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1. Introduction

Let G be a finite group and k be a field of characteristic p>0. Let Θ be a

connected component of the stable Auslander-Reiten quiver Ts(kG) of the

group algebra kG and set V(Θ)={vx{M)\M is an indecomposable &G-module

in Θ}, where vx(M) denotes the vertex of M. As we shall see in Proposition

3.2 below, if Q is a minimal element in F(Θ), then Q<GH for all flΓeΓ(θ).

In particular we see that Q is uniquely determined up to conjugation in G.

Let N=NG(Q) and let / be the Green correspondence with respect to

(G, Q, N). Choose an indecomposable &G-module Mo in Θ with Q its vertex.

Let Δ be the connected component of Ts(kN) containing fM0. The purpose

of this paper is to show that there is a subquiver Λ of Δ and a graph iso-

morphism ψ: Λ->Θ such that ψ'1 behaves like the Green correspondence / as a

bijective map between modules in Λ and those in Θ. In particular θ is iso-

morphic with a subquiver of Δ. Also it will be shown that if H^ F(θ), then

H^GNG(Q).

The notation is almost standard. All the modules considered here are

finite dimensional over k. We write W \ W for &G-modules W and W\ if W

is isomorphic to a direct summand of W. For an indecomposable non-pro-

jective ΛG-module Λf, we write Jl{M) to denote the Auslander-Reiten sequence

terminating at M. A sequence Mo — M1— Mt of indecomposable kG-

modules M, (0<z'<£) is said to be a walk if there exists either an irreducible

map from M, to Mt+1 or an irreducible map from Mi+ι to Mi for 0<t<t—l.

Concerning some basic facts and terminologies used here, we refer to [1], [5],

[6] and [8].

The author would like to thank Dr. T. Okuyama for his helpful advice.

2. Preliminaries

To begin with, we recall some basic facts on relative projectivity.

Let if be a subrgoup of G and {£t }?-i be a right transversal of H in G. If

W and W are AG-modules, then (W, W')H denotes the &-space H o m ^ W , W).
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The trace map t%:{W, W')H->(W, W'f is defined by f £ ( φ ) = Σ φ & f o r

φe(W, W')H. For a set 3 of subgroups of G, write (W, W% = Σ F e S Im(fg)
and {W, W')S,G=(W, Wf)G/(W, W')^. A &G-homomorphism φ is said to be
3-projective, if φ^(W, W')%. A ΛG-module W is said to be 3-projective, if

8
For a set 8 of subgroups of G, we set 3 = 3 Π G # = {F*ΠH \ V<=&, g<EΞG}.

Lemma2.1 ([8], Theorem 2.3). With the notation above, let <p^(W, W')G.
(1) φ is &-projective if and only if φ factors through a $-projective mo-

dule.
(2) If W or W' is &-projective, then φ is 3-projective.

Lemma 2.2.

(1) ([8], Cor. 5.4) For a kG-module A and a kH-module By the following
k-ίsomorphisms hold:

(B, A

(2) In particular, for kH-modules A and B, the following k-isomorphism
holds:

The next two results are also well-known.

Lemma 2.3 ([1], Prop. 2.17.10). Let M be an indecomposable non-pro-
jective kG-module and H be a subgroup of G. Then the Auslander-Reiten sequence
Jl{M) splits on restriction to H if and only if H does not contain vx(M).

Lemma 2.4 ([4], Lemma 1.5 and [7], Theorem 7.5). Let II be a subgroup
of G. Let M and L be indecomposable non-projectίve modules for G and H re-
spectively. Assume that L is a direct summand of (L\G)lff with multiplicity
one, and that M is a direct summand of L\G such that L\M\H. Then Jl{L)\G

, where 6 is a split sequence.

