

Title	On locally finite iterative higher derivations
Author(s)	Nakai, Yoshikazu
Citation	Osaka Journal of Mathematics. 1978, 15(3), p. 655-662
Version Type	VoR
URL	https://doi.org/10.18910/10781
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON LOCALLY FINITE ITERATIVE HIGHER DERIVATIONS

YOSHIKAZU NAKAI

(Received June 1, 1977)

Let A be a commutative ring with unity. A higher derivation $\underline{\Delta} = \{1, \Delta_1, \dots, \Delta_n\}$ Δ_2, \dots of A is called locally finite if for any $a \in A$ there exists an index j such that $\Delta_n(a) = 0$ for all n > j. In a previous paper some properties of locally finite iterative higher derivations (abbreviated as lfih-derivations) and some applications of them were presented ([2]). In this paper the author gives another application of lfih-derivations, i.e., a characterization of two-dimensional polynomial ring. His proof supplies an alternative proof of Theorem 1 in [3], where the method is geometric while the present one is algebraic and elementary. As a Corollary a characterization of a line in an affine plane is given in terms of lfih-derivation where a line in an affine plane is meant a curve C which can be taken as a coordinate axis of A^2 . We call a curve C: f(x, y) = 0 a quasi-line if the coordinate ring k[x, y]/(f) is isomorphic to one-parameter polynomial ring. It is known that if the ground field is the complex number field C, then a quasiline is always a line (cf. [1]). Combined with the present investigation it turns out that if the plane curve C: f(x, y) = 0 is a quasi-line over C, then the derivation $D_f = (\partial f / \partial y) \frac{\partial}{\partial x} - (\partial f / \partial x) \frac{\partial}{\partial y}$ is locally nilpotent, i.e., the higher derivation $\left(1, D_f, \frac{1}{2!}D_f^2, \cdots\right)$ is a line-derivation and vice versa. The direct proof of this fact is expected very much.

Let A be a commutative ring with 1. A higher derivation $\underline{\Delta} = (1, \Delta_1, \Delta_2, \cdots)$ is a set of linear endomorphisms of A into itself satisfying the conditions:

$$\Delta_n(ab) = \sum_{i=0}^n \Delta_i(a) \Delta_{n-i}(b)$$

where Δ_0 denotes the identity mapping of A. Let Φ_{Δ} be the homomorphism of the ring A into A[[T]] defined by

$$\Phi_{\underline{\Delta}}(a) = \sum_{i=0}^{\infty} D_i(a) T^i$$
.

We say that $\underline{\Delta}$ is locally finite if $I_m \Phi_{\underline{\Delta}}$ is contained in the polynomial ring A[T], i.e., for any $a \in A$, there exists an integer j such that $\Delta_n(a)=0$ for all n>j. $\underline{\Delta}$ is called an iterative higher derivation if the additional conditions

Y. NAKAI

$$\Delta_i \Delta_j = \binom{i+j}{i} \Delta_{i+j}$$

are satisfied by $\underline{\Delta}$. Let *a* be an element of the ring *A*. We say that *a* is a $\underline{\Delta}$ -constant if $\Delta_i(a)=0$ for all $i \geq 1$. This is equivalent to saying that $\Phi_{\underline{\Delta}}(a)=a$. Sometimes we use the notation $\underline{\Delta}^{-1}(0)$ to denote the ring of $\underline{\Delta}$ -constants, and $\underline{\Delta}(a)=0$ to denote *a* being a $\underline{\Delta}$ -constant.

Lemma 1. Let $\underline{\Delta}$ be a locally finite higher derivation of an integral domain A. Then the constant ring $B = \underline{\Delta}^{-1}(0)$ is inertly embedded in A.

Proof. Let b be an element of B and let b=cd be a decomposition of b in A. Then we have $\phi(b)=\phi(c)\phi(d)$ where $\phi=\Phi_{\Delta}$. By assumption $\phi(b)$ is in A and $\phi(c)$, $\phi(d)$ are elements of a polynomial ring A[T]. Hence $\phi(c)$, $\phi(d)$ are also in A. It means that $\phi(c)=c$ and $\phi(d)=d$, i.e., c and d are in B.

