On locally finite iterative higher derivations

Author(s) Nakai, Yoshikazu

Version Type VoR

URL https://doi.org/10.18910/10781
ON LOCALLY FINITE ITERATIVE HIGHER DERIVATIONS

YOSHIKAZU NAKAI

(Received June 1, 1977)

Let Λ be a commutative ring with unity. A higher derivation $\Delta=\{1, \Delta_1, \Delta_2, \cdots\}$ of Λ is called locally finite if for any $a\in\Lambda$ there exists an index j such that $\Delta_n(a)=0$ for all $n>j$. In a previous paper some properties of locally finite iterative higher derivations (abbreviated as lfih-derivations) and some applications of them were presented ([2]). In this paper the author gives another application of lfih-derivations, i.e., a characterization of two-dimensional polynomial ring. His proof supplies an alternative proof of Theorem 1 in [3], where the method is geometric while the present one is algebraic and elementary. As a Corollary a characterization of a line in an affine plane is given in terms of lfih-derivation where a line in an affine plane is meant a curve C which can be taken as a coordinate axis of Λ^2. We call a curve $C:f(x, y)=0$ a quasi-line if the coordinate ring $k[x, y]/(f)$ is isomorphic to one-parameter polynomial ring. It is known that if the ground field is the complex number field C, then a quasi-line is always a line (cf. [1]). Combined with the present investigation it turns out that if the plane curve $C:f(x, y)=0$ is a quasi-line over C, then the derivation $D_f=(\partial f/\partial y)\frac{\partial}{\partial x}-(\partial f/\partial x)\frac{\partial}{\partial y}$ is locally nilpotent, i.e., the higher derivation $\left(1, D_f, \frac{1}{2!}D_f^2, \cdots\right)$ is a lfih-derivation and vice versa. The direct proof of this fact is expected very much.

Let Λ be a commutative ring with unity. A higher derivation $\Delta=(1, \Delta_1, \Delta_2, \cdots)$ is a set of linear endomorphisms of Λ into itself satisfying the conditions:

$\Delta_0(ab) = \sum_{i=0}^{\infty} \Delta_i(a)\Delta_{n-i}(b)$

where Δ_0 denotes the identity mapping of Λ. Let Φ_Δ be the homomorphism of the ring Λ into $\Lambda[[T]]$ defined by

$\Phi_\Delta(a) = \sum_{i=0}^{\infty} D_i(a)T^i$.

We say that Δ is locally finite if $I_\Lambda \Phi_\Delta$ is contained in the polynomial ring $\Lambda[T]$, i.e., for any $a\in\Lambda$, there exists an integer j such that $\Delta_n(a)=0$ for all $n>j$. Δ is called an iterative higher derivation if the additional conditions
are satisfied by Δ. Let a be an element of the ring A. We say that a is a Δ-constant if $\Delta_i(a) = 0$ for all $i \geq 1$. This is equivalent to saying that $\Phi_a(a) = a$. Sometimes we use the notation $\Delta^{-1}(0)$ to denote the ring of Δ-constants, and $\Delta(a) = 0$ to denote a being a Δ-constant.

Lemma 1. Let Δ be a locally finite higher derivation of an integral domain A. Then the constant ring $B = \Delta^{-1}(0)$ is inertly embedded in A.

Proof. Let b be an element of B and let $b = cd$ be a decomposition of b in A. Then we have $\phi(b) = \phi(c)\phi(d)$ where $\phi = \Phi^\Delta$. By assumption $\phi(b)$ is in A and $\phi(c), \phi(d)$ are elements of a polynomial ring $A[T]$. Hence $\phi(c), \phi(d)$ are also in A. It means that $\phi(c) = c$ and $\phi(d) = d$, i.e., c and d are in B.

Theorem 1. Let k be an algebraically closed field of arbitrary characteristic and A be an integral domain containing k. Assume that A satisfies the following conditions:

i) There exists a non-trivial lth-derivation Δ over k.

ii) The constant ring A_0 of Δ is a principal ideal domain finitely generated over k.

iii) Any prime element of A_0 remains prime in A.

