<table>
<thead>
<tr>
<th>Title</th>
<th>On locally finite iterative higher derivations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakai, Yoshikazu</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/10781</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
ON LOCALLY FINITE ITERATIVE HIGHER DERIVATIONS

YOSHIKAZU NAKAI

(Received June 1, 1977)

Let A be a commutative ring with unity. A higher derivation $\Delta=\{1, \Delta_1, \Delta_2, \ldots\}$ of A is called locally finite if for any $a \in A$ there exists an index j such that $\Delta_n(a)=0$ for all $n > j$. In a previous paper some properties of locally finite iterative higher derivations (abbreviated as lfih-derivations) and some applications of them were presented ([2]). In this paper the author gives another application of lfih-derivations, i.e., a characterization of two-dimensional polynomial ring. His proof supplies an alternative proof of Theorem 1 in [3], where the method is geometric while the present one is algebraic and elementary. As a Corollary a characterization of a line in an affine plane is given in terms of lfih-derivations where a line in an affine plane is meant a curve C which can be taken as a coordinate axis of A^2. We call a curve $C:f(x, y)=0$ a quasi-line if the coordinate ring $k[x, y]/(f)$ is isomorphic to one-parameter polynomial ring. It is known that if the ground field is the complex number field C, then a quasi-line is always a line (cf. [1]). Combined with the present investigation it turns out that if the plane curve $C:f(x, y)=0$ is a quasi-line over C, then the derivation $D_f=(\partial f/\partial y)\frac{\partial}{\partial x}-(\partial f/\partial x)\frac{\partial}{\partial y}$ is locally nilpotent, i.e., the higher derivation $\left(1, D_f, \frac{1}{2!}D_f^2, \ldots\right)$ is a lfih-derivation and vice versa. The direct proof of this fact is expected very much.

Let A be a commutative ring with unity. A higher derivation $\Delta=\{1, \Delta_1, \Delta_2, \ldots\}$ is a set of linear endomorphisms of A into itself satisfying the conditions:

$$\Delta_n(ab) = \sum_{i=0}^{n} \Delta_i(a)\Delta_{n-i}(b)$$

where Δ_0 denotes the identity mapping of A. Let Φ_Δ be the homomorphism of the ring A into $A[[T]]$ defined by

$$\Phi_\Delta(a) = \sum_{i=0}^{n} D_i(a)T^i.$$

We say that Δ is locally finite if $I_m\Phi_\Delta$ is contained in the polynomial ring $A[T]$, i.e., for any $a \in A$, there exists an integer j such that $\Delta_n(a)=0$ for all $n > j$. Δ is called an iterative higher derivation if the additional conditions
\[\Delta_i \Delta_j = \binom{i+j}{i} \Delta_{i+j} \]

are satisfied by \(\Delta \). Let \(a \) be an element of the ring \(A \). We say that \(a \) is a \(\Delta \)-constant if \(\Delta_i(a) = 0 \) for all \(i \geq 1 \). This is equivalent to saying that \(\Phi(\Delta(a)) = a \). Sometimes we use the notation \(\Delta^{-1}(0) \) to denote the ring of \(\Delta \)-constants, and \(\Delta(a) = 0 \) to denote \(a \) being a \(\Delta \)-constant.

Lemma 1. Let \(\Delta \) be a locally finite higher derivation of an integral domain \(A \). Then the constant ring \(B = \Delta^{-1}(0) \) is inertly embedded in \(A \).

Proof. Let \(b \) be an element of \(B \) and let \(b = cd \) be a decomposition of \(b \) in \(A \). Then we have \(\phi(b) = \phi(c)\phi(d) \) where \(\phi = \Phi^\Delta \). By assumption \(\phi(b) \) is in \(A \) and \(\phi(c), \phi(d) \) are elements of a polynomial ring \(A[T] \). Hence \(\phi(c), \phi(d) \) are also in \(A \). It means that \(\phi(c) = c \) and \(\phi(d) = d \), i.e., \(c \) and \(d \) are in \(B \).

Theorem 1. Let \(k \) be an algebraically closed field of arbitrary characteristic and let \(A \) be an integral domain containing \(k \). Assume that \(A \) satisfies the following conditions:

1. There exists a non-trivial \(\mathfrak{I} \)-th derivation \(\Delta \) over \(k \).
2. The constant ring \(A_0 \) of \(\Delta \) is a principal ideal domain finitely generated over \(k \).
3. Any prime element of \(A_0 \) remains prime in \(A \).

