

Title	Module correspondence in Auslander-Reiten quivers for finite groups
Author(s)	Kawata, Shigeto
Citation	Osaka Journal of Mathematics. 1989, 26(3), p. 671-678
Version Type	VoR
URL	https://doi.org/10.18910/10799
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

MODULE CORRESPONDENCE IN AUSLANDER-REITEN QUIVERS FOR FINITE GROUPS

SHIGETO KAWATA

(Received February 23, 1988)

1. Introduction

Let G be a finite group and k be a field of characteristic $p > 0$. Let Θ be a connected component of the stable Auslander-Reiten quiver $\Gamma_s(kG)$ of the group algebra kG and set $V(\Theta) = \{vx(M) \mid M \text{ is an indecomposable } kG\text{-module in } \Theta\}$, where $vx(M)$ denotes the vertex of M . As we shall see in Proposition 3.2 below, if Q is a minimal element in $V(\Theta)$, then $Q \leq_c H$ for all $H \in V(\Theta)$. In particular we see that Q is uniquely determined up to conjugation in G .

Let $N = N_c(Q)$ and let f be the Green correspondence with respect to (G, Q, N) . Choose an indecomposable kG -module M_0 in Θ with Q its vertex. Let Δ be the connected component of $\Gamma_s(kN)$ containing fM_0 . The purpose of this paper is to show that there is a subquiver Λ of Δ and a graph isomorphism $\psi: \Lambda \rightarrow \Theta$ such that ψ^{-1} behaves like the Green correspondence f as a bijective map between modules in Λ and those in Θ . In particular Θ is isomorphic with a subquiver of Δ . Also it will be shown that if $H \in V(\Theta)$, then $H \leq_c N_c(Q)$.

The notation is almost standard. All the modules considered here are finite dimensional over k . We write $W|W'$ for kG -modules W and W' , if W is isomorphic to a direct summand of W' . For an indecomposable non-projective kG -module M , we write $\mathcal{A}(M)$ to denote the Auslander-Reiten sequence terminating at M . A sequence $M_0 - M_1 - \cdots - M_t$ of indecomposable kG -modules M_i ($0 \leq i \leq t$) is said to be a *walk* if there exists either an irreducible map from M_i to M_{i+1} or an irreducible map from M_{i+1} to M_i for $0 \leq i \leq t-1$. Concerning some basic facts and terminologies used here, we refer to [1], [5], [6] and [8].

The author would like to thank Dr. T. Okuyama for his helpful advice.

2. Preliminaries

To begin with, we recall some basic facts on relative projectivity.

Let H be a subgroup of G and $\{g_i\}_{i=1}^n$ be a right transversal of H in G . If W and W' are kG -modules, then $(W, W')^H$ denotes the k -space $\text{Hom}_{kH}(W, W')$.

The trace map $t_H^G: (W, W')^H \rightarrow (W, W')^G$ is defined by $t_H^G(\phi) = \sum_{i=1}^n \phi \cdot g_i$ for $\phi \in (W, W')^H$. For a set \mathfrak{B} of subgroups of G , write $(W, W')_{\mathfrak{B}}^G = \sum_{V \in \mathfrak{B}} \text{Im}(t_V^G)$ and $(W, W')_{\mathfrak{B}, G} = (W, W')^G / (W, W')_{\mathfrak{B}}^G$. A kG -homomorphism φ is said to be \mathfrak{B} -projective, if $\varphi \in (W, W')_{\mathfrak{B}}^G$. A kG -module W is said to be \mathfrak{B} -projective, if $W \mid \sum_{V \in \mathfrak{B}} \oplus (W \downarrow_V) \uparrow^G$.

For a set \mathfrak{B} of subgroups of G , we set $\tilde{\mathfrak{B}} = \mathfrak{B} \cap {}_G H = \{V^g \cap H \mid V \in \mathfrak{B}, g \in G\}$.