Then A is a polynomial ring in one variable over A_0.

Proof. Let A_i be the set of elements ξ in A such that $\Delta_n(\xi) = 0$ for $n > i$. A_0 is the ring of Δ-constants and A_i’s are A_0-modules. It is proved in [2] that there exists an integer $s (\geq 0)$ such that

$$A_0 = A_1 = \cdots A_{s-1} \subseteq A_s = \cdots = A_{2p^s-1} \subseteq A_{2p^s} = \cdots$$

where \subseteq denotes proper containment. The integer mp^s is called the m-th jump index $(m=1, 2, \cdots)$. For simplicity we set $q = p^s$ and $M_s = A_{s+1}$. It is also proved in [2] that for any element ξ in M_1, we have

$$\phi(\xi) = \xi + a_1T + \alpha_1T^p + \cdots + \alpha_1T^q$$

where α’s are in A_0 and $\phi = \Phi^\Delta$. Let I_1 be the set of elements in A_0 which appear as coefficients of T^s in $\phi(\xi)$ for some $\xi \in M_1$. It is easily seen that I_1 is an ideal of A_0. Similarly let I_s be the set of elements which appear as coefficients of T^{qs} in $\phi(\xi)$ for some $\xi \in M_s$. Then I_s is also an ideal of A_0. Let a_n be a generator of the I_s and let x be an element of M_1 such that

$$\phi(x) = x + \cdots + a_1T^q.$$
We shall prove simultaneously the following

\[(1)_n \quad (a_n) = (a^*_n), \]
\[(2)_n \quad M_n = A_0 + A_0 x + \cdots + A_0 x^n, \quad (n = 1, 2, \ldots) \]

by induction on \(n \). First we shall remark that \((1)_n\) implies \((2)_n\). In fact let \(\xi \) be in \(M_n \). Then \(\Delta_{a_n}(\xi) \) is in \(I_n = (a_n) \). From \((1)_n\) it follows that there exists a constant \(c \) in \(A_0 \) such that \(\Delta_{a_n}(\xi) = ca_n^*n \). Then \(\phi(\xi - cx^n) \) is of degree \(< nq \), hence \(\xi - cx^n \in M_{n-1} \). Now assume \((1)_n, (2)_n\) and we shall prove \((1)_{n+1}\). Since \(a_{n+1}^* \in I_{n+1} = (a_{n+1}) \), there is a constant \(c \) in \(A_0 \) such that \(a_{n+1}^* = ca_{n+1} \). Let \(\xi \) be an element of \(M_{n+1} \) such that

\[\phi(\xi) = a_{n+1}^* T^{(n+1)q}. \]

Then \(\phi(c\xi - x^{n+1}) \) is of degree \(< (n+1)q \), hence \(c\xi - x^{n+1} \in M_n \). By \((2)_n\) there are \(b_i \)'s in \(A_0 \) such that

\[c\xi = x^{n+1} + \sum_{i=0}^{q-1} b_i x^i. \]

We shall show that \(c \) is a unit of \(A_0 \). Assume that \(c \) is a non-unit in \(A_0 \). Let \(f \) be a prime element which divides \(c \). Taking the residue class modulo \(fA \) we get an algebraic relation

\[x^{n+1} + b_i x^i = 0. \]

By assumption (iii) \(f \) is also a prime element of \(A \). Hence \(A/fA \) is an integral domain. Since \(k \) is algebraically closed and \(A_0 \) is finitely generated over \(k \), we have \(A_0/fA_0 = k \). Hence there exists \(\gamma \) in \(k \) such that \(x = \gamma \). It means that \(x - \gamma = fy \) with some \(y \in A \). Then we have \(\phi(x - \gamma) = f\phi(y) \), i.e., \(\Delta_\gamma(x) = f\Delta_\gamma(y) \). Since \(\Delta_\gamma(y) \in I = (a_i) = (\Delta_\gamma(x)) \) we get a contradiction. Thus we have proven \((1)_{n+1}\). Since \(A = \bigcup_{n=1}^{\infty} M_n \), we obtain the desired result \(A = A_0[x] \).

