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                           ABSTRACT

  . .. The purpose of this thesis is to provide bloek eodes for .
                   '               'reliable transmission over the binary ehannels with synchronization

errors such as timing errors, deletion and insertion errors, or

resulting synchronization slippage besides the additive burst errors.

     Zn Chapter 1, introducing the basic concept of block coding for

a noisy channel, the causes of synchronization error whieh entirely

degrade the performanee of the bloek codes are discussed from two

points of view. The outlines of two approaches for eorrecting

the synchronization slippage and the originated timing error are

                                            'describedr •. .

     In Chapter 2, coset codes capable of correcting a

synchronization slippage, which is due to timing errors oceurred in

the previously received words, and additive multiple burst errors

is discussed. After the historieal review in this approach, the

required condition of the eoset codes is described.. Then the

bounds on the required number of check symbols are obtained in order

to evaluate the performanee of the proposed codes.

     In Chapter 3, the historieal review is given and the heuristic

approach of constructing the timing-error correcting codes is

diseussed. Then a new method of constructing block codes capable

of correcting a deletion error and/or an additive burst error is
 '
presented, where the code is constructed by interleaving a single

burst-error correcting code and a coset eode generated by a low rate

                                                         '
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cyclic code. It is shown that, first, the proposed code is

eapable of correcting either a deletion error or an additive burst
                            '
error in a reeeived word, and second, it is also eapable of

correcting a deletion error imbedded within an additive burst

                                         '                                                          '                   '                               '
                                              '
     Tn Chapter 4, extending the concept of the code presented in

Chapter 3, the improved interleaved eodes which are eapable of not

                                                               'only correcting an arbitrary number of deletion error$, but also

correcting deletion or insertion errors in a received word are

presented. First, we show that the code is capable of

correcting a successive deletion error and/or an additive burst

error. Then we show it chn correet a successive insertion error

andlor an additive burst error, and finally, we show it is also

capable of correeting a suecessive deletion or insertion error

imbedded within an additive burst error. The redundancy newly

added for timing--error correction is discussed.

     !n the final chapter, the principal results achieved in this

research are sumarized.
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                           CHAIPTER 1

                          INTRODTJCTION

               tt
i.i' 1 domhunication svstem !vlodei' ahd Biock c6d'es'

                    "
    Figure 1.1 shows the block diagram of a general cormunication

system model. Information symbols from the source-encoder

output can be eneoded for reliable data transmission over the

diserete channel between the channel-encoder and the channel-decoder.

The general class of codes for which the enormous arnount of

researches has been done is a class whose members have fixed length,

i.e.,bZoek eodes. For a block code the channel-encoder
                 ttt
partitions the continuous sequence of information symbols into
                                   '
k--syrnbol blocks, and then encodes these blocks independently

according to the coding rule to be used.• Each block of
                            '                                      '
information symbols is encoded to an n-tuple of discrete ehannel

symbols, a eode word. The quantity n is referred to as the eode

Zength, where n>k obviously holds. The code word is transmitted

and disturbed by channel errors and decoded at the receiving end.

                                          '                                              '                                                           '                                           '
                           '
1.2 Synchronization Problems

     In order to decode a block code the channel-decoder should be
            '
qble to identify the first symbol, the second symbol,••., the

(n-1)st symbol and the nth syrnbol of the received word in a correct

order. • The problem discussed in this paper is to construct block

codes that are capable of correcting the deletion or insertion errors,
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so called timing ei7ro?s collectively. These errors can be

considered occurring in the following situations [1],[2];

   (i) The discrete channel of Figure 1.!, in general, reliies on

the assumption that an oscillator in the demodulator is kept

lockedr:in phase and frequency with an oscillator in the modulator.

However, during periods when the waveform-ahannel is subje6ted to

a noise burst, phase lock is usually lost and the demodulator rnust

make symbol decision without synchronization. As a result,

 - -•tlmang errors occur.

   (ii) An independent clocking technique is so far considered

to be a promising technique. In the communication system using

the independent clocking technique, each node has its own
                                                      '
accurate frequency elock. However, since the elocks operate

independen"t...ly thev. w:!! d-ifF.er slight.i.y in timing, even if the-y-

are as aecurate as atomic clocks. Such difference in tining

will eause artificial deletion or insertion errors in a sequence

of the received symbols, even if there exists no channel error.

                    '
!.3 Research Outline

     There are two basie approaches to recover synchronization

when timing errors have occurred in a received word, resulting

synehroni=ation sZappage in the subsequently received word.

One of the approaches is to correct the received word itself
                                      'corrupted by timing errors. The other i:s to reeover

synchronization slippage of the subsequently received words,
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remaining the causal word undecoded.

     !n Chapter 2, the latter approach which uses coset codes                                                            '

generated by cyclic codes, capable of correcting synchronization

slippage besides additive burst errors are discussed, sinee the

latter is simpler than the former and provides the fundamental
                                                     '
concepts of the next chapters. The condition required for the

cyclic code to eorrect synchronization slippage and additive burst

errors is presented along with the optimal pattern of the coset

leader and also the bounds on the required check symbols is

derived.

     In Chapter 3, the former approach using interleaved codes on

the basis of two a!gebraie codes is discussed. It is shown

that the proposed codes are capable of correcting a deletion error

of one sy"i"ubol imbedded within an additive burst error. •
.

     Extending the ideas of Chapter 3, improved interleaved codes,
                               '
which are capable of not only correeting an arbitrary number of

deletion errors but also eorrecting deletions or insertion errors

imbedded within an additive burst error in a received word, are

presented in Chapter 4.
                                                '                                                    '
     In the final chapter, the principal results achieved in the

research are summarized.
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                           CHAPTER 2

                                     [3],[4]
                          COSET CODES

2.1 Introduction

     Algebraic codes have been developed in great detail beeause

of their beautiful algebraic structure and simplicity of systematie

implementation, This class of block codes is very powerful for

reliable transmission provided that the word-synchronization is

maintained. These eodes, however, turn out to be useless when

word-synehronization is lost, or in other words synchronization

slippage occurs. For the correction of synchronization slippage

we can use the various kinds of code such as ccmxna codes, comrna-

free codes and coset eodes. But a comma code can be only useful

in synchronization-error channel where relatively few additive

errors occur in any reeeived word. A comma-free code relies on

the assumption that there exists no additive error in any received

word. A coset code is eonstructed from a cyclic code by adding

a fixed sequence of synbols by modulo 2 to every code word, where

the fixed seqvence is not a code word of the eyclic code.

Thus the coset code has the advantages of the easy implementation

due to its sirnple algebraic structure.

     stiffler[5] has first shown that a coset code ean be designed

             '
to be eapable of correcting either synehronization slippage or

additive errors in any reeeived word. Tong[6] has also proposed

the interesting cos•et eodes. However, these coset codes rely on
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the assumption that both synchronization slippage and additive

errors do not occur concurrently in any received word. Redinbo
         [7]             have designed coset codes, based on the concept ofand Wintz

minimum distance of the Hamming metric, capable of correcting both

synchronization slippage and random additive errors concurrently

existing in any received wordr

     rn this chapter, we present the required condition of a burst

error eorrecting cyclic eode and the optimal pattern of eoset

leader, where they eonstitute the proposed coset code capable of

correcting both synchronization slippage and multiple additive

burst errors in any received word. Obtaining the minimum

redundancy of the ideal coset codes, we evaluate the proposed

coset codes and compare with some of the previously knorm codes.
                                 'Historically, the bo+unds on tbe required number of check symbols'
                        '
for the original burst-error correcting codes were first derived
          [8, pp.110] '                     . . The bounds on the multiple burst-errorby Reiger

correcting codes were recently derived by Belelli, Bianciardi and

cappellinil9]. But these bounds are derived assuming that no

end-around burst error exists, which, however, appears as a

correctable burst error for any eyclic eode.
                 '

2.2 Preliminaries

     Let us represent a cyclic (n,k) code C as follows;
                                       '
                    n-1 .
          c= {x(z)= 2 qizil x(.)!o, .n.-IEo ..d G(z)}                                                            (2.1)
                    i=o
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where gie GF(2), i=1,2,•.e,n-I, G(z) is the generator polynomial

           'of degree n-k and gn-1 is the first symbol to be transmitted.

                                                   '   Definition 2.1 A synehi7onigataon sZippage of s bits occurs

when the eounter at the channel-deeoder counts s bits more that it

should.

     As shown irt Figure 2.1, a reeeived word Y(z) eorrupted by a

synchronization silppage of s(>O) bits can be repTesented by

          y(z)=z'"Sx(z)-z-'SxL(z)+z"-Sxi,(z); s>o (2.2)

             s-1 . s-1 .where XL (z)= 2 %zi and Xi: (z)= Z gl. zi, which is the suffix of

             i=o i=e
                       '                                            'the eode word transmitted just prior to X(z). Vsing the

well-known property of cyclic eodes, zn-1=O mod G(z), the equation

                             '
 (2.2) is given by

                                                    '          Y(z)=z"SX(z)+z'SXE(z) (2.3)
where

          X. (Z) =--XI. ( Z) +XÅí (Z)

                                           '
 Noting that equation (2.3) also holds even when s takes on a

 negative value except that we have the relation XE(z)=XU(Z)+Xb.(Z)

  n-1 . = 2 (g'i'+gi)z- where XU(z) is the prefix of the code word following
  '  -=n-s

 X(z), we only as$ume that s>O in what fo!lows for siTnplicity.

-7-



   Definition 2.2 ' An end-a?ound bui?st er7r)oi7 occurs when the

burst error starts from the (n-j)th position and ends with the ith

position where i<n-j. '
b.

 . Definition 2.3 [Vwo polynomials Zj(z)=iEI ej,izi with

                                        --                                                 J
ej,aj=ej,bj=1, j=l and 2, overZap .hy bl-a2+1 when the relation,

alEaFblSb2, holds. • .
     For example, zl(z)=zlO +el,11zll +z12 and z2(z)=zl! +e2,12z12

+z13 are overlapped by 2 regardless of the values of e and
                                                        1,11
            '
                                          'e2,12'

     A eoset code Cc is generated by adding a fixed polynomial R(z)

to the cyclic code C as follows;

          Cc "= {AS (z) =X (z) +R (z) 'I X(z)EC and R(z) dSi C } (2.4)

Therefore, in decoding of the code Cc, R(z) should be subtraeted

from the received word B(z) before decoding of the underlying

cyclic code C in the ordinary way. For the received word B(z)

corrupted by a synehronization slippage of s bits, we have

          Y(z) 2B (z) --R( z) =i SX(z) +z-SXE (z)+iSR(z) -R(z) (2. 5)

from (2.3). Since iSX(z) is divisible by G(z) for any s, we

deZete the term z-SX(z) in the expression in (2.5) and call the

resulting polynomial an eTpoT poZynomiaZ E(z) in what follows.