Finally we note:

Lemma 2.5. Let P be a non-trivial p-subgroup of G. Let M and L be
indecomposable non-projective modules for G and NG(P) respectively. Assume
that Λ(L)\G~Jl{M)®6, where 8 is a split sequence and that P<Gvx(L). If
M is not a direct summand of the middle term of <Jl(L)\G, then <_A{M)\NQ{P)—
JL{L)®εf, where βr is a P-split sequence.
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Proof. Using the same argument as in the proof of [3], (2.3) Lemma (a),
we have Jl{M)\ N σ{P)^Jl{L)ξ&6', where <?' is some exact sequence. There-
fore we have only to show that 6r is a P-split sequence. Let ( , ) denote the
inner product on the Green ring a(kG) induced by dimAHomifeG( ,) [2]. For
an exact sequence of ΛG-modules *•: 0->A->B-*C->0, put M(<ή~B — A — C.
By [2], Theorem 3.4, it is sufficient to show that (Jl(<S')lPy W)=0 for any kP-
module W. Using the Frobenius reciprocity, we have

W)

= {M{JL{M))\Py W)-{M{Jl(L))\P, W)

), W\G)-{Sί{JL{L% Wn

{W\G)\N)-{M{Jί{L)\ W\N),

where N=NG(P). By the Mackey decomposition, (W\G)[N— W^QW, where
W is {Pg (Ί NI g^G\N) -projective. Since L is not {P8 Π N \ g e G\N} -pro-
jective, we have (Jί(Jl(L)), W') = 0. Consequently we gεt(M{£')lP> W)=0 as
desired.

3. Minimal element in V(Θ)

Let B be a subgraph of the stable Auslander-Reiten quiver Ts(kG) and
set V(S)={vx(M)\M^S}. Note that every element in F(H) is a non-trivial
^-subgroup of G since every M is non-projective. The following Lemma 3.1
is essential in our argument.

Lemma 3.1. Let a be a subgraph of Ts(kG). Assume that B is con-
nected. Take any Q G Γ ( H ) with the smallest order among those p-subgroups in
P^Ξ). Then for any indecomposable module M^S, M\,Q has an indecomposable
direct summand whose vertex is Q.

Proof. Let M 0GH be such that Q=υx(M0). As H is connected, there is a
walk Mo—M1 Mt=M> so that M{ is a direct summand of the middle term
of the Auslander-Reiten sequence <_A(Mi+1) or cJl(Ω,~2Mi+1). We proceed by in-
duction on the "distance" t. Suppose that Mt^Q has an indecomposable
direct summand whose vertex is Q. We may assume that vx(Mt)^GQ,
since otherwise vx(Mt)=GQ and Q-source of Mt is a direct summand of MtlQ.
By Lemma 2.3, JHMt)\Q and cJL(Ω,~2Mt)lQ split. Since Mt^ is a direct
summand of the middle term of <_A(Mt) or Jl{ΩΓ2Mt), Mt\Q has an indecom-
posable direct summand whose vertex is Q.

Lemma 3.1 implies that the minimal elements with respect to the partial
order <G are those that have the smallest order. Thus the following holds.

Proposition 3.2. Let Θ be a connected component of Ts(kG). Let Q be
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an element of V{&) which is minimal with respect to the partial order <G. Then
for any H^V{&), we have Q<GH. In particular Q is uniquely determined up
to conjugation in G.

4. Module correspondence

Now returning to the situation of the introduction, let Q be a minimal
element in V(Θ) throughout this section. Let Λ be the subquiver of Δ con-
sisting of those &iV-modules L in Δ such that there exists a walk fM0=L0—
Lλ Lt=L with Q<Gvx{Li) (ί=0, 1, - , t).

First of all we note

Lemma 4.1. Let L be an indecomposable kN-module in Λ. Then Q<vx(L).

Proof. This follows immediately from Lemma 3.1.

Let X be the set of all ^-subgroups of N of order smaller than | Q | . Also
let ^=

Lemma 4.2. Let W be an indecomposable kG-module in Θ. Then there
exists a kN-module T satisfying the following two conditions:

(i) (TjG)lN— Γ 0 Γ , where T is ty-projective.
(ii)

Proof. By Lemma 3.1, W\Q has an indecomposable direct summand S
whose vertex is Q. Let T=S^N. We show that T satisfies the above two
conditions. By the Mackey decomposition we have T\Q^^g(=Q\N/Q®(S®g)
and so every indecomposable direct summand of T has Q as a vertex. Hence by
the Green correspondence ( Γ f 0 ) ^ — T®T'y where T is 2)-ρrojective. Let us
show the condition (ii). Letting X=X Γϊ NQ, we have by Lemma 2.2 (1)

and the assertion follows.