Lemma 2.1 ([8], Theorem 2.3). *With the notation above, let $\varphi \in (W, W')^G$.*

(1) *φ is \mathfrak{B} -projective if and only if φ factors through a \mathfrak{B} -projective module.*

(2) *If W or W' is \mathfrak{B} -projective, then φ is \mathfrak{B} -projective.*

Lemma 2.2.

(1) ([8], Cor. 5.4) *For a kG -module A and a kH -module B , the following k -isomorphisms hold :*

$$(A \downarrow_H, B)^{\tilde{\mathfrak{B}}, H} \simeq (A, B \uparrow^G)^{\mathfrak{B}, G},$$

$$(B, A \downarrow_H)^{\tilde{\mathfrak{B}}, H} \simeq (B \uparrow^G, A)^{\mathfrak{B}, G}.$$

(2) *In particular, for kH -modules A and B , the following k -isomorphism holds:*

$$((A \uparrow^G) \downarrow_H, B)^{\tilde{\mathfrak{B}}, H} \simeq (A, (B \uparrow^G) \downarrow_H)^{\tilde{\mathfrak{B}}, H}.$$

The next two results are also well-known.

Lemma 2.3 ([1], Prop. 2.17.10). *Let M be an indecomposable non-projective kG -module and H be a subgroup of G . Then the Auslander-Reiten sequence $\mathcal{A}(M)$ splits on restriction to H if and only if H does not contain $\text{vx}(M)$.*

Lemma 2.4 ([4], Lemma 1.5 and [7], Theorem 7.5). *Let H be a subgroup of G . Let M and L be indecomposable non-projective modules for G and H respectively. Assume that L is a direct summand of $(L \uparrow^G) \downarrow_H$ with multiplicity one, and that M is a direct summand of $L \uparrow^G$ such that $L \mid M \downarrow_H$. Then $\mathcal{A}(L) \uparrow^G \simeq \mathcal{A}(M) \oplus \mathcal{E}$, where \mathcal{E} is a split sequence.*

Finally we note:

Lemma 2.5. *Let P be a non-trivial p -subgroup of G . Let M and L be indecomposable non-projective modules for G and $N_G(P)$ respectively. Assume that $\mathcal{A}(L) \uparrow^G \simeq \mathcal{A}(M) \oplus \mathcal{E}$, where \mathcal{E} is a split sequence and that $P \leq_G \text{vx}(L)$. If M is not a direct summand of the middle term of $\mathcal{A}(L) \uparrow^G$, then $\mathcal{A}(M) \downarrow_{N_G(P)} \simeq \mathcal{A}(L) \oplus \mathcal{E}'$, where \mathcal{E}' is a P -split sequence.*

Proof. Using the same argument as in the proof of [3], (2.3) Lemma (a), we have $\mathcal{A}(M) \downarrow_{N_G(P)} \simeq \mathcal{A}(L) \oplus \mathcal{E}'$, where \mathcal{E}' is some exact sequence. Therefore we have only to show that \mathcal{E}' is a P -split sequence. Let (\cdot, \cdot) denote the inner product on the Green ring $a(kG)$ induced by $\dim_k \text{Hom}_{kG}(\cdot, \cdot)$ [2]. For an exact sequence of kG -modules $\iota: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, put $\mathcal{H}(\iota) = B - A - C$. By [2], Theorem 3.4, it is sufficient to show that $(\mathcal{H}(\mathcal{E}') \downarrow_P, W) = 0$ for any kP -module W . Using the Frobenius reciprocity, we have

$$\begin{aligned} & (\mathcal{H}(\mathcal{E}') \downarrow_P, W) \\ &= (\mathcal{H}(\mathcal{A}(M)) \downarrow_P, W) - (\mathcal{H}(\mathcal{A}(L)) \downarrow_P, W) \\ &= (\mathcal{H}(\mathcal{A}(M)), W \uparrow^G) - (\mathcal{H}(\mathcal{A}(L)), W \uparrow^N) \\ &= (\mathcal{H}(\mathcal{A}(L)), (W \uparrow^G) \downarrow_N) - (\mathcal{H}(\mathcal{A}(L)), W \uparrow^N), \end{aligned}$$