Then \(A \) is a polynomial ring in one variable over \(A_0 \).

Proof. Let \(A_i \) be the set of elements \(\xi \) in \(A \) such that \(\Delta_n(\xi) = 0 \) for \(n > i \). \(A_0 \) is the ring of \(\Delta \)-constants and \(A_i \)'s are \(A_0 \)-modules. It is proved in [2] that there exists an integer \(s \geq 0 \) such that

\[A_0 = A_1 = \cdots A_{s-1} \subset A_s = \cdots = A_{2s-1} \subset A_{2s} = \cdots \]

where \(\subset \) denotes proper containment. The integer \(mp^s \) is called the \(m \)-th jump index \((m = 1, 2, \cdots) \). For simplicity we set \(q = p^s \) and \(M_1 = A_{qs} \). It is also proved in [2] that for any element \(\xi \) in \(M_1 \), we have

\[\phi(\xi) = \xi + \alpha_0 T + \alpha_1 T^p + \cdots + \alpha_s T^{qs} \]

where \(\alpha \)'s are in \(A_0 \) and \(\phi = \phi_\Delta \). Let \(I_1 \) be the set of elements in \(A_0 \) which appear as coefficients of \(T^s \) in \(\phi(\xi) \) for some \(\xi \in M_1 \). It is easily seen that \(I_1 \) is an ideal of \(A_0 \). Similarly let \(I_s \) be the set of elements which appear as coefficients of \(T^{qs} \) in \(\phi(\xi) \) for some \(\xi \in M_s \). Then \(I_s \) is also an ideal of \(A_0 \). Let \(a_s \) be a generator of the \(I_s \) and let \(x \) be an element of \(M_1 \) such that

\[\phi(x) = x + \cdots + a_1 T^{qs} \]
We shall prove simultaneously the following

\[(1)_n \quad (a_n) = (a^*_n), \]

\[(2)_n \quad M_n = A_0 + A_0 x + \cdots + A_0 x^n, \quad (n=1, 2, \ldots) \]

by induction on \(n \). First we shall remark that \((1)_n\) implies \((2)_n\). In fact let \(\xi \) be in \(M_n \). Then \(\Delta_{n\xi}(\xi) \) is in \(I_n = (a_n) \). From \((1)_n\) it follows that there exists a constant \(c \) in \(A_0 \) such that \(\Delta_{n\xi}(\xi) = ca^*_n \). Then \(\phi(\xi - cx^n) \) is of degree \(< nq \), hence \(\xi - cx^n \in M_{n-1} \). Now assume \((1)_n\), \((2)_n\) and we shall prove \((1)_{n+1}\). Since \(a^{n+1}_n \in I_{n+1} = (a_{n+1}) \), there is a constant \(c \) in \(A_0 \) such that \(a^{n+1}_n = ca_{n+1} \). Let \(\xi \) be an element of \(M_{n+1} \) such that

\[\phi(\xi) = + \cdots + a^{n+1}_{n+1} T^{(n+1)n}. \]

Then \(\phi(c\xi - x^{n+1}) \) is of degree \(< (n+1)q \), hence \(c\xi - x^{n+1} \in M_n \). By \((2)_n\) there are \(b_i \)'s in \(A_0 \) such that

\[c\xi = x^{n+1} + \sum_{i=0}^{n+1} b_i x^i. \]

We shall show that \(c \) is a unit of \(A_0 \). Assume that \(c \) is a non-unit in \(A_0 \). Let \(f \) be a prime element which divides \(c \). Taking the residue class modulo \(fA \) we get an algebraic relation

\[x^{n+1} + \sum_{i=1}^{n+1} b_i x^i = 0. \]

By assumption (iii) \(f \) is also a prime element of \(A \). Hence \(A/fA \) is an integral domain. Since \(k \) is algebraically closed and \(A_0 \) is finitely generated over \(k \), we have \(A_0/fA_0 = k \). Hence there exists \(\gamma \) in \(k \) such that \(x = \gamma \). It means that \(x - \gamma = f y \) with some \(y \in A \). Then we have \(\phi(x - \gamma) = f \phi(y) \), i.e., \(\Delta_{\phi}(x) = f \Delta_{\phi}(y) \). Since \(\Delta_{\phi}(y) \in I_1 = (a_1) = (\Delta_{\phi}(x)) \) we get a contradiction. Thus we have proven \((1)_{n+1}\). Since \(A = \bigcup_{n+1} M_n \), we obtain the desired result \(A = A_0[x] \).