Theorem 1. Let k be an algebraically closed field of arbitrary characteristic and let A be an integral domain containing k. Assume that A satisfies the following conditions:

i) There exists a non-trivial lfih-derivation \triangle over k.

ii) The constant ring A_0 of Δ is a principal ideal domain finitely generated over k.

iii) Any prime element of A_0 remains prime in A.

Then A is a polynomial ring in one variable over A_0 .

Proof. Let A_i be the set of elements ξ in A such that $\Delta_n(\xi)=0$ for n>i. A_0 is the ring of Δ -constants and A_i 's are A_0 -modules. It is proved in [2] that there exists an integer s (≥ 0) such that

$$A_{0} = A_{1} = \cdots A_{p^{s}-1} \subset A_{p^{s}} = \cdots = A_{2p^{s}-1} \subset A_{2p^{s}} = \cdots$$

where \subset denotes proper containment. The integer mp^s is called the *m*-th jump index $(m=1, 2, \cdots)$. For simplicity we set $q=p^s$ and $M_n=A_{nq}$. It is also proved in [2] that for any element ξ in M_1 , we have

$$\phi(\xi) = \xi + \alpha_0 T + \alpha_1 T^p + \dots + \alpha_s T^q$$

where α 's are in A_0 and $\phi = \phi_{\Delta}$. Let I_1 be the set of elements in A_0 which appear as coefficients of T^q in $\phi(\xi)$ for some $\xi \in M_1$. It is easily seen that I_1 is an ideal of A_0 . Similarly let I_n be the set of elements which appear as coefficients of T^{nq} in $\phi(\xi)$ for some $\xi \in M_n$. Then I_n is also an ideal of A_0 . Let a_n be a generator of the I_n and let x be an element of M_1 such that

$$\phi(x) = x + \cdots + a_1 T^q \, .$$

656

We shall prove simultaneously the following

$$\begin{array}{ll} (1)_n & (a_n) = (a_1^n) , \\ (2)_n & M_n = A_0 + A_0 x + \dots + A_0 x^n , \quad (n=1,\,2,\,\dots) \end{array}$$

by induction on *n*. First we shall remark that $(1)_n$ implies $(2)_n$. In fact let ξ be in M_n . Then $\Delta_{nq}(\xi)$ is in $I_n = (a_n)$. From $(1)_n$ it follows that there exists a constant *c* in A_0 such that $\Delta_{nq}(\xi) = ca_1^n$. Then $\phi(\xi - cx^n)$ is of degree $\langle nq$, hence $\xi - cx^n \in M_{n-1}$. Now assume $(1)_n$, $(2)_n$ and we shall prove $(1)_{n+1}$. Since $a_1^{n+1} \in I_{n+1} = (a_{n+1})$, there is a constant *c* in A_0 such that $a_1^{n+1} = ca_{n+1}$. Let ξ be an element of M_{n+1} such that

$$\phi(\xi) = + \cdots + a_{n+1} T^{(n+1)q}$$

Then $\phi(c\xi - x^{n+1})$ is of degree $\langle (n+1)q$, hence $c\xi - x^{n+1} \in M_n$. By (2)_n there are b_i 's in A_0 such that

$$c\xi = x^{n+1} + \sum_{i=0}^n b_i x^n \, .$$

We shall show that c is a unit of A_0 . Assume that c is a non-unit in A_0 . Let f be a prime element which divides c. Taking the residue class modulo fA we get an algebraic relation

$$\bar{x}^{n+1} + \bar{b}_i \bar{x}^n = 0.$$

By assumption (iii) f is also a prime element of A. Hence A/fA is an integral domain. Since k is algebraically closed and A_0 is finitely generated over k, we have $A_0/fA_0 = k$. Hence there exists γ in k sub that $\bar{x} = \gamma$. It means that $x = \gamma = fy$ with some $y \in A$. Then we have $\phi(x - \gamma) = f\phi(y)$, i.e., $\Delta_q(x) = f\Delta_q(y)$. Since $\Delta_q(y) \in I_1 = (a_1) = (\Delta_q(x))$ we get a contradiction. Thus we have proven $(1)_{n+1}$. Since $A = \bigcup_{n=1}^{\infty} M_n$, we obtain the desired result $A = A_0[x]$.

