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Introduction

Our consideration of duality on harmonic spaces originates from the follow-
ing problem: given a Green function k(x,y), i.e. a system of extremal potentials
{ky(x)\ y&X} on a harmonic space (X> HJ) in the sense of Constantinescu-
Cornea with additional properties, can we construct a harmonic structure
(Xy HJ*) such that {k*(y)=k(x, y); x&X} is a system of Green functions on the
second space? (we call this harmonic space (X, cϋ*) is the dual of (Xy

 CL7)).
This problem was first considered by R-M. Hervέ [9] in Brelot's axiomatic
setting and then by J. Taylor [19] in the framework of Bauer. Later Taylor
gave an affirmative answer to the problem for general harmonic spaces in terms
of the probability theory.

The purpose of this paper is to give a purely potential theoretic proof of
the problem. We start from assuming the existence of a Green function ap-
parently less restricted to that of K. Janssen [10] though it turnes out to be
equivalent in the last section. Next we form a sweeping system Ω,*=({μfv;
y&V})V) then define *U* to be the sheaf of Ω*-hyρerharmonic functions. In
proving axioms of harmonic spaces, the axiom of convergence and the axiom of
resolutivity are crucial. In the former axiom, the Mokobodzki measure plays
an important role and in the second we use the idea of R-M. Hervό. In the
course of the proof it is revealed that (X, ^U*) satisfies the Doob convergence
property and later we can find it is also same for (X, HJ) as was pointed out by
U. Schirmeire [15].

The following two sections are devoted to establish the duality theorem for
the Green function and the measure representation of potentials by Green func-
tions in the dual space. Then it is concluded that the original space (X, ΊJ) is
the dual of (X, <U*).

In the final section we make several remarks on duality and the equivalence
of measure representation of potentials by Green functions.

An important problem on duality of resolvents and the relation with the
duality theorem of if-cones will be discussed under a more general setting
elesewhere.



94 T. IKEGAMI

The author wishes to express his hearty thanks to Ursula Schirmeier who
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1. Preliminaries

Throughout this article, we use notations in [7] without any reference. Let
(X, HJ) be a P-harmonic space of Constantinescu-Cornea with countable base,
where HJ denotes a sheaf of cones of hyperharmonic functions. We assume
that X admits a Green function k(x, y) possessing the following properties:

1) (x> y)""*Kχy y)'• XxX-+R+ is lower semicontinuous and finite con-
tinuous if xΦy,

2) x->k(x)=k(x, y) is a potential such that S(ky)— {y} for every j / G j ,
3) for every potential p on X with compact S(p) there exists a unique

measure μ such that^>(#)=\ ky(x)dμ(y).

We write kμ(x)=\ ky(x)dμ(y) and kf(y)=ky(x).

REMARKS 1.1.

(1) K. Janssen [10] proved that if (X, HJ) satisfies
i) the Doob convergence property,
ii) (A): every point x&X has a neighborhood V(x) such that

iii) (P): the proportionality axiom
then there is a Green function which represents every potential on X by a meas-
ure and the mapping y—*ky is continuous with respect to a topology on the
cone of positive superharmonic functions on X.

(2) If kμ=kv is a potential then μ=v. For, let K be a compact subset
of X and / be a continuous function on X with compact support such that / = 1
on Ky then the specific multiplication f kμ=k(fμ) is a potential and S(f kμ)
is compact. Ύhusfμ=fv, i.e., μ—v on K.

(3) p(x) = \ ky{x)dμ(y) implies that the support of μ is S(p).

(4) kμ is a potential on X whenever μ has a compact support.
(5) if k(x, y) is a Green function then for evrey finite continuous function

g on X which is strictly positive k{x, y)/g(y) is also a Green function.
(6) if (X, *U) admits a Green function, then X has no isolated point.

We list up the notations used continuously in the following.
M+(X)(Mκ(X))'- the set of positive Radon measures on X (with compact

support)
CU+(S+): the set of non-negative hyperharmonic (superharmonic) func-

tions on X.
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C{E): the set of finite continuous functions on E.

Cκ(X)(Ct(X))'> the set of non-negative continuous functions on X with

compact support (bounded).

dA: the boundary of A.

We use the notations CA=X\A, RAu=RΛ and RAu=RΛ.

2. The measure Sφ

x.

In [14], G. Mokobodzki considered the smoothing of balayaged measures
and it revealed to be usefull for the consideration of the topology on S+ ([1],
[14], [17], [19]).

Let φ^.Ct{X) For every v^cU+ we define

vφ(x)= \SapφRy>*\x)da.
Jo

It is easily checked that Vφ&ΊJ+y vφ<(mp φ)v, thus vφ is superharmonic
(resp. potential) if v is superharmonic (resp. potential). For jcφsupp φ there is

ί ! G t f + ( X ) such that Sφ

x(v) = [ vd8φ

x=vφ(x) for every v^cU+ and s u p p l e

supp φ.

REMARK 2.1. In the same way the following result is proved: let φ be
a finite continuous function on X such that 0<<p<l and {<p<l} is relatively
compact, and let μ^Mκ(X) be such that supp μC(the interior of {<p = 0}),
then we have μφ^M+(X) satisfying

(x) = ^ V(x)dμφ(x)

2) supp μφc

We call (φ, x) is a pair when φ^Cκ(X) and x$supp<p. The family of
measures JM= {Sφ

x\ (φ, x) is a pair} plays an important role in the article. For

£5ec5K, let consider the function of y: Sφ

x(ky)= ί ky{z)dεφ

x{z)= \ k*(y)deφ

x(z)=

k*tSi(y).

Proposition 2.1. &*£* is continuous on X for every £φ

x^ι5H.

Proof. Let yn->y0. We claim that lim R!φ>*%u(x) = Wφ>^kyo(x) if

For, (1) if a<φ(yQ) then yn^{φ>a} for sufficiently large n and

yo(x)> s i n c e ^+^o (2) if cc>φ(yQ) then

^ ^ ^ ^ ^ R ^ ^ ^ o W ^ s i n c e supp £<*>">

is compact and disjoint with a neighborhood of y0. Also, we can prove that

{R{φ>*]ky (x)} is uniformly bounded in [0, sup φ]> thus the proposition is proved
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by Lebesgue's bounded convergence theorem.

REMARK 2.2. Let φ be a function in Remark 2.1. Then k*Sφ

x is conti-

nuous.

Proposition 2.2. For every compact subset K of X, the family {k*£φ

x\κ\

is total in C(K), where | κ denotes the restrictionon on K.

Proof. We prove that for positive Radon measure λ, μ on K, if X(k*£φ

x)=

μ(k*£φ

x) for every Sφ

x €Ξ 31 then \= μ. Since \(k*£φ

x) = j k\(z)d£φ

x(z)=

Rli>a](x)da, we have I Rll>*\x)da= \ R^><t]{x)da. Let ψ =

o Jo Jo
inf (φ, t) with £<sup φ, then

x)da = [' R[l>"Kχ)da .
Jo

Hence, R[l>*\x)=R{

kl>*){x)da-2i.e.y and thus R ^ ^ λ ^ - R ^ ^ ^ ί ^ ) for a funda-

mental system {£/} of neighborhoods of x, which implies k\ (x) — kμ (x) and

finally X=μ, since kX and kμ are potentials on X such that S(kX)=S(kμ) (ZK.

