

Title	On locally finite iterative higher derivations
Author(s)	Nakai, Yoshikazu
Citation	Osaka Journal of Mathematics. 1978, 15(3), p. 655-662
Version Type	VoR
URL	https://doi.org/10.18910/10781
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON LOCALLY FINITE ITERATIVE HIGHER DERIVATIONS

YOSHIKAZU NAKAI

(Received June 1, 1977)

Let A be a commutative ring with unity. A higher derivation $\underline{\Delta} = \{1, \Delta_1, \Delta_2, \dots\}$ of A is called locally finite if for any $a \in A$ there exists an index j such that $\Delta_n(a) = 0$ for all $n > j$. In a previous paper some properties of locally finite iterative higher derivations (abbreviated as lfih-derivations) and some applications of them were presented ([2]). In this paper the author gives another application of lfih-derivations, i.e., a characterization of two-dimensional polynomial ring. His proof supplies an alternative proof of Theorem 1 in [3], where the method is geometric while the present one is algebraic and elementary. As a Corollary a characterization of a line in an affine plane is given in terms of lfih-derivation where a line in an affine plane is meant a curve C which can be taken as a coordinate axis of A^2 . We call a curve $C: f(x, y) = 0$ a quasi-line if the coordinate ring $k[x, y]/(f)$ is isomorphic to one-parameter polynomial ring. It is known that if the ground field is the complex number field C , then a quasi-line is always a line (cf. [1]). Combined with the present investigation it turns out that if the plane curve $C: f(x, y) = 0$ is a quasi-line over C , then the derivation $D_f = (\partial f / \partial y) \frac{\partial}{\partial x} - (\partial f / \partial x) \frac{\partial}{\partial y}$ is locally nilpotent, i.e., the higher derivation $\left(1, D_f, \frac{1}{2!} D_f^2, \dots\right)$ is a lfih-derivation and vice versa. The direct proof of this fact is expected very much.

Let A be a commutative ring with 1. A higher derivation $\underline{\Delta} = (1, \Delta_1, \Delta_2, \dots)$ is a set of linear endomorphisms of A into itself satisfying the conditions:

$$\Delta_n(ab) = \sum_{i=0}^n \Delta_i(a) \Delta_{n-i}(b)$$

where Δ_0 denotes the identity mapping of A . Let $\Phi_{\underline{\Delta}}$ be the homomorphism of the ring A into $A[[T]]$ defined by

$$\Phi_{\underline{\Delta}}(a) = \sum_{i=0}^{\infty} D_i(a) T^i.$$

We say that $\underline{\Delta}$ is locally finite if $I_n \Phi_{\underline{\Delta}}$ is contained in the polynomial ring $A[T]$, i.e., for any $a \in A$, there exists an integer j such that $\Delta_n(a) = 0$ for all $n > j$. $\underline{\Delta}$ is called an iterative higher derivation if the additional conditions

$$\Delta_i \Delta_j = \binom{i+j}{i} \Delta_{i+j}$$

are satisfied by Δ . Let a be an element of the ring A . We say that a is a Δ -constant if $\Delta_i(a)=0$ for all $i \geq 1$. This is equivalent to saying that $\Phi_\Delta(a)=a$. Sometimes we use the notation $\Delta^{-1}(0)$ to denote the ring of Δ -constants, and $\Delta(a)=0$ to denote a being a Δ -constant.

Lemma 1. *Let Δ be a locally finite higher derivation of an integral domain A . Then the constant ring $B=\Delta^{-1}(0)$ is inertly embedded in A .*

Proof. Let b be an element of B and let $b=cd$ be a decomposition of b in A . Then we have $\phi(b)=\phi(c)\phi(d)$ where $\phi=\Phi_\Delta$. By assumption $\phi(b)$ is in A and $\phi(c)$, $\phi(d)$ are elements of a polynomial ring $A[T]$. Hence $\phi(c)$, $\phi(d)$ are also in A . It means that $\phi(c)=c$ and $\phi(d)=d$, i.e., c and d are in B .

