

| Title        | On a vanishing theorem for certain cohomology groups  |
|--------------|-------------------------------------------------------|
| Author(s)    | Hotta, Ryoshi; Murakami, Shingo                       |
| Citation     | Osaka Journal of Mathematics. 1975, 12(3), p. 555-564 |
| Version Type | VoR                                                   |
| URL          | https://doi.org/10.18910/10745                        |
| rights       |                                                       |
| Note         |                                                       |

## The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

## ON A VANISHING THEOREM FOR CERTAIN COHOMOLOGY GROUPS

RYOSHI HOTTA AND SHINGO MURAKAMI

(Received September 17, 1974)

Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup of G. We assume that the quotient manifold X=G/K carries a G-invariant complex structure, so that X is holomorphically isomorphic to a symmetric bounded domain in  $\mathbb{C}^N$ . Let  $\Gamma$  be a discrete subgroup of G acting on X freely and such that the quotient  $M=\Gamma\backslash X$  is compact. The quotient  $\Gamma\backslash G$  is then also compact. Suppose now an irreducible representation  $\tau$  of K be given in a finite-dimensional complex vector space V. We know that  $\tau$  defines an automorphic factor  $J_{\tau}$  on X, called the canonical automorphic factor of type  $\tau$ , and this defines in turn a holomorphic vector bundle  $E(J_{\tau})$  over the complex manifold  $M=\Gamma\backslash X$ . The vector bundle  $E(J_{\tau})$  is in fact differentiably equivalent to the vector bundle over M which is associated to the principal bundle  $\Gamma\backslash G$  over M with group K by the representation  $\tau$  of K in V. We shall denote by  $E(J_{\tau})$  the sheaf of germs of holomorphic sections of the vector bundle  $E(J_{\tau})$ , and by  $H^q(M, E(J_{\tau}))$   $(q=0, 1, \cdots)$  the q-th cohomology group of M with coefficients in the sheaf  $E(J_{\tau})$ .

In a series of papers [6], [7], [8] (cf. also [9]), Y. Matsushima and one of the present authors have discussed the cohomology groups  $H^q(M, E(I_\tau))$  and in particular the vanishing of these cohomology groups. The aim of this note is to prove anew a vanishing theorem for these cohomology groups which generalizes one of the main results in [7]. In [7] (and also in [8]), the result has been obtained after proving the following two kind of assertions. (1) Vanishing theorems for the cohomology groups of M with coefficients in certain locally constant sheaves, and (2) Isomorphisms between cohomology groups of this type and the groups  $H^q(M, E(I_r))$ . In this note we will apply a formula proved in [8] which expresses the dimension of the space of automorphic forms in terms of the unitary representation of G in  $L^2(\Gamma \setminus G)$ . As this formula has nothing to do with the earlier results as (1), (2), we get in this way a direct proof to a theorem in [7]. We note that N. Wallach and one of the present authors [3] have recently applied a similar kind of formula proved by Matsushima [5], thus giving a completely new proof to a theorem of Matsushima concerning the first Betti number of the space  $\Gamma \setminus X$ . The method used in this note generalizes that of [3] and depends on an argument used by R. Parthasarathy [11] who treated " $L^2$ -cohomologies" of X. We remark also that a different kind of vanishing theorem for the cohomology groups is found in [2].

We need also a formula on a laplacian operator, which is essentially the same as the one given by K. Okamoto and H. Ozeki [10]. The proof of this formula given here may be considered as a simplification of the method developed by them (cf. [1] for another proof).

1. Preliminaries on Lie algebras. We retain the notation in the introduction. Let  $\mathfrak{g}$  be the Lie algebra of G and  $\mathfrak{k}$  the subalgebra corresponding to the subgroup K. Since G/K carries a G-invariant complex structure,  $\mathfrak{k}$  contains a Cartan subalgera  $\mathfrak{h}$  of  $\mathfrak{g}$ . We denote by  $\mathfrak{g}^c$  the complexification of  $\mathfrak{g}$  and by  $\mathfrak{h}^c$  and  $\mathfrak{k}^c$  the subspaces of  $\mathfrak{g}^c$  spanned by  $\mathfrak{h}$  and  $\mathfrak{k}^c$  respectively.

Let  $\Delta$  be the root system of  $g^c$  relative to  $\mathfrak{h}^c$  and

$$\mathfrak{g}^c=\mathfrak{h}^c+\sum_{lpha\in\Delta}\mathfrak{g}_lpha$$

be the root space decomposition. Then

$$\mathbf{f}^{c} = \mathfrak{h}^{c} + \sum_{\alpha \in \Delta_{b}} \mathfrak{g}_{\alpha}$$

for a subset  $\Delta_k \subset \Delta$ . Moreover, by our assumption on G/K, there exist abelian subalgebras  $\mathfrak{n}^+$  and  $\mathfrak{n}^-$  of  $\mathfrak{g}^C$  such that