REMARK. If A is a UFD, then the condition (iii) is automatically satisfied.

Theorem 2. Let k be as in Theorem 1, and let A be a finitely generated normal integral domain over k such that

- (i) $\dim A=2$
- (ii) $A^* = k^*$ where * denotes the set of units.
- (iii) Either A is UFD or Q(A) is unirational over k.

Let $\underline{\Delta}$ be a non-trivial lfih-derivation of A over k. Then the constant ring A_0 of $\underline{\Delta}$ is a polynomial ring over k. More precisely let f be an irreducible element in A_0 . Then $A_0 = k[f]$.

Proof. A_0 is not reduced to k because there exists an element u in A_0 and

Y. NAKAI

a variable t over A_0 such that $A[u^{-1}] = A_0[u^{-1}][t]$. (cf. Appendix, [2]). Let f be an element of $A_0 \setminus k$ which is irreducible in A. The existence of such an element f is assured by the Lemma 1. We shall show that $A_0 = k[f]$. Since $A_0[u^{-1}] \simeq A[u^{-1}]/tA[u^{-1}], A_0[u^{-1}]$ is a finitely generated integral domain over k. In case A is a UFD, $A_0[u^{-1}]$ is also a UFD owing to the Lemma 1. Moreover the transcednence degree of the quotient field K of A_0 is 1. Hence K is a purely transcendental extension of k. If A is not a UFD we assumed that Q(A)is unirational. Then by the generalized Luroth's theorem K is also a onedimensional purely transcendental extension of k. Let B be the integral closure of k[f] in K. Then B is also finitely generated over k and $B^* = k^*$ because B is contained in A. Hence there exists an element t in B such that B = k[t]. Since f is contained in B we can write $f = \lambda(t)$. But f is irreducible in A, hence degree of λ in t must be 1. It proves that k[t] = k[f] = B. Now assume $A_0 \neq B$. Since A_0 and B have the same quotient field, A_0 contains an element of the form $\gamma(f)/s(f)$ where $(\gamma(f), s(f))=1$ and deg $s(f)\geq 1$. Then A_0 must contain a non-constant unit. This is against the assumption (ii).

Combining these theorems we have the following

Theorem 3. Let k be an algebraically closed field of arbitrary characteristic and let A be a finitely generated integral domain over k. Assume that A satisfies the following conditions:

- (i) $\dim A=2$
- (ii) $A^* = k^*$
- (iii) A is UFD.

Assume that A has a non-trivial lfih-derivation Δ over k. Then A is a twodimensional polynomial ring over k. More precisely if the constant ring A_0 of Δ is written as k[f], then A = k[f, g] for some other element g in A.

The assumption (iii) is essential as is shown in the following

EXAMPLE 1.^(*) Let $A = C \left[x, y, \frac{y(y-1)}{x} \right]$. Then as is easily seen $A^* = C^*$

and A has a locally nilpotent derivation D such that

$$Dx = 2y-1, Dy = \frac{y(y-1)}{x}.$$

By a simple calculation we see $D^{-1}(0) = k \left[\frac{y(y-1)}{x} \right]$. The element $\frac{y(y-1)}{x}$ is not a prime element in A. Hence A is neither UFD nor a polynomial ring.

658

^(*) This example is due to K. Yoshida.

As an application of Theorem 3 we give a necessary and sufficient condition for a plane curve C: f(x, y)=0 to be a line. We recollect here some definitions. A plane curve C: f(x, y)=0 defined over a field k is called a quasi-line over k if the coordinate ring A=k[x, y]/(f) is isomorphic to a polynomial ring in one variable. C is called a line if there exists another curve $\Gamma: g(x, y)=0$ such that we have $k[x, y]=k[f, g].^{(**)}$

Theorem 4. Let k be an algebraically closed field and let C: f(x, y)=0 be an irreducible curve over k. Then the following conditions are equivalent to each other.