Theorem 1. *Let k be an algebraically closed field of arbitrary characteristic and let A be an integral domain containing k . Assume that A satisfies the following conditions:*

- i) *There exists a non-trivial lfih-derivation Δ over k .*
- ii) *The constant ring A_0 of Δ is a principal ideal domain finitely generated over k .*
- iii) *Any prime element of A_0 remains prime in A .*

Then A is a polynomial ring in one variable over A_0 .

Proof. Let A_i be the set of elements ξ in A such that $\Delta_n(\xi)=0$ for $n > i$. A_0 is the ring of Δ -constants and A_i 's are A_0 -modules. It is proved in [2] that there exists an integer s (≥ 0) such that

$$A_0 = A_1 = \cdots A_{p^s-1} \subset A_{p^s} = \cdots = A_{2p^s-1} \subset A_{2p^s} = \cdots$$

where \subset denotes proper containment. The integer mp^s is called the m -th jump index ($m=1, 2, \dots$). For simplicity we set $q=p^s$ and $M_n=A_{nq}$. It is also proved in [2] that for any element ξ in M_1 , we have

$$\phi(\xi) = \xi + \alpha_0 T + \alpha_1 T^q + \cdots + \alpha_s T^{q^s}$$

where α 's are in A_0 and $\phi=\Phi_\Delta$. Let I_1 be the set of elements in A_0 which appear as coefficients of T^q in $\phi(\xi)$ for some $\xi \in M_1$. It is easily seen that I_1 is an ideal of A_0 . Similarly let I_n be the set of elements which appear as coefficients of T^{nq} in $\phi(\xi)$ for some $\xi \in M_n$. Then I_n is also an ideal of A_0 . Let a_n be a generator of the I_n and let x be an element of M_1 such that

$$\phi(x) = x + \cdots + a_1 T^{q^s}.$$

We shall prove simultaneously the following

$$(1)_n \quad (a_n) = (a_1^n),$$

$$(2)_n \quad M_n = A_0 + A_0 x + \cdots + A_0 x^n, \quad (n=1, 2, \dots)$$

by induction on n . First we shall remark that $(1)_n$ implies $(2)_n$. In fact let ξ be in M_n . Then $\Delta_{nq}(\xi)$ is in $I_n = (a_n)$. From $(1)_n$ it follows that there exists a constant c in A_0 such that $\Delta_{nq}(\xi) = c a_1^n$. Then $\phi(\xi - cx^n)$ is of degree $< nq$, hence $\xi - cx^n \in M_{n-1}$. Now assume $(1)_n, (2)_n$ and we shall prove $(1)_{n+1}$. Since $a_1^{n+1} \in I_{n+1} = (a_{n+1})$, there is a constant c in A_0 such that $a_1^{n+1} = c a_{n+1}$. Let ξ be an element of M_{n+1} such that

$$\phi(\xi) = + \cdots + a_{n+1} T^{(n+1)q}.$$

Then $\phi(c\xi - x^{n+1})$ is of degree $< (n+1)q$, hence $c\xi - x^{n+1} \in M_n$. By $(2)_n$ there are b_i 's in A_0 such that

$$c\xi = x^{n+1} + \sum_{i=0}^n b_i x^i.$$

We shall show that c is a unit of A_0 . Assume that c is a non-unit in A_0 . Let f be a prime element which divides c . Taking the residue class modulo fA we get an algebraic relation

$$x^{n+1} + \bar{b}_i x^i = 0.$$

By assumption (iii) f is also a prime element of A . Hence A/fA is an integral domain. Since k is algebraically closed and A_0 is finitely generated over k , we have $A_0/fA_0 = k$. Hence there exists γ in k such that $x = \gamma$. It means that $x - \gamma = fy$ with some $y \in A$. Then we have $\phi(x - \gamma) = f\phi(y)$, i.e., $\Delta_q(x) = f\Delta_q(y)$. Since $\Delta_q(y) \in I_1 = (a_1) = (\Delta_q(x))$ we get a contradiction. Thus we have proven $(1)_{n+1}$. Since $A = \bigcup_{n=1}^{\infty} M_n$, we obtain the desired result $A = A_0[x]$.