Remark. If \(A \) is a \(UFD \), then the condition (iii) is automatically satisfied.

Theorem 2. Let \(k \) be as in Theorem 1, and let \(A \) be a finitely generated normal integral domain over \(k \) such that

(i) \(\dim A = 2 \)

(ii) \(A^* = k^* \) where \(^* \) denotes the set of units.

(iii) Either \(A \) is \(UFD \) or \(Q(A) \) is unirational over \(k \).

Let \(\Delta \) be a non-trivial \(i \)-th-derivation of \(A \) over \(k \). Then the constant ring \(A_0 \) of \(\Delta \) is a polynomial ring over \(k \). More precisely let \(f \) be an irreducible element in \(A_0 \). Then \(A_0 = k[f] \).

Proof. \(A_0 \) is not reduced to \(k \) because there exists an element \(u \) in \(A_0 \) and
a variable \(t \) over \(A_0 \) such that \(A[u^{-1}] = A_0[u^{-1}][t] \). (cf. Appendix, [2]). Let \(f \) be an element of \(A_0 \setminus k \) which is irreducible in \(A \). The existence of such an element \(f \) is assured by the Lemma 1. We shall show that \(A_0 = k[f] \). Since \(A_0[u^{-1}] = A_0[u^{-1}][tA[u^{-1}], A_0[u^{-1}] \) is a finitely generated integral domain over \(k \). In case \(A \) is a \(UFD, A_0[u^{-1}] \) is also a \(UFD \) owing to the Lemma 1. Moreover the transcendence degree of the quotient field \(K \) of \(A_0 \) is 1. Hence \(K \) is a purely transcendental extension of \(k \). If \(A \) is not a \(UFD \) we assumed that \(Q(A) \) is unirational. Then by the generalized Lüroth's theorem \(K \) is also a one-dimensional purely transcendental extension of \(k \). Let \(B \) be the integral closure of \(k[f] \) in \(K \). Then \(B \) is also finitely generated over \(k \) and \(B^* = k^* \) because \(B \) is contained in \(A \). Hence there exists an element \(t \) in \(B \) such that \(B = k[t] \). Since \(f \) is contained in \(B \) we can write \(f = \lambda(t) \). But \(f \) is irreducible in \(A \), hence degree of \(\lambda \) in \(t \) must be 1. It proves that \(k[t] = k[f] = B \). Now assume \(A_0 \not= B \). Since \(A_0 \) and \(B \) have the same quotient field, \(A_0 \) contains an element of the form \(\gamma(f)/s(f) \) where \((\gamma(f), s(f)) = 1 \) and \(\deg s(f) \geq 1 \). Then \(A_0 \) must contain a non-constant unit. This is against the assumption (ii).

Combining these theorems we have the following

Theorem 3. Let \(k \) be an algebraically closed field of arbitrary characteristic and let \(A \) be a finitely generated integral domain over \(k \). Assume that \(A \) satisfies the following conditions:

(i) \(\dim A = 2 \)

(ii) \(A^* = k^* \)

(iii) \(A \) is \(UFD \).

Assume that \(A \) has a non-trivial \(\partial \)-derivation \(\Delta \) over \(k \). Then \(A \) is a two-dimensional polynomial ring over \(k \). More precisely if the constant ring \(A_0 \) of \(\Delta \) is written as \(k[f] \), then \(A = k[f, g] \) for some other element \(g \) in \(A \).

The assumption (iii) is essential as is shown in the following

Example 1. Let \(A = \mathbb{C}[x, y, \frac{y(y-1)}{x}] \). Then as is easily seen \(A^* = \mathbb{C}^* \) and \(A \) has a locally nilpotent derivation \(D \) such that

\[
Dx = 2y - 1, \quad Dy = \frac{y(y-1)}{x}.
\]

By a simple calculation we see \(D^{-1}(0) = k\left[\frac{y(y-1)}{x}\right] \). The element \(\frac{y(y-1)}{x} \) is not a prime element in \(A \). Hence \(A \) is neither \(UFD \) nor a polynomial ring.