Then from (2.5), E(z) can be represented by

                               -8-
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          E(z)=(iS-1)R(z)+iSXE(z) mod G(z) (2.6)

   Exampie ([rong's coset codes[6])

   -                   n-1                        is used, E(z) is given by     When R(z)=1+z

          E(z)=(iS-1) (1+zn-1)+iSxE (z)

              ..1+(zn-s-1 +zn-sa+xE(z)-zs-1))                                                            (2.7)

Equation (2.7) shows that E(z) is an end-around burst error

started from the (n-s-1)st position and ended with the Oth position

whenever a synchronization slippage of s bits occurs. Therefdre,

(i) if an additive burst error of length B or less does not

overlap the end-around burst error due to the synchronization

slippage, and (ii) if an additive burst error of length B or less

does not occur as an end-around burst error when no synchronizatlon

slippage oecurs, then by using a cyclic eode capable of detecting

an end-around burst error of length S+2 and double additive burst

errors of length B or less, both a synchronization slippage of s

(lslsS) bits and an additive burst error of length B or less can be

corrected.
                      '                                      '
     But obviously the above assumptions (i) and (ii) cannot

always be applied to general situations. Thus we should choose

an appropriate polynomial R(z) so as to be able to correct both a

synchronization slippage and any single additive burst error , and

simultaneously we should clarify the required condition on the

underlying cyclic code C.
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2.3 Correction of Both Synchronization Slippage and Additive

      Burst Errors

   2.3.1 Decoding Algorithm

     Before describing a new class of coset coCkes in detail which

is capable of correcting both a synchronization slippage and

addttive burst errors, we first give the decoding algorithm for

the codes.

   Deeoding Algoritlm

Step 1: For the received word B(z), obtain Y(z)=B(z)-R(z) and

         detect errors if any in Y(z). If no error is detected,

         i.e., Y(z)/G(z)==O, the deeoding is completed.

        Otherwise, go to Step 2.
                                                        '                                                             '                                    AStep 2: Estimating a burst error ZB(z) of length B or less to

                                                           A        offset the burst error ZB(z), obtain Y(z)=B(z)-R(z)-ZB(z)

                                                      A        and go to Step 1. !f al! of the possib!e ZB(z) have

        been assumed, resulting in non-zero residue in Y(z)/G(z),

         then decide that a synchronization slipphge and/or an

         additive burst error have occurred and go to Step 3.

Step 3: Estimating a synchronization slippage of g(IglsS) bits

         to recover the synchronization slippage of s bits, shift

         the received sequence by g bits and go to Step 1.

    The precise deeoding algorithm is shown in Figure 2.2.

-11-
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   2.3.2 Synchronization Slippage and An Additive Burst Error

     Consider a eoset code capable of correcting both a

synchronization slippage of s(IslSS) bits and an additive burst

error of length B or less and let
                                                    '
              L-1 .          R(z)=Zrizi; L<n12 (2.8)
               i=o

I"ien a synchronization slippage of s bits and a burst error ZB(z)

of !ength B or less' oecur, the error polynomial E(z) in the

decoding process can be represented by

                                         A         E(z)=(z'-S--1)R(z)+zMSXE(z)+ZB(z)-ZB(z) (2.9)

                                                              'The two typical error-patterns of the error polynomial are

illustrated in Figure 2.3, where ZL(z) is the suffix of (zMS-1)R(z)

and XE(z) is the sum of the -prefix of (z-St-1)R(z) and XE(z).

From this, we see that the two conditions given be!ow should be

satisfied for the coset eode in ordeT to correct both the

synchronization slippage and the burst error ZB(z)e

                                                  '
   Condition 1 The underlying eyclic code is able to detect

double burst errors of length B or less and a burst error of length

L+S or less.
                                    'A
   ustndition 2 For any ZB(z) and ZB(z), eertain errors are

detected whenever a synchronization slippage exists.

     Let us derive the optimal pattern of R(z) in the sense that

the underlying eyclic code requires the minimum number of check

syrnbols for a given capabi!ity. From Condition 1, we should
                                          '
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choose L as small as possible so as to make the number of check

symbols srnall. On the other hand, L should be greater than 2B

since condition 2 should hold even if ZB(z) and 2B(z) overlap ZL(z)

and even if Xk(z)=O. Thus, the optima1 L is given by

          L=2B+l ' (2.10)
For this value of L, there may occur three cases where ZB(z) and

2B(z) overlap ZL(z), leaving at least one symbol of ZL(z) non--

overlapped as shown in Figure 2.4. We then have

               2B-s . 2B .         zL(z)z i;g-ri+ ri+s)zi -i.2BZs+iiz-

                          2B-1                  B 2B              =1+z +z + 2 rlzi mod 2 for any s(O<sSS) (2.11)
                        iza1,ilBl "
whieh implies that ri=1 for i=O, B and 2B and rs+B--rs--e for s;S<B.

We then have ri=O for i=1,2,.e., B-1, B+1,eee, 2B-1. Thus, the

                                                      'polynomial R(z) is given by
                             '          R(z)=1+ zB+ z2B , (2•12)
Furthermore, since the decoder does not know the direction of

slippage in general, the relation ls+"slES should hold. Then,

the maximum allowable amount of synehronization slippage in any

direction is given by
                                                      '     '          S-[(B-1)12] (2.13)
where [a] denotes the largest integer less than or equal to a.

For this R(z) the burst error (z-S-1)R(z)+z-SXE(z) in (2.9) due to

the synchronization slippage can be partitioned into double burst

                              • -15-
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errors, Zl(z) and Z2(z), as follows;

          Zl(z)=z"'SXE(z)+1+zB-'S (2.14)

and

          Z2(z)=zB +z2B'-S +z2B (2.ls)
These are of length B+1 or less and of length B+1, respectively.

Let us summarize the above result in the following theorem.

   wrheorem 2.1 A coset eode Cc, generated by a cyclic eode C

capable of detecting double burst errors of length B or less and

another double burst errors of length B+1 or less by adding the

sequence R(z)=i+zB +z2B, can correct both a synchronization

slippage of s(Isl5[(B-1)!2]) bits and an adclitive burst error of

length B or less.

   2.3.3 Synchronization Slippage and

           Multiple Additive Barst Errors

     Generalizing the coset code specified ln Theorem 2.1, we can

easily obtain the following t.heorem.

   Theorem 2.2 A coset code Cc, generated by a cyclic code C

capable of detecting 2M--ple burst errors of length B or less and

another CM+1+[(M+1)13])-ple burst errors of length B+1 or less,

by adding the sequence
                                             '

               2M '          R(z)=2ziB, (2.16)
               i=o

can correet both a synchronization slippage of s(lsl5[(B-1)12])
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bits and M-ple burst errors of length B or less.

                               '      '

   2.3.4 Coset Codes Generated by Shortened Cyclic Codes

(.,k)A .g2:rie"2:.CigilC.pl:I.i.s;i] i;de Cs is derived from the cyciic

                    n-ls-1
          cs = {x(z)= 2 giziix(z)=-o, .n-1.o ..d G(.)}                                                           (2.!7)
                      i=o

For the coset code Ccs given by '
                                          '
          Ccs = {A(z)=X(z)+R(z)IX(z)eCs and R(z)=1+zB+.2B}                                                           (2.!8)

paoiyYnn::::IZatiOn Slippage of s bits gives the fonowing error

                                      n-1 -s                   --s                             -s          E(z) =,(z -1)R(z)--z XL(z)+z S                                            XiL(z) (2.ig)

As shown in Figure 2.5, the second and the third terms in (2.19)

appear as burst errors overlapped or non--overlapped, depending upon

the relative magnitude of s and ls. Thus, we have the following

                                                '                                             'theorem .

   Theorem 2.3 A coset code Ccs, generated by a shortened

cyclic code Cs capable of detecting triple burst errors of length B

or less and another double burst errors of length B+1 or less by

adding the sequence R(z)=1+zB +z2B, can correct both a

synchronization slippage of s(Isls[(B-1)12]) bits and an additive
                                -
burst error of length B or less. '

                              -18-
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2.4 Bounds for Coset Codes Generated by Cyclic Codes

     Let us derive the lower bounds on the redundancy required for

the underlying cyclic codes of coset codes which are eapable of

eorrecting both a synehronization slippage of s(lslsS) bits and
                                                  -
M-ple burst errors of length B or less. ' VJe use the fact that

the total number of the possible syndrome patterns of any error

correeting code should be greater than or equal to the total

number of the possible error-patterns which can be eorreeted by

the syndrome decoding.

   Definition 2.4 Any one of burst errors such as

                 b-2                    e zi +zb-1 for e.e GF(2) and b=l,''',B (2•20)          Q(z)-1+iEli i

is called a butr,$b--er?roy bZoek of length B.
                                                           .t
     We then have the following lemma. .
         .
   LgtlEm}g.-Z.:.lmma ,2.1 The total number of the possible error-patterns of

a burst-error block of zength B is 2B-1.

     The following lemma states an inherent property of any coset

code generated by the cyclic code. . •

   Lemma 2.2 The total number of the possible error-patterns of   .the coset code Cc given by (2.4) is 2S, when a synchronization

slippage of s bits occurs.

(proof) When a synehronization slippage of s bits occurs, the

resulting error can be represented by (2.6) as follows;

                                                   '          Fu(z)=(z'S-1)R(z)+z-SXE(z) (2.6)

                              -2O--



Since R(z) is a fixed polynomial, the first term of (2.6) takes on
                                        '                        '                          '                                             'a fixed error polynomial for each value of s. ' The second terrn

takes on one of the 2S possible error polynomials depending on the

e(rmponents of the transmitted code words. Therefore, the total

number of the error-patterns of (2.6) is IX2S, eompleting the

                              '

                       '                  tt  ' We also have the following lemma.

   Lernma 2.3 For non-negative integers v., i=1,2,..., m and N

the relation

           Vth Vth-1 V> Vi
            2 Z • .• . 2.2 i- (Nl:ri) . (2.2i)
         Vm=9 Vm-i=O V2=O vl=o . .. .
                    '         '
holds, where

          vtk =N
                           . (2.22)                  m          vi• =N-i.,i.+\i; ljt ,srn-1

                                      '
(proof) Let us use the induction on m. Equation (2.21) is

clearly valid for m=1. Assume that (2.21) is valid for rn=m'-1.

            vth,-1 Vth,-2 VS m,-1
         v.,Eio v.,E2pt6' '' .i.gN+i-ii2"i) = (NIII(,l':-ii) (2•23)

Then, the left hand side of (2.21) can be represented by

     vlh vllL-1 vS vllt vlll-l vi m-1
   vTnio vml=o' ' 'i=oi =vil=o{ vm.Zi.o' ' 'vi=gN+i-iE2vi-vm)}

-- 21-



                           Vth Vth.-1 V> m-1
         ' ' =viiuro{v.ii=o'''.i.gN'+i-iE2"i)} (2•24)

where N'=N-v . Using (2.23), we have
             m
   "S "ifiSi . . . Y, . Yth(N •l I.IIIi) . VS (N-•ll[g}:M-i) (2.2s)

   vmno vm-1=o vl=o vm=o vm=o

By using the well-known formula; . .
                    nk                   .ii .g.(r+s) = kl2• (?ill)i)i! (2.26)

equation ('2.2s) reduees to (N :n), completing the proof.                                                             Q.E.D.