where $N = N_G(P)$. By the Mackey decomposition, $(W \uparrow^G) \downarrow_N \simeq W \uparrow^N \oplus W'$, where W' is $\{P^g \cap N \mid g \in G \setminus N\}$ -projective. Since L is not $\{P^g \cap N \mid g \in G \setminus N\}$ -projective, we have $(\mathcal{H}(\mathcal{A}(L)), W') = 0$. Consequently we get $(\mathcal{H}(\mathcal{E}') \downarrow_P, W) = 0$ as desired.

3. Minimal element in $V(\Theta)$

Let Ξ be a subgraph of the stable Auslander-Reiten quiver $\Gamma_s(kG)$ and set $V(\Xi) = \{vx(M) \mid M \in \Xi\}$. Note that every element in $V(\Xi)$ is a non-trivial p -subgroup of G since every M is non-projective. The following Lemma 3.1 is essential in our argument.

Lemma 3.1. *Let Ξ be a subgraph of $\Gamma_s(kG)$. Assume that Ξ is connected. Take any $Q \in V(\Xi)$ with the smallest order among those p -subgroups in $V(\Xi)$. Then for any indecomposable module $M \in \Xi$, $M \downarrow_Q$ has an indecomposable direct summand whose vertex is Q .*

Proof. Let $M_0 \in \Xi$ be such that $Q = vx(M_0)$. As Ξ is connected, there is a walk $M_0 - M_1 - \cdots - M_t = M$, so that M_i is a direct summand of the middle term of the Auslander-Reiten sequence $\mathcal{A}(M_{i+1})$ or $\mathcal{A}(\Omega^{-2}M_{i+1})$. We proceed by induction on the “distance” t . Suppose that $M_{t-1} \downarrow_Q$ has an indecomposable direct summand whose vertex is Q . We may assume that $vx(M_t) \not\leq_G Q$, since otherwise $vx(M_t) =_G Q$ and Q -source of M_t is a direct summand of $M_t \downarrow_Q$. By Lemma 2.3, $\mathcal{A}(M_t) \downarrow_Q$ and $\mathcal{A}(\Omega^{-2}M_t) \downarrow_Q$ split. Since M_{t-1} is a direct summand of the middle term of $\mathcal{A}(M_t)$ or $\mathcal{A}(\Omega^{-2}M_t)$, $M_t \downarrow_Q$ has an indecomposable direct summand whose vertex is Q .

Lemma 3.1 implies that the minimal elements with respect to the partial order \leq_G are those that have the smallest order. Thus the following holds.

Proposition 3.2. *Let Θ be a connected component of $\Gamma_s(kG)$. Let Q be*

an element of $V(\Theta)$ which is minimal with respect to the partial order \leq_G . Then for any $H \in V(\Theta)$, we have $Q \leq_G H$. In particular Q is uniquely determined up to conjugation in G .

4. Module correspondence

Now returning to the situation of the introduction, let Q be a minimal element in $V(\Theta)$ throughout this section. Let Λ be the subquiver of Δ consisting of those kN -modules L in Δ such that there exists a walk $fM_0=L_0-L_1-\cdots-L_t=L$ with $Q \leq_G vx(L_i)$ ($i=0, 1, \dots, t$).

First of all we note

Lemma 4.1. *Let L be an indecomposable kN -module in Λ . Then $Q \leq vx(L)$.*

Proof. This follows immediately from Lemma 3.1.

Let \mathfrak{X} be the set of all p -subgroups of N of order smaller than $|Q|$. Also let $\mathfrak{Y}=\{N \cap Q^g \mid g \in G \setminus N\}$.