Let (fn} dCκ{X) be a countable family which is uniformly dense in CK(X).

Each/J and/^ can be approximated uniformly on supp/n by affine combinations

of k*£φ

x, i.e., f^c^V. (Ci>0, £φ

x\^<M). We have thus a countable family of

measures JMQ such that

Proposition 2.3.

(1) Jβ=WcMί(ί),
(2) Vf£ΞCκ(X)V£>01μ, μ'ζ=3HQ\f-(k*μ-k*μ')\ <£ On SUpp/.

The following property of £φ

x is of fundamental importance in [19], and is

derived from the topology on S+. We prove it without using Γ-topology.

Proposition 2.4. Every measure £φ

x of <3l does not charge on every semipolar

set.

Proof. It is sufficient to prove £φ

x(A)=0 if A is compact and totally thin.
Λ

A={RAp<RAp} for a continuous strict potential p on X. Let {On} be a
CO

decreasing sequence of relatively compact open sets with Π On=A and sn=R°np.
n = l

Then from the continuity of p it is easily seen that sn=RAp=inίsn. Since the

decreasing function of a Rι<p>Λ]p(x) admits only countable discontinuities,

S?>*]=6?*") = μ{f<*]da-2i.e., where μ[φ<Λ) is the harmonic measure of {φ<a}.

On the other hand, since Uiφ<^=h) where h=Ws

φ<Λ] and a'<a, we have
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μx

φ<*'](έ)>μ{

x

φ<*](s) whenever a'<a. From these we conclude that, for η>0,

(J sdε[

x

φ>*))da<^ (J §dex

φ>*ϊ)da = #($)

and letting ^ -*• 0

Ssup? f
(I sdε?>a))dct = lim €j(ί.) = £5(ί),

0 J «->>oo

which proves the proposition.

3. The dual sweeping system

Let V be a relatively compact open set. By the property (3) of a Green
function, there exists μfvEΞM+(X) such that

We note that μ*v concentrates in dV (Remark 1.1 (3))

We form a sweeping system on X, Ω*: = {(μfv)y(ΞV V is a relatively
compact open subset of X} and define, for every open set U

CU*(?7) = {#*; locally Ω*-hyperharmonic functions on U},

i.e., u*^^]*^) if and only if w* is lower semicontinuous and lower finite on
U, and for every relatively compact open set V such that V C U we have
^ F ( M * ) < M * ( 3 ; ) for every

In the following we shall prove that HJ*: ί7-»cU*(Z7) defines a sheaf of
cones of functions and that (X, CU*) is a P-harmonic space of Constantinescu-
Cornea, which we call the dual of (X, HJ).

We note that

Proposition 3.1. For every x and for every subset A of X, the function of

y, kf(y) and R"4 ky(x) are non-negative and belong to HJ^X). Further, for every

compact set K andy^X there is M*ecl7*(X) such that u*(yo)< oo and inf# w*>0.

The first assertion is easily seen from the definition of the sweeping system.
For the second, by the properties (1), (2) of a Green function for every y&K
there is x=x(y)=tyy y0 with ky(x)=kf(y)>0, hence there is a neighborhood
U(y) of y such that Λ?>0 on U(y). Now the compactness argument implies

n

the existence of a finite system {χ~χ(y.); i=ly 2, -- ,n} and u*(y)='Σkfi(y)

satisfies the requirement.
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Proposition 3.2. <U*(X) separates points of X.

Proof. For yv y2^X, 3ΊΦ J^ ^e t V be a relatively compact open set with

, y2$V. Then there is x G F such that kyι(x)ΦRcvkyι(x). Setting

u*(y)=k*{y) and v*(y)=Rcvk,(x) we have

= **(*) =

and thus, ^ ( ^ ^ ( ^ ^ ^ ( ^ M j i ) if ^2(^)Φ0. The other case is much sim-
pler.

Lemma 3.1. sup \ μ^F<oo for every relatively compact open set V.

Proof. From the same argument as in the proof of Prop. 3.1, we have

sup { I dμfv; y^K} < oo for every compact subset K of V.

If the lemma is not valid, we have {yn} dV such that /-^( l )-* °° Above
consideration implies {yn} has no limit point in V, and we may assume that
yn-^yo^dV. But this is absurd since in the proof of Prop. 3.1 we can take
x(z)$iyH; »=0, 1, 2, •••} for each

Lemma 3.2. Let V be a relatively compact open set and f^C(dV). Then

g(y)=μfv(f) is bounded and *harmonίc on V, i.e., g is continuous on V and

P*Vl(g)—g for every open set V1 with V1aV.

Proof. First, we consider the case where f=k*Sφ

x\^v for a pair (φ, x)

i.e., the restriction of Λ*fiJ on dV. Then, g(y)=-.μf
v(f)=[ Rcvky(z)dSφ

x{z)=

j ky(z)d(6φ

xf
V(z). Since supp (6φ

xf
Vc: 8V U (supp Sφ

x\V), g{y) is continuous on

V. Letting W be open satisfying yo& Wd Wd V,

- J RcwkH{z)d{ε*x)
cv{z) = J *

which means that g is *harmonic on V.
Next, we proceed to the general case. Given £>0, by Prop. 2.3, there exist

μly μ2^c3ί0 such that \f— (k*μ1—k*μ2)<£ on dV. By the previous observation
μ*v(g') is *harmonic on Vy where gf=k*μ1\9v—k*μ2\zv and g(y) = μfv(f) is
*harmonic since it is the uniform limit of *harmonic functions. The bounde-
dness of g is an immediate consequence of Lemma 3.1.

For a relatively compact open set V and Λ j G F w e define
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g(x,y) = k(x,y)-Rc%(x).

The function of x, g(x,y) is a potential on V for every J G F . The following

lemma admits the existence of * Evans functions.

Lemma 3.3. Let V be a relatively compact open set and y0 G V. Then,

for every x^V, there exists a finite continuous wf e c U*(F) such that

1) wf(yo)<l,

2) if {y} dVyyι-^z^dV, limg(x, yt)>0 then lim w*(yt)= oo.

Proof. Letting \Vn} be a sequenc of open sets satisfying Vn c F ^ ,
CO

V=\jVn and tf^F^ we consider {φn} dC{X) such that 0<<pΛ<l, <pn=0 on

n̂> <P«—1 on CVn+v and define ut=k*S%n. Then, u$ is continuous (Remark

2.2) and from RC\(x) = μfv(k*)y w*(y)=u*(y)-RC\(x) is finite continuous

wΐ(y) =

implies limw$(y) = O and the convergence is locally uniform in F. Thus,

there is a sequence of integers {m(ή)} such that w£(n)<2~n on Vn. The

function wf(y)=^w%w(y) is clearly finite continuous and belongs to ΊJ^V).

Let iyάdV be such that yt -> z e 3 F, lim £(#, yi) > 0 and let limwγ(yι)<oo.