     In addition to the synchronization s!ippage, let us assume

that the multiple additive burst errors of m burst-error blocks

Qi(z), i=1,2,..., m, each of length B, occur as shown in Figure 2.6

Note that the fixed error-pattern (z.-S-1)R(z) of (2.6) is onitted

in this figure. Letting vi denote the interval between Qi(z)

and Qi+1(z), the error polynornial EsB(z) due to the synchronizatidn

slippage and multiple additive burst errors can be represented as

          EsB (Z)=ZL (1) Q,, (Z)+ZL (2) Q,,- 1(Z)+' ' '+ZL (M) Ql (Z)+Z-SXE (Z)

                 +(z-S-1)R(z) (2.27)
                                                            'where ,
                       i-- 1
          L(i)=(i-'1)B+.2 v..-j (2•28)
                      J=o

Let us enumerate the possible error-patterns represented by (2.27)

for fixed values of s and m, by dividing them into the following

                      '       . .-22-
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three cases.
                          '
   (i)' Tn ease of 0.1(gJ whieh is non-ove"Zapping iSigrg]

     The total number of the possible error-patterns in an array

                                 B-1                                      from Lemma 2.1. Forof the burst-error blocks is ll 2
                             i=1 •         'each of the error--patterns of the burst-error blocks, iSXE(z)

takes on one of thg 2S possible error-patterns grom Lemma 2.2.

                                 (B-1)m+sThus, EsB(z) takes on one of the 2                                          possible error-patterns

for an array of the burst-error blocks. Let us derive the

total number of the possible arrays of the burst-error blocks.

   (i-1) If we let v2=v3=...=vm=O, the variable vl can takes on

      an integer between O and n-rnB-s, i.e., the total number of

      the posSible arrays is n-mB-s+1. .
                                                         '   (i-2) If we let v3=v4=.••=v..iO and Q2(z) be shifted by v2,'

      the variable vl ean take on an integer between O and n-mB-s

      -v2. Thus, the total number of the possible arrays is

        2(Nm+1-v2) where Nm=n-rnB-s.
      V2=O

   (i-3) Inducing this enumeration up to Orrn(z), we obtain the

      total number of the possible arrays of the burst-error bloeks

             vt;, vtl,-1 v5 . ,
                                      ..) = (Nm+M> (2.2g)           vrn;o vm.-i.o' e 'i.gNm+1•-jE2 J m.

                                                              '
                                       '                                     '      where
                       '                                                     '               '        '

                             -24-



           Vtfi=Nm=n-inBps .
                     m • (2.30)           VS• = Nm•-i.i+lvi; Z<LL<m-1

      and we have used Lerttma 2.3 in (2.29).

Therefore, letting Nl(B,tn,s) denote the total number of the

possible error-patterns of the error polynonial EsB(z) with Ql(z)

which is non-overlapping z-SXE(z), we have

                   '          Nl(B,.,.).2(B-1)m+s(Ninl:m) ' (2.31)

   (ii) fn ease of Qlrz]whieh is ovei)Zapping g-Sl\vrg)

     In this case, introdueing a new parameter h which denotes the

length of the overlap between Ql(z) and iSXE(z) instead of vl,

we consider for convenience sake that iSX                                            (z) starts from not the
                                          E
(n-s-1)st position but from the (n-s--1-h)th position so that m--ple

burst errors exist. Then the total number of the possible

error-patterns for an array of the burst-error blocks is
2(B-1)M+S-h. on the other hand, the total number of the

possible arrays of the burst-error blocks Q2(z), Q3(z),''', Qm(Z)

                                           'is given by

     vtk+h vtk-i+h v5+h .
     ..;.' ..i=.' ' 'i.gNm+1+h-jZ.3vj) = (Nml brlim-1) (2.32)

Note that the range of h should be ISh<B when s+l2tB, and IShSS

when s+1<B so that m-ple burst errors exist. Letting N2(B,m,s)

denote the total number of the possible error-patterns of this

                                          '
                                               '
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          N2(B,rn,s) = 2(B-i)M+ShS/i2-h(Nml:!lirM-i) (2.33)

where
               B-1; s+1)B

                s; s+1<B .
   (iii) In ease of el(g)whaeh (xppea?s as

           an end-c?oztnd bur$t- e??op hZoek

     Since any cyclic code can correct an end-around burst error,

we should enumerate the case where s+1<B and Ql(z) appears as an

end--around burst-error block (A burst-error block is called an
                       '
end-a?oundbu"st-error bZoek if it takes on positions starting

from a higher position and ending with a lower position. Note

that a burst error of the burst-error block does not always appear

as an end-around burst error.). Let h' denote the length of'

the suffix of the end-around burst-error block Ql(z). Then

the variable h' should satisfy the relation ljh'5B--s-1 and h'Svm

so that rn-ple burst errors exist. The total number of the

possible arrays of the burst blocks Q2(z), Q3(z),''', Qm(Z) iS

given by
          .llll/l,, ;.M'l21:g• • • ilig/N.+i+h-,!.l,,1,) - (Nml E:rn-i) (,.,,,

where h=h'+s. Taking acount of z-SXE(z) which is totally

overlapped by Ql(z), we obtain the total number of the possible

error-patterns in this case as follows;

                             -26-



                          'B-s-1         N3(B,rn,s)=2(B-1)M h\.1(NM.+-SIIM'-Z)

                  ,.(B-.-1)2(B-1)M(Nm.+-S:M-"1); s+1<B (2.36a)

         N3(B,m,s)=O;s+IllB (2.36b)
     Finally let us surmarize the above results in the following

                  '
   Theorem 2.4 An underlying cyelic (n,k) code of a coset

code capable of correcting both a synchronizatioB slippage of s

(lsl;SS) bits and )-ple additive burst errors of length B or less

hasaredundancy given by .
                   n-k>log N(B,M,S) (2.37)                      ==2 ' .       '
where
     N(B,M,S)=4(2S-1)+ Y{Nl(B,m,O)+N3(B,rn,O)}

                     m=1
                                      '                M S 3             +2E 2 ZNi(B,m,s) (2.3s)
                       i=1               m=1                    s=1
                                                 '
     This bound on redundancy is general in the following sense.

   (a) For S=O, it gives the bound on redundancy of a cyclic

code capable of eorrecting M-ple burst errors of length B or less.
                                    [91
By Benelli, Bianciardi and Cappellini .                                       , a bound on redundaney of

a multiple-burst-error eorrecting code uas derived. But this

bound does not take acount of the end-around burst errors which

can usually be corrected by the cyelic code, very large class of

linear codes.
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   (b) For S=O and M=2, our bound is tighter than the Reiger
bound[8' PP'110] for a single burst-error correcting code.

   (e) For S=O and B=1, our bound coincides the Hamming bound.

2.5 Concluding Remarks

     Let us compare the efficiency of the codes capable of

correcting both a synchronization slippage of s(lsl;s B/2) bits and

an additive burst error of length B or less with four class of

codes, i.e., ideal coset codes whose number of check symbols meets

the bound, the coset codes derived in Section 2.3, Tong's coset

codes[6] and comma codes. In Figure 2.7, some of the upper

bounds on the iniormation rate are shown for the code length n=2000.

     (i) Frorn the bound of (2.38), the ideal coset code requires
               '                                                              'approximately B check symbols in order to correct the

synchronization slippage, while the coset code derived in Section

2.3 requires approximately 2B check symbols. This is due to the

fact that the latter code relies on the assumption that a systematic

decoding rnethod is used and that it does not take acount of the fact

       -s         -l)R(z) is the low density and with the fixed pattern.that (z

   (ii) Tong's coset code does not require check symbols for the

correction of the synchronization slippage on the condition that

the synchronization slippage and an additive burst error do not

occur concurrently and the additive burst error does not oceur as

an end-around burst error. But the weak condition that the

-28-
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synchronization slippage and the additive burst error oecur

concurrently but not overlap eaeh other, Tong's coset code does

                                         'require B eheck symbo!s more. Therefore, we can conelude that

the eoset code derived in Section 2.3 further requires B check

                                     'symbols more in order to release the weak eondition.
                                                    '
   (iii) A comma code, generated by inserting an autoeorrelation

           'funetion fetween code words of a burst-erroT correeting code,

requires the autocorrelation function of length 4B. Therefore,

this code is inferior to the coset code derived in Section 2.3.

     The proposed coset code may be difficult to construct in

practical use since it is hard to find the ideal multiple burst-

error correcting code, but the principle of the codes will provide

the fundamental concepts of the following chapters.
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                            CHAPTER 3

                                         [10]
                       INTERLEAVED CODES

3.1 !ntroduction

     rn the previous chapter we have eonstructed the coset codes

which are capable of correcting both a synchronization slippage

and additive burst errors. But the synchronization slippage is

in general, due to the timing errors such as deletion or insertion

errors occurred in the preceding code words. Since these codes

have no capability of correcting origina! timing errors, a message

of the received word corrupted by the timing errors rnay be totally

lost. Therefore, it is desirable to eonstruct timing-error

eorrecting codes from not only practical but also information-

                                                    [12]                                     [11]theoretical standpoints. Se!lers                                                         constructed                                          and Ullman

block codes capable of correcting a single deletion or insertion

error, provided that no additive error exists in the received word.

The codes are constructed by inserting the special sequence into

an additive-error correcting code at fixed periodic intervals.
                 [13]                     investigated the block codes capable ofTanaka and Kasai

             'correcting timing errors besides additive errors based on the

Levenshtein metric under the eondition that both types of error
                                            {1]
do not exist in a received word. Greene described a decoding

algorithm, for any single burst-error correcting code, which can be

used for correcttng a few deletions within a single burst error.
                                          '
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This code should be properly synchronized at the start of the

received word and has a possibility of false correction. Thus

it is desirable to construct a code capable of correcting timing

errors occurring at any position within a received word with

pQssible additive errors. . '
                                                                '
     In this chapter, we present a new class of block codes capable

of correcting both a deletion error and an additive burst error in
                       '
order to provide the basic coneept of timing- and additive-error

correcting codes which are to be presented in the next chapter.