REMARK. If A is a UFD, then the condition (iii) is automatically satisfied.

Theorem 2. Let k be as in Theorem 1, and let A be a finitely generated normal integral domain over k such that

- (i) $\dim A = 2$
- (ii) $A^* = k^*$ where $*$ denotes the set of units.
- (iii) Either A is UFD or $Q(A)$ is unirational over k .

Let Δ be a non-trivial lfh -derivation of A over k . Then the constant ring A_0 of Δ is a polynomial ring over k . More precisely let f be an irreducible element in A_0 . Then $A_0 = k[f]$.

Proof. A_0 is not reduced to k because there exists an element u in A_0 and

a variable t over A_0 such that $A[u^{-1}] = A_0[u^{-1}][t]$. (cf. Appendix, [2]). Let f be an element of $A_0 \setminus k$ which is irreducible in A . The existence of such an element f is assured by the Lemma 1. We shall show that $A_0 = k[f]$. Since $A_0[u^{-1}] \cong A[u^{-1}]/tA[u^{-1}]$, $A_0[u^{-1}]$ is a finitely generated integral domain over k . In case A is a UFD, $A_0[u^{-1}]$ is also a UFD owing to the Lemma 1. Moreover the transcendence degree of the quotient field K of A_0 is 1. Hence K is a purely transcendental extension of k . If A is not a UFD we assumed that $Q(A)$ is unirational. Then by the generalized Lüroth's theorem K is also a one-dimensional purely transcendental extension of k . Let B be the integral closure of $k[f]$ in K . Then B is also finitely generated over k and $B^* = k^*$ because B is contained in A . Hence there exists an element t in B such that $B = k[t]$. Since f is contained in B we can write $f = \lambda(t)$. But f is irreducible in A , hence degree of λ in t must be 1. It proves that $k[t] = k[f] = B$. Now assume $A_0 \neq B$. Since A_0 and B have the same quotient field, A_0 contains an element of the form $\gamma(f)/s(f)$ where $(\gamma(f), s(f)) = 1$ and $\deg s(f) \geq 1$. Then A_0 must contain a non-constant unit. This is against the assumption (ii).

Combining these theorems we have the following

Theorem 3. *Let k be an algebraically closed field of arbitrary characteristic and let A be a finitely generated integral domain over k . Assume that A satisfies the following conditions:*

- (i) $\dim A = 2$
- (ii) $A^* = k^*$
- (iii) A is UFD.

Assume that A has a non-trivial left-derivation Δ over k . Then A is a two-dimensional polynomial ring over k . More precisely if the constant ring A_0 of Δ is written as $k[f]$, then $A = k[f, g]$ for some other element g in A .

The assumption (iii) is essential as is shown in the following

EXAMPLE 1. (*) Let $A = C\left[x, y, \frac{y(y-1)}{x}\right]$. Then as is easily seen $A^* = C^*$

and A has a locally nilpotent derivation D such that

$$Dx = 2y - 1, \quad Dy = \frac{y(y-1)}{x}.$$

By a simple calculation we see $D^{-1}(0) = k\left[\frac{y(y-1)}{x}\right]$. The element $\frac{y(y-1)}{x}$ is not a prime element in A . Hence A is neither UFD nor a polynomial ring.

(*) This example is due to K. Yoshida.

As an application of Theorem 3 we give a necessary and sufficient condition for a plane curve $C: f(x, y)=0$ to be a line. We recollect here some definitions. A plane curve $C: f(x, y)=0$ defined over a field k is called a quasi-line over k if the coordinate ring $A=k[x, y]/(f)$ is isomorphic to a polynomial ring in one variable. C is called a line if there exists another curve $\Gamma: g(x, y)=0$ such that we have $k[x, y]=k[f, g]$.^(**)

Theorem 4. *Let k be an algebraically closed field and let $C: f(x, y)=0$ be an irreducible curve over k . Then the following conditions are equivalent to each other.*

- (i) C is a line
- (ii) There is a lfih-derivation $\underline{\Delta}$ such that $\underline{\Delta}(f)=0$.
- (iii) $C_u: f(x, y)-u=0$ is a quasi-line over $k(u)$ where u is an indeterminate.