Then, for sufficiently large /, g(x> yt) > a > 0 and y / φF m ( n o + 1 ) where n0 is an

integer such that τzoα>suρ wf(yj). Now a contradiction wf(yι)>noa is derived

since g(x, yi)=k(x, yι)—RCVkyι(x)=w^{n)(yι) for every rc<#0. We may find

£>0 so that cwf satisfies 1).

Given a relatively compact open set F, let consider a countable dense
CO

subset {XJ} of V and define &>*(,y) = S (l/^)^*/^)7)* where wf.(y) is the func-

tion in the previous lemma. We have therefore ^ * e c U * ( F ) , w*>0 and

w*(^y0)<oo. In view of this function we have

Lemma 3.4. Letf^C(dV) and £>0. Then the function v*(y)=μ*
v(f)+

Sw*{y) satisfies lim inf %*(y)>f(z)for every z^dV.

Proof. Fix # e 3 F a n d consider {y} dV such that V/->£. First suppose

that g(x, yt) —> 0 for every xEϊV and prove μ*J —> Sz vaguely. To see that it is

sufficient to show μ* (&*£?)-»&*££(#) for every pair (φ, x) such that #$supp φ

since the family {k*£φ

x\w\ Sφ

x^JM0 and zξsuppφ} is total in C(dV). In this

situation it is proved lim Rcvkyj(ξ)=ka(ξ) for dβ^-zlmost all ξ. For, if
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then Rcvkyι(ξ)=kyι(ξ) and Rc%, (ξ)=k,,(ξ) -g(ξ, y,) for ξeV. Thus we have

lim Rcvk,(ξ)=k.(ξ) for ξe V υCV. For ξ<Ξ9F, let Λ = U

The set A is semipolar, then by Prop. 2.4 with our assumption Sφ

x{A U {2})—0,

and kcvkyι(ξ)=k9t(ζ) whenever ζedV\(A U {*}). As the function RCVkyι(ξ) of

ξ is uniformly bounded on supp Sφ

x for sufficiently large /, μ*F(&*£*)=(R &>,)-*

Next, suppose that Yιmg(x,yι)>Q for some Λ G F . Then there is ^ G F

such that lim (̂Λ?y, <y/)>0. For if \img{xjy yι) = 0 for every xjy then since the

family {#(#, J/); / = 1 , 2, •••} is locally uniformly bounded in V for sufficiently
large / it is equi-continuous, which implies that limg(#, J>/)=0 on V. Hence, by

Lemma 3.3, we have for suitable M> liminf €?*(̂ y/)>— M-\-β liminf w^{yi) >

—M-h£(l/2;) lim inf zuf.(yι)=°°. Hence, we have lim inf ^*(v) >/(^) in any
/>°o 3 y+zcase.

We can now prove that cί7*(ί7) possesses the sheaf property, that is

Lemma 3.5. Let Uly U2 be open and u \ c/.e
cU*(C/I) (i= 1, 2) then μ*v{u)<u

for every relatively compact open set V with F c U1 U U2.

For, le t/eC(3F) with f<u and w* be the function in Lemma 3.4, i.e.,
e(;*ecU*(F), w*>0 and w*(yo)<<>°, wherey0 is a fixed point of V. Consider
u(y)=u(y)~[fjL*v(f)-~£w*(y)]' F°Γ everyy^ V> we may find a relatively com-
pact open neighborhood W of y such that Wd V ΠU1oτ Wd V Π U2. In both
cases Aί.*̂ (K) < U(y) and lim inf SZ(j/)>lim inf u(y)—lim sup [At*7(/) —£^*(j ;)]>

^->« ^->« >->«

φ ) - / ( ^ ) > 0 for every z(=ΞdV. Hence, by Prop 3.1, Prop. 3.2 and [7] Th. 1.3.1,
wehaveίZ>0 on V. Especially, u(yo)-\-£w*(yQ)>μf^(f) this implies u(yo)>
μf^(f) since 6 is arbitray and ^*(yo)<°°) a n ( i finally we have μ^(u)<u(yQ).

Here, it is clear that ^U*: C/-^CU*(C/) defines a hyperharmonic sheaf and
every relatively compact open set is an MP-set with respect to CU*. Further
we have

Proposition 3.3. Every relatively compact open set V is resolutive with
respect to cί7*. The *harmohίc measure of V at y is μ*v.

In order to obtain the convergence property of *harmonic functions, we
follow the idea of R-M. Herve [9], Lemma 29.1 and Lemma 29.2

Throughout the following lemmas, let U be an open set, yo^U and V,
Vx be relatively compact open sets such that y0^ Vιd V1a V c V c U. We as-
sume that V is connected.
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Lemma 3.6. For every £ > 0 there exists a neighborhood Y ofy0 such that

Ϋ c Vx and sup {\[ky(x)-RCVky(x)] - [kyo(x)-RCVkyo(x)] \;x<ΞdV1}<6 for

Proof. For x^dVx there correspond a neighborhood U(x) of x and a

neighborhood U(y0) of y0 such that xf ^U{x) and y^U(y0) implies \ky(x')—

kyo(x') I <Sβ and | RCVky(x')-RCVkyo(x') \ <Sβ. For the latter fact, we note that

the family {R ky: y ^ U(y0)} is equi-continuous on a relatively compact open

set IF such that U(y0) Γl W=0. The compactness argument derives the result.

Now, let Q be a dense subset of U. Then for each x^dVλ there is

)ίΊ2suc^ tl iat^(Λ;)φR^F/ί :y(Λ:), thus we have a potential g=2fe,., where

y,<=(V\{x}) Π £>, fins ? > R f F on 8F,. Select c>0 so that c inf {q(x)-Rf F(x);
j e9Fj} > £ and putp=cq. By the above lemma,

on 3F, for every y^ Y.

We define:

Vy = Rcvkyo-Rcvk,+tLξV for every yG Y .

Lemma 3.7. vy<kyo—ky-}-p on CVλ for every J G Y .

This is an immediate consequence of boundary minimum principle (cf. [10]
Lemma 2.2), since s = kyQ—ky+p—vy is superharmonic on V\Vly dominates
—(ky—RCVky) on V where ky—RCVky is a potential on F and liminfs>0 at
every point of dVv

For every Λ G I , let S^x be a family of relatively compact open neighborhood
W of x such that (1) TTcΓ if XΪΞV (2) ΐ T c C F if x$V (3) ^ n F 1 = = 0 if

, and let W = ίWx; X G I } . Then

Lemma 3.8. ^ ώ ^-nearly hyperharmohic for every y^Y, i.e., H ^ =
μw{vy)<vy on Wfor every W<=<W. Thus ύ

Proof. It is clear that vy is harmonic or superharmonic on W in the case of
WaV or WdCV respectively. For a delicate case where W^ζWx and x^dV
we follow the idea of [9] lemma 29.1. Since by Lemma 3.7, vy<kyQ—ky-{-p on
3W we have μj(vy)<vy(z) whenever z^W\V. On the other hand, when
2 e W Π V we define

on

on

Then Ή.yv=Ή.yy ([7]. Prop. 2.4.4) and, since ? / < ^ b y the above observation,
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Lemma 3.9. There exists a measure v^Mκ(X) satisfying

μfv<μf*+ι> for every y^ Y.