                                                          '
                             '3.2 Heuristic Approach '
     !n channels, the symbols can be deleted from or inserted into

a code word, forcing the deeoder misframe this received word and

the subsequent words. One method of recovering synchronizat'ion

in a communication system with such a channel, which we call

Method .T. requires the use of a special synchronization sequence (

syn-sequence) which is inserted between code words (see Figure 3.1

(a)). This sequence may be one with the ideal autoeorrelation
                                 [16, pp.465]                                              or one with a fixedfunction such as a Barker sequence
                                          'pattern[11]. in this case, even though the occurrence of a

deletion error is detected by the syn-sequenees, the position where

the deletion error occurs is uncertain. • This is due to the fact

that the possible deleted position ranges over the entire code word

as illustrated in Figure 3.1(a). Aceordingly, a deletion error
                             '
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occurred at the central position of a code word causes a slippage

in the remaining parts of the eode word, resulting in a burst

error of length approximately one half of the code length.

Since the number of check symbols required to correct a single

burst error of length b or less is approximately 2b from the

argument of the seetion 2.4, we should use a very low rate code,

which is impractical.

    'Zn order to improVe the capability in estimating a deleted

position, let us consider the other rnethod, which we eall Method ll.

where the special syn-sequences are inserted into an additive--

error correcting code at fixed periodic intervals (see Figure

3.1(b)). When a deletion error occurs between the syn--sequences

! and -C, a slippage of 1 bit is detected in the syn-sequences A and

S, and no slippage is detected in the syn-sequenees !, P and E.

Therefore, we can assume that a deletion error has occurred in the

subblocks between the syn-sequences E and !. Since the possible

deleted position ranges over the region between the syn-sequences

3 and !, we can correct the deletion error by using a block code

capable of correcting an additive burst error of length less than

or equal to the length of the subblocks.

     However, bCethod II is inferior to Method I with respect to

the eapability of distinguishing additive errors frorn deletion

errors, since the length of each syn-sequenee of the former is less

than that of the latter when the total length of syn-sequence per

word is made equal. rn what follows, we shall present a new
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method of using an appropriate coset eode generated by the cyclic

code as the syn-sequences of Method rl.

3.3 Preliminaries

     Let us consider a binary cascaded channel which consists of

two channels as shown in Figure 3.2. The first is the channel

with additive errors and the second, with deletion errors. Let
                  '                          'us represent a code word consisting of the N input symbols to the

                    . N-•1.cascaded channel as A=(ore, ori,' r,ctN-i) or A(z)=iEoorizi where

or iE GF(2), OSi5N-1. Similarly, let us represent the output word

                                                           N-l
from the cascaded channel as B=(Bo, Bi,''', BN-1) Or B(Z)= jioBjZ

where BjGE GF(2), Ojt 5N-1. We assume that otN-1 is the first

symbol of the code word being transmitted and that the successive

code words are transmitted in a continuous manner.

j

additive errors

A

Figure 3.2

+ B

         deletion errors

Cascaded channel with additive

errors and deletion errors.
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     We shall denote the output word corrupted by a deletion error

                                                        '                                                            'of ctA+1, -ljX5N-2, with no additive error by the vector AA or

polynomia! A(zlA) as follows;

          B(z)=A(ziA)= ctik-i+l.:/lctj.izj +jE;/l2ctjzj . (3•i)

  '
where cxlk-1 is the first synbol of the subsequently transmitted code

word foiiowing A. Let A(zlx;A"), is51sN, represent the word that

                                                        A
is forrned by inserting a symbol u fi-IE GF(2) between the (A-1)st and

    Athe Xth positions of the reeeived word B(z)=A(zlA). In what

foliows, the terrn position means an exponen.t of z in any polynomial.

         ALet B(zlX) be defined as follows;

              AA          B(zlA) "- A(zlX;A) (3.2)
For i, lsxAm<x+2, B(zlÅí) can be represented by

          'B(.IA' )-,X. .-/Z.j zj + .x.-,zA"-i +,X. :tsictj .,.j +j NI/l,ctj zj (3.3)

     Let us define a subset Cx of a cyelic (nx,kx) code which is

capable of detecting a burst error of length n -k -f or less, or of
                                             xx
correeting a burst error of length f or less as follows;

                                          n --1
                                           x.          Cx A--' {X=(g,, g,,''', g..-i)IX(z)=ii.%z!!o mod Gx(z)}

                  nn              -{OX,IX} (3.4)
where giEE GF(2), O;!i;Snx-1, and Gx(z) is the generator polynomial of

the cyclic (nx,kx) code which will. be specified later. The onX

      nand 1 X are the nx-dirnensional all O's and all 1's vectors,
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respeetiyely, Let us also define a bloek eode Cu which is

                                              'capable oÅí. correctÅ}ng a burst error of length g or less as follows;

                       '          Cu A'-' {U=(po, P,,'"'i p....i)} (3•5)
                                  '      'wher•e pjEGF(2), OJt :Sgtu.1. We assume that code lengths nx and

                                      'mu are given by

                                                  '          n.FfT for scme integer fllk. - (3.6)
                                             '

         Tnu=gT for any integerg - (3.7)
                                                '
respectively, where T is a positive integer whose role will be

apparent later.

                           '     Let us divide each code word of the eode Cx into T subblocks
                               '         '              '                                    'of length f. The subblocks can be represented by

          igt = (gtf, gtf+1,o••s gtf+f-1); o;;t;sT-1

Using these f-dimensional vectors, we define two kinds of

dimensional vectors as follows;

          X"t = (gtf-1, igt); 2.<=t:ST-1

          '
and

          Xftt*= (gtf , Åët) + ro; t=o and 1

where

          ro = (o, 1, of-Z)

!n the above equations and in what follows, each suffix of

                 'components is evaluated by modulo nx. The vector ro is

generating the coset code on the basis of the code Cx.

   (3.8)

(f+1)-

(3.9)

(3.10)

  (3.

the

used

11)

for

-37-



Similarly, let us divide each code word of the code Cu into T

subblockg of length g. The subblocks can be represented by

   ' "t " (latg' Ptg+1"'', IJtg+g-1); OSt5T'1 (3•12)

Using the vectors X:, X:ft and pt, let us eonstruct a new class of

the interleaved eodes as follows; '

          CeT 2' {A=(x*o*, po, 'x"i", "i, x:, p2,''', Xl-i, }4T..i)}

                                                              (3.13)
      '
where the length of the code CoT is given by

          N= n.+m. +T (3.14)
Note that X:* is used only for t=O and 1 in constructing the code

CoT. The eonstruction of the code CeT is illustrated in Figure

               '                                                               '
                                  '
     F'rom the received word B, we ean de-interleave the following

two vectors Y and V eorresponding to XECx and UGCu, respectively;

                                                         '          Y= [B+Ro]Wo . (3.15)                        x

                                     '          V=BWou • (3.16)
                                      '                  '

          R,= (r,, og, r,, og, o(f+g+i)(T-2)) (3.i7)

                                'and Wox is the N by nx matrix •
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3.4 Capabilities of The Code CoT

   3.4.i Correction of Either A Deletion Error or

           An Additive Burst Error
    '
   Definition 3.1 Consider a set of the possible burst errors
                   'due to a deletion error in a received word. We tefer to the .

burst error of the minimum length in the set a$ pseudo buor7$t e??or,

and use the symbol p to denote the length..

     The pseudo burst error wi!1 play an important role in the

deletion-error correction as we shall see soon.

     When the received word B is corrupted by a deletion error, the
vector Ro and the coset ieaders[i6' PP'463] ro in x6* and xi*

(together with the suffixes of x:, t=2,3,..., T-1) cause a pseudo

burst error of length f+1 or more whieh is not correctable but

detectable. Figure 3.4 show$ an example of this type of error.

We see that the pseudo burst error of length at least f+1=4 due to

the deletion error exists in either X(z) or zX(z). Thus in

deeoding we can exploit this property to decide whether a deletion

error has occurred or not, provided that the !ength of any additive

                                          'burst error inYis at most. f. ...
     !n the .following we shall give an outline of the basic

decoding algorithm whose complete version is given in APPENDIX I.

     When the de-interleaved word Y from the-received word B cannot

be decoded by assuming that any additive burst error of length f or

less occurred, the decoder then assumes that a de!etion error has
               '
occurred. Then the decoder inserts a symbol u AA-1(O or 1) at
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               Aeach position, X=f+g+3, '''p N, and tries to correct a burst error.

When no error is deteeted or a burst-error eorrection is sueeessful,
                                   'both decoding oÅí Y and eorrection of the deletion erroT of B are
               '      '                   '            'comp!eted. Finally de-interleaving V fr(mi B with no deletion

error, thd deeoder ean decode V by assuming that an additive burst

                                                      'error might have oecurred.

      t.     We shall give the following theorem.
                  '   2tetgssgt-2;.lorem 3•1 The code CoT ean correct either a deletion error

                   'or an additive burst error of !ength b=f+g+1 or less, provided that

the relation T>6 holds.
                   '     Before giving the proof of Theorem 3.1, we shall give the

folloming lermas and properties.

              '   lgtE-i=i!.:.la 3•1 Zf B"Ax for A, f+g+2;SA+15N-1, the length of the

pseudo burst error of Y=[B+Ro]Wox is given by

       '                    f+isps ["x+;+2] (3.2o)
                                '
(proof) Consider the received word Y=[AA+Ro]Wox, A=f+g+1,
                                                              '                               'whose eomponents gf of Å~ is deleted and to which Re is added

         'erroneously as illustrated in Figure 3.5(a).                                                 This word ean be
                    '                             'represented .by '
          Y(z)=go+fi.-/lgl-izi +Pii.S.lgizi +i + z + zf (3.2i)

                  '
The pseudo burst error is then given by

                 '                                                            '                                      f-1          E(z) =X(z) +Y(z) =1+z+ zf+ E(gi+gi-1) zi (3.22)
                                      i=1
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Equation (3.22). shows that there exists a burst error of length

f+1 in Y for any XE Cx• As A, X>f+g+2, increases, the length of

the pseudo burst error in the suffix of the code word, clearly,

does not decrease. If a deletion error occurs at a higher

position, it is required to assume that the suffix of Y is in the

correct phase and the prefix is shifted by 1 bit in the lower

direction so that it is reduced to the pseudo burst error.

That is, the pseudo burst error appears as an end--around burst

error, zX(z) +Y(z), as illustrated in Figure 3.5(b). Thus a

part of the pseudo burst error, of length at least f+l, app. ears in

the subblocks Åë and Åë. From the above argument, we can
                e.1
conclude that the maximum length of the pseudo burst error of Ax,

f+g+2=<X+1;S N-1, is given by letting the length of the pseudo burst

error in the suffix be equal to that of the end-around burst error

as shown in Figure 3.6. We then have
          maxp=rn:n[c+2, n.-(c+2)+f+2]=[22'S:ll E-+f+21 (3.23)

                                                              Q.E.D.