$$\begin{split} \mathbf{g}^{c} &= \mathfrak{n}^{+} \oplus \mathfrak{n}^{-} \oplus \mathfrak{k}^{c} \;, \\ [\mathfrak{k}^{c}, \, \mathfrak{n}^{\pm}] &\subset \mathfrak{n}^{\pm}, \, [\mathfrak{n}^{+}, \, \mathfrak{n}^{-}] &\subset \mathfrak{k}^{c} \;, \\ \overline{\mathfrak{n}^{+}} &= \mathfrak{n}^{-} \;. \end{split}$$

where — denotes the conjugation of  $g^c$  with respect to g. It follows in particular that

$$\mathfrak{n}^+ = \sum_{\alpha \in \Psi} g_{\alpha}$$
,  $\mathfrak{n}^- = \sum_{\alpha \in \Psi} g_{-\alpha}$ 

for a subset  $\Psi \subset \Delta$ . For each root  $\alpha \in \Psi$  we can choose a vector  $X_{\alpha} \in \mathfrak{g}_{\alpha}$  in such a way that  $X_{\alpha} = X_{-\alpha}$  and  $\varphi(X_{\alpha}, X_{-\alpha}) = 1$ ,  $\varphi$  being the Killing form of  $\mathfrak{g}^{c}$ .

Let  $\mathfrak{h}_0$  be the real part of  $\mathfrak{h}^C$ . All roots of  $\mathfrak{g}^C$  and more generally any weight of a finite-dimensional irreducible representation of the reductive Lie algebra  $\mathfrak{k}^C$  relative to the Cartan subalgebra  $\mathfrak{h}^C$  are real-valued on  $\mathfrak{h}_0$  and so are considered as elements of the dual space  $\mathfrak{h}_0^*$  of  $\mathfrak{h}_0$ . We know that there exists a linear ordering in  $\mathfrak{h}_0^*$  such that the roots in  $\Psi$  are all positive. Choosing such an ordering once and for all, let  $\Delta_+$  be the set of all positive roots. Put  $\Theta = \Delta_+ \cap \Delta_k$  and

$$\delta = \frac{1}{2} \langle \Delta_{+} \rangle, \quad \delta_{k} = \frac{1}{2} \langle \Theta \rangle, \quad \delta_{n} = \frac{1}{2} \langle \Psi \rangle$$

where  $\langle Q \rangle$  denotes the sum of roots belonging to Q for any subset Q of  $\Delta$ . Then  $\Delta_+ = \Theta \cup \Psi$  and  $\delta = \delta_k + \delta_n$ .

The Killing form  $\varphi$  defines a positive definite inner product on  $\mathfrak{h}_0$  and this induces in turn a linear isomorphism  $\mathfrak{h}_0^* \cong \mathfrak{h}_0$  which assigns to  $\lambda \in \mathfrak{h}_0^*$  the element  $H_{\lambda} \in \mathfrak{h}_0$  such that  $\lambda(H) = \varphi(H_{\lambda}, H)$  for all  $H \in \mathfrak{h}_0$ . Then

$$[X_{\alpha}, X_{-\alpha}] = H_{\alpha}$$

for any root  $\alpha \in \Psi$ . We define an inner product in  $\mathfrak{h}_{0}^{*}$  by putting

$$\langle \lambda, \mu \rangle = \varphi(H_{\lambda}, H_{\mu})$$

for  $\lambda$ ,  $\mu \in \mathfrak{h}_0^*$ .

2. The cohomology groups  $H^{0,q}(\Gamma, X, J_{\tau})$ . We recall some results obtained in [6], [7]. Let  $\tau$  be a representation of the group K on a finite-dimensional complex vector space V, and  $J_{\tau}$  the canonical automorphic factor of type  $\tau$  on the space X=G/K (Cf. [6], [9]). We denote by  $A^{0,q}(\Gamma, X, J_{\tau})$  the vector space of V-valued  $C^{\infty}$ -differential forms  $\eta$  of type (0, q) on X such that

$$(\eta \circ L_{\gamma})_{x} = J_{\tau}(\gamma, x)\eta_{x}$$

for all  $\gamma \in \Gamma$  and  $x \in X$ , where  $L_{\gamma}$  denotes the transformation of X defined by  $\gamma$ . Then we get a complex  $\sum_{q \geq 0} A^{0,q}(\Gamma, X, J_{\tau})$  with coboundary operator d''. The cohomology groups of this complex, which were denoted by  $H_{d''}^{0,r}(\Gamma, X, J_{\tau})$  in [6] [7], will be here denoted by  $H^{0,q}(\Gamma, X, J_{\tau})$  ( $q = 0, 1, \cdots$ ). The group  $H^{0,q}(\Gamma, X, J_{\tau})$  is isomorphic, via the Dolbeault's isomorphism, to the cohomology group  $H^q(M, E(J_{\tau}))$  defined in the introduction. Now in the space  $A^{0,q}(\Gamma, X, J_{\tau})$  we can introduce a "laplacian" operator  $\square$  in a canonical way and we know that each cohomology class of  $H^{0,q}(\Gamma, X, J_{\tau})$  is represented by a unique harmonic form, i.e. a form  $\eta$  such that  $\square \eta = 0$ . The group  $H^{0,q}(\Gamma, X, J_{\tau})$  is thus isomorphic to the group  $\mathcal{H}^{0,q}(\Gamma, X, J_{\tau})$  formed by the harmonic forms in  $A^{0,q}(\Gamma, X, J_{\tau})$ .