Lemma 4.3. Let T be a kN-module satisfying the condition (i) of Lemma
4.2. Let L be an indecomposable kN-module in Λ. Then the following k-isomor-
phisnis hold:

((L f G)lN, Tf>"^{L, {T\G)[Nf'N^{L, Tf'N.

Proof. The first ^-isomorphism holds by Lemma 2.2 (2).
Let (T]G)lN=T®(Zi®Xi), where X{ is an indecomposable ?)-projective

βΛΓ-module. It is enough to show that (L, Xi)£>N=0 for all Xo So we have to
show that any a^{L, X()

N is X-projective. Since X{ is Q=(Q8 Π ΛΓ)-projective
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for someg^G\N, there exists / 8 e ( L | g , -X,-)5 such that α=ί~(/3). Now, there

exists a walk/Mo = L o —A L, = L such that Q<vx(Li) (*=0, 1, ••-,*) bY
Lemma 4.1. As Q is not conjugate to Q in N, cJf(Lt )J,$ splits ( ί = 0 , 1, •••, t) by

Lemma 2.3. Since L 0 | Q is X-projective and Lx is a direct summand of the

middle term of <Jl(L0), it follows that L^Q is also X-projective. Using this

argument repeatedly, we conclude that L\Q is X-projective. Therefore β is X-

projective by Lemma 2.1 and hence a is X-projective.

L e m m a 4.4. Let L be an indecomposable kN-module in Λ. Then L\G

has a unique indecomposable direct summand M whose vertex contains Q, and we
have

(1) Lis a direct summand of M\Ni and

(2) M lies in Θ.

Moreover letting T be a kN-module satisfying the conditions in Lemma 4.2 for M,

we have:

[N, T)W=^ {M\N, Tf * ^ (L,

In particular, L is a direct summand of {L\G)\N with multiplicity one.

Proof. Since L\(L\G)\,N, L\G has an indecomposable direct summand

M such that L\MlN. Therefore the vertex of M contains Q and L\G has at

least one indecomposable direct summand whose vertex contains Q.

Let fM0=L0—Lι Lt=L be a walk. We prove the assertion by in-

duction on the t.

If t=0, i.e., L—fM0> then the assertion follows since / is the Green cor-

respondence.

Suppose the assertion holds for Lt_v We shall derive a contradiction

assuming that L\G has two indecomposable direct summands M and W whose

vertices contain Q. Let L\G=M® W@W. We may assume that L\M\N.

By Lemma 2.4 Jl{Lt_^\G^ Jl(Mt_^ζ&6, where Mt-X is the unique indecom-

posable direct summand of i^-it 0 whose vertex contains Q and 6 is a split

sequence. Note that the middle term of 6 does not have an indecomposable

direct summand whose vertex contains Q, since Mt_x (resp. Ωl

2Mt^1) is a unique

indecomposable direct summand of Lt_^G (resp. (Ω2Lί_1)fG) whose vertex

contains Q. Let Y (resp. Y') be the middle term of ^{M^ (resp. ^A(Ω,~2Mt_1)).

Since L is a direct summand of the middle term of ^(L^ j ) or JliCl^Lt^, it

follows that M 0 W \ Y or M 0 W \ Y'. In particular both M and W lie in Θ.

Let T and U be ^TV-modules satisfying the conditions (i) and (ii) for M

and W respectively in Lemma 4.2 and put 7 v =T'®ί7. Then
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^ {M\N, T'f N@{W\N, T'f'Nφ(W'lN, T'f N

=^(L, T'ψ'N®{Z, T'f-Nφ(WlN, T'f Nφ(W'lN, T'f'N,

where M\N=L®Z. But by Lemma 4.3, {{L\G)[N, T'f>N=^{L, T'f N. This
implies that {W\Nl Uf>Ncz(W\N, T'f N=O, which is a desired contardiction.
Thus L\G has a unique indecomposable direct summand M whose vertex con-
tains Q, and the statements (1) and (2) hold. Moreover we obtain that

((L f °)\N, Tf "^ (MU Γ)* * = (L, Tf NφO ,

since M\L\G and L\M\N. Hence L is a direct summand of (L\G)\N with
multiplicity one for otherwise

(L, Tf N®(L, Tf>Na((LϊG)lN, Tf M~(L9 Tf>NΦ0,

a contradiction.