     When the received word B is corrupted by a deletion error with

no additive error, i.e., B=Ax, the pseudo burst error of Y= [B+

       ean be' corrected by letting X"=X+2 and inserting a properRo]Wo
     x
symbol uxA-1 between the (X-1)st and the X"th positions of Ax.

                                        ABut as we shall see later, the value of X at which the pseudo burst

error is corrected is not necessarily unique, when there is a

consecutive run of O's or 1's in the part of the code word where

                               -45--



t

)or
1

     X(z) :

     A(z):g

A(zlTf-3):

     Y(z):

zX(z)+Y(z):

    Figure

 lg,g,••• t,-,l lg,g,.i • g,,-l

,1'g" ,ei-• cf."e-lolg, l"ll;fc,.i'g2f-1' '

*1g,'ll,••• g,-,s g,-, HoIg,gf "• g,,-j' '

 lg,g,-•• e, -.,I lg, g, ••• g•, ,-l •-

 lk 1 o `••ol                  lde io ••• ol -,

---

pseudo burst error -)l

3.5(b) Pseudo burst error due to

  l t;(T-2)f"' i;(T-i) f-l I EI (T.of'

' lE,..,),"' i,-,),-IF,.,E(l,-,),.-lt;(,.-,),-

                          '
.'  •lt(T-2)f.-1• ` S;(T.1)f-1[IT-1)f.YT-21 t;(T-of:i

- IEiT-2)f-l•••{T.1)f-21 IEI(T.1)f-.i

r lo• •••• ol lo •••

deletion of gTf-2,

.

e

.

--

••  q,f.il

••  Ei,f.-llPT..1

Eiirf-3t;Tf-1l-T-2

t;T f- 3(; Tf- ll

o * l



1

)Nl

     Y(z)

 X(z)+Y(z)

zX(z)+Y(z) :

   Figure 3.6

C+2 nx--(4+2)

Eo gc qC+2 gnx:

}

slip :,

1*•..rk * "-t--- * oo•••• oo
:

f+1 :
,

'

*1*!..*1 oo • . . . • oo ** . . . . *

f+2

 Two ways of taking pseudo burst error.



the deletion error occurs. In this case, even if the decoding

of Y from Bx with the insertion at X"'=A+2 is successful, there may

remain a partial slippage in V=B A.Wou which has at present no

assurance of being correeted. In this respect we shall give the

                           'foUowing leimrta. ' -
   Lerma 3.2 The amount of the deviation from the position of   -deletion  to  the  posi :i-o:. ythfer+egt+hi COrreCtiOn iS Made iS giVe73?;4)

                         -
                           'provided fZkx•

     We shall present the fundamental properties of cyclic eodes

before giving the proof 6f Lemma 3.2.'

   :P:::9RgEEz.-2.:.:r ert 31 ln any cyelic (n,k) code the length of the

conseeutive run of O's is at most k-1 in any code word except the

(proof) In any cyclic code the existence of the code word with k

or more eonsecutive run of O's irnplies the existence of the code

word of degree n-k-1 or less, whieh is less than the degree of the

generator polynomial, yielding the contradiction. Q.E.D.

   Property 3.2 ' rn any cyclic (n,k) eode the length of the

consecutive run of 1's is at most k in any code word exeept the

all 1's word.

(proof) Suppose that there exists a code word with k+1 or more

eonsecutive run of 1's. This word ean be represented by

                J-1 . J+k. n-1 .          F(z) =• 2 Åëizi+ E zi+ E Åëizi for any integer J

                i=o i=J i=J+k+1 (3.25)
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where ÅëiEGF(2). The cyclically shifted version, zF(z), is

also a eode word. Then' F(z)+zF(z) is also a code word and is

                       'given by
   ' F(z)+zF(z) = i.J/gÅëi+(bi-i) zi + ijl;/lifi+i) zi + i.Il/i +EÅë i+Åëi-i)

                                                            (3.26)

which has a k or more conseeutive run of O"s, contradicting

Property 3.1. - • Q.E.D.
(proof of Lemrna 3.2) Consider a deletion error occurred in the

range [t(f+g+1), (t+1)(f+g+1)], tst:!T-1, and an insertion of uÅí-1

between the (X"'-1)st and the A"th position of B. Let the parameter

e, which indicates the position ,of the deleted symbol ge+1 of Å~,

be given by .
                    e=X-(g+1)t-l (3•27a)
                                    kwhen the deletion error occurred in x                                       or                                    t'

                  •e= ft +f-2 (3.27b)
when it oecurred in }4t. Then from Figure 3.7 we see that the

error polynornial of Y(z) is represented by

          E(z) -- (uth.i+gthmi)zth-i+Åëi:/l(%+%-i)zi ; x".sx+2 (3.2s)

                              '            '
where

                                          ttt                    A                 , A=il,+1+(g+1)[il,/f]                                                            (3.29)

Thus in the case where E(z)=O holds for some X(z)eiE Cx, the

relation uth-1= N"=%=•••=%=gÅë+1 holds. From
Property 3.2, the length of any consecutive run of 1's of XeCx is
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at most kx, i.e., e+1- (V-2)=e-th+3;!kx. Sinee the correet
insertion is th=e+2, the upper-bound on the amount of th6

deviation due to the erroneous estimation is given by e-e+2Skx-1.

In the wor$t case, e-ip+2=kx-1, we have the following relation

for eE[tf, tf+f-2]

                    (t-l)f<tf •- k.+35th (3.30)
The left inequality of (3.30) cornes frorn the restriction flkx in

(3.6). Equality in (3.30) implies that the insertion, by which

the decoding of Y is completed for the first time, may be made in

the subblock Åët#l. Since the subbloek Mt.1 is located between

the subblocks $t-1 and Å~: , the amount of the deviation due to the

erroneous estimation in a code word of CoT is the sum of the length

of the sequenee eosisting of pt.-1 and one syrnbol gtf-1 of X* t and

the length k.-1, yielding (3.24). Q•E•D•
                                                          '                                                     '

(proof of Theorein 3.l) By the assumption we ean exc!ude the ease

that both an additive burst error and a deletion error occur

eoneurrently in 'a code word. For an additive burst error of
                                                                     'length f+g+1 or less, we can correct it by the eapability of the

eodes Cx and Cu. For a deletion error, let us eonsider two eases

depending upon the deleted position .

   (i) For X, 05X+1;;f+g+1, there exists a pseudo burst error

of length f or iess in Y= [Ax+Ro]Wox, which is correctable as an

additive burst error. The de-interleaved word V=AxWou can be

                                      '                                          '                          '

                                                          '



successfully decoded by assuming,that an additive burst error has

occurred.
                                                                   '
   (ii) For X, f+g+2SX+!--<N-1, there exists a pseudo burst
error of length at' least f+1 and at rnost [nX+f2+2] in

   '                                         .t
Y=[AA+Ro]Wox frotn Lemma 3.1. When the following inequality
                             '                     'is satisfied.

                                                                '   , nx -- kx -fl nx-2fl"X +;+21 ["X +;+ 2] '(3.3i)

i•e., pxlf=T46, the eode Cx can suceessfully detect the pseudo

burst error, distingtiishing a deletion error frorn an additive burst

error. After the insertion by whieh the deeoding of Y is

completed for the first time, there may exist a burst error of

length g or less in V from Lemma 3.2. Since the code Cu can
                                                                '
correct the burst error of lengthg or less, we ean sueeessfully

decode the received word B. Q.E.D.
          .  '

          '     '                          '
                           '                                                 '

   3.4.2 Correction of A Deletion Error !rnbedded within

           An Additive Burst Error

     Consider a deletion error imbedded within an additive burst

error'. !n this case there may occur the following problems.

   2Z]t:gl21Lgm-ILoblem 1 The length of a pseudo burst error due to a

deletion error may be decreased by an additive burst error.

                        '
  '         '
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 .•-1 O O 1 1 1 O 1 O 1 1 O...;A --- -transnitted sequence

                                                                    '
'''' e O O O O 1 1 1 1 l O O''';E --- -additive burst error

 •.•1 O O 1 1 O 1 O 1 O 1 O''';A+E -- -output sequenee of '
     Å~Å~XXXXXXX li the first channei
...... i o o i i o i o i i o••• (A+E)x -' - 2,".tPgg.gfi",".e,"gfi.O.{

 ::-'i'iL-9t:!-l O O O O O O O O''';A+(A+E)x -error sequence

      (pseudo) burst error •
         Figure 3.8 An example of related Problem 1.

  IE:!t:ghELst!lmZoblem 2 An insertion, by which the decoding of Y is

completed for the first time, rnay be made at a lower position by f

bits (f+g bits with respeet to the received word B) beyond the range

 (3.24) in Lerrmia 3.2. because the additive burst-error correction in

addition to the deletion-error correction is performed in this ease

even if there exists no additive error.

     For these reasons we must modify the basic decoding algorithm

described in Seetion 3.4.l as follows;

     Ml: Try to insert at '
        ' . fit=t(f+g+1)+1; t=1,2,•••, T--1 (3.32)

     M2-1: Detect errors of Y for each insertion.

     M2-2: If errors are detected in Y for all insertions, try to

             correct a burst error of length f or less for each

             insertion.

                       '

                               -53-



!n APPENI)IX I, the complete deeoding algorithm is given, taking

acount of these modifications.

     First, we show that the code CoT is able to detect a deletion

error, even when an additive burst error exists. For a deletion

error imbedded within an additive burst'error of length f+g+1 or

less, the length of a pseudo burst error is varied by Å}f bits at

most. Therefore, the following relation;

          ..-k..f;...2flnT.l2s.:+:.;.:Ef+2+f4l"x+;+2]+f (3.33)

i.e., nx/f=Tl8 should hold so that the code Cx ean deteet the

pseudo burst error successful!y. On the other hand, the pseudo

burst error of length f or less ean occur when additive errors

                                 'occur over the subblocks Åëo and Åë1, and a deletion error occurs,

w.hich" causes tbose errors in Åë1 no error by the slippage, but

leaves errors in eo due to the additive errors and the slippage.