The space  $A^{0,q}(\Gamma, X, J_{\tau})$  is canonically isomorphic to the space of V-valued q-forms  $\eta$  on the manifold  $\Gamma \backslash G$  satisfying the following conditions. An element  $X \in \mathfrak{g}^C$  being a left-invariant complex vector field on G, X projects to a vector field on  $\Gamma \backslash G$  which we write also by X. Let i(X) be the operator of taking interior product by X for differential forms on  $\Gamma \backslash G$ . Then the conditions to be satisfied by the forms  $\eta$  are the followings.

(2.1) 
$$\begin{cases} \eta \circ R_{k} = \tau^{-1}(k)\eta & \text{for } k \in K, \\ i(X)\eta = 0 & \text{for } X \in \mathfrak{n}^{+}, \\ i(Y)\eta = 0 & \text{for } Y \in \mathfrak{k}, \end{cases}$$

where  $R_k$  is the transformation of  $\Gamma \backslash G$  defined by an element  $k \in K$ . Now, there exists a bijection between V-valued q-forms satisfying (2.1) and  $V \otimes \Lambda^q \mathfrak{n}^+$ -valued  $C^{\infty}$ -functions f on  $\Gamma \backslash G$  which verify

$$(2.2) f(xk) = (\tau \otimes \operatorname{ad}_{+}^{q})(k^{-1})f(x)$$

for  $x \in X$  and  $k \in K$ , where ad i is the representation of K on  $\Lambda^{\sigma} \mathfrak{n}^+$  induced from the adjoint action of K on  $\mathfrak{n}^+$ . To be more precise, put  $\Psi = \{\alpha_1, \dots, \alpha_N\}$  and write  $X_i$ ,  $X_{\overline{i}}$  for  $X_{\alpha_i}$ ,  $X_{\alpha_i}$  ( $1 \le i \le N$ ) respectively. Then the function corresponding to a form  $\eta$  is given by

$$f(x) = \sum \eta_{\bar{j}_1 \bullet \circ \bar{j}_q}(x) X_{j_1} \wedge \cdots \wedge X_{j_q}$$

where

$$\eta_{\overline{\jmath}_1\cdots\overline{\jmath}_q}=\eta(X_{\overline{\jmath}_1},\,\cdots,\,X_{\overline{\jmath}_q})$$

and  $j_1, \dots, j_q$  run over integers such that  $1 \leq j_1 < \dots < j_q \leq N$ . We shall denote this function also by  $\eta$  and identify the space  $A^{0,q}(\Gamma, X, J_{\tau})$  with the space of  $V \otimes \Lambda^q \mathfrak{n}^+$ -valued  $C^{\infty}$ -functions satisfying the condition (2.2). If we denote by  $C^{\infty}(\Gamma \backslash G)$  the space of all complex-valued  $C^{\infty}$ -functions on  $\Gamma \backslash G$ , the space of all  $V \otimes \Lambda^q \mathfrak{n}^+$ -valued  $C^{\infty}$ -functions on  $\Gamma \backslash G$  may be identified with the tensor product space  $C^{\infty}(\Gamma \backslash G) \otimes V \otimes \Lambda^q \mathfrak{n}^+$ . The group K acts on this space by  $R_k \otimes \tau(k) \otimes \operatorname{ad}_+^q(k)$  ( $k \in K$ ), and then  $A^{0,q}(\Gamma, X, J_{\tau})$  coincides with the subspace of  $C^{\infty}(\Gamma \backslash G) \otimes V \otimes \Lambda^q \mathfrak{n}^+$  consisting of all K-invariant elements.

Each vector field on  $\Gamma \backslash G$  acting on  $C^{\infty}(\Gamma \backslash G)$  in a natural way, we get a natural representation l of the Lie algebra  $\mathfrak{g}^{\mathcal{C}}$  in  $C^{\infty}(\Gamma \backslash G)$ . The restriction of l to  $\mathfrak{t}$  is denoted by  $l_k$ , and the representations of  $\mathfrak{t}$  induced from the representations  $\tau$ ,  $\mathrm{ad}^{\mathfrak{q}}_+$  of the group K will be denoted by the same letters. The action of the group K on  $C^{\infty}(\Gamma \backslash G) \otimes V \otimes \Lambda^{\mathfrak{q}}\mathfrak{n}^+$  defines as its differential the tensor product representation  $l_k \otimes \tau \otimes \mathrm{ad}^{\mathfrak{q}}_+$  of the representations  $l_k$ ,  $\tau$ ,  $\mathrm{ad}^{\mathfrak{q}}_+$  of the Lie algebra  $\mathfrak{t}$ . It follows that an element  $\eta \in C^{\infty}(\Gamma \backslash G) \otimes V \otimes \Lambda^{\mathfrak{q}}\mathfrak{n}^+$  belongs to the subspace  $A^{0,\mathfrak{q}}(\Gamma, X, J_{\tau})$ , if and only if

$$(2.3) (l_{k} \otimes \tau \otimes \operatorname{ad}_{+}^{q})(Y)\eta = 0$$

holds for all  $Y \in \mathfrak{k}$ .