Remark. If \(A \) is a UFD, then the condition (iii) is automatically satisfied.

Theorem 2. Let \(k \) be as in Theorem 1, and let \(A \) be a finitely generated normal integral domain over \(k \) such that

(i) \(\dim A = 2 \)
(ii) \(A^* = k^* \) where \(* \) denotes the set of units.
(iii) Either \(A \) is UFD or \(Q(A) \) is unirational over \(k \).

Let \(\Delta \) be a non-trivial \(\ell fth \)-derivation of \(A \) over \(k \). Then the constant ring \(A_0 \) of \(\Delta \) is a polynomial ring over \(k \). More precisely let \(f \) be an irreducible element in \(A_0 \). Then \(A_0 = k[f] \).

Proof. \(A_0 \) is not reduced to \(k \) because there exists an element \(u \) in \(A_0 \) and
a variable t over A_0 such that $A[u^{-1}]=A_0[u^{-1}][t]$. (cf. Appendix, [2]). Let f be an element of $A_0\setminus k$ which is irreducible in A. The existence of such an element f is assured by the Lemma 1. We shall show that $A_0=k[f]$. Since $A_0[u^{-1}]=A[u^{-1}][tA[u^{-1}]]$, $A_0[u^{-1}]$ is a finitely generated integral domain over k. In case A is a UFD, $A_0[u^{-1}]$ is also a UFD owing to the Lemma 1. Moreover the transcendence degree of the quotient field K of A_0 is 1. Hence K is a purely transcendental extension of k. If A is not a UFD we assumed that $Q(A)$ is unirational. Then by the generalized Lüroth's theorem K is also a one-dimensional purely transcendental extension of k. Let B be the integral closure of $k[f]$ in K. Then B is also finitely generated over k and $B^*={k^*}$ because B is contained in A. Hence there exists an element t in B such that $B=k[t]$. Since f is contained in B we can write $f=\lambda(t)$. But f is irreducible in A, hence degree of λ in t must be 1. It proves that $k[t]=k[f]=B$. Now assume $A_0\neq B$. Since A_0 and B have the same quotient field, A_0 contains an element of the form $\gamma(f)/s(f)$ where $(\gamma(f), s(f))=1$ and $\deg s(f)\geq 1$. Then A_0 must contain a non-constant unit. This is against the assumption (ii).

Combining these theorems we have the following

Theorem 3. Let k be an algebraically closed field of arbitrary characteristic and let A be a finitely generated integral domain over k. Assume that A satisfies the following conditions:

(i) $\dim A=2$
(ii) $A^*={k^*}$
(iii) A is UFD.

Assume that A has a non-trivial kth-derivation Δ over k. Then A is a two-dimensional polynomial ring over k. More precisely if the constant ring A_0 of Δ is written as $k[f]$, then $A=k[f, g]$ for some other element g in A.

The assumption (iii) is essential as is shown in the following

Example 1. Let $A={C}[x, y, y(x-1)/x]$. Then as is easily seen $A^*={C^*}$ and A has a locally nilpotent derivation D such that

$$Dx=2y-1, \quad Dy=y(x-1)/x.$$

By a simple calculation we see $D^{-1}(0)=k[y(x-1)/x]$. The element $y(x-1)/x$ is not a prime element in A. Hence A is neither UFD nor a polynomial ring.

(*) This example is due to K. Yoshida.
As an application of Theorem 3 we give a necessary and sufficient condition for a plane curve \(C: f(x, y)=0 \) to be a line. We recollect here some definitions. A plane curve \(C: f(x, y)=0 \) defined over a field \(k \) is called a quasi-line over \(k \) if the coordinate ring \(A=k[x, y]/(f) \) is isomorphic to a polynomial ring in one variable. \(C \) is called a line if there exists another curve \(\Gamma: g(x, y)=0 \) such that we have \(k[x, y]=k[f, g] \). (**)

Theorem 4. Let \(k \) be an algebraically closed field and let \(C: f(x, y)=0 \) be an irreducible curve over \(k \). Then the following conditions are equivalent to each other.