Therefore, when a burst-error correction of Y is made successfully

assuning that there exists a burst error in only the subbloek Åëo,

we should decode V assuming that errors oecur not only in the

subblock Fo but also in Fl•

     Seeond, we show that the code CoT is able to correct a deletion

error imbedded within an additive burst error of length f+g+1 or

less. These errors can be classified into four types of error

according to the relative position of the additive burst error with

respeet to the final position of the insertion as shown in Figure

3.9. '  In the case (a), there exists no error in the subblock St

                     '
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                                                  'but a slippage of 1 bit in the subblocks Åëi, i<t, so that the

                                                      Adecoding of Y is ccmpleted only by the insertion at Xt in the

detection mode of M2-1. After the decoding of Y there may

existaburst error in the subbloeks "t-1 and Ht.

rn the case (b), there exist errors in Åët and a slippage of 1 bit

in $i, i<t, so that errors are detected by the proper insertion at

fit. If errors are detected by the next insertion at Xt+1, then

errors are detected for all the remaining insertions, resulting in

the suecessful transition to the correction mode of M2-2. Thus

the errors in lt as well as the slippage are corrected by the

insertion at A" t. otherwise, by the finti1 insertlon at Xt,,

there may exist a burst error in }itL2 and FtLl where t' =t+1.

Similarly as we see in the cases (c) and (d), there may exist a

burst error in Ht.1 and -t by the final insertion at fit: '

Therefore, the code Cu shou!d correct a burst error over the

subblocks Ft..2, pt"! and J4t when the final insertion at Xt is made,

i.e., consequently it should be capabZe of correcting a burst error

of length 3g or less.

     Now we give the following property of burst--error correcting

codes (This is based on the erasure correction eapability of the

burst-error correcting code. see also Berlekamp [15, PP'393].).

   Property 3.3 A code which can detect a single burst error of

length 3g or less is capable of correcting a single burst error of

length 3g or less, provided that the position of the burst error is

known.
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In what follows, let CoTB denote the eode CoT if the number of

check symbols of the code Cu is 3g or more. Thus we have the

following theorem.
                    '
   Theorem 3.2 The code CoTB can correct a deletion error

imbedded within an additive burst error of length b=f+g+1 or less,

provided that the relation T>8 holds.

3.5 Conelusion

    Using the concepts of an interleaved method, Method IZ,

discussed in Section 3.2, we have construeted the interleaved code,

first, CoT eapable of correcting either a deletion error or an

additive burst error, and seeond, CoTB capable of correcting a

deletion error imbedded within an additive burst error.
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                           CHAPTER 4

                                             [14]
                  EXTENDED INTERLEAVED CODES

4.1 Zntroduction •.. •
'' ''  Zn this chapter we shall present the extended interleaved code

CT. We shall show that the new code CT can be constructed for

correeting an arbitrary number of deletion errors as well as for

correcting either deletion or insertion errors in a received word.

     Zn Sections 4.2 and 4.3, we shall treat onl: deletion errors,

and in Section 4.4 we shall show that the proposed code can also

eorrect insertion errors. In Seetion 4.S we shall show that the

redundancy newly added for correcting deletion or insertion errors

besides additive errors can be made suffieiently small by

reinforeing the capabilities of the both codes Cx and Cu•

                                    '                                                     '

4.2 Definitions

,,,,,2,i"gie:i.lx.i.d:.:ellln]:ir,:.; :i i,2ili.g",.2,v:g.tzr.2 i.l::g[.:,.,

in Figure 4.1. -                '
   Definition 4.1 When successive s symbOIS, ctx+1, orx+2,''',

or x+s-.1 and ctx+s are deleted in A, we refer to this event as .

sueeessave deZetion-erc7op of s bits, or SDrs) e??o" in abbreviated

notation. . '
     We shall denote the output word of the second channel, provided
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that no additive error ocdurs, by the vector A(-s,X) or polynomial

A(zl-s,X) as follows;

                                                     '                                                        '                                                  tt                          s-1 . X+s . N-1 .
          B(z) = A(zl-s,X) = ii.ctl• +N-szi + i.Zscti-szi + i.Ai.+gizi ]

                                       '          '
where s is a positive integer, A, -1#X;SN-s-1, represents a position

where the deletions begin, and (ctrk-s , oLlk-s+1,''', Ot!k-l) iS a PrefiX

of the subsequently transmitted code word following A. Let

A(zl-s,A; g,X), s">O and IES:;N, represent the word that is formed

by inserting a sequence (u A.-s.,''', u x.-1) of length g between the

(S-1)st and the Xth positions of the received word B(z)=A(zl-s,X)

where uj6GF(2), X-gtKj;!X-1. Let B(zlg,X) be defined as follows;

      • B(zls",X)2A(zl-s,x;g,X) (4.2)
When g and X satisfy O<gss and ssXsA+s+1, B(zls".S) is given by

          B(zlg,x)=S;.I/1ictl.+N-.+gzi+Xi;ti:ct.i.i-.+.Azt+iii/.i.u..izi

                                       '                                              '     ' + l. :/;di-.zi + i=:;/.i+gl. zi (4.3)

Figure 4.l also depicts this situation. ' '
     Let us define the interleaved code CT by replacing the

subblocks x: and x:k of the eode CoT defined in (3.13) with the

subblocks g*t and $:de,.respectively, which are given by

          ag7tk = (gtf-D, gtf.-D+1,''', gtf--1, tt'

                 gtf+f' etf+f+1,''', gtf+f+D-1); 2::tST-1 (4.4)
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and

          S:"-($2f, s,', s2f.f)+r; t-o,i (4.s)

where the vectors gt., oEtgr-i, are given in (3.s), the S2f and Åëilf+f

                                      '                                                    '                                              ts vectors,                              's and all gare the D-dimensional all g                                         tf+f                           tf

respectively, and

          r. (oD, i, of'2, i, oD) (4.6)
Thus we define the eode CT as follows;

          CTe{A- ($g", -o• Åë:*, pt!• l;, F2,•••, $:-i• h-i)} (4•7)

                                                                    '
where the length of the code CT is given by

          N= n.+m.+2DT (4.8)
Note that (gtf-D, gtf-D+l,e••, gtf-i) and (gtf+f, gtf+f+1,'''

"'' , gtf+f+D-1) in (4.4) are the prefix of length D of $t-1 and the

suffix of length D of $t+1, respectively. Therefore, they are

doubly transmitted for tl2. The construction of the code Cr is

illustrated in Figure 4.2.
                                                  '
     The relationship between the Zth component of AaCT and the ith

component of XGSqx is given by '

          Z=l +D+ (g+2D) [ilf] 2Lx (i) • (4.9)
Simllarly, the relationship between the Zth component of A and the

g'th component of Ue Cu is given by

          Z-g'+(f+2D)•(1+[g'!gl)2Lu(g') (4.10)
     From the received word B, we can de-interleave the following

two vectors Y and V corresponding to XeCx and UECu, respectively;

                      '
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         Y=[B+R]Wx (4.11)
and

                                    '                                                 • (4.12)         V=BW               U
                                                           '
where Wx is the N by nx matrix;

    . Wx = Il 6zz, ll , Z'- Lx (i) ; osi ;s nx-i, o;sZsN•-i                                                            (4.13)

and Wu is the N by mu matrix;
                  '         wu=ll 6zz" II, Z" -L,(g'); ogg' .sm,s-i (4•i4)

In (4.13) and (4.14), 6.. is the Kronecker delta and R is given by
                       IJ
          R=(r, og, r, og, o(f+g+2D)'(Tp2)) (4.is)

     The decoding a!gorithm of the code CT is the same that of

Section 3.4.2, precisely given in APPENDIX r, except that the

decoder inserts a sequence of the predetermind pattern of length g

at each inserting position. The complete version of the

decoding algorithm is given in APPENDIX II.

4.3 capabilities of The Code C]r

   4.3.1 Correction of Either An SD error

           or An Additive Burst Error

     The next lemma assures that the eode C[r ean distinguish

                                      '
additive errors from deletion errors.

   Itg.ggg{}.-S.:.],mma 4•1 If B=A(-s,X) for s, O<s:ID, and X, f+g+3DgX+sgN-1,

the length of the pseudo burst error of Y= [B+R]Wx is given by

          f+i;sp;s ET Ii 2]f (4.i6)
                                                      '                                        '                                      '
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     !n the proof, for convenienee' sake we sha!1 use a

transmitted code word A instead of a received word B having an SD

error which occurred in Åë1 or higher subbloeks than af1*.

(proof) Consider a received word Y= [A('s,A)+R]Wx, O<s;SD, and

A=!tx(C), whose components gc+1, gc+2,'.., gc+s of Å~ are deleted

and to which R is added erroneously. This word can be

represented by

                c+s . nx'1 .s-1 .
         Y(z) = iE.gi.-,zZ + i.cis+gli zi + ii.(go + gi-..) zZ

                 f+s-1               + iif(gf + gi-.) zi + (z+ zS +-zf-1).(1+ .f) ; o < . sD

                                                            (4.17)

As shown in Figure 4.3, the pseudo burst error can be classified•

into twu- types oi" error depending upon the position where the
                       '
deletion error starts, i.e.,

         E(z) = x(z) +y(z) = (!+ zf) + iill'i-ll;izi +i:/kgi+gi-.)zi

                                                          (4.18a)

or                                '         E(z) = zSx(z) +y(z) = (zs + zf-i).(i+ .f) + 2f-2'2qi.i

                                                   i=o
                                                i4s,f-1,f+s

                  nx--1 .
               + E (gi+gi.-.),z                                                          (4.18b)
                 i=C+s+1
      '
                                      'where qiO or 1 for any i.

Equations (4.18a) and (4.18b) show that there always exists in Y

                             -64-



I

atn
l

2f 4+'s+1-2f nx-(C+s+1)

a b e

C+s+1

-b ts "- -- . - nx-(C+s+l+2f

 a: Region where a burst

    definitely occurs as

b= (g2f-,, g2f..,+1,••',

 e = (gc+.+1, gc+,+2,''',

Figure 4.3 Pseudo burst

error

a part

gg)

gn.-1)

 error

of length

 of pseudo

due

        : Y(z)

        : X(z) +Y(z)

        : zSX(z) +Y(z)

at least f+1

 burst error.

to SD(s) error of X=L       (4)•
      x



a burst error whose length is at least f+1 and at most C+s+1 or

nx-(C+s+1)+2f (See also Figure 4.3.). From Definition 3.1, we

see that the length of the pseudo burst error for any pair of C and

s is upper-bounded by

          p5rnin{C+s+1, r}x-(C+s+1)+2f} (4.19)
The maxtm p with respect to 4 and s is given by equating the two

terrns in the braces of (4.l9) as follows;

          2?g,. [nxi2f].[Tt2], 6fE?gl

     We shall give the folloming lerma on cyclie code before giving

Lemma 4.3.

   igt[E2g..S.:.2rma 4•2 Assume that H(z)=(1+zn)/G(z) can be factored into

      j
H(Z)= ,ll..,hi(z), IStjSk, where eaeh faetor hi(z) is an irreducible

     .;.".L

polynomial of degree k or less over GF(2) whose roots in an

extension field have brder e.. Then for any X(z)eC and s, O<sSD
                           1-          X(z)+zSX(z) lo (mod 1+ z") (4.21)
where

          D<min{f, el,''', ej} (4.22)
(proof) Suppose that X(z)+zSX(z)=O (mod 1+zn). Letting X(z)

be represented by P(z)G(z) where P(z) is some polynomial of degree

at most k-1, we have the following relation for some polynomial Q(z)

          (1+zS)P(z)G(z)=(1+z")Q(z) (4.23)
Dividing both sides of (4.23) by G(z), we have
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          (1+zS)P(z) =H(z)Q(z) . (4•24)
                                                '
Since H(z)u is the polynomial of degree k, it cannot divide P(z)-

whose degree is at most k-L On the other hand, there is no

eormon faetor between H(z) and (1+zS), O<s5D, by the assumption.

