0. This is a consequence of
a property of Green functions: for every y& X there is x& X such that k,(x)>0.
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REMARK 6.1. (1) when 1 is superharmonic, under the assumptions 1), 2) of
Green functions k(x, y), the property 3) is equivalent to the following ([11],
[15]): '

there exists a sub-Markov resolvent V=(V,),2, and a measure A€M *(X)
such that

(i) V, is proper,

(ii) the family of V-excessive functions coincides with U (X),

(i) Vafte)=| Aoany)  vfeB D).

(2) in [12], F-Y. Maeda investigated the Dirichlet integral and energy of
potentials on harmonic spaces with adjoint structure. In the starting point he

assumed five properties of Green functions (G0), (G1), (G2), (G*1) and (G*2)
but we can observe that (G*1) and (G*2) are superfluous.

As a consequence of the observation in § 3 and § 4, we have an important
result which was obtained by Schirmeier in a different context [15].

Proposition 6.2. If a harmonic space (X, U) has a Green function, then
(X, U) has the Doob convergence property.

Hence, when (X, U) possesses a Green function, the topoloyg T defined
in the vector space [S] formed by differences of two positive superharmonic
functions coincides with the topology of graph convergence and also with the
Mokobodzki topology T, i.e., for {s,} CS., s,—s(T) is defined <&, s,>—
&%, s> for every €& M [16]. As an easy consequence, we have

Corollary 6.1. k, converges to k, with respect to the topology T if and

only if y,— ¥,.
For, k, —k, (T) is equivalent to k*&5(y,)=<&%, ky, >—><E&%, Ry >=k%(y0), this
is equivalent to y,— vy,, since k*&% are continuous and separate points of X.

Now we consider the case where (X, €U) is elliptic ([7], p. 66).
Proposition 6.3. If (X, U) is elliptic then the dual (X, U¥*) is also elliptic.

Proof. X has a base of connected, relatively compéct open sets ([7], Th.
10.1.1). For every open connected set V, V,= 7 is also open connected and
V,=V,, which implies 87,=8V,. Thus we have a base 9= {V'} of connected,
reltively compact open sets with 8V =98V. The sweeping ((13"),er)ye 9=
((ETCV)J,EV)VG g is an elliptic swepping system on (X, U*). For, suppose, on
the contrary, that there exist ;€9 contained in a connected set and yE V, such
that supp p}"1poV,=8V,. Let A=0V \supp p¥" and x,€ 4. As a function

of x, RCVlky(x)=S k¥(2)du}"1(2) is continuous at x,. This is an immediate
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consequence of Lebesgue’s convergence theorem, since x, € supp p¥*"s. We
may find a connected open neighborhood W of x, so that Rcvlk, is conti-
nuous on W. Then, WNCV,%¢ and RCVk,=k, on CV,. The function
k:,——RCVk'v is a non-negative superharmonic function on a connected open set
U=W UV, and k,—REVik,—0 on WNCV,. This derives a contradiction that
k,=RC"ik, on V| ([7], Prop. 3.1.4).

Collorary 6.2. If an elliptic harmonic space (X, U) has a Green function,
then (X, U) is a Brelot space.

In fact, as is pointed out in Remark 1.1, X has no isolated point. By a
theorem of Constantinescu-Cornea ([7], Prop. 3.1.4), an elliptic space has a
base of regular sets. The Brelot convergence property is derived as in [2],

Th. 1.5.6.

Collorary 6.3. If a Brelot space (X, U) has a Green function then its dual
(X, U*) is also a Brelot space.

For, every Brelot space is elliptic ([7], Th. 3.1.2) and (X, U¥*) is also elliptic.

Finally we consider the case (X, U*)=(X, U). The following result was
obtained by Schirmeier by using the fine topology [15].

Proposition 6.4. If the Green function is symmetric, i.e., k(x, y)=Fk(y, x),
then (X, U) is a Brelot space.

Proof. We prove that (X, U) is elliptic. Suppose, on the contrary,
there exists y,&X and a base of connected neighborhood {V} of y, such that
V=08V and supp 85;11:%:61/. Fix one of them, say V, and x,&8V \supp EgV.
As in the proof of Prop. 6.3, we may find a connected open neighborhood U(x,)
of xy so that xp-——kyo—RCkao is non-negative superharmonic on U=V U U(x,).
The set F=UN[p=0] is an absorbent set of the space U and @=+F=U.
Thus, there is a point 2, 0F NU. Now let W be an open connected neigk-
borhood of 2, with WC U. The set W N F is an absorbent set of the space W.
For yeW\F and for any neighborhood V() of y such that V'(y)CW\F, we
have "RV® p =0 on W N F, where pyzky—RCka. On the other hand, since
P, is a potential on W, by the minimum principle, 2,="R"®p . Thus p,=0
on WNF for every vEWN\F, ie., p,(2)=0 for every z&W N F and for every
yeW\F. The lower semicontinuity of p, implies p,(2)=0 for every x€W N F
and yeW\F NW. In particular, we have p,(2)=p,(y) =0 for every ye
W\FNW. While, for :&W N F, p.(2)=p.(2)=0 since 2 & W\FNW.

Hence, we have a contradiction p, =0 on W.
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