Proof. vy+RCVky=RCVkyQ + Rcvp by definition, which implies also

ύy+Rcvky=RcvkyQ+kCVp. Thus ύy is a potential and S(ύy)(ZdV, hence

ύy = kXy for some λ, e M+(X). Since ^ = Σ ^ (J>, e F) ft^jK*) = kv(x),

where z>=Σ £μ*F. Therefore we may conclude the assertion from the equality

Proposition 3.4. Let U be an open subset of X and let \hf} be an increasing
sequence of functions in M:¥{U)=cϋ:¥(U)[\[-cΌ'¥(U)] such that g*= sup nh* is
finite on a dense subset Q of U. Then g^^M^iU), i.e., the harmonic sheaf $ί*
possesses the Doob convergence property.

Proof. Let jy0G U Π Q and let V be a relatively compact open neighborhood
of 3/0 such that VdU. By Lemma 3.9, there exist a neighborhood Yofj>0, a
finite set {y{: i = l , 2, ••-, d} c QΠ V and c>0 such that μfv<μf^+c Σ μf?
for every y^ Y. For S>0 there is an integer n0 such that O ^ A ί ^ )—ht(y?)<S
for ί=0, 1, 2, •••, d whenever m>n>n0. Then, if y^ Y and if m>n>n0 we have

0<h*(y)-h*(y) = J (h*-h*)dμ*v< j (A*-A*)rf^+c Σ j (h*-h*)dμ*v

<(ί+cd)€.

This implies that £* is the locally uniform limit of {A?}.

As a consequence of the above consideration, we conclude:

Theorem 3.1. (X, CU*) is a P-harmonic space in the sense of Constantίnescu-
Cornea which satisfies the Doob convergence property.

Proof. We shall check the axioms of the harmonic space.
Axiom of positivity: this is derived from the following fact; for every y^X

and for every neighborhood U(y) of y there is a point x^U(y)\{y} such that
kf(y)>0, since kf is *harmonic on X\{x}.

Axiom of Convergence and Axiom of Resolutivity: they are a consequence
of Prop. 3.4 and Prop. 3.3 respectively.

The definition of dual sheaf ^U* implies Axiom of Completeness. Hence,
it is enough to show that kf is a potential on X. Let {Xn} be an exhaustion of
X, i.e., an increasing sequence of relatively compact open sets such that XndXn+ι

and \JXΛ=X. Then for every j G l , μ*x»(k*)=Rcx»ky(x)->0 as n->oo.

REMARKS 3.1.
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(1) if we denote by (X, HJ*) the dual harmonic space with respect to the
Green function k(xy y)=k(x, y)lg(y)> where g is continuous and strictly positive
on X, then HJ*^* ([7], Excercises 1.2.3). For, by

k2(χ)dμ*v(z) = &°%{x) = (Rcvky(χ))lg(y) = j kz(x)b(z)lg(y)dμr(z)

we obtain dμ*v(z)=g(z)/g(y)dμ*v(z).
(2) later (§6), we shall show that (Xy

 CU) possesses the Doob conver-
gence property if X has a Green function ([15]), and if (X> HJ) is a Brelot space
then so its dual (X, HJ*) is also a Brelot space

4. Duality of Green functions and semipolarity

In this section, we establish a fundamental relation of the duality of Green

functions: for each subset E of X and for every Λ

REky(x) = R*Ek*(y).

First we consider a special case where E is open in the above relation.

Proposition 4.1. Let G be an open subset of X and x, y^X. Then

RGky(x) = R*Gk*(y).

Proof. Let x be fixed and consider the function of y: RGky(x). It is non-
negative and *hyρerharmonic on X (Prop. 3.1). Further, by the property of
Green functions, RGky(x)=ky(x) if yEΞ G. Thus, RGky(x)=k*(y) for every y<= G,
which implies R*Gk*(y) < RGky(x). Similarly we have RGky(x) < R*Gkf(y).

REMARK 4.1. For μ^Mκ(X) we have

RGkμ{x) = kμ*G(x),

R*Gk*μ(y) = k*μG(y).

In fact,

R°kμ(x) = j [\kjiz)dμ(y)]dε°(z) = J R%(x)dμ(y)

= j R*°k*(y)dμ(y) = j k*(y)dμ*
G(y) = j ky{x)dμ*%y) = kμ*

G(x).

Similarly we can derive the second equality.

Here we introduce a countable family Xo of measures: let

X = {μ^Mκ{X)\ kμ is finite and continuous}

and let Xo be a countable subfamily of X such that
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i) S(k\) is sompact

ii) V/eC*(X)V£>0ax', λ " e J7 0 | /-(Λλ'-Λλ") | < £ on X

The existence of ~C0 is assured by [7], Th. 2.3.1.

L e m m a 4.1. For every relatively compact E of X there is a decreasing

sequence {Gn} of relatively compact open sets containing E and such that

(4.1) REkX = l
(4.2) supn λ

Proof. Let Xo= { λ y ; j = l , 2, •••}. If &λ is finite and continuous

R£&λ = inf iRGk\] G DE open}

and using Choquec's lemma ([7], p. 169) there is a sequence {Un\ of open sets

such that EczUn and R££λ=infM RUnk\. We may assume that {Un} is a de-

creasing sequence of relatively compact open sets. Thus we have {G{ z', j=

1, 2, —} such that

G{z)GίD θ G ί D j= 1 , 2 , - ,

G3i~DE, relatively compact, z, j" = 1, 2, ••• ,

R£Aλy =^nf^R^λ7 i = 1, 2, ••• .
n

Clearly the set Gn= ΓϊGj satisfies (4.1). For (4.2), we consider a finite system

{*,.; i=l, 2, « ,iV} such that

* ? > > 0 on

Since supp X ^ c C ^ for every λ ^ J70, by Prop. 4.1,

c\*G»(X)< [ Σ k*(y)d\*G»{y) = Σ

f = l J ί = l

L e m m a 4.2. Let {vn; n=l, 2, •••} fe ^ sequence of measures in Mκ{X)

such that

i) supp vndKfor all n} where K is a compact subset of X,

ii) {kvn\ n=l, 2, •••} is decreasing,

iii) vn->v vaguely.

Then kv='mfnkpn.

Proof. Let Xoo be the one-point compactification of X and

It is readily seen ([7], Th. 8.1.1.1)
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f kvn{x)=\f{y)k{χ,y)dvn{y)

andf*kvn is non-negative and harmonic on JY"\supp/. Since, for a compact
set L with L Π Supp / = 0,

<(sup {k(x3 y);

{f kvn; n=l, 2, •••} is equi-continuous on JY\supp/. From iii) we deduce

f kvn->f kp on J\Γ\supp/, therefore the convergence is locally uniform on

X\supp/, Λvhich implies that T-limkvn=kv ([7], p. 288) and finally kv='mfnkvn

([7], Prop. 11.2.8).