Lemma 4.2. *Let W be an indecomposable kG -module in Θ . Then there exists a kN -module T satisfying the following two conditions:*

- (i) $(T \uparrow^G) \downarrow_N \simeq T \oplus T'$, where T' is \mathfrak{Y} -projective.
- (ii) $(W \downarrow_N, T)^{\mathfrak{X}, N} \neq 0$.

Proof. By Lemma 3.1, $W \downarrow_Q$ has an indecomposable direct summand S whose vertex is Q . Let $T=S \uparrow^N$. We show that T satisfies the above two conditions. By the Mackey decomposition we have $T \downarrow_Q \simeq \sum_{g \in Q \setminus N/Q} (S \otimes g)$ and so every indecomposable direct summand of T has Q as a vertex. Hence by the Green correspondence $(T \uparrow^G) \downarrow_N \simeq T \oplus T'$, where T' is \mathfrak{Y} -projective. Let us show the condition (ii). Letting $\tilde{\mathfrak{X}}=\mathfrak{X} \cap_N Q$, we have by Lemma 2.2 (1)

$$\begin{aligned} (W \downarrow_N, T)^{\mathfrak{X}, N} &= (W \downarrow_N, S \uparrow^N)^{\mathfrak{X}, N} \\ &\simeq (W \downarrow_Q, S)^{\tilde{\mathfrak{X}}, Q} \supset (S, S)^{\tilde{\mathfrak{X}}, Q} \neq 0 \end{aligned}$$

and the assertion follows.

Lemma 4.3. *Let T be a kN -module satisfying the condition (i) of Lemma 4.2. Let L be an indecomposable kN -module in Λ . Then the following k -isomorphisms hold:*

$$((L \uparrow^G) \downarrow_N, T)^{\mathfrak{X}, N} \simeq (L, (T \uparrow^G) \downarrow_N)^{\mathfrak{X}, N} \simeq (L, T)^{\mathfrak{X}, N}.$$

Proof. The first k -isomorphism holds by Lemma 2.2 (2).

Let $(T \uparrow^G) \downarrow_N = T \oplus (\sum_i X_i)$, where X_i is an indecomposable \mathfrak{Y} -projective kN -module. It is enough to show that $(L, X_i)^{\mathfrak{X}, N}=0$ for all X_i . So we have to show that any $\alpha \in (L, X_i)^N$ is \mathfrak{X} -projective. Since X_i is $\tilde{Q}=(Q^g \cap N)$ -projective

for some $g \in G \setminus N$, there exists $\beta \in (L \downarrow_{\tilde{Q}}, X_i)^{\tilde{Q}}$ such that $\alpha = t_{\tilde{Q}}^N(\beta)$. Now, there exists a walk $fM_0 = L_0 - L_1 - \cdots - L_t = L$ such that $Q \leq vx(L_i)$ ($i = 0, 1, \dots, t$) by Lemma 4.1. As \tilde{Q} is not conjugate to Q in N , $\mathcal{A}(L_i) \downarrow_{\tilde{Q}}$ splits ($i = 0, 1, \dots, t$) by Lemma 2.3. Since $L_0 \downarrow_{\tilde{Q}}$ is \mathfrak{X} -projective and L_1 is a direct summand of the middle term of $\mathcal{A}(L_0)$, it follows that $L_1 \downarrow_{\tilde{Q}}$ is also \mathfrak{X} -projective. Using this argument repeatedly, we conclude that $L \downarrow_{\tilde{Q}}$ is \mathfrak{X} -projective. Therefore β is \mathfrak{X} -projective by Lemma 2.1 and hence α is \mathfrak{X} -projective.