Let  $\{Y_1, \dots, Y_m\}$  be a basis of  $\mathfrak{k}$  such that  $\varphi(Y_a, Y_b) = -\delta_{ab}$   $(1 \leq a, b \leq m)$ . Then the laplacian operator  $\square$  in  $A^{0,q}(\Gamma, X, J_{\tau})$  is induced from the operator, denoted also by  $\square$ , in  $C^{\infty}(\Gamma \setminus G) \otimes V \otimes \Lambda^q \mathfrak{n}^+$  defined as follows.

$$(2.4) \qquad \Box = -\sum_{i=1}^{N} l(X_i)l(X_i) \otimes \mathbf{1} \otimes \mathbf{1} - \sum_{a=1}^{m} l(Y_a) \otimes \mathbf{1} \otimes \operatorname{ad}_{+}^{q}(Y_a),$$

where 1 denotes the identity operator in each space (See [6], [7], [9]).

3. An expression of the laplacian operator. Let C be the Casimir

operator of the Lie algebra  $g^c$ . This is an element in the enveloping algebra  $U(g^c)$  of  $g^c$  and, according to our choice of the basis  $\{X_1, \dots, X_N, X_{\overline{1}}, \dots, X_{\overline{N}}, Y_1, \dots, Y_m\}$  of  $g^c$ , it is written as

$$C = -\sum_{a=1}^{m} Y_a^2 + \sum_{i=1}^{N} (X_i X_{\overline{i}} + X_{\overline{i}} X_i).$$

The operator C acts on  $C^{\infty}(\Gamma \backslash G) \otimes V \otimes \Lambda^q \mathfrak{n}^+$  via the canonical action of  $U(\mathfrak{g}^c)$  on the first factor  $C^{\infty}(\Gamma \backslash G)$ . Analogously we define an element  $C_{\mathbf{k}} \in U(\mathfrak{g}^c)$  as follows.

$$C_{k}=-\sum_{a=1}^{m}Y_{a}^{2},$$

and put

$$\tau(C_k) = -\sum_{a=1}^m \tau(Y_a)^2.$$

From now on we assume that the representation  $\tau$  of K is irreducible. Then  $\tau$  induces an irreducible representation, denoted also by  $\tau$ , of the reductive Lie algebra  $\mathfrak{k}^c$ . Let  $\Lambda$  (resp.  $\Lambda'$ ) be the highest (resp. lowest) weight of  $\tau$  with respect to the ordering in  $\mathfrak{h}_0^*$  chosen in §1. Then we see easily

(3.1) 
$$\tau(C_k) = \langle \Lambda, \Lambda + 2\delta_k \rangle \mathbf{1} \; ; \quad \tau(H_{\lambda}) = \langle \Lambda, \lambda \rangle \mathbf{1}$$

for  $H_{\lambda}$  belonging to the center of  $\mathfrak{k}^{C}$ .

The formula given in the following lemma is essentially the same as the one of Okamoto-Ozeki [10] established for "L²-cohomologies".

**Lemma 1.** In the subspace  $A^{0,q}(\Gamma, X, J_{\tau}) \subset C^{\infty}(\Gamma \backslash G) \otimes V \otimes \Lambda^{q}\mathfrak{n}^{+}$ , we have

$$\square = \frac{1}{2} \left\{ -C + \langle \Lambda, \Lambda + 2\delta \rangle \mathbf{1} \right\}.$$

Proof. For simplicity, we write X for l(X)  $(X \in \mathfrak{g}^c)$ . In the following summations a runs over  $1, \dots, m$  and i over  $1, \dots, N$ . We shall use the following formula proved in [7. Lemma 4.1].

(3.3) 
$$\sum_{a} \operatorname{ad}_{+}^{q}(Y_{a})^{2} = -\sum_{i} \operatorname{ad}_{+}^{q}([X_{i}, X_{\overline{i}}]).$$

Now, in the subspace  $A^{0,q}(\Gamma, X, J_{\tau})$ , we have

$$\begin{split} 2\sum_{a}\left(Y_{a}\otimes\mathbf{1}\otimes\operatorname{ad}_{+}^{q}(Y_{a})\right) \\ &=\sum_{a}\left(Y_{a}\otimes\mathbf{1}\otimes\mathbf{1}+\mathbf{1}\otimes\mathbf{1}\otimes\operatorname{ad}_{+}^{q}(Y_{a})\right)^{2}-\sum_{a}Y_{a}^{2}\otimes\mathbf{1}\otimes\mathbf{1}-\mathbf{1}\otimes\mathbf{1}\otimes\sum_{a}\operatorname{ad}_{+}^{q}(Y_{a})^{2} \\ &=\sum_{a}\left(-\mathbf{1}\otimes\tau(Y_{a})\otimes\mathbf{1}\right)^{2}-\sum_{a}Y_{a}^{2}\otimes\mathbf{1}\otimes\mathbf{1}+\mathbf{1}\otimes\mathbf{1}\otimes\sum_{i}\operatorname{ad}_{+}^{q}([X_{i},X_{\overline{i}}]) \\ & \left[\operatorname{by}\left(2.3\right)\operatorname{and}\left(3.3\right)\right] \end{split}$$