REMARK 4.2. After proving Theorem 4.1, we may conclude, under the
assumption of Lemma 4.1, that

v agU ely for every

For, using the same notations as in Lemma 4.1, it is clear that {λ*Gn} satisfies

the hypothesis i) of Lemma 4.2. Now suppose that λ*Gw -> v vaguely. Since

£λ*G«(Λ:)=RG«/a(x), {kλ*G«} is decreasing. Hence kv=^τή3^h==^Ek\==--
k\*E, which implies v=\*E by the property of Green functions.

Now we prove

Theorem 4.1. Let E be an arbitrary subset of X and Λ I J G X Then

REky{x) = R*Ek*(y).

Proof. From a property of balayage functions it is sufficient to prove the
case where E is relatively compact. Let {Gn} be a sequence in Lemma 4.1.
Then the set

A = U {ίnΓR^λ<infΛ RGnk\; λGX o}

is semipolar. We assert that 8^n-^SE vaguely for every x^X\A. In fact, if

x$A and λ e i Ό then mfnR
GnkX(x)='mfnR

G'tk\(x)=REk\(x) by Lemma 4.1.

Thus \ k\d£χn-> I k\dSE and the assertion is derived,since \kX; XG^ 0} is total

in CK(X). Applying Lemma 4.2 to the dual harmonic space (X, ̂ U*), k*6E(y)=

liminf[lim^*εG«(j')] f o r e a ch x^A, that is REky{x) = Yιm inf [infn R
G*ky>(x)]

for every x^X\A and r e X In the same way, letting A'= U {infΛ
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infΛ R*G»k*μ; μ^.JMά, where JK0 is the family of measurex measures defined
in §2.

R*Ek*(y)=liτn inf [inf. R*G»k*,(y)] for every yeX\A' and χ<=X. Thus,
x'+x '

for x$A, y<=X we have R£^(*) = liminf [infM R*G*k*(y')] = iή[H R*G»k*(y)>

R*Ek*(y). And, similarly, for y<£A\ x^X we have R*Ek*(y) > REky(x).
Therefore REky(x)=R*Ek*(y) whenever x<=X\A and y^X\A\ i.e., the theorem
is proved except semipolar sets.

Next, we shall remove the restriction. Let, for arbitrary x, y^X, uy(x) =
ΪL*Ekf(y) and vy(x)=REky(x). The function uy and vy are hyperhar-harmoinc
since uy=k£*E

y and uy(x)=vy(x) if x&A and y^A'. Now, fix y<=X\A' uy

coincides with vy except the polar set A, hence REky(x)=R*Ek*(y) for every
ΛiGXand y^X\A'. In the same way, uf(y)=ίl*Ekf(y)=uy(x) and v*(y) =
REky(x)=vy(x) are *hyperharmonic and uf—v* except the *polar set A' thus
ύf(y)=vf(y) for all jy, which proves the theorem.

We conclude this section with the theorem that the sets are semipolar if
and only if they are *semipolar.

Before proceed the problem we remark that the polarity and the *polarity
are same. This is a direct consequence of Th. 4.1.

To prove the theorem, we introduce some notations and lemmas that were
considered by Talyor [18]. For a set E and u^°U+{X)f let (RE)°u=u, (REYu=
kEu and {RE)j+ιu=RE[(RE)ju] for j > 1. Then:

Lemma 4.3. ([18] Prop. 4.7.) Let B be a relatively compact and totally
thin. Then, for every «e c U + (X) which is bounded on B there exists {Bn\ n=l,
2, •••} suchmthat

B= U Bn and lim (kB»)j u = 0 for every n .

Proof. Let p be a continuous strict potential on X and let w=RBu-\-p.
The function w is finite and RBu<w, thus (RBfu<RBzυ. On the other hand,
RBw<^kBu+RBp<RBu+p=zv, since B is totally thin and^> is strict. Now let

Bn= {xEΞB; RBzv(x)<(l-lln)w(x)}. We have clearly B= ΌBn. By induction,
« = 1

(RB»kBy'w < ( l - l / n ) V which implies (RBή2)+1u < ( R ^ R ^ ^ R ^ R * ) 2 * / <
(kB»kByzv<(l-lln)jw. This completes the proof since ({RB»)ju;j=l, 2, ...}
is decreasing.

For the simplicity of notations, we write <λ, /> instead of l/Jλ. By

Th. 4.1 and by induction, we can easily prove:

Lemma 4.4. For \&Mi(X), AaX and for every integer n we have
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Theorem 4.2. Semipolarity coincides with *semipolarity.

Proof. We prove that a semipolar set A is *semipolar. The converse
is similar. We may assume that A is relatively compact and totally thin. Let
{#.; i=l, 2, •••} be dense in X, iWj;j=l, 2, •••} be a base of relatively com-
pact open sets for the topology of X. We consider pairs such that a^Wj.
They form a countable family of pairs {(zn, Vn); n=l, 2, •••}. Fix a relatively

compact open set G with AaG. Since k£*fVn=RCVnk2n is bounded on G for
each pair (zn, FΛ), we may find a sequence {cn} of positive numbers such that

TχCnS*CVn(X)<oo and Σ cnk6^Vn<M<oo on G.
»=i n »=i

Letting μ* = Σ cn£*n , we have Aμ*^cU+(-X'), and by Lemma 4.3, there is
n = l

{An} satisfying A = [jAn and lim(kΛnykμ*=0 for all w. The proof will be

completed if we show that An is *semipolar. From now on we fix An. It is
easily seen that there exists λ G M ί ( I ) such that <λ, ftμ*><°o and &*λ>0 on
A. Putting wJ={R*An)'k*X and define wf=mίj wf =limwf. We claim that

^ * = 0 ; for w? is nearly *hyρerharmonic and, by Lemma 4.4,

<μ*, w$y = lim<(μ,*, wjy = lim<λ, (&**)*kμ*y = 0 ,

that is, <£*n , ίϋj!:>=0 for every w. If we consider a subsequence {(#„(„,), F»(,»));
m = l , 2, •••} of {(zn, Vn)} so that zn(m)=y and Fw(w) tends to yy we have

?„ *(ffl), ZU?>. Thus we obtain wt=0 on a dense subset of X,

hence ^ ^ = 0 . The fact that {w*>0} = {w$>ώ$} is *semipolar implies Anf]
{w$>0} is *semipolar. On the other hand, since we have wf=R*Anwf on An

and wf+i=ί!,*Λnzϋfj B~Anf] {ωt=0} Π {zv*+i<wf} is *semiρolar. On account

of AnΠ {^?-0} = UBj, An=[\wf>0} n 4 ] Π U B n is *semipolar.
y=o »=o

5. The bidual

In the previous sections we have developed the duality theory of harmo-
nic spaces, that is, given a Green function k(x,y) on a harmonic space {Xy

 £U),
we can construct a dual harmonic space (X> CU*) such that the function k(x,y)=
kf(y) of y is a ^potential with carrier {x} for every x^X. In this section we
prove that k* satisfies the condition 3) of Green functions. Thus we may
consider the dual of (X, HJ*), and it is revealed that this bidual coincides with

(X, V).
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To this end, we follow the idea of [19] to make ^potentials more restrictive,
which corresponds to consider a quotient sheaf of the original CU^.