Therefore, H(z) cannot divide (1+zS)P(z). This is a

contradiction, eompleting the proof. Q.E.D.
   !gtggRa.-Et.:.2mma 4.3 rn any eode word of Cx under the same eondition of

Lemma 4.2, if any consecutive components of length f()kx) starting

frorn the Cth position, OSCSnx-f-1, is substituted by the

corresponding cornponents starting from the Cth position of the

cyc!ically shifted version of the code word by s bits, then there

exists at least a burst error of length 1 in the code word where

O<s<D

(proof) The word rnentioned above can be expressed as follows;

                      C+f-1 .          F(z)=x(z)+ 2 (gi+gi-.)z'; o;sc:;n.-k.-1 (4.2s)
                       i=C

where X(z) is a code word of qx. We then have the error E(z) as

follows;
                            C+f--1 .          E(z)=F(z)+x(z)= 2(gi+qi-,)zi (4.26)
                             i=C

Thus the error E(z) is proved to be the eonsecutive components of

length f existing in another code word X(z)+zSX(z) EECx from

Lerma 4.2. Since the code viford X(z)+zSX(z) has a consecutive

run of at most kx-1 O's from Property 3.1, there exists at least a

burst error of length 1 in X(z), eompleting the proof. Q.E.D.
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                                                          •A   suta 4.4 Consider an insertion of length s at the A(t)th

position of the received word BesA(-s,A) where the positional index

AA(t) is given by

          Åí(t) =t(f +g+ 2D) +D • (4.27)
                   AUsing the function X(t), the location of the SD(s) error is given by

          X(te)sA+ssX(to+1)-1; 2stof{-T (4.28)
Then, for all s" , g7Es and O<gSD, and 2StSto, there exists a pseudo

burst error of length at least f+1 and at most nx-2f, provided that

(proof) lf s-g>O, there exists a pseudo burst error of length at

                                          'least f+1 in Åëo and Åë1 from Lemma 4.1. Even if s-g<O, we can

show that there exists a pseudo burst error of length at least f+1

in Åëo and Åë1 as shown in the proof of Lemma 4.1. rn these cases.

the pseudo burst error assumes one of the three types of burst
                                            Aerror corresponding to X(z), zSX(z) and zS-SX(z) (See Figure 4.4.).

The length p is then given by

          p ;S min { C+s+ 1, n. - (t - 2) f, n. - (4 +s+1- tf )} (4.29)

where C+1 denotes the starting position of the SD(s) error.

The maximization with respect to C, s and t is,given by equating

the three terms in the braees of (4.29) as follows;

         ci?z'g•,p -[2[iril2]f;s (T-2)f (4.3o)

Thi-s relation implies that T218. Q.E•D.                             '                                       '
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     Now we have the follewing theorem. '
   :T,::.u.M=-:.=heorem41 The code Cx can correct either an SD(s) error,

sED, or an additive burst error of length b=Åí+g+2D or less,'

provided that the relations (4.22) and T218 hold.
                                        -
   ' In the proof of Theorern 4.1, we shall need the following

decoding rules. .
   Rule 1 Eaeh insertion of lengths g, g=1,2,...,D starts at

X(1) and the insertions are made at S(t) where t increases by 1 up

to T--1.

            '   Rule 2 Burst-error correction of length f is made only in
   pt                                           'Åët-l and $t. .
(proof) -deteetczhiZity of SD evrorL The length of an additive

burst error in Y is limited to be at most f by the assumption.

On the other hand, froru Lemma 4.1 the length of a pseudo burst

error caused by an SD error is at least f+1 for A, f+g+3DSX+sE{N-1.

This implies that the code Cx ean deteet an SD error in Y or B,

provided that the following relation holds;

          [T il 2]fET il 2•f ;s fT-2fsfT --kx -f (4•31)

i.e., T2;6. Note that for an SD error at X, X+s5f+g+3D-1, we can

eorrect it simply as an additive burst error.

  -eoT'or'eetabiZity of SD er)ToorL For an SD(s) error that satisfies

the relation (4.28), we fail to deeode Y=IB(s",fi(t))+R]Wx by any

insertion gfs and tSto from Lemrna 4.4. For an insertion of g=s

and t.<..to, the slipped subblocks eo, ag1,..., gt-2 and Åët-1 are

                      '                                                        '                             --7O--
                                                   '



restored to their original positions. Therefore, the remaining

slippage is in the subblocks $t, St+1,''', Åëto-1 and with a part of

Åëto in case of S(to)-:;X+s;SX(to)+f-2, or with a whole of Sto in case

of fi(to)r+f--ISA+sSS(to+1)-1 (See Figure 4.5.). Since each N

                                                    '
slipped subblock of length f has at least a single error frorn

Lemma 4.3, using Rule 2, we can decode Y successfully by the

insertion at t=to-1 when there is no,error in $                                                  , or at t=to when
                                                to
there are errors in Åëto•in case of X(to)5A+sSfi(to)+f-2. In ease

of fi(to)+f-ISX+sSÅí(to+1)-l, we can decode Y successfully by the

insertion at t=to, since al! the components of $                                                    are slipped.
                                                 to
     A!so for an SD(s) error of X(1)SX+sSX(2)-1, we fail to decode Y

by any insertion of sA<s from (4.18a). We can decode Y

successfully by the insertion of g=s at X(1) since the rernaining

slippage is only in $1•

     In decoding of V=B(g=s,X(t=to-1 or to))Wu, Å}t is sufficient to

correct a pseudo burst error of length g or less in Ht. Q.E.D.

                                                   '
                                               '                                      '   .   4.3.2 Correction of An SDB Error
                                           '
   Definition 4.2 When an additive burst error of length b or

less occurs in the first channel and a successive deletion error of

s bits occurs within that burst error in the second channel, we

refer to such errors as sueeessive deZetion eTor}o? of s hits imbedded

within the huTst erroor7 of Zength h o? less, or as SDBrs.b) e?poT in

abbreviated notation.
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     Consequently, the additive burst error of length b or less is

reduced to that of length b-s or less due to successive deletion

error ofsbits. .                                             '                                              '
     We s,how that the code CT is capable of not only correcting

either an SD error or an additive burst error but also correeting

an SDB error.

   Itst}Eggtg-E.:.2mma 4.5 For aRy SDB(s,b) error, sSD and b=f+g+2D, oceurred
                                          h
in the higher positions than f+g+3D-1, the length of pseudo burst

error in Y=[B+R]Wx is given by
                                       '
                   T+3          f+lgp,S 2f (4.32)
(proof) Consider an additive burst errer of length b=f+g+2D in B,

which is reduced to a burst error of length at most f in a subblock

Åëto or in two adjacent subblocks gto and agto+1 depending upon the

starting positioR of the additive burst error of length b. An

SD(s) error occurred within the additive burst error of length b,

i.e., an SDB(s,b) error, eauses the slippage of s bits in the

suffix followed by the additive burst error in Y=[B+R]Wx•

     From the assumption that the SDB(s,b) error occurs in the

higher positions than f+g+3D-1, there always exists a pseudo burst

error of length at !east f+! in the suffix of Y as shown in the

proof of Lemma 4.L '

     Letting C denote the starting p. osition of the additive burst

error in Y (See Figure 4.6.), we can obtain the upper-bound on

length p as follows;
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                                               nx + 3f         max p <max {min(4 +f, nx - (C . 2f))} S                                                            (4.33)           C=c -2
                                 '                 '                                                           Q.E.D.

   • rn decoding of B corrupted by an SDB error, we shall need the

following decoding rule in addition to Rule 1 and Rule 2.

                                                     A   Rule 3 After decoding of Y by the insertion at X(t), burst-
   -error correction of length 3g is made in Pt.-1, Pt and Bt+1•

When a burst-error correction in $o with no insertion is suceessfu!,

then decide that a burst error has oecurred in "o and "le

     In the foliowing.as in Chapter 3, we denote the eode CT by CTB

if the code Cu is capable of detecting a single burst error of

length 3g or less.
                                     '
   !:lhÅíg2:glR-S.:.Z.eorem 4.2 The code CTB ean correct an SDB(s,b) error, s;SD

and b=f+g+2D, provided that the relations (4.22) and T2:9 hold.

(proof) -DeteetaZ)iZity of deZetion e?ror7s- From Lemma 4.5, we see

that the code CTB can detect an SDB(s,b) error, provided that the

                                                 'following relation holds;

          "xi3f =<. n.-2fsn.-k. --f , (4•34)
                                                      '

i.e., T2i7• -       h             '
  -Coor)r)eetcibiZiby of SDB eyToorL By combining the proofs of Lemmas

4.4 and 4.5, the upper-bound on length p is given by
        ' p5 :l: {c+ f., n. -- (t - 2)f, n. - (c - tf)}s 2"x 3+ 3f (4.3s)

for any insertion of 6, O<g5D, and t, S(t)54 where C denotes the

starting position of the additive burst error as shown in Figure 4.6.
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From (4.35) the length p is upper-bounded by (T--2)f, provided that

                                 '                                          'T>9.

                                                    A     After decoding of Y by an insertion of g=s at A(t), there are

                                                      '                                                          Aexactly four cases of the remaining burst error in V=B(s,X(t))Vlu as

shown in Figure 4.7. For the SDB error including Åë* to, there may

be no error in Åë                   by the slippage andlor additive errors in spite
                to
of possible errors existing in pto-1 and Fto. Thus there may

exist a burst error of length at most 2g in the three subblocks

                                                             APt.1, "t and Pt+1 after decoding of Y by the insertion at X(t).

From Property 3.3 and Rule 3, we can decode V successfully,

completing the proof. ' Q.E.D.