1. \(C \) is a line
2. There is a \(\ell \)-th derivation \(\Delta \) such that \(\Delta(f)=0 \).
3. \(C_u: f(x, y)—u=0 \) is a quasi-line over \(k(u) \) where \(u \) is an indeterminate.

Proof. The implication (i)\(\rightarrow \) (ii), (i)\(\rightarrow \) (iii) is obvious (ii)\(\rightarrow \) (i) follows from Theorem 2 and 3. It remains to show that (iii) implies (i). Assume (iii). Since \(k(u)[x, y]/(f—u) \) is isomorphic to \(k(f)[x, y] \), there exists an element \(t \) in \(k[x, y] \) such that \(k(f)[x, y]=k(f)[t] \). Let \(\Delta' \) be the \(\ell \)-th derivation of \(k(f)[t] \) over \(k(f) \) such that

\[
\Delta'(t^m) = \binom{m}{n}t^{m-n}
\]

Then there exists an element \(a \) in \(k[f] \) such that \(a\Delta'=\Delta \) sends \(k[x, y] \) into itself, where \(a\Delta' \) is higher derivation

\[
a\Delta' = (1, a\Delta', a^2\Delta', \ldots, a^\ell\Delta', \ldots).
\]

Clearly \(\Delta(f)=0 \) and \(f \) is a prime element in \(k[x, y] \). Hence \(\Delta^{-1}(0)=k[f] \) and by Theorem 3, \(f \) is a line.

In case where the characteristic of \(k \) is zero we can say more. First we prove a Lemma.

Lemma 2. Let \(C: f(x, y)=0 \) be a line in a plane. Then \(\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)=1 \).

Proof. Since \(C \) is a line, there exists a curve \(\Gamma: g(x, y)=0 \) such that \(k[x, y]=k[f, g] \). Then there exists \(F(X, Y) \) and \(G(X, Y) \) in \(k[X, Y] \) such that

\[
F(f, g) = x \\
G(f, g) = y .
\]

Then we have

(**) In [4] our "line" and "quasi-line" are called "embedded line and line" respectively.
\[
\frac{\partial F}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial F}{\partial g} \frac{\partial g}{\partial x} = 1 \tag{1}
\]
\[
\frac{\partial F}{\partial y} \frac{\partial f}{\partial y} + \frac{\partial F}{\partial g} \frac{\partial g}{\partial y} = 0 \tag{2}
\]
\[
\frac{\partial G}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial G}{\partial g} \frac{\partial g}{\partial x} = 0 \tag{3}
\]
\[
\frac{\partial G}{\partial y} \frac{\partial f}{\partial y} + \frac{\partial G}{\partial g} \frac{\partial g}{\partial y} = 1 \tag{4}
\]

Now assume \(\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \subset m \) for some maximal ideal \(m \). Then from (2) either \(\frac{\partial F}{\partial g} \) or \(\frac{\partial g}{\partial y} \) is contained in \(m \). The first case cannot occur because of (1) and the second case contradicts (4). Thus \(\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \) is a unit ideal.

Theorem 5. Let \(k \) be an algebraically closed field of characteristic zero and let \(C: f(x, y) = 0 \) be an irreducible curve over \(k \). Then \(C \) is a line if and only if the derivation
\[
D_f = \frac{\partial f}{\partial y} \frac{\partial}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial}{\partial y}
\]
is locally nilpotent.

Proof. Assume that \(C: f(x, y) = 0 \) is a line. Let \(\Gamma: g(x, y) = 0 \) be a curve such that \(k[f, g] = k[x, y] \). Then there exists a locally nilpotent derivation \(\Delta \) of \(k[x, y] \) such that \(\Delta f = 0 \) and \(\Delta g = 1 \). Since \(\frac{\partial}{\partial x} \) and \(\frac{\partial}{\partial y} \) form a basis of derivations of \(k[x, y] \) we can write
\[
\Delta = a \frac{\partial}{\partial x} - b \frac{\partial}{\partial y} \quad \text{with } a, b \in k[x, y].
\]
Since \(\Delta f = 0 \) we have
\[
a \frac{\partial f}{\partial x} - b \frac{\partial f}{\partial y} = 0 \tag{1}
\]
Let \(a \frac{\partial f}{\partial y} = b \frac{\partial f}{\partial y} = \lambda, \) i.e., \(a = \lambda \frac{\partial f}{\partial y}, \, b = \lambda \frac{\partial f}{\partial x} \). Then we have \(\Delta = \lambda D_f \).