Lemma 4.4. *Let L be an indecomposable kN -module in Λ . Then $L \uparrow^G$ has a unique indecomposable direct summand M whose vertex contains Q , and we have*

- (1) *L is a direct summand of $M \downarrow_N$, and*
- (2) *M lies in Θ .*

Moreover letting T be a kN -module satisfying the conditions in Lemma 4.2 for M , we have:

$$((L \uparrow^G) \downarrow_N, T)^{\mathfrak{X}, N} \simeq (M \downarrow_N, T)^{\mathfrak{X}, N} \simeq (L, T)^{\mathfrak{X}, N} \neq 0.$$

In particular, L is a direct summand of $(L \uparrow^G) \downarrow_N$ with multiplicity one.

Proof. Since $L \mid (L \uparrow^G) \downarrow_N$, $L \uparrow^G$ has an indecomposable direct summand M such that $L \mid M \downarrow_N$. Therefore the vertex of M contains Q and $L \uparrow^G$ has at least one indecomposable direct summand whose vertex contains Q .

Let $fM_0 = L_0 - L_1 - \cdots - L_t = L$ be a walk. We prove the assertion by induction on the t .

If $t=0$, i.e., $L \simeq fM_0$, then the assertion follows since f is the Green correspondence.

Suppose the assertion holds for L_{t-1} . We shall derive a contradiction assuming that $L \uparrow^G$ has two indecomposable direct summands M and W whose vertices contain Q . Let $L \uparrow^G = M \oplus W \oplus W'$. We may assume that $L \mid M \downarrow_N$. By Lemma 2.4 $\mathcal{A}(L_{t-1}) \uparrow^G \simeq \mathcal{A}(M_{t-1}) \oplus \mathcal{E}$, where M_{t-1} is the unique indecomposable direct summand of $L_{t-1} \uparrow^G$ whose vertex contains Q and \mathcal{E} is a split sequence. Note that the middle term of \mathcal{E} does not have an indecomposable direct summand whose vertex contains Q , since M_{t-1} (resp. $\Omega^2 M_{t-1}$) is a unique indecomposable direct summand of $L_{t-1} \uparrow^G$ (resp. $(\Omega^2 L_{t-1}) \uparrow^G$) whose vertex contains Q . Let Y (resp. Y') be the middle term of $\mathcal{A}(M_{t-1})$ (resp. $\mathcal{A}(\Omega^{-2} M_{t-1})$). Since L is a direct summand of the middle term of $\mathcal{A}(L_{t-1})$ or $\mathcal{A}(\Omega^{-2} L_{t-1})$, it follows that $M \oplus W \mid Y$ or $M \oplus W \mid Y'$. In particular both M and W lie in Θ .

Let T and U be kN -modules satisfying the conditions (i) and (ii) for M and W respectively in Lemma 4.2 and put $T' = T \oplus U$. Then

$$\begin{aligned}
& ((L \uparrow^G) \downarrow_N, T')^{\mathfrak{X}, N} \\
& \simeq (M \downarrow_N, T')^{\mathfrak{X}, N} \oplus (W \downarrow_N, T')^{\mathfrak{X}, N} \oplus (W' \downarrow_N, T')^{\mathfrak{X}, N} \\
& \simeq (L, T')^{\mathfrak{X}, N} \oplus (Z, T')^{\mathfrak{X}, N} \oplus (W \downarrow_N, T')^{\mathfrak{X}, N} \oplus (W' \downarrow_N, T')^{\mathfrak{X}, N},
\end{aligned}$$

where $M \downarrow_N = L \oplus Z$. But by Lemma 4.3, $((L \uparrow^G) \downarrow_N, T')^{\mathfrak{X}, N} \simeq (L, T')^{\mathfrak{X}, N}$. This implies that $(W \downarrow_N, U)^{\mathfrak{X}, N} \subset (W \downarrow_N, T')^{\mathfrak{X}, N} = 0$, which is a desired contradiction. Thus $L \uparrow^G$ has a unique indecomposable direct summand M whose vertex contains Q , and the statements (1) and (2) hold. Moreover we obtain that