Proposition 5.1. ([19], Prop. 1.5) There exists a strict positive
such that k(x, y)=k(xy y)/go(y) satisfies, besides 1)~3) in the definition of Green
functions,

4) there is a measure η^M+(X) with k*η=l,
5) k*μ<=C0(X)for every μ<=JH0.

The proof is carried out as in [19]: so we only sketch the outline. Since,
by Prop. 2.3, every continuous function with compact support is approximated
by the difference of *ρotentials on the support, there exists σ^JM0 such that
k*cr>0 on a given compact set. Hence, letting {Xn} be a compact exhaustion
of X, we may obtain cn>0 and σne.<3lQ satisfying cnσn(X)>l/2n and 0<cnk*σn

CO

<l/2 n on Xn. Let μ 0

= Σ cnσn. On the other hand, for each μ e « ^ 0 there is
» = 1

Vj<=M+(X) such that k*VjeC{X) and k*μjeo(k*vJ). We select b)>0 so that

Σ b) (sup {k*Vj Xj} ) < oo, fj b'jp ,(Xt)<oo and b)+1^b) and then let »0=

The measure 97=^0+^0 a n d the function go—k*η are the required.

Corollary 5.1. For each compact K there is μ^JM0 such that k*μ^C0(X)
and k*μ>0 on K.

In the following, we assume that Green functions k(x, y) satisfy
1) lower semicontinuous on XxX and continuous off the diagonal,
2) x->k(x, y) is a potential on X with carrier {y} for every y^X,
3) every potential p possessing a compact carrier can be represented

uniquely by μ^M+(X), i.e.,p(x)= I k(x, y)dμ(y),

4) there exists η(ΞM+(X) with k*η(y)=[ k(x, y)dη(x)=l,

5) k*μ(=C0{X)for each μ(=JH0.

We note that 1 is *superharmonic.

Lemma 5.1. Let μ^M+(X) with μ,(Jf)<oo, then kμ is a potential on X.

Proof. We prove first that R kμ is continuous on U for every relatively
compact open set U. Let xo€ΞUy Xj->xQ and let W, V be open such that #0£Ξ

RCUkμ(x) = j kC%(x)dμ(y) = \v RC%(x)dμ(y)+ \cγR
CUky(x)dμ(y).

Lttfj(y)=RCUky(xj), j = l , 2, •••, and let each term of the last integrals be u(x)



DUALITY ON HARMONIC SPACES 109

and v(x) respectively. It is trivially seen that fj(y)-*fo(y) for every y. It
is also easily seen that suρy (sup ifj(y); yGF})<oo, As the remaining
case, supy (sup ifj(y); y^CV})<supj(sup {ky(xj); y^CV)})==s\ιpj(sup {ft* ( y) 5

), since R^ft* =ft*y and sup, (sup {ft*. (j/) ^e3(CVΓ})<oo in view of
. Thus the Lebesgue convergence theorem is applied to obtain

v{Xj) -> v(x0) and #(#y) -^ w(#0). The remainder of the proof is routin, i.e., R kμ
is harmonic in U and R kμ-+0 when the compact sets K tend to X increasingly.

REMARK 5.1. Above proof shows also that kμ is a potential if it is finite
and superharmonic, and under the assumption that 1 is superharmonic, if
μ,(X)<oo then k*μ is a *potential.

Let £?={£*£*; Sφ

x^3ί} and Jί be the family of finite linear combina-
tions of £F. Suggested by the proof of [19], Th. 2.5, we have

Lemma 5.2. Jί is uniformly dense in C0(X).

Proof. Let £?Gc5K. Then i£=supρ βφ

x is compact and k*Sφ

x is finite con-
tinuous on X. By Cor. 5.1, there is a measure σ such that ft*σ>ft*£? on K and
k*σ^.C0(X). Further k*σ>k*8φ

x since k*Sώ

x is a *potential which is *harmonic
on CK and ^ σ G ΐ f f l ) . Hence ft*£*GEC0(X). To prove the assertion of the
lemma, let X» be the one-point compactification of X and let H={u*-\-a\
u* e cJl, a is real}, where all functions of Jl are defined to be 0 at the infinity
oo. Suppose μly μ2^M+(Xoo) and μx=μ2 on Hand let μfi = μ{\Xy μ//=μi\ {oo}

( ί = l , 2). Then 0 = μ ί > * ) = μ2'(a*) for every ι ι * e J Ϊ . Thus, for w*e^ί,
^{(tt*) = ^(tt*) . We have, in particular, <£?, kμί>= μί(k*&) = μ'2{k*Sφ

x) =
ζβφ

x, kμφ

2y for every Sφ

x^:3ί. It follows that kμ[=kμ2> thus we may conclude
that μ[=μf2 on account of Remark 1.1 (2), since, by Lemma 5.1, kμ[ and
kμ2 are potentials on X, μ[(a) +μΊ'(a) = μ1(a) = μ2{a) = μ'2(a) + μί'icή for
real a implies μι/ = μ/

2

/. Thus μx = μ2y which is just to say that the set H is
uniformly dense in C(Xoo). In particular, for f€=C0(X) and for £>0 there is

such that | /—/* | <6 on X^. Since/* is of the form Σ c twf+α, where
* = 1

, and/(cχ>)=fj£:|.ttf(oo) = 0, this means | α | < £ and \f~J]ciut\<2e
ί = l 1 = 1ί = l 1 = 1

on X

Approximating functions of a uniformly dense countable subfamily of
C0(x) by functions in Jl, we can obtain a countable family of positive measures

{Σ^i £?!'}> which is denoted by cίJ/0 again since there is no serious confusion.

Let c5K0= V«} a n d, select ^ > 0 so that Σ^«A^n(X)<°° a n d Σ c n sup(k*μn)<ooy
n = l w = l

we define ^ t = Σ C«Â « a n d ^*(3;> dx)=k*(y)dμ(x).
» = 1

Proposition 5.2. ^ * = F * 1 w α bounded continuous strict ^potential.
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There exists a sub-Markov resolvent T * = ( F * ) such that Vf = V* and
Ev* = cUt(X), where Ev* is the set of V*-excesseive functions. Further F * / G

C0(X) if f ^Sb(X) (i.e., f is a bounded Borel function on X).
The only essential part to be proved is that p* is a strict ^potential. The

other assertion is a consequence of the theory of balayage (cf. [3]), II. Th,. 7.8).
It is clear that p*=k*μ^C0(X) and p* is a ^potential. To show that p* is
strict, let, λ , i ;GM + (Z) such that λ(w*)<z/(w*) for every κ*e cUϊ(.X) and
MP*)==V(P*)<00 From these relations it follows that <λ, k*μny=ζv, k*μny

for all n. In fact, MP*) = \[\k*(y)dμ(x)]d\(y)=^[^ky(x)d\(y)]dμ(x)=

<μ, kX>=±Cu<μu, * λ > = Σ ^ < λ , h*μΛ><Z±Cu<V, *V.>=*(**)==MP*)- Thus
« = 1 « = 1 Λ = l

we have <(λ, φ>y=ζv, φ) for every φ^Cκ(X), i.e., λ=z/.