Proof. The implication (i) \rightarrow (ii), (i) \rightarrow (iii) is obvious (ii) \rightarrow (i) follows from Theorem 2 and 3. It remains to show that (iii) implies (i). Assume (iii). Since $k(u)[x, y]/(f-u)$ is isomorphic to $k(f)[x, y]$, there exists an element t in $k[x, y]$ such that $k(f)[x, y]=k(f)[t]$. Let $\underline{\Delta}'$ be the lfih-derivation of $k(f)[t]$ over $k(f)$ such that

$$\underline{\Delta}'(t^m) = \binom{m}{n} t^{m-n}$$

Then there exists an element a in $k[f]$ such that $a\underline{\Delta}'=\underline{\Delta}$ sends $k[x, y]$ into itself, where $a\underline{\Delta}'$ is higher derivation

$$a\underline{\Delta}' = (1, a\underline{\Delta}'_1, a^2\underline{\Delta}'_2, \dots, a^n\underline{\Delta}'_n, \dots).$$

Clearly $\underline{\Delta}(f)=0$ and f is a prime element in $k[x, y]$. Hence $\underline{\Delta}^{-1}(0)=k[f]$ and by Theorem 3, f is a line.

In case where the characteristic of k is zero we can say more. First we prove a Lemma.

Lemma 2. *Let $C: f(x, y)=0$ be a line in a plane. Then $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=1$.*

Proof. Since C is a line, there exists a curve $\Gamma: g(x, y)=0$ such that $k[x, y]=k[f, g]$. Then there exists $F(X, Y)$ and $G(X, Y)$ in $k[X, Y]$ such that

$$\begin{aligned} F(f, g) &= x \\ G(f, g) &= y. \end{aligned}$$

Then we have

(**) In [4] our “line” and “quasi-line” are called “embedded line” and “line” respectively.

Now assume $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \subseteq \mathfrak{m}$ for some maximal ideal \mathfrak{m} . Then from (2) either $\frac{\partial F}{\partial g}$ or $\frac{\partial g}{\partial y}$ is contained in \mathfrak{m} . The first case cannot occur because of (1) and the second case contradicts (4). Thus $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ is a unit ideal.

Theorem 5. *Let k be an algebraically closed field of characteristic zero and let $C: f(x, y)=0$ be an irreducible curve over k . Then C is a line if and only if the derivation*

$$D_f = \frac{\partial f}{\partial y} \frac{\partial}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial}{\partial y}$$

is locally nilpotent.

Proof. Assume that $C: f(x, y)=0$ is a line. Let $\Gamma: g(x, y)=0$ be a curve such that $k[f, g]=k[x, y]$. Then there exists a locally nilpotent derivation Δ of $k[x, y]$ such that $\Delta f=0$ and $\Delta g=1$. Since $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ form a basis of derivations of $k[x, y]$ we can write

$$\Delta = a \frac{\partial}{\partial x} - b \frac{\partial}{\partial y} \text{ with } a, b \in k[x, y].$$

Since $\Delta f=0$ we have

$$a \frac{\partial f}{\partial x} - b \frac{\partial f}{\partial y} = 0 \quad (1)$$

Let $a \left| \frac{\partial f}{\partial y} \right. = b \left| \frac{\partial f}{\partial y} \right. = \lambda$, i.e., $a = \lambda \frac{\partial f}{\partial y}$, $b = \lambda \frac{\partial f}{\partial x}$. Then we have $\Delta = \lambda D_f$.

We show that $\lambda \in k[x, y]$. From Lemma 2 it follows that $\alpha \frac{\partial f}{\partial x} + \beta \frac{\partial f}{\partial y} = 1$ for some α, β in $k[x, y]$. Hence $\lambda = b\alpha + a\beta \in k[x, y]$. On the other hand the existence of $g \in k[x, y]$ such that $\Delta g = 1$ implies $(a, b) = 1$. Since λ is a common

divisor of a and b we see that $\lambda \in k^*$. This means that D_f is locally nilpotent. The “if” part of the Theorem is immediate from Theorem 3.