$$((L \uparrow^G) \downarrow_N, T)^{\mathfrak{X}, N} \simeq (M \downarrow_N, T)^{\mathfrak{X}, N} \simeq (L, T)^{\mathfrak{X}, N} \neq 0,$$

since $M \mid L \uparrow^G$ and $L \mid M \downarrow_N$. Hence L is a direct summand of $(L \uparrow^G) \downarrow_N$ with multiplicity one; for otherwise

$$(L, T)^{\mathfrak{X}, N} \oplus (L, T)^{\mathfrak{X}, N} \subset ((L \uparrow^G) \downarrow_N, T)^{\mathfrak{X}, M} \simeq (L, T)^{\mathfrak{X}, N} \neq 0,$$

a contradiction.

For an indecomposable kN -module L in Λ , let ψL be a unique indecomposable direct summand of $L \uparrow^G$ whose vertex contains Q .

Lemma 4.5. *Let L and L' be indecomposable kN -modules in Λ . Then $\psi L \simeq \psi L'$ if and only if $L \simeq L'$.*

Proof. If $L \simeq L'$, then $\psi L \simeq \psi L'$ clearly. To show the converse, assume by way of contradiction that $\psi L \simeq \psi L'$ but $L \not\simeq L'$. Since $L \mid \psi L \downarrow_N$ and $L' \mid \psi L' \downarrow_N$, we have that $L \oplus L' \mid \psi L \downarrow_N \mid (L \uparrow^G) \downarrow_N$. Let $(L \uparrow^G) \downarrow_N \simeq L \oplus L' \oplus W$. Let T be a kN -module satisfying the conditions (i) and (ii) of Lemma 4.2 for ψL ($\simeq \psi L'$). Then

$$\begin{aligned}
& ((L \uparrow^G) \downarrow_N, T)^{\mathfrak{X}, N} \\
& \simeq (L, T)^{\mathfrak{X}, N} \oplus (L', T)^{\mathfrak{X}, N} \oplus (W, T)^{\mathfrak{X}, N}.
\end{aligned}$$

But by Lemma 4.3, $((L \uparrow^G) \downarrow_N, T)^{\mathfrak{X}, N} \simeq (L, T)^{\mathfrak{X}, N}$. This implies that $(L', T)^{\mathfrak{X}, N} = 0$, which is contrary to Lemma 4.4.

We are now ready to prove the main theorem of this paper.

Theorem 4.6. *ψ induces a graph isomorphism from Λ onto Θ which preserves edge-multiplicity and direction. Also ψ gives rise to a one-to-one correspondence between indecomposable modules in Θ and those in Λ and the following hold :*

- (1) *Let M be an indecomposable kG -module in Θ . Then $M \downarrow_N \simeq \psi^{-1}M \oplus (\Sigma_i \oplus W_i)$, where $W_i \downarrow_Q$ is \mathfrak{X} -projective for all i .*
- (2) *Let L be an indecomposable kN -module in Λ . Then $L \uparrow^G \simeq \psi L \oplus (\Sigma_i \oplus V_i)$,*

where V_i is \mathfrak{X} -projective for all i .

Proof. It is a direct consequence of Lemmas 4.4, 4.5 and 2.4 that ψ indeed induces a graph monomorphism. To show that ψ is an epimorphism, let M be an arbitrary element of Θ and let $M_0 - M_1 - \cdots - M_t = M$ be a walk in Θ . If $t=0$, i.e., $M=M_0$, then $M_0 = f^{-1}(fM_0) = \psi L_0$. Now, suppose then that there exists an element L_{t-1} in Λ such that $M_{t-1} = \psi L_{t-1}$. By Lemmas 4.4 and 2.4 we have $\mathcal{A}(L_{t-1}) \uparrow^G = \mathcal{A}(M_{t-1}) \oplus \mathcal{E}$ and $\mathcal{A}(\Omega^{-2}L_{t-1}) \uparrow^G = \mathcal{A}(\Omega^{-2}M_{t-1}) \oplus \mathcal{E}'$, where \mathcal{E} and \mathcal{E}' are split sequences. Recall that M_t is a direct summand of the middle term of $\mathcal{A}(M_{t-1})$ or $\mathcal{A}(\Omega^{-2}M_{t-1})$. Therefore there exists some indecomposable direct summand L of the middle term of $\mathcal{A}(L_{t-1})$ or of $\mathcal{A}(\Omega^{-2}L_{t-1})$ such that $M \mid L \uparrow^G$. Since $Q \leq_G vx(M) \leq vx(L)$, L lies in Λ . Consequently $M = \psi L$ and ψ is an epimorphism.