- (i) C is a line
- (ii) There is a lfih-derivation Δ such that $\Delta(f)=0$.
- (iii) $C_u: f(x, y) u = 0$ is a quasi-line over k(u) where u is an indeterminate.

Proof. The implication (i) \rightarrow (ii), (i) \rightarrow (iii) is obvious (ii) \rightarrow (i) follows from Theorem 2 and 3. It remains to show that (iii) implies (i). Assume (iii). Since k(u)[x, y]/(f-u) is isomorphic to k(f)[x, y], there exists an element t in k[x, y]such that k(f)[x, y]=k(f)[t]. Let Δ' be the lfih-derivation of k(f)[t] over k(f) such that

$$\Delta'_n(t^m) = \binom{m}{n} t^{m-n}$$

Then there exists an element a in k[f] such that $a\Delta' = \Delta$ sends k[x, y] into itself, where $a\Delta'$ is higher derivation

 $a\underline{\Delta}' = (1, a\Delta_1', a^2\Delta_2', \cdots, a^n\Delta_n', \cdots).$

Clearly $\Delta(f)=0$ and f is a prime element in k[x, y]. Hence $\Delta^{-1}(0)=k[f]$ and by Theorem 3, f is a line.

In case where the characteristic of k is zero we can say more. First we prove a Lemma.

Lemma 2. Let C:
$$f(x, y)=0$$
 be a line in a plane. Then $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=1$.

Proof. Since C is a line, there exists a curve $\Gamma: g(x, y)=0$ such that k[x, y]=k[f, g]. Then there exists F(X, Y) and G(X, Y) in k[X, Y] such that

$$F(f, g) = x$$
$$G(f, g) = y.$$

Then we have

^(**) In [4] our "line" and "quasi-line" are called "embedded line and me respectively.

Y. Nakai

Now assume $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \subseteq m$ for some maximal ideal m. Then from (2) either $\frac{\partial F}{\partial g}$ or $\frac{\partial g}{\partial y}$ is contained in m. The first case cannot occur because of (1) and the second case contradicts (4). Thus $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ is a unit ideal.

Theorem 5. Let k be an algebraically closed field of characteristic zero and let C: f(x, y)=0 be an irreducible curve over k. Then C is a line if and only if the derivation

$$D_f = \frac{\partial f}{\partial y} \frac{\partial}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial}{\partial y}$$

is locally nilpotent.

Proof. Assume that C: f(x, y)=0 is a line. Let $\Gamma: g(x, y)=0$ be a curve such that k[f,g]=k[x, y]. Then there exists a locally nilpotent derivation Δ of k[x, y] such that $\Delta f=0$ and $\Delta g=1$. Since $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ form a basis of derivations of k[x, y] we can write

$$\Delta = a \frac{\partial}{\partial x} - b \frac{\partial}{\partial y} \text{ with } a, b \in k[x, y].$$

Since $\Delta f = 0$ we have

$$a\frac{\partial f}{\partial x} - b\frac{\partial f}{\partial y} = 0 \tag{1}$$

Let
$$a \Big/ \frac{\partial f}{\partial y} = b \Big/ \frac{\partial f}{\partial y} = \lambda$$
, i.e., $a = \lambda \frac{\partial f}{\partial y}$, $b = \lambda \frac{\partial f}{\partial x}$. Then we have $\Delta = \lambda D_f$.

We show that $\lambda \in k[x, y]$. From Lemma 2 it follows that $\alpha \frac{\partial f}{\partial x} + \beta \frac{\partial f}{\partial y} = 1$ for some α , β in k[x, y]. Hence $\lambda = b\alpha + a\beta \in k[x, y]$. On the other hand the existence of $g \in k[x, y]$ such that $\Delta g = 1$ implies (a, b) = 1. Since λ is a common

660

divisor of a and b we see that $\lambda \in k^*$. This means that D_f is locally nilpotent. The "if" part of the Theorem is immediate from Theorem 3.

