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In the paper [1] Bremner proved that the Diophantine equation

(1) 3x*-4yi-2x2+l2y2-9 = 0

has only two positive integer solutions (x>y)=(l, 1) and (3, 3), which was sug-
gested by Enomoto, Ito and Noda in their research on tight 4-desings (see [2]).
However, he used some of results of Cassels in biquadratic field #(^~3~) and
the p-adic method of Skolem, so his proof is somewhat difficult. In 1983, Ko
Chao and Sun Qi indicated that an elementary proof of Bremner's theorem
would be significant (see [3]). Now such an elementary proof is given in this
paper with nothing deeper than quadratic recipricity used. We describe our
method as follows.

Since (1) may be reduced to (3#2— I)2—3(2/—3)2=1, we have (Zx2— 1)+
{2y2—3) \/~3~=un-\rυn >/~3~=(2+\/~3~)n, the latter equation denotes the general
solution of the Pell's equation U2—3V2=l, n is an integer. Thus

(2) 2y> = va+3.

First we assume n=3m. By

u3m+vzm χ/T = iμM+vm VΎf = (ui+9uM υi)+{3ui υm+3

we get

Vzm = 3vm(u2

m+vl) = 3υm(4v2

m+ί),

so that

which leads to

6yll m ( ,
where y=3yv y{>0. Since (2υm+ly 2v2

nt~-vm+ί)=ί and 2JC(2ΌU+1),

3X{2v2

m—vm+\) we have
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2y} = 2v*u-vM+l, y2\yl9 y2>0

Thus

= 7 ,

which gives y2=l, vm=l. Hence H I = 1 , n=3. That is, if 3\n then (2) holds
only when n=3, this case gives (x,y)=(3> 3), a positive integer solution of (1).

Next we list the following relations which may be derived easily from the
general solution of the Pell's equation:

(3) un+1 = Mιn-un_x, u0 = 1, ux = 2 ,

(4) z;M+1 = 4 ^ - ^ , v0 = 0 , ^ = 1,

(5) ϋn+2Jfe = — i;, (mod uk).

If Λ < — 2 then vn-\~3<0, (2) cannot hold, so we only consider the cases
n> — 1, Since, by (2), ̂ Ξ I (mod 2), then n= 1 (mod 2) by (4). Take modulo
8 to (4) we find that if n= 1 (mod 4) then vn= 1 (mod 8), leads to 2y2=4 (mod 8),
which is impossible, so that it is necessary for w=— 1 (mod 4).

Again, take modulo 37 to (4) we obtain a seqeunce with period 36 as follows
(only the terms with foot indices of the form 4k—A are listed):

n(mod36) - 1 3 7 11 15 19 23 27 31

z;Λ(mod37) -1 15 25 25 15 - 1 13 7 13

Since (2) implies ( n~^~ ) = ( -^- )= — 1, so according to the above table we
\ 37 / • V 37 /

can exclude n = 7, 11, 23, 27, 31 (mod 36). Furthermore w=3, 15 (mod 36)
belong to the case 31«, which has been solved in the previous paragraph, then
may be exclused, so that there remain the cases w= — 1 , 19 (mod 36).

Now by taking modulo 3 to (4) we can exclude n=ί (mod 6), so also n= 19
(mod 36), since it implies vn= 1 (mod 3) and 2y2= 1 (mod 3), which is impossible.
Thus the only case left is n= — 1 (mod 36).

Suppose that n=— 1 (mod 36) and #Φ — 1, we can write n= — l+(12k±
4) 3r, where r > 2 . Let m=3r, by repeated application of (5) and the relations
»-•=— vny vn±ι=±un+2vn, we get

*>« = 0-i±4« (modify),

2 / = ^ _ 1 ± 4 w + 3 = -*>- l T 2 w +3 = ^ ± 2 ^ + 3 (mod w3m).
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Since u3m=ufn(u2

m-\-9v2

n) and 2Jfm implies w m =2 (mod 8), vm= ± 1 (mod 8),
u2

m+9vl==5 (mod 8), so that

(6) h2m±2v2m+3\ = ( 2f \ = _ j
V } \ u2

m+9v2

m ) \u2

m+9v2

m)

On the other hand, note that u2m=u2

m+3v2

my v2m=2umvm> u2

m—3vl=l>
we have

(u2m+2v2m+3\ = ( 4u2

m+4umvm-&vi\ = / 4 ^ ^ - 4 2 ^ \ = /2^-21z;m\
V ui+9υ2

m I \ ul+9v2

m J \ ui+9v2

m J V ui+9v2

m J

= —( 9Vm+Um \ (note that 2ίvm—2um>0)

( 7 \ / 126z>2

m+14M^, \ (since 7Jfum and
21^«—2uJ \ 21^—2ww / 2\vm—2um=±ί (mod8))

7

= / 2 1 P . - 2 « . \ / \um \ ( vm \

\ 7-159 / \21ϋm-2«w / \2lvm-2um I

= (2ίvm-2um\ (2uΛ (Ju^) I vm \

\ 53 / V 21 / \2\ΌJ \2\vm-2um)

_ /2H.-21P.\/«.\/ vm \

\ 53 J\vm)\2\vm-2uJ'

If o . = l (mod 8), thenf ?a )=fjf*_V if ^ = - 1 (mod 8), then
\2\vm-2uJ \vmJ

( ^ )= —(21v«-2um\=ί3>L\ the same as before. Hence, we obtain
\2ίvm—2uM) V vm J \vm'

(2um-2ίvm

MΓ \ S3

Similarly we can show

f8ϊ (thm~2v2m+3\ = (2um+2ίvm\
} V ui+9υi J V 53 /"

Using the recurrent relations (3), (4) we take modulo 53 to {2un±21υn}>
and obtain their residue sequences with the same period 9. Now m=0 (mod 9)
implies both 2um±21vm = 2 (mod 53), so that (7) and (8) lead to

(u2m±2v2m+3\ = _ / _ 2 \ = j

V u2

m+9υ2

m I V 53/

which are contrary to (6).
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Finally there remains n== — 1, this case gives (#,J>)=(1, 1), another posi-
tive integer solution of (1), adding the previous one (x,y)=(3> 3) given by the
case w=3 we obtain all positive intger solutions of (1). This completes our
proof.

Remark: Because in two equations 3#2— ί=un and 2y2—3=vn we only
use the latter, so actually we have proved that the more general equation x2—
3(2y2—3)2=1 has only two positive integer solutions (x, y)=(2, 1) and (26, 3).

The auther wishes to thank Professor Sun Qi for his help and encourage-
ment.
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