$$= \mathbf{1} \otimes \sum_{a} \tau(Y_{a})^{2} \otimes \mathbf{1} - \sum_{a} Y_{a}^{2} \otimes \mathbf{1} \otimes \mathbf{1}$$
$$- \sum_{i} [X_{i}, X_{\overline{i}}] \otimes \mathbf{1} \otimes \mathbf{1} - \mathbf{1} \otimes \sum_{i} \tau([X_{i}, X_{\overline{i}})] \otimes \mathbf{1} \qquad [by (2.3)]$$

Note that  $\sum_{i} [X_{i}, X_{\bar{i}}] = \sum_{\alpha \in \Psi} H_{\alpha} = H_{2\delta_{n}}$ , which belongs to the center of  $\mathfrak{k}^{c}$ . From (2.4) we get therefore

$$\Box = -\sum_{i} X_{i} X_{\overline{i}} \otimes \mathbf{1} \otimes \mathbf{1}$$

$$-\frac{1}{2} \left\{ \mathbf{1} \otimes \sum_{a} \tau(Y_{a})^{2} \otimes \mathbf{1} - \sum_{a} Y_{a}^{2} \otimes \mathbf{1} \otimes \mathbf{1} \right.$$

$$-\sum_{i} \left[ X_{i}, X_{\overline{i}} \right] \otimes \mathbf{1} \otimes \mathbf{1} - \mathbf{1} \otimes \tau(H_{2\delta_{n}}) \otimes \mathbf{1} \right\}$$

$$= \frac{1}{2} \left\{ -\left(\sum_{i} \left( X_{i} X_{\overline{i}} + X_{\overline{i}} X_{i} \right) + \sum_{a} Y_{a}^{2} \right) \otimes \mathbf{1} \otimes \mathbf{1} \right.$$

$$+ \mathbf{1} \otimes \tau(C_{k}) \otimes \mathbf{1} + \mathbf{1} \otimes \tau(H_{2\delta_{n}}) \otimes \mathbf{1} \right\}$$

$$= \frac{1}{2} \left( -C + \langle \Lambda, \Lambda + 2\delta_{k} \rangle \mathbf{1} + \langle \Lambda, 2\delta_{n} \rangle \mathbf{1} \right) \quad \text{[by (3.1)]}$$

$$= \frac{1}{2} \left( -C + \langle \Lambda, \Lambda + 2\delta \rangle \mathbf{1} \right).$$

This proves the Lemma.

## **4. The theorem.** We shall prove the following

**Theorem.** The notation and hypotheses being as in the preceding sections, let  $\tau$  be an irreducible representation of K whose highest weight  $\Lambda$  is a dominant integral form with respect to  $\Delta_+$ . Then

$$H^{\mathfrak{o},q}(\Gamma, X, J_{\tau}) = (0)$$

for q satisfying one of the following conditions.

- (I)  $q < q_{\Lambda}$ , where  $q_{\Lambda}$  is the number of roots  $\alpha$  such that  $\langle \Lambda, \alpha \rangle > 0$ .
- (II) q < r, if X is an irreducible symmetric space of rank r and unless q=0 nor  $\Lambda=0$ .

As mentioned in the introduction, the case (I) has been proved in [7] (and also in [8]) in a different way, while the case (II) is a slight generalization of a result in [3].

To prove the theorem, we recall first a formula in [8, Part II] which we will apply. Let  $\sigma$  be a representation of K in a complex vector space  $V_{\sigma}$ . By an automorphic form of type  $(\Gamma, \sigma, \lambda)$  we mean a  $V_{\sigma}$ -valued  $C^{\infty}$ -function f on G satisfying the following conditions. (i)  $f(gk) = \sigma(k^{-1})f(g)$  for  $g \in G$ ,  $k \in K$ , (ii)  $f(\gamma g) = f(g)$  for  $\gamma \in \Gamma$ ,  $g \in G$ , and (iii)  $Cf = \lambda f$ , where  $\lambda$  is a complex number

depending only on  $\sigma$ . By what we have observed in §§2 and 3, we can identify the space  $\mathcal{H}^{0,q}(\Gamma, X, J_{\tau})$  with the space of  $V \otimes \Lambda^q \mathfrak{n}^+$ -value  $C^{\infty}$ -functions f on  $\Gamma \setminus G$  satisfying (2.2) and such that

$$Cf = \langle \Lambda, \Lambda + 2\delta \rangle f$$
.

Therefore,  $\mathcal{H}^{0,q}(\Gamma, X, J_{\tau})$  may be considered as the space of automorphic forms of type  $(\Gamma, \tau \otimes \operatorname{ad}_{+}^{q}, \lambda)$  with  $\lambda = \langle \Lambda, \Lambda + 2\delta \rangle$ .