According to S. Abhyankar and T. Moh a quasi-line is a line in case of characteristic zero ([1]). In the case where the characteristic of k is a positive prime integer p there is a counter example.

EXAMPLE $2^{(***)}$ A curve C: f(x, y) = 0 such that

$$f(x, y) \equiv y^{p^2} - x - x^{pq}$$

is a quasi-line but not a line where p is the characteristic of k and q is an integer ≥ 2 not divisible by p.

Proof. If we set

$$u = y - (y^p - x^q)^q$$

then $x \equiv u^{p^2}$ and $y \equiv u + u^{pq}$ modulo f(x, y). Hence f(x, y) = 0 is a quasi-line. To see that c is not a line it suffices to show that there is no locally finite higher derivation killing f. Assume the contrary and let Δ be a lfih-derivation killing f and $\phi = \Phi_{\Delta}$. Let

$$\phi(x) = x + \sum_{i} a_{i} T^{i}$$
$$\phi(y) = y + \sum_{i} b_{i} T^{i}.$$

From $\phi(f) = f$ we get

$$(y^{p^{2}} + \sum_{i} b_{i}^{p^{2}} T^{p^{2}i}) - (x + \sum_{i} a_{i} T^{i}) - (x^{p} + \sum_{i} a_{i}^{p} T^{pi})^{q} = y^{p^{2}} - x - x^{pq} \cdots (1)$$

First we easily see that $a_i=0$ if $i \equiv 0 \pmod{p^2}$. We set $a_{p^2i}=\alpha_i$. Then we have

$$(y^{p^2} + \sum_i b_i^{p^2} T^{p^2i}) - (x + \sum_{i=1}^n \alpha_i T^{p^2i}) - (x^p + \sum_{i=1}^n \alpha_i^p T^{p^3i})^q = y^{p^2} - x - x^{pq}$$

First we remark that

$$\alpha_i \in A^p \tag{2}$$

for any *i* where A = k[x, y]. Now assume that $n \ge 1$. We compute the coefficient of $T^{p^3n(q-1)}$. Since $T^{p^3n(q-1)}$ does not appear in the middle term we have the relation:

$$b_{pn(q-1)}^{p^2} = \sum_{i_1 + \dots + i_q = n(q-1)} \alpha_{i_1}^p \cdots \alpha_{i_q}^p + qx^p \alpha_n^{p(q-1)}$$

From (2) $\alpha_{i_1}^p \cdots \alpha_{i_q}^p$, $\alpha_n^{p(q-1)}$ are in A^{p^2} . Hence x^p must also be in A^{p^2} . This is

^(***) This example is a generalization of the one given in [4].

Y. NAKAI

impossible. This proves n=0, i.e., x must be a Δ -constant. Hence y is also a Δ -constant. Thus there is no non-trivial lfih-derivation Δ such that $\Delta(f)=0$.

OSAKA UNIVERSITY

References

- S. Abhyankar and T. Moh: Embedding of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
- [2] M. Miyanishi and Y. Nakai: Some remarks on strongly invariat rings, Osaka J. Math. 12 (1975), 1-17.
- [3] M. Miyanishi: An algebraic characterization of the affine plane, J. Math. Kyoto Univ. 15 (1975), 169–184.
- [4] A. Sathaye: On linear planes, Proc. Amer. Math. Soc. 56 (1976), 1-7.

Added in Proof. In Theorem 3 we assumed that k is algebraically closed. This assumption is essential as is shown in the following Example. Let $B = \mathbf{R}[X, Y]/X^2 + Y^2 + 1$. Then B is a UFD and satisfies $B^* = \mathbf{R}^*$. The ring A = B[Z] satisfies all the requirement in Theorem 3, but A is not a polynomial ring of two variables over the field \mathbf{R} .