For an indecomposable &/V-module L in Λ, let ψL be a unique indecom-
posable direct summand of L\G whose vertex contains Q.

Lemma 4.5. Let L and L' be indecomposable kN-modules in Λ. Then
—ψL' if and only if L—L'.

Proof. If L—L', then ψL—yfrL' clearly. To show the converse, assume
by way of contradiction that ψL^ψL' but LφL'. Since L\ψL\N and
L'\ψL'lN9 we have that L®Lf\ψL^N\(L]G)iN. Let {L\G)lN^L®L'®W.
Let T be a &iV-module satisfying the conditions (i) and (ii) of Lemma 4.2 for

Then

y Tf>N.

But by Lemma 4.3, ((LfG)U, Tf>N^(L, Tf>N. This implies that (L'y Tf>N

=0, which is contrary to Lemma 4.4.

We are now ready to prove the main theorem of this paper.

Theorem 4.6. ΛJT induces a graph isomorphism from Λ onto Θ which pre-
serves edge-multiplicity and direction. Also ψ gives rise to a one-to-one corres-
pondence between indecomposable modules in Θ and those in Λ and the following
hold:

(1) Let M be an indecomposable kG-module in Θ. Then M\N — ψ~ιM@
i), where W^Q is Ίί-projectίve for all i.

(2) Let L be an indecomposable kN-module in Λ. Then LtG^-ψ L 0 ( 2 , θ V{),
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where V{ is 3,-projective for all i.

Proof. It is a direct consequence of Lemmas 4.4, 4.5 and 2.4 that yjr indeed
induces a graph monomorphism. To show that ψ is an epimorphism, let M be
an arbitrary element of Θ and let Mo—M1 Mt=M be a walk in Θ. If £=0,
i.e., M=MOy then M0=f~\fM0)=ψL0. Now, suppose then that there exists an
element Lt_λ in Λ such that Mt_1 = ψLt_1. By Lemmas 4.4 and 2.4 we have
Jl(Lt_ι)\G=Jl{Mt_ι)®ε and cΛ(Ω-%-1)tc=cΛ(Ω-2M ί-1)Θ£/, where β and
£' are split sequences. Recall that Mt is a direct summand of the middle term
of Jl(Mt-^ or <Jl(Ω~2Mt_1). Therefore there exists some indecomposable direct
summand L of the middle term of JL{Lt_^) or of Jl^^Lt^) such that M\L\G.
Since Q<G vx(M)<vx(L)) L lies in Λ. Consequently M=ψL and ψ is an epi-
morphism.

Next wτe prove (1) by induction on the distance t from Mo to M=Mt. If
t=0, i.e., M=M0, then the staement (1) follows since/ is the Green correspon-
dence. Suppose the statement (1) holds for Mt_v We may assume that Mt is
a direct summand of the middle term of Jl(Mt_^) (otherwise replace Mt_x by
a^M^). Let Mt\N—^-ιMt®{τi®Wi) and let Mt_1lN—ψ-1Mt_1®(Σ(i®
W'i). By Lemma 2.5, JL{Mt_x) [ N^Jί(ψ-ιMt^@e\ where & is a Q-split
sequence. Note that Qf is an exact sequence terminating at Σ t φTFί. If W{ is
a direct summand of the middle term of ^(ψ^Mf^), then Q^$G vx(Wi), since
otherwise W{ lies in Λ but this contradicts that ψ is a graph isomorphism which
preserves edge-multiplicity. Therefore Wi\Q is ϊ-projective. Suppose then
that Wi is a direct summand of the middle term of β'. Then since each W'ilQ

is ϊ-projective and ^ Q K Σ / Θ ^ Q I Q Θ ^ Θ Ω W O U it follows that W4iQ is
X-projective.

The statement (2) follows similarly by virtue of Lemma 2.4.

As an immediate consequence of the above theorem, we have

Corollary 4.7. Let θ be a connected component of Ts(kG) and let Q be a
minimal element in V(θ). Then for any element H of V(θ), we have H<G NG{Q).
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