   4.3.3 Correction of Either An SDB Error or SIB Error

     The code CT can also correct a successive insertion error of s
                                              '
bits (or an SICs) ei?or7oi7 in abbreviated notation). This can be

shown by simply translating deletions into insertions in the

                                                     Aprevious sections. Note that a deletion of g at X(t) for an

si(s) error is rnade by deleting Bx(t)-g, Bx(t)-e+1,"'', Bs(t)d2

and Bx(t)-1 of B'A(+s,X)• But in this case an inserted sequence

            'on the channel may appear in Y as a burst error. Especially an

Sl(s) error imbedded within an additive burst error of length

b=f+g+2D or less (or an SIBCs,b) eyTo? in abbreviated notation)

incurs an additive burst errer of length f+s in Y. For a

received word B corrupted by an SIB(s,b) error, s;$D and b=f+g+2D,
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the length of pseudo burst error in Y=[B+R]Wx is given by

                     nx+3f+s
                                                              (4.36)          f+15pE 2
                             AAIso by any deletion of g at X(t), the length of pseudo burst error

in Y=[B(-g,X(t))+R]Wx is given by '

'. f+ispE 2"x

we see that from (4.36) the relation Tl8 assures that the code C.[rB

can detect the SIB error and from (4.37) the relation TllO assures

that the code CTB can correet the SIB error. Thus we have the

following theorem corresponding to Theorem 4.2.

   ::lhsgggg.G.:.2eorem 4.3 The code CTB can correct an SIB(s,b) error, sED

and b=f+g+2D, provided that the relations (4.22) and TZIO hold.

     Note that Theorems 4.1, 4.2 and 4.3 hold true only if the

types of timing errors are limited to either deletion or insertion

errors. However, when etther deletion or insertÅ}on errors of

amount less than or equal to D occur in a received word, the code

CTB can detect such errors. Thus it is easy to see that the

upper-bound on the resultant amount of timing errors during the

decoding process is given by D, if the amounts of deletion and

insertion errors are lirnited to [D12] or less, respectively. We

                                                  'then have the following theorem.
                                              '
   Theorem 4.4 The code CTB ean correct either ab SDB(s,b)

error or an S!B(s,b) error, sS[D!21, b=f+g+2D, in a received word,

provided that the relation (4.22) and TllO hold.

                                             '
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4.4 Efficiency and ExaMple

     We use a maximal length code as the code Cx which satisfies

the following relation;
                            '
         n.=2kX -- 1= fT for f2L k. and T2t8 (4•38)

In this case the polyncrmial H(z)--(1+znX)/Gx(z) is the primitive

                                          kx                                            -1=n. in (4.22), whichpolynomial of degree kx, i.e., j=1 and el=2

irrtplies that f<el=nx. Therefore, we can always choose D#f-1 for

any maximal length code that satisfies (4.38).

     We use an ideal burst-error eorrecting cyclic eode in the

                                   [15, pllO]                                              in equality, i.e.,sense that it meets the Reiger bound

mu-ku=2g as the (mu,ku) code Cu. The coding rate of the code CT

is given by .
 '          R= (k. +k.) IN = {k. +g(T - 2) }/(ls, +g+ 2D + 1)T (4.39)

We can easily see that the following relation holds;

                               '          lim R= (T-2)/T (4.40)
          g-,oo

     If the code Cr is used for a channel with SDB or S!B error,

then the code Cu has the possibility of false correction because

after a successful decoding of Y there may exist a burst error of

length 2g or less in the three consecutive subblocks of V as stated

 in the proof of Theorem 4.2. This event oceurs if no error

exists in consecutive f components of Å~ within an SDB or an SIB
                                                                 'error. Thus the probability of false correction of the code C.u

             -fis given by 2                whieh is sufficiently sma11 when f>>l holds.

                                        '
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     On the other hand, the code CTB where the code Cu has 3g check

symbols has no possibility of false correction and the coding rate

in the. Iimit of gÅÄco is given by (T-3)IT•

   -. If we choose the shortest maximal length code as the code Cx
                              '
which satisfies (4.38) and TZIO, there is the (255, 8) code whose

                                                               23                                            255                                               )/H(z), H(z)=1+z +z +generator polynomial is given by Gx(z)=(1+z

 48z +z . !n this case we have f=17, T=15 and DS16. If we use

a shortened Fire code as the code C.u and if we let g=2f and the

nurnber of its cheek symbols be 3g, we can choose the generator

poiynomiai as Gu(z)=(i+z+z2+z27+z34)(i+z68). The iength of the

code Cu is then 510, although the natural length of the Fire code

                                  12                                     . we then have the eode CTBgenerated by Gu(z) is about 1.2xlO

whose parameters are N=825, b=55 and RblO.5 for D=2, or N=1245, b=83,

                                                 'and RctO.33 for D=16.

4.5 Conclusion

     We have constructed a new class of codes capable of correcting

either deletion or insertion errors together with an additive burst

error in a received word. One of our results shows that a
                     'maximal length code as the code Cx can serve not only to maintain

bit-synchronization but also to transmit information, in a sharp

contrast with a usual comma code which is used only as a comna in

order to maintain word-synchronization. Furthermore, we have
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shown that the redundaney newly added for

errors can be made sufficiently small by

capabilities of the codes Cx and Cu.

 combatting

reinforcing

with

the

tirning
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                           CHAPTER 5

                                   '
                ' CONCLUSION
                '
                                                   '    '         '
     We have constructed a new elass of codes capable of

correcting timing errors besides additive errors. In this

chapter we sha!1 summarize the prineipal results achieved in eaeh

chapter.

     Tn Chapter 1, the motivation of this researeh was given.

     rn Chapter 2, we have derived the coset codes which are

capable of correcting both a synchronization slippage and multiple

additive burst errors concurrently occurred in a reeeived word,

and have derived the lower bounds on the redundaney of the coset

codes.
                '
     rn Chapter 3, using the interleaved codes, we have constructed

a new class of codes having the property of generating a pseudo

burst error by which the deeoder can deteet the occurrence of a

deletion error.
                       '
     In Chapter 4, we have improved the interleaved code derived in

Chapter 3 so that it is capable of correcting an arbitrary number

of successive deletion errors besides an additive burst error.

We then have shown that the interleaved code has also the

capability of correcting suecessive deletion or insertion errors

imbedded within an additive burst error. The efficiency of the

interleaved eode has been given, which shows that the redundancy

                                                           '
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newly added for combatting with the timing errors can be made
                      'sufficiently small by reinforcing the capabilities of the codes C6<

and Cu which constitute the interleaved code.

     For the future communication network system using independent

clocking technique, the coding theoretical approach to eompensate

the deviation in timing between each pair of the nodes and etc.

should be more and more explored. Berore completing this

dissertation, we sincerely wish the present work will be contributed

for realizing such future communication network.
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                 APPENI)IX I .

      DECODrNG ALGORTTHM OF THE CODE Co
                                      T

                                      ttt             '
     De-interleave Y frorn B by Y=[B+Ro]Wox and try to

eorrect an additive burst error of length f or less.

Zf no error is detected, or any burst-error eorrection is

successful, go to Step Z-9. 0therwise, go to Step I-2.

 . Assume that a deletion error has oceurred and proceed

to the deletion-- and additive burst-error eorrection

procedure of Step Z-3 through Step I-8.

                                 '     Set t=1.

     Obtain Y=[Bxt+Re]Wox, Xt=t(f+g+1)+1, by inserting

uxt-1 between the (Xt'1)st and the Stth position of B, and

then detect errors. If no error is detected, go to

Step r-9. 0therwise, go to Step l-5. •

     Tf t=T-1, go to Step I-6. 0therwise, increase t
   '

by l and return to Step l-4. .

     Set t=1. '
     Obtain Y--[Bx +Ro]Wox and then try to correct an
                tadditive burst error of length f or less in gt-1 and Åët. .

If a burst-error correction is successful, go to Step I-9.

Otherwise, go to Step I-8.

     rncrease t by 1 and return to Step I-7.

            '
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Step I--9: When the transition from Step I-1 to this step is

    made, de-interleave V from B by V=BWou and decode V in an

    ordinary way. If a burst-error correction in So is

    made, thgn assume that a burst error in slo and lll has

    occurred'. When the transition from the deletion and
                '
    additive burst-error correction procedure of Step I-2

    through Step I--8 to this step is made, de-interleave V

    from Bse, Einally decode by trying to correct a

                          '             tt
    a pseudo burst error of length 3g or iess in Mt-1, l-"t and

                                tt                                                ttt    Ft+! "
                    -1Figllre I.1 shows the flow-chart of the above decoding algorithm.

-85-



Start

Y= [B+Ro]Wo
          x

   Can
decode Y
    ?

No

Yes

t=l

y-[Bx
t
+Ro]Wo

X

No

v=BWu

V-BÅítWou

errors
Are
 detected
 ?

  Yes

t=T-1
  ?

No

Yes

t=t+1

t=!

Y=[Bxt +Ro]Wo
x

Yes

Deeode V

errors
Are
corrected
 ?

No

t=t+1

Stop
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                 APPENDIX II

       DECODING ALGORITHI![ OF THE CODE CT

                                      '
     De-interleave Y from B by Y=[B+R]Wx and try to

correct an additive burst error. Zf no error is

detected, or any burst-error correction of length f or

less is successful, go to Step Il-6. 0therwise, go to

Step IZ-2.

     Assume that timing errors have occurred and proceed

to both the deletion- and the insertion-error correction

procedures of Step H-3 through Step U-5.

     Set g=1 and t=1.
     obtain Y=[B(+g,X(t))+R]Vl.x, ft(t)=t(f+g+2D)+D, by

                                              Ainserting a sequence of length "s between the (X(t)-1)st

and the XA (t)th position of B, and then try to correct a

burst error of length f or less in lt-1 and Åët.

If a burst-error correction is successful, go to step

II-6. 0therwise, go to Step U-5.
                                      A     At the same time, obtain Y=[B(-g,A(t))+R]Wx by

deleting the (X" (t)-g)th through the (ft(t)-1)st components

of B, and then try to correct a burst error of length f

or less in Åët-1 and Åët. If a burst-error correction

is successful, go to Step II--6. 0therwise, go to

Step II-5.
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Step II--5: If g=[D12], increase t by 1, set g=1 and return to

          Step ZI-4. 0therwise, increase g by 1 and return to

          Step II-4.

Step II-6: Vifhen the transition frorn Step II-1 to this step is

          made, de-interleave V from B by V=BWu and decode V in an

          ordinary way. Tf a burst-error correction in $o is

          made, then assume that a burst error in }lo and Fl has

          occurred .
                                                 '
               When the transition to this step from the timing-

          error correction procedures of Step IT-2 through Step 11-5

          is maae, de-interleave V from B(+g,Åí(t)) or B(-g,fi(t))

          depending upon the transition from Step r!-4. Finally

          decode V by tryÅ}ng to correct a pseudo burst error of

    , iength 3g or less in ptt-1, Ft and Ft+1' .

 .. Figure II.1 shows the flow-chart of the above decoding

algorithm.
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