We show that \(\lambda \in k[x, y] \). From Lemma 2 it follows that \(\alpha \frac{\partial f}{\partial x} + \beta \frac{\partial f}{\partial y} = 1 \) for some \(\alpha, \beta \) in \(k[x, y] \). Hence \(\lambda = b\alpha + a\beta \in k[x, y] \). On the other hand the existence of \(g \in k[x, y] \) such that \(\Delta g = 1 \) implies \((a, b) = 1 \). Since \(\lambda \) is a common
divisor of a and b we see that $\lambda \in k^*$. This means that D_f is locally nilpotent. The "if" part of the Theorem is immediate from Theorem 3.

According to S. Abhyankar and T. Moh a quasi-line is a line in case of characteristic zero ([1]). In the case where the characteristic of k is a positive prime integer p there is a counter example.

Example 2*

A curve $C: f(x, y)=0$ such that

$$f(x, y) \equiv y^p - x - x^{pq}$$

is a quasi-line but not a line where p is the characteristic of k and q is an integer ≥ 2 not divisible by p.

Proof. If we set

$$u = y - (y^p - x^q)^{\frac{1}{q}}$$

then $x \equiv u^p$ and $y \equiv u + u^{pq}$ modulo $f(x, y)$. Hence $f(x, y)=0$ is a quasi-line. To see that c is not a line it suffices to show that there is no locally finite higher derivation killing f. Assume the contrary and let Δ be a lfih-derivation killing f and $\phi = \Phi_{\Delta}$. Let

$$\phi(x) = x + \sum a_i T^i$$

$$\phi(y) = y + \sum b_i T^i.$$

From $\phi(f) = f$ we get

$$(y^p + \sum b_i T^{pq}) - (x + \sum a_i T^i) - (x^p + \sum a_i T^{pq})^q = y^p - x - x^{pq} \quad \cdots(1)$$

First we easily see that $a_i = 0$ if $i \not\equiv 0 \pmod{p}$. We set $a_{pq} = \alpha_i$. Then we have

$$(y^p + \sum b_i T^{pq}) - (x + \sum \alpha_i T^{pq}) - (x^p + \sum \alpha_i T^{pq})^q = y^p - x - x^{pq}$$

First we remark that

$$\alpha_i \in A^p$$

for any i where $A = k[x, y]$. Now assume that $n \geq 1$. We compute the coefficient of $T^{p^2 n(q-1)}$. Since $T^{p^2 n(q-1)}$ does not appear in the middle term we have the relation:

$$b_{pq}^{p^2 n(q-1)} = \sum \alpha_{t_1} \cdots \alpha_{t_q} + q x^p \alpha_n^{p(q-1)}$$

From (2) $\alpha_{t_1} \cdots \alpha_{t_q}$, $\alpha_n^{p(q-1)}$ are in A^p. Hence x^p must also be in A^p. This is

**** This example is a generalization of the one given in [4].
impossible. This proves \(n=0 \), i.e., \(x \) must be a \(\Delta \)-constant. Hence \(y \) is also a \(\Delta \)-constant. Thus there is no non-trivial \(\text{ihih} \)-derivation \(\Delta \) such that \(\Delta(f) = 0 \).

\textbf{Osaka University}

\textbf{References}

\textit{Added in Proof.} In Theorem 3 we assumed that \(k \) is algebraically closed. This assumption is essential as is shown in the following Example. Let \(B = \mathbb{R}[X, Y]/X^2 + Y^2 + 1 \). Then \(B \) is a UFD and satisfies \(B^* = \mathbb{R}^* \). The ring \(A = B[Z] \) satisfies all the requirement in Theorem 3, but \(A \) is not a polynomial ring of two variables over the field \(\mathbb{R} \).