Lemma 5.3. Leί {<rΛ} δ# <z sequence of measures in M+(X) converging to
σ0 vaguely. If there exists c>0 and a finite system {x{; i=ί, 2, •••_, N} of points

such that k*σn<ck*(Σ £x)f°r all n> then lim sup\ pdσn<\ pdσ0for every finite
ί = l ' »-*-<» J J

continuous potential p on X.

Proof. Let p be a finite continuous potential. Then there is a finite
continuous potential px with p^o(px) ([7], Prop. 2.2.4). Thus, given £ > 0
there is a compact set K such that p<Spx on X\K. Consider φ^Cκ(X) such
that 0<φ< 1 and <p=l on i£. It is trivially seen that

lim I φpdσn = \ φpdσo< \ pdσ0 .
»->«» J J J

On the other hand, 1(1— φ)pdσn<\ pdσn<S \ p^σ^Sc^Σp^Xi); for,
J JUf><i} J *=i

be a sequence of potentials with compact carrier and tends to px increa-
singly (e.g., qm=RXmpι for a compact exhaustion {Xm} of X), and let qm=kvm.

Then <σM, qu>=<vm k*σΛ>£c<pm ^ Σ 3 ^ ) > = c Σ ? . ( ^ ) ^ ^ Σ A ( ^ ) . Thus,
we have

lim sup I ̂ σ , < I pdor0+Sc Σ f t W ,

and, since 6 being arbitrary, we completes th proof.

Proposition 5.3. If q* is a ^potential with compact carrier K, then there
exists a unique measure τ€ΞM+(X) such that q*—k*τ} i.e., kf(y)=k(x> y) is a
Green function of {X3 HJ*).

Proof. First, we restrict c ourseleves to the case where q* is bounded. Let
G be a relatively compact open set with KdG. Then it is clear that R*Gq*=q*.
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Since q*^Ev*, ^*=rsupw &*crM=lim&*σM, where <rn=f»μ and fn=nq*—n2V$q*.

We may suppose that supρσncG, for otherwise since σM6Λ consider σ? instead
of σn. There exists a finite system {x{\ z'=l, 2, •••, iV} of points such that

β*δ>0 on G, where δ = Σ £,.. We then select c>0 so that £&*δ>sup q* on G.
ί = l '

Let £ be a relatively compact open set with GU {#,-; i=ί, 2, •••, N} c £ and let

Λλ=ft*l, then

== cJlk\(xi)<ooy n= 1, 2, ••• .

Therefore, there exists a subsequence of {σn} which is convergent vaguely to
σ0. We denote this subsequence by {σn} for simplicity. Then it follows from
the lower semicontinuity of Green functions

inf k*σn = q* .

On the other hand, by Lemma 5.3,

lim sup \ pdσn<\ pdσ0 for every finite continuous potentialp .

, and consider seqeunce {pj} of finite cont;nuous potentials with com-

pact carrier, tending to ky increasingly. Then, since \ pjdσH=Ό^jj &*σΛ)> is

increasing, where ρ~k\j

q*{y) = lim I ky(x)dσn(x) = supΛ I ky(x)dσn(x) = supM supy \ pjdσn

= sup, suτpn^pjdσn<supJ^pjdσ0 = k*σo{y) .

Hence, we have q*=k*σ0 with supp σodS(q*).

For a general case, let G be as above. The relation g*=R*G9*==H**ϋϋr on
CG with the fact that \^CU%(X) implies g* is bounded on X\G. Letting
M =z sup {q*{y)\ y 3= G}, for n>M we define #* —inf (#*, ή). qf is a
bounded ^potential with S(qf)dG. Thus, by the previous consideration, there
is τn^M+(X) such that q*=k*τn and supp τ M cG. It is trivial that q* f q* and
A— {(7*= 00} is a *polar subset of K. As usual, we may find a finite system

{yv -~,yN} dX\A of points and c>0 satisfying c Σ k*(yt)>M for every Λ:̂

The inequalities

Mr. (X)<\ c Σ ft*(^τ.(*) = c Σ **τ.(y,)^c Σ
J » = 1 ι = l ί = l
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imply that the total mass of τΛ is bounded. Then we may select a subsequence
{τ'n} of {τn} tending to T vaguely. It is evident

'n = q* -

Let ipj} be as above and let φ^Cκ{X), 0<<p<l, φ= 1 on G. Since

we have as in the previous case lim

Finally we shall prove the unicity of T. Suppose that q*=k*τ=k*τr for
T, T ' G M + ( I ) with compact support. It follows then

Let 9>G^(X). Since for each £>0 there exist λ, λ e M ί ( I ) such that 0<
k\—k\'<φ<k\—kX'+ε we have

l<τ, 9>>-<τ', φ>\ = |<τ, ̂ λ-Λ

where Λlr=φ—(kX—k\'). This concludes τ = τ \

Coming back to the original difinition of Green functions (§1), in view
of Remark 3.1 (1), we have proved that k*(x, y)=k(y, x) is a Green function of
(X, HJ*), i.e.,

1*) (x, y)->k*(x, y) is lower semicontinuous and continuous if xφy>
2*) y->k*(y}=k*(y, x) is a ^potential on X with carrier {x} for every

3*) for every *potential q* with compact carrier there exists a unique
τ G J l ί + ( I ) such that q*=k*τ.

Hence, we can construct the dual (X, ^U**) of (X, ^U*), that is the bidual
of (-XΓ, ΊJ). In view of this bidual we obtain

Theorem 5.1. (X, CU**)=(X, V).

Proof. The hyperharmonic sheaf CU** is defined by a family of sweep-
ings (μt*v; F i s a relatively compact open set, x^V}. The balaged function
can be expressed by

k*cvk*(y) = J k*(y)dμ**v(z) = RCVky(x) = j k,{z)dμv

x(z) = j k*(y)dμv

x(z),

which implies that μf*v=μ¥ by 3*).

6. Consequences

In this section we give several supplementary remarks. Some of them
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contain the known results.

Proposition 6.1. Suppose that there is a function k(x, y) satisfying 1), 2), of
the Green function in%\. Then 3) is equivalent to the following :

3') for every potential p on X there exists a unique measure μ such thatp(x)=
kμ(x)y

3") for every continuous potential p on X there exists a unique measure μ such
that p(x)=kμ(x).

Proof. First we consider the measure representation.
3) =^3'): let {Un} be a locally finite open covering of x consisting of

relatively compact open sets and {/„} be the decomposition of the unity cor-
responding to {Un}, i.e.,

fn^Cκ{X\ 0 < / n < l , s u p p l e [/„, Σ / Λ = 1 .
»=i

Now since the specific mutiplication fn p is a potential with compact carrier,
there is μn^M+(X) such that/ r t _p—kμn and supp μn=S(fn p) a supp fn a Un.