Let  $\pi$  be a unitary representation of G in a Hilbert space  $H_{\pi}$ . Then  $\pi$  gives rise to representations of the Lie algebra  $\mathfrak g$  and of the universal enveloping algebra  $U(\mathfrak g)$  in  $H_{\pi}$ , which we shall denote also by  $\pi$ . The operator  $\pi(C)$  is known to be a self-adjoint operator of  $H_{\pi}$  with a dense domain. Assume now that  $\pi$  is irreducible. There exists then a complex number  $\lambda_{\pi}$  such that  $\pi(C) = \lambda_{\pi} 1$ , i.e. that  $\pi(C) u = \lambda_{\pi} u$  for all u in the domain of  $\pi(C)$ . On the other hand, the space  $H_{\pi}$  being considered as a K-module by the restriction of  $\pi$  to K, decomposes into a countable sum of irreducible K-submodules among which each irreducible K-module occurs with finite multiplicity. So we can define for a representation  $\sigma$  of K on a finite-dimensional complex vector space  $V_{\sigma}$ , the intertwining number  $(\pi \mid K; \sigma)$  as the dimension of the space of all K-homomorphisms of  $H_{\pi}$  into  $V_{\sigma}$ . If  $\sigma$  is irreducible,  $(\pi \mid K; \sigma)$  is equal to the multiplicity of  $\sigma$  in the restriction of  $\pi$  to K.

Let now  $\rho$  be the unitary representation of the group G in the Hilbert space  $L^2(\Gamma \backslash G)$  induced from the action of G on  $\Gamma \backslash G$ . We know that  $\rho$  decomposes into sum of a countable number of irreducible representations, in which each irreducible representation  $\pi$  of G enters with a finite multiplicity that we denote by  $m_{\pi}(\Gamma)$ .

Now, for a representation  $\sigma$  of K, let  $A(\Gamma, \sigma, \lambda)$  be the space of automorphic forms of type  $(\Gamma, \sigma, \lambda)$ . Then we have obtained the following formula [8, Theorem 3].

(4.1) 
$$\dim A(\Gamma, \sigma, \lambda) = \sum_{\pi \in D_{\lambda}} m_{\pi}(\Gamma)(\pi | K; \sigma^*)$$

where  $\sigma^*$  denotes the representation of K contragredient to  $\sigma$  and  $D_{\lambda}$  is the set of irreducible unitary representations  $\pi$  of G such that  $\pi(C) = \lambda \mathbf{1}$ . Actually this formula is established in [8] for the case that  $\sigma$  is irreducible, but it follows that the same formula holds for any finite-dimensional representation  $\sigma$  of K, since  $\sigma$  decomposes into a finite sum of irreducible representations. Moreover, if  $\pi^*$  denotes the representation of G contragredient to an irreducible unitary representation  $\pi$  of G, we can easily see  $(\pi|K;\sigma^*)=(\pi^*|K;\sigma)$  and that  $\pi(C)$  and  $\pi^*(C)$  are the same scalar multiple of the identity operators. The representation  $\sigma$  of G in  $L^2(\Gamma \setminus G)$  is self-contragredient, from which it follows that  $m_{\pi}(\Gamma)=m_{\pi^*}(\Gamma)$  for any irreducible representation  $\pi$  of G. Combining these results, the formula (4.1) can now be written as

$$\dim A(\Gamma, \sigma, \lambda) = \sum_{\pi \in D_{\lambda}} m_{\pi}(\Gamma)(\pi \mid K; \sigma).$$

Applying this to our case, we get the following formula.

(4.2) 
$$\dim \mathcal{H}^{0,q}(\Gamma, X, J_{\tau}) = \sum_{\pi} m_{\pi}(\Gamma)(\pi \mid K; \tau \otimes \mathrm{ad}_{+}^{q})$$

where  $\pi$  runs over the irreducible unitary representations of G for which  $\pi(C) = \langle \Lambda, \Lambda + 2\delta \rangle \mathbf{1}$ .

Using this interpretation, we have the following lemma whose proof depends on a computation similar to Parthasarathy's [11] (See also [3, Lemma 3.7]).

**Lemma 2.** Assume  $H^{0,q}(\Gamma, X, J_{\tau}) \neq (0)$ . Then there exists a subset  $Q \subset \Psi$  with cardinality q, satisfying the following conditions;

(1) there exists an irreducible unitary representation  $\pi_{\mu}$  of G whose highest weight with respect to the (new) positive root system  $\Delta'_{+}=\Theta\cup(-\Psi)$  is  $\mu=\Lambda+\langle Q\rangle$ . That is, there exists a non-zero vector v in the representation space of  $\pi_{\mu}$  such that

$$\pi_{\mu}(X_{\alpha})v = 0 \qquad (\alpha \in \Delta'_{+}),$$
 
$$\pi_{\mu}(H)v = \mu(H)v \qquad (H \in \mathfrak{h}^{C}).$$

(2)  $\langle \Lambda, \alpha \rangle = 0$  for  $\alpha \in \Psi - Q$  and  $|\delta_k - \delta_n| = |\delta_k - \delta_n + \langle Q \rangle|$ , where  $|\lambda|^2 = \langle \lambda, \lambda \rangle$  for any  $\lambda \in \mathfrak{h}_0^*$ .