Next we prove (1) by induction on the distance t from M_0 to $M=M_t$. If $t=0$, i.e., $M=M_0$, then the statement (1) follows since f is the Green correspondence. Suppose the statement (1) holds for M_{t-1} . We may assume that M_t is a direct summand of the middle term of $\mathcal{A}(M_{t-1})$ (otherwise replace M_{t-1} by $\Omega^{-2}M_{t-1}$). Let $M_t \downarrow_N \simeq \psi^{-1}M_t \oplus (\Sigma_i \oplus W_i)$ and let $M_{t-1} \downarrow_N \simeq \psi^{-1}M_{t-1} \oplus (\Sigma_i \oplus W_i)$. By Lemma 2.5, $\mathcal{A}(M_{t-1}) \downarrow_N \simeq \mathcal{A}(\psi^{-1}M_{t-1}) \oplus \mathcal{E}'$, where \mathcal{E}' is a Q -split sequence. Note that \mathcal{E}' is an exact sequence terminating at $\Sigma_i \oplus W_i$. If W_i is a direct summand of the middle term of $\mathcal{A}(\psi^{-1}M_{t-1})$, then $Q \nleq_G vx(W_i)$, since otherwise W_i lies in Λ but this contradicts that ψ is a graph isomorphism which preserves edge-multiplicity. Therefore $W_i \downarrow_Q$ is \mathfrak{X} -projective. Suppose then that W_i is a direct summand of the middle term of \mathcal{E}' . Then since each $W_i \downarrow_Q$ is \mathfrak{X} -projective and $W_i \downarrow_Q | (\Sigma_i \oplus W_i) \downarrow_Q \oplus (\Sigma_i \oplus \Omega^2 W_i) \downarrow_Q$, it follows that $W_i \downarrow_Q$ is \mathfrak{X} -projective.

The statement (2) follows similarly by virtue of Lemma 2.4.

As an immediate consequence of the above theorem, we have

Corollary 4.7. *Let Θ be a connected component of $\Gamma_s(kG)$ and let Q be a minimal element in $V(\Theta)$. Then for any element H of $V(\Theta)$, we have $H \leq_G N_G(Q)$.*

References

- [1] D.J. Benson: Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics, Vol. 1081, Springer-Verlag, New York/Berlin, 1984.
- [2] D.J. Benson and R.A. Parker: *The Green ring of a finite group*, J. Algebra **87** (1984), 290–331.
- [3] K. Erdmann: *Blocks whose defect groups are Klein four groups: a correction*, J. Algebra **76** (1982), 505–518.

- [4] K. Erdmann: *Algebras and dihedral defect groups*, Proc. London Math. Soc. (3) **54** (1987), 88–114.
- [5] W. Feit: *The Representation Theory of Finite Groups*, North-Holland, Amsterdam, 1982.
- [6] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, 1–71, Lecture Notes in Mathematics, Vol. 831, Springer-Verlag, New York/Berlin, 1980.
- [7] J.A. Green: *Functors on categories of finite group representations*, J. Pure Appl. Algebra **37** (1985), 265–298.
- [8] P. Landrock: *Finite Group Algebras and their Modules*, London Math. Soc. Lecture Note series 84, Cambridge University Press, London, 1983.

Department of Mathematics
Osaka City University
558 Osaka, Japan