According to S. Abhyankar and T. Moh a quasi-line is a line in case of characteristic zero ([1]). In the case where the characteristic of k is a positive prime integer p there is a counter example.

EXAMPLE 2(***) A curve $C: f(x, y)=0$ such that

$$f(x, y) \equiv y^{p^2} - x - x^{p^q}$$

is a quasi-line but not a line where p is the characteristic of k and q is an integer ≥ 2 not divisible by p .

Proof. If we set

$$u = y - (y^p - x^q)^q$$

then $x \equiv u^{p^2}$ and $y \equiv u + u^{p^q}$ modulo $f(x, y)$. Hence $f(x, y)=0$ is a quasi-line. To see that C is not a line it suffices to show that there is no locally finite higher derivation killing f . Assume the contrary and let Δ be a lfh-derivation killing f and $\phi = \Phi_\Delta$. Let

$$\phi(x) = x + \sum_i a_i T^i$$

$$\phi(y) = y + \sum_i b_i T^i.$$

From $\phi(f) = f$ we get

$$(y^{p^2} + \sum_i b_i^{p^2} T^{p^2 i}) - (x + \sum_i a_i T^i) - (x^p + \sum_i a_i^p T^{p i})^q = y^{p^2} - x - x^{p^q} \dots \dots (1)$$

First we easily see that $a_i = 0$ if $i \not\equiv 0 \pmod{p^2}$. We set $a_{p^2 i} = \alpha_i$. Then we have

$$(y^{p^2} + \sum_i b_i^{p^2} T^{p^2 i}) - (x + \sum_{i=1}^n \alpha_i T^{p^2 i}) - (x^p + \sum_{i=1}^n \alpha_i^p T^{p^3 i})^q = y^{p^2} - x - x^{p^q}$$

First we remark that

$$\alpha_i \in A^p \quad (2)$$

for any i where $A = k[x, y]$. Now assume that $n \geq 1$. We compute the coefficient of $T^{p^3 n (q-1)}$. Since $T^{p^3 n (q-1)}$ does not appear in the middle term we have the relation:

$$b_{p n (q-1)}^{p^2} = \sum_{i_1 + \dots + i_q = n (q-1)} \alpha_{i_1}^p \cdots \alpha_{i_q}^p + q x^p \alpha_n^{p(q-1)}$$

From (2) $\alpha_{i_1}^p \cdots \alpha_{i_q}^p, \alpha_n^{p(q-1)}$ are in A^{p^2} . Hence x^p must also be in A^{p^2} . This is

(***) This example is a generalization of the one given in [4].

impossible. This proves $n=0$, i.e., x must be a $\underline{\Delta}$ -constant. Hence y is also a $\underline{\Delta}$ -constant. Thus there is no non-trivial \mathbf{lfih} -derivation $\underline{\Delta}$ such that $\underline{\Delta}(f)=0$.

OSAKA UNIVERSITY

References

- [1] S. Abhyankar and T. Moh: *Embedding of the line in the plane*, J. Reine Angew. Math. **276** (1975), 148–166.
- [2] M. Miyanishi and Y. Nakai: *Some remarks on strongly invariant rings*, Osaka J. Math. **12** (1975), 1–17.
- [3] M. Miyanishi: *An algebraic characterization of the affine plane*, J. Math. Kyoto Univ. **15** (1975), 169–184.
- [4] A. Sathaye: *On linear planes*, Proc. Amer. Math. Soc. **56** (1976), 1–7.

Added in Proof. In Theorem 3 we assumed that k is algebraically closed. This assumption is essential as is shown in the following Example. Let $B=\mathbf{R}[X, Y]/X^2+Y^2+1$. Then B is a UFD and satisfies $B^*=\mathbf{R}^*$. The ring $A=B[Z]$ satisfies all the requirement in Theorem 3, but A is not a polynomial ring of two variables over the field \mathbf{R} .