Proof. By the assumption and (4.2), there exists an irreducible unitary representation  $\pi$  in a space  $H_{\pi}$  containing an irreducible K-module U intertwining with  $\tau \otimes \operatorname{ad}_{+}^{q}$ . Let  $\mu$  be the highest weight of U and v be the non-zero eigenvector for  $\mu$ . Note that there then exists  $Q \subset \Psi$  such that  $\mu = \Lambda + \langle Q \rangle$ . We know that v is in the domain of all operators  $\pi(X)$  ( $X \in U(\mathfrak{g}^{c})$ ). Since  $\pi(C) = \langle \Lambda, \Lambda + 2\delta \rangle \mathbf{1}$ , we have

$$\begin{split} &2\sum_{i}\pi(X_{i})\pi(X_{\overline{i}})v\\ &=\sum_{i}\left\{\pi(X_{i})\pi(X_{\overline{i}})+\pi(X_{\overline{i}})\pi(X_{i})\right\}v+\sum_{i}\pi([X_{i},X_{\overline{i}}])v\\ &=\left\{\pi(C_{k})-\pi(C)+\pi(H_{2\delta_{n}})\right\}v\\ &=\left\{\langle\Lambda,\Lambda+2\delta\rangle-\langle\mu,\mu+2\delta_{k}\rangle+\langle\mu,2\delta_{n}\rangle\right\}v \qquad \qquad [by (3.1)]\\ &=\left\{|\Lambda+\delta|^{2}-|\mu+\delta_{k}-\delta_{n}|^{2}\right\}v \qquad \qquad [as \ |\delta|=|\delta_{k}-\delta_{n}|]\\ &=\left\{2\langle\Lambda,2\delta_{n}-\langle Q\rangle\rangle+|\delta_{k}-\delta_{n}|^{2}-|\delta_{k}-\delta_{n}+\langle Q\rangle|^{2}\right\}v \qquad [as \ \mu=\Lambda+\langle Q\rangle] \;. \end{split}$$

Since  $\pi$  is unitary, if follows

$$-2\sum_{i}||\pi(X_{\bar{i}})v||^{2}$$

$$= \{2\langle \Lambda, 2\delta_{n} - \langle Q \rangle \rangle + (|\delta_{k} - \delta_{n}|^{2} - |\delta_{k} - \delta_{n} + \langle Q \rangle|^{2})\}||v||^{2},$$

where  $||\cdot||$  denotes the Hilbert norm on  $H_{\pi}$ . But by the assumption on  $\Lambda$ ,  $\langle \Lambda, 2\delta_{\pi} - \langle Q \rangle \rangle \geq 0$  and by a result of Kostant [4],

$$|\delta_{\mathbf{k}} - \delta_{\mathbf{n}}|^2 \ge |\delta_{\mathbf{k}} - \delta_{\mathbf{n}} + \langle Q \rangle|^2$$
.

Hence  $\pi(X_{\bar{i}})v=0$ ; thus  $\pi$  satisfies the requirement for  $\pi_{\mu}$  in (1) and simultaneously Q satisfies (2). Q.E.D.

Proof of Theorem. We are now ready to prove the case (I). Assume  $H^{0,q}(\Gamma, X, J_{\tau}) \pm (0)$ . Let  $Q \subset \Psi$  be as in Lemma 2. Then  $\langle \Lambda, \alpha \rangle = 0$  for  $\alpha \in \Psi - Q$ . Setting

$$Q_{\Lambda} = \{ \alpha \in \psi; \langle \Lambda, \alpha \rangle > 0 \}$$
 ,

we thus have  $Q_{\Lambda} \subset Q$ . Hence  $q_{\Lambda} \leq q$ .

We shall next prove the theorem for the case (II). Under the assumption of (II), the Lie algebra  $\mathfrak{g}^C$  is simple and so there exists a unique root  $\alpha_0 \in \Psi$  which is a simple root with respect to the positive root system  $\Delta_+ = \Theta \cup \Psi$ . If  $\langle \Lambda, \alpha_0 \rangle \neq 0$ , then clearly  $\langle \Lambda, \alpha \rangle > 0$  for all  $\alpha \in \Psi$ , which means  $q_{\Lambda} = N = \dim_C X$ . Hence, in this case (I) implies the assertion in (II).

To treat the remaining case, i.e. the case  $\langle \Lambda, \alpha_0 \rangle = 0$ , we use a criterion of the unitarizability of representations with highest weights obtained in [3]. Assume again that  $H^{0,q}(\Gamma, X, J_{\tau}) \neq (0)$ . By Lemma 2, there exists an irreducible unitary representation  $\pi_{\mu}$  with highest weight  $\mu = \Lambda + \langle Q \rangle$  with respect to the positive root system  $\Delta'_{+} = \Theta \cup (-\Psi)$ . To simplify our notation, put  $\delta' = \delta_{k} - \delta_{n}$  and  $Q' = -Q \subset -\Psi$ . Then by (2) of Lemma 2,

$$|\delta'| = |\delta' - \langle Q' \rangle|$$
.