(*) This example is due to K. Yoshida.
As an application of Theorem 3 we give a necessary and sufficient condition for a plane curve $C: f(x, y)=0$ to be a line. We recollect here some definitions. A plane curve $C: f(x, y)=0$ defined over a field k is called a quasi-line over k if the coordinate ring $A=k[x, y]/(f)$ is isomorphic to a polynomial ring in one variable. C is called a line if there exists another curve $\Gamma: g(x, y)=0$ such that we have $k[x, y]=k[f, g]$.

Theorem 4. Let k be an algebraically closed field and let $C: f(x, y)=0$ be an irreducible curve over k. Then the following conditions are equivalent to each other.

(i) C is a line
(ii) There is a 1-th derivation Δ such that $\Delta(f)=0$.
(iii) $C_u: f(x, y)\rightarrow u=0$ is a quasi-line over $k(u)$ where u is an indeterminate.

Proof. The implication (i) \rightarrow (ii), (i) \rightarrow (iii) is obvious (ii) \rightarrow (i) follows from Theorem 2 and 3. It remains to show that (iii) implies (i). Assume (iii). Since $k(u)[x, y]/(f-u)$ is isomorphic to $k(f)[x, y]$, there exists an element t in $k[x, y]$ such that $k(f)[x, y]=k(f)[t]$. Let Δ' be the 1-th derivation of $k(f)[t]$ over $k(f)$ such that

$$\Delta'(t^m) = \left(m \atop n\right)t^{m-n}$$

Then there exists an element a in $k[f]$ such that $a\Delta'=\Delta$ sends $k[x, y]$ into itself, where $a\Delta'$ is higher derivation

$$a\Delta' = (1, a\Delta', a^2\Delta', \ldots, a^n\Delta', \ldots).$$

Clearly $\Delta(f)=0$ and f is a prime element in $k[x, y]$. Hence $\Delta^{-1}(0)=k[f]$ and by Theorem 3, f is a line.

In case where the characteristic of k is zero we can say more. First we prove a Lemma.

Lemma 2. Let $C: f(x, y)=0$ be a line in a plane. Then $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=1$.

Proof. Since C is a line, there exists a curve $\Gamma: g(x, y)=0$ such that $k[x, y]=k[f, g]$. Then there exists $F(X, Y)$ and $G(X, Y)$ in $k[X, Y]$ such that

$$F(f, g) = x$$
$$G(f, g) = y$$

Then we have

(**) In [4] our "line" and "quasi-line" are called "embedded line" and "line" respectively.
\[
\frac{\partial F}{\partial x} \frac{\partial f}{\partial y} + \frac{\partial F}{\partial y} \frac{\partial g}{\partial x} = 1 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (1)
\]
\[
\frac{\partial F}{\partial y} \frac{\partial f}{\partial x} + \frac{\partial F}{\partial x} \frac{\partial g}{\partial y} = 0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (2)
\]
\[
\frac{\partial G}{\partial x} \frac{\partial f}{\partial y} + \frac{\partial G}{\partial y} \frac{\partial g}{\partial x} = 0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (3)
\]
\[
\frac{\partial G}{\partial y} \frac{\partial f}{\partial x} + \frac{\partial G}{\partial x} \frac{\partial g}{\partial y} = 1 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (4)
\]

Now assume \(\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \subseteq m \) for some maximal ideal \(m \). Then from (2) either \(\frac{\partial f}{\partial y} \) or \(\frac{\partial g}{\partial x} \) is contained in \(m \). The first case cannot occur because of (1) and the second case contradicts (4). Thus \(\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \) is a unit ideal.

Theorem 5. Let \(k \) be an algebraically closed field of characteristic zero and let \(C: f(x, y)=0 \) be an irreducible curve over \(k \). Then \(C \) is a line if and only if the derivation

\[
D_f = \frac{\partial f}{\partial y} \frac{\partial}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial}{\partial y}
\]

is locally nilpotent.