We define μ=f> μn^M+(X). Ύhenp^kμ. For, let 71,=Σ μ{ and Λ = Σ Λ .
«=1 n n n *=1 *=1

We have &μ=supΛ kμn and /„ p= (Σ/,) -p=JZ (f •/>) = Σ kμ{ = kμn. Hence,
» = 1 » = 1 ί = l

Vkjzn=l p=p since s u p Λ / n = l ([7], Th. 8.1.3) and p<kμ. On the other hand,

kμn<p implies kμ=p.
3')=Φ3 / 7 ) is trivial.
3")=Φ3): let p be a potential with S(p)=K is compact, U be a relatively

compact open neighborhood of K and let {/„} c β ( I ) such that fn increasingly
tends to p\υ. Then it is easily seen that R/n is a continuous potential with
S(Rfn)clO and R/Λ f p. Thus, by the assumption, there is μn^M+(X) such
that Rfn=kμn and supp μndU. The next step is routin: we may find c>0 and

IT

a finite system {#,-; z=l , 2, •••, iV} of points such that^>(^)<oo and c*Σk*.>l
- . - I T

 i = 1 *

on U, Since μn(X)=μn(U)<c Σ/ ) (^ ί ) < c o for all w, {/>6n} has a subsequence

convergents to μ vaguely. We suppose μΛ->μ for simplicity. Then supp μClO.
Recall that k*£φ

x is finite continuous on X, where Sφ

x is the measure defined in
§ 2. Then,

<βΐ, p> = Iim<θJ, kμny = l i m ^ , , ^*f?> = <μ, **€?> = <6j, ^ >

for every pair (φ ,x) implies p=kμ.
For the unicity of measures we follow [8], [4], [11]. The crucial point is

the following: if kλ=0 for X^M+(X) then λ = 0 . This is a consequence of
a property of Green functions: for every y&X there is x G l such that ^
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REMARK 6.1. (1) when 1 is superharmonic, under the assumptions 1), 2) of

Green functions k(x, y), the property 3) is equivalent to the following ([11],

[15]):

there exists a sub-Markov resolvent V=(VΛ)Λ^0 and a measure λ G M + ( I )

such that

(1) Vo is proper,

(ii) the family of F-excessive functions coincides with

(iii)

(2) in [12], F-Y. Maeda investigated the Dirichlet integral and energy of

potentials on harmonic spaces with adjoint structure. In the starting point he

assumed five properties of Green functions (GO), (Gl) , (G2), ( G * l ) and (G*2)

but we can observe that ( G * l ) and (G*2) are superfluous.

As a consequence of the observation in § 3 and § 4, we have an important

result which was obtained by Schirmeier in a different context [15].

Proposition 6.2. If a harmonic space (Xy HJ) has a Green function, then

(X, HJ) has the Doob convergence property.

Hence, when (X, HJ) possesses a Green function, the topoloyg T defined

in the vector space [S] formed by differences of two positive superharmonic

functions coincides with the topology of graph convergence and also with the

Mokobodzki topology TM, i.e., for {sn}CcS+, sn-*s(TM) is defined <£?, O ~ *

*, /> for every £φ

x^3ί [16]. As an easy consequence, we have

Corollary 6.1. kyn converges to kyQ with respect to the topology T if and

onlyifyn->y0.

For, kyn->kyo (T) is equivalent to k*eφ

x(yn)=(Sφ

x, k,^+<&, kyo>=kφ

x(yo), this

is equivalent to yn->y0, since k*Sφ

x are continuous and separate points of X.

Now we consider the case where (Xy HJ) is elliptic ([7], p. 66).

Proposition 6.3. If (Xy ΊJ) is elliptic then the dual (X, RJ*) is also elliptic.

Proof. X has a base of connected, relatively compact open sets ([7], Th.

1.1.1). For every open connected set V, Vι=V is also open connected and

Fι=Vv which implies dV1=dV1. Thus we have a base <3)— {V} of connected,

reltively compact open sets with dV=dV. The sweeping ((μ¥v)yξ=v)v<=g)=

*k/°T/

((Sy )yEiv)v<=g) is a n elliptic swepping system on (X, HJ*). For, suppose, on

the contrary, that there exist Vλ^3) contained in a connected set and j e Vx such

that supp μfviφdV1=dV1. Let A=dV1\supp μ*v and xo<=A. As a function

of x, R 1 ^ ( Λ ; ) = \ k*(z)dμ*vi(z) is continuous at x0. This is an immediate
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consequence of Lebesgue's convergence theorem, since x0 φ supp μ*vκ We

may find a connected open neighborhood W of x0 so that RCVχky is conti-

nuous on W. Then, Wf]CV1Φ0 and RCVky=ky on CP lβ The function

ky—R ky is a non-negative superharmonic function on a connected open set

U=W{}Vι and / ^ - R ^ & ^ O on Wf)CVv This derives a contradiction that

^ = ί ^ i ^ on Vλ ([7], Prop. 3.1.4).

Collorary 6.2. //" <z/z elliptic harmonic space (X, CU) λαs a Green function,

then (X, HJ) is a Brelot space.

In fact, as is pointed out in Remark 1.1, X has no isolated point. By a
theorem of Constantinescu-Cornea ([7], Prop. 3.1.4), an elliptic space has a
base of regular sets. The Brelot convergence property is derived as in [2],
Th. 1.5.6.

Collorary 6.3. If a Brelot space (X, HJ) has a Green function then its dual

(Xy HJ*) is also a Brelot space.

For, every Brelot space is elliptic ([7], Th. 3.1.2) and {X, HJ*) is also elliptic.

Finally we consider the case (X, CU*)=(X, RJ). The following result was
obtained by Schirmeier by using the fine topology [15].

Proposition 6.4. If the Green function is symmetricy i.e., k(x, y)=k(y, x),
then (X, ΊJ) is a Brelot space.

Proof. We prove that (X, HJ) is elliptic. Suppose, on the contrary,

there exists yo^X and a base of connected neighborhood {V} of y0 such that

QV=dV and suppεfo^Φ9F. Fix one of them, say V, and # 0 e3F\suρρ S^.

As in the proof of Prop. 6.3, we may find a connected open neighborhood U(x0)

of x0 so that p=ky0—RCVkyQ is non-negative superharmonic on U=V U U(xQ).

The set F=Uf][p = 0] is an absorbent set of the space U and 0ΦF + U.

Thus, there is a point z^EzQF Π U. Now let W be an open connected neigh-

borhood of z0 with Wd U. The set W Π F is an absorbent set of the space W.

For yEΞW\F and for any neighborhood V(y) of y such that V(y) d W\Fy we

have ^ R T ^ ^ ^ O on Wf)F, where py=ky—RCVky. On the other hand, since

py is a potential on W, by the minimum principle, py~
wRv(y)py. Thus py=0

on Wf]F for every y^W\F, i.e., py(z)~0 for every z^W f)F and for every

The lower semicontinuity of py impliespy(z)=0 for every z^W f)F

and y^W\F f)W. In particular, we have ρy(z0)=pZQ(y) =0 for every j e

W\FΓiW. While, for zeίW Π F, pzo(z)=pz{zo) = Q since z0GΞ W\F Π W.

Hence, we have a contradiction ̂ 0 = 0 on W.
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