By Kostant [4], there then exists an element  $s \in W$  such that  $s(-\Delta'_+) \cap \Delta'_+ = Q'$ , where W is the Weyl group for  $(g^c, h^c)$ . Note that  $\langle Q' \rangle = \delta' - s\delta'$  and l(s) = q, where l(s) is the length of a minimal expression of s as product of Weyl reflections for simple roots in  $\Delta'_+$ .

Since  $\pi_{\mu}$  is an irreducible unitary representation with highest weight  $\mu$  with respect to the positive root system  $\Delta'_{+}$ , we have by [3, Lemma 3.4],

$$\langle \mu, \beta_0 \rangle \neq 0$$
,

if  $\mu \neq 0$ , where  $\beta_0$  is the highest root in  $\Delta'_+$ . By what we have seen above,

$$\mu = \Lambda - (\delta' - s\delta')$$

with l(s)=q and  $s\Delta'_{+}\supset\Theta$ .

Now, as we suppose  $\langle \Lambda, \alpha_0 \rangle = 0$ ,  $\langle \Lambda, \beta_0 \rangle = 0$ . Hence applying [3. Lemma 3.6], we have

$$\langle \mu, \beta_0 \rangle = \langle \Lambda - (\delta' - s\delta'), \beta_0 \rangle$$
  
=  $\langle \Lambda, \beta_0 \rangle + \langle s\delta' - \delta', \beta_0 \rangle$   
=  $\langle s\delta' - \delta', \beta_0 \rangle = 0$ 

when q=l(s) < r= rank X. Thus we should have  $q \ge r$  unless  $\mu=0$ .

We shall see that if  $\langle \Lambda, \alpha_0 \rangle = 0$  and  $\mu = 0$ , then  $\Lambda = 0$  and q = 0. Since  $s\Delta'_+ \supset \Theta$ ,

$$\langle s\delta' - \delta', \alpha \rangle \geq 0$$
  $(\alpha \in \Theta)$ 

(see, for example, [3, Lemma 3.5]). But we assume that  $\langle \Lambda, \alpha \rangle \geq 0$  for  $\alpha \in \Theta \cup \Psi$ . Hence if  $\mu = 0$ , i.e. if  $\Lambda = \delta' - s\delta'$ , then

$$\langle \Lambda, \alpha \rangle = 0 \quad (\alpha \in \Theta)$$
.

Since the center of  $\mathfrak{k}$  is one-dimensional, it follows that there exists a scalar  $c \in C$  such that  $\Lambda = c\delta_n$ . By [9, p. 96, Corollary], we know

$$\langle \delta_n, \alpha_0 \rangle > 0$$

(actually,  $\langle 2\delta_n, \alpha \rangle = \frac{1}{2} (\alpha \in \Psi)$ ). Hence  $c = \langle \Lambda, \alpha_0 \rangle / \langle \delta_n, \alpha_0 \rangle$  and so c = 0, because  $\langle \Lambda, \alpha_0 \rangle = 0$ . Thus we have  $\Lambda = 0$ . We have also q = 0, since  $\mu = \Lambda + \langle Q \rangle = 0$ . We have thus completed the proof for the case (II).

HIROSHIMA UNIVERSITY OSAKA UNIVERSITY

## **Bibliography**

- [1] R. Hotta: A remark on the Laplace-Beltrami operators attached to Hermitian symmetric pairs, Osaka J. Math. 8 (1971), 15-19.
- [2] R. Hotta and R. Parthasarathy: A geometric meaning of the multiplicity of integrable discrete classes in  $L^2(\Gamma \setminus G)$ , Osaka J. Math. 10 (1973), 211–234.
- [3] R. Hotta and N. Wallach: On Matsushima's formula for the Betti numbers of a locally symmetric space, Osaka J. Math. 12 (1975), 419-431.
- [4] B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.
- [5] Y. Matsushima: A formula for the Betti numbers of compact locally symmetric Riemannian manifolds, J. Differential Geometry 1 (1967), 99-109.
- [6] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
- [7] —: On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. Math. 2 (1965), 1–35.
- [8] ——: On certain cohomology groups attached to hermitian symmetric spaces (II), Osaka J. Math. 5 (1968), 223–241.
- [9] S. Murakami: Cohomology groups of vector-valued forms on symmetric spaces, Lecture Notes, University of Chicago, 1966.
- [10] K. Okamoto and H. Ozeki: On square-integrable  $\bar{\partial}$ -cohomology spaces attached to hermitian symmetric spaces, Osaka J. Math. 4 (1967), 95–110.
- [11] R. Parthasarathy: A note on the vanishing of certain "L<sup>2</sup>-cohomologies", J. Math. Soc. Japan 23 (1971), 676-691.