Proof. Assume that \(C: f(x, y)=0 \) is a line. Let \(\Gamma: g(x, y)=0 \) be a curve such that \(k[f, g] = k[x, y] \). Then there exists a locally nilpotent derivation \(\Delta \) of \(k[x, y] \) such that \(\Delta f = 0 \) and \(\Delta g = 1 \). Since \(\frac{\partial}{\partial x} \) and \(\frac{\partial}{\partial y} \) form a basis of derivations of \(k[x, y] \) we can write

\[
\Delta = a \frac{\partial}{\partial x} - b \frac{\partial}{\partial y} \quad \text{with} \quad a, b \in k[x, y].
\]

Since \(\Delta f = 0 \) we have

\[
a \frac{\partial f}{\partial x} - b \frac{\partial f}{\partial y} = 0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (1)
\]

Let \(a \frac{\partial f}{\partial y} = b \frac{\partial f}{\partial y} = \lambda \), i.e., \(a = \lambda \frac{\partial f}{\partial y} \), \(b = \lambda \frac{\partial f}{\partial x} \). Then we have \(\Delta = \lambda D_f \).

We show that \(\lambda \in k[x, y] \). From Lemma 2 it follows that \(\alpha \frac{\partial f}{\partial x} + \beta \frac{\partial f}{\partial y} = 1 \) for some \(\alpha, \beta \in k[x, y] \). Hence \(\lambda = b \alpha + a \beta \in k[x, y] \). On the other hand the existence of \(g \in k[x, y] \) such that \(\Delta g = 1 \) implies \((a, b) = 1 \). Since \(\lambda \) is a common
divisor of a and b we see that $\lambda \in k^*$. This means that D_f is locally nilpotent. The "if" part of the Theorem is immediate from Theorem 3.

According to S. Abhyankar and T. Moh a quasi-line is a line in case of characteristic zero ([1]). In the case where the characteristic of k is a positive prime integer p there is a counter example.

EXAMPLE 2(* A curve $C: f(x, y)=0$ such that

$$f(x, y) \equiv y^p - x$$

is a quasi-line but not a line where p is the characteristic of k and q is an integer ≥ 2 not divisible by p.

Proof. If we set

$$u = y - (y^p - x^q)^q$$

then $x \equiv u^p$ and $y \equiv u + u^p$ modulo $f(x, y)$. Hence $f(x, y)=0$ is a quasi-line. To see that c is not a line it suffices to show that there is no locally finite higher derivation killing f. Assume the contrary and let Δ be a lfih-derivation killing f and $\phi = \Phi \Delta$. Let

$$\phi(x) = x + \sum_i a_i T^i$$

$$\phi(y) = y + \sum_i b_i T^i.$$

From $\phi(f)=f$ we get

$$(y^p + \sum_i b_i^p T^{pi}) - (x + \sum_i a_i T^i) - (y^p + \sum_i a_i^p T^{pi})^q = y^p - x - x^p$$

First we easily see that $a_i = 0$ if $i \equiv 0 \mod p^k$. We set $a_i^p = a_i$. Then we have

$$(y^p + \sum_i b_i^p T^{pi}) - (x + \sum_i (p_i + \sum_i a_i T^{pi})^q - (y^p + \sum_i \alpha_i T^{qi})^q = y^p - x - x^p$$

First we remark that

$$\alpha_i \in A^{p^k}$$

for any i where $A = k[x, y]$. Now assume that $n \geq 1$. We compute the coefficient of $T^{p^k(\delta - 1)}$. Since $T^{p^k(\delta - 1)}$ does not appear in the middle term we have the relation:

$$b_{p^k(\delta - 1)} = \sum_{i_1, \ldots, i_q=1}^{p^k} \alpha_{i_1} \cdots \alpha_{i_q} + qx^p \alpha_n^{p^k(\delta - 1)}$$

From (2) $\alpha_{i_1} \cdots \alpha_{i_q}, \alpha_n^{p^k(\delta - 1)}$ are in A^{p^k}. Hence x^p must also be in A^{p^k}. This is

(***) This example is a generalization of the one given in [4].
impossible. This proves \(n = 0 \), i.e., \(x \) must be a \(\Delta \)-constant. Hence \(y \) is also a \(\Delta \)-constant. Thus there is no non-trivial \(\text{ifih} \)-derivation \(\Delta \) such that \(\Delta(f) = 0 \).

\section*{References}

Added in Proof. In Theorem 3 we assumed that \(k \) is algebraically closed. This assumption is essential as is shown in the following Example. Let \(B = \mathbb{R}[X, Y]/X^2 + Y^2 + 1 \). Then \(B \) is a UFD and satisfies \(B^* = \mathbb{R}^* \). The ring \(A = B[Z] \) satisfies all the requirement in Theorem 3, but \(A \) is not a polynomial ring of two variables over the field \(\mathbb{R} \).