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ABSTRACT

The purpose of this thesis is to provide block codes for
reliable transmission over the binary channels with synchronization
errors such as timing errors, deletion and insertion érrors, or
resulting synchronization slippage besides the additive burst errors.

In Chapter 1, introducing the basic concept of block coding for
a noisy channel, the causes of synchfonization error which entirely
degrade the performance of the block codes are discussed from two
points of view. The outlines of two approaches for correcting
the synchronization slippage and the originated timing error are
described.

In Chapter 2, coset codes capable of correcting a
synchronization slippage, which is due to timing errors occurred in
the previously received words, and additive multiple burst errors
is discussed. After the historical review in this approach, the
required condition of the coset codes is described. Then the
bounds on the required number of check symbols are obtained in order
to evaluate the performance of the proposed codes.

In Chapter 3, the historical review is given and the heuristic
approach of constructing the timing-error correcting codes is
discussed. Then a new method of constructing block codes capable
of correcting a deletion error and/or an additive burst error is
presented, where the code is constructed by interleaving a single

burst-error correcting code and a coset code generated by a low rate

-



cyclic code. It is shown that, first, the proposed code is
capable of correcting either a deletion error or an additive burst
error in a received word, and second, it is also capable of
correcting a deletion error imbedded within an additive burst
error.

In Chapter 4, extending the concept of the code presented in
Chapter 3, the improved interleaved codes which are capable of not
only correcting an arbitrary number of deletion errors, but also
correcting deletion or insertion errors in a received word are
presented. First, we show that the code is capable of
correcting é successive deletion error and/or an additive burst
error. Then we show it cén correct a successive insertion error
and/or an additive burst error, and finally, we show it is also
capable of correcting a successive deletion or insertion error
imbedded within an additive burst error. The redundancy newly
added for timing-error correction is discussed.

In the final chapter, the principal results achieved in this

research are summarized.
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CHAPTER 1

INTRODUCTION

1.1 Communication System Model and Block Codes

Figure 1.1 shows the block diagram of a general communication
system model. Information symbols from the source-encoder
output can be encoded for reliable data transmission over the
discrete channel between the channel-encoder and the channel-decoder.
The general class of codes for which the enormous amount of
researches has been done is a class whose members have fixed length,
i.e., block codes. For a block code the channel-encoder
partitions the continuous sequence of information symbols into
k-symbol blocks, and then encodes these blocks independently
according to the coding rule to be used. Each block of
information symbols is encoded to an n-tuple of discrete channel
symbols, a code word. The quantity n is referred to as the code
length, where n>k obviously holds. The code word is transmitted

and disturbed by channel errors and decoded at the receiving end.

1.2 Synchronization Problems

In order to decode a block code the channel-decoder should be
able to identify the first symbol, the second symbol,---, the
(n-1)st symbol and the nth symbol of the received word in a correct
order. The problem discussed in this paper is to construct block

codes that are capable of correcting the deletion or insertion errors,



so called timing errors collectively. These errors can be
considered occurring in the following situations [1]a[2];

(1) The discrete channel of Figure 1.1, in general, relies on
the assumption that an oscillator in the demodulator is kept
lockeé:in phase and frequency with an oscillator in the modulator.
However, during periods when the waveform-channel is subjected to
a noise burst, phase lock is usually lost and the demodulator must
make symbol decision without synchronization. As a result,
timing errors occur.

(ii) An independent clocking technique is so far considered
to be a promising technique. In the communication system using

the independent clocking technique, each node has its own

‘accurate frequency clock. However, since the clocks operate
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n timing, even i
are as accurate as atomic clocks. Such difference in timing
will cause artificial deletion or insertion errors in a sequence

of the received symbols, even if there exists no channel error.

1.3 Research Outline

There are two basic approaches to recover synchronization
when timing errors have occurred in a received word, resulting
synehronization slippage in the subsequently received word.
One of the approaches is to correct the received word itself
corrupted by timing errors. The other is to recover

synchronization slippage of the subsequently received words,

-9-
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remaining the causal word undecoded.

In Chapter 2, the latter appfoach which uses coset codes,
generated by cyclic codes, capable of correcting synchronization
slippage besides additive burst errors are discussed, since the
latter is simpler than the former and provides the fundamental
cohcepts of the next chapters. The condition required for the
cyclic code to correct synchronization slipéage and additive burst
errors is presented élong with the optimal pattern of the coset
leader and also the bounds on the required check symbols is
derived.

In Chapter 3, the former approach using interleaved codes on
the basis of two algebraic codes is discussed. It is shown
that the proposed codes are capable of correcting a deletion error

21 =

of one symbol imbedded within an additive burst error.

Extending the ideas of Chapter 3, improved interleavea codes,
which are capable of not only correcting an arbitrary number of
deletion errors but also correcting deletions or imsertion errors
imbedded within an additive burst error in a received word, are
presented in Chapter 4.

In the final chapter, the principal results achieved in the

research are summarized.



CHAPTER 2
COSET CODES[3]’[4]

2.1 Introduction

Algebraic codes have been developed in great detail because
of their beautiful algebraic structure and simplicity of systematic
implementation. This class of block codes is very powerful for
reliable transmission pfovided that the word-synchronization is
maintained. These codes, however, turn out to be useless when
word-synchronization is lost, or in other words synchronization
slippage occurs. For the correction of synchronization slippage
we can use the various kinds of code such as comma codes, comma-
free codes and coset codes. But a comma code can be only useful
in synchronization-error channel where relatively few additive
errors occur in any received word. A comma-free code relies on
the assumption that there exists no additive error in any received
word. A coset code is constructed from a cyclic code by adding
a fixed sequence of symbols by modulo 2 to every code word, where
the fixed sequence is not a code word of the cyclic code.
Thus the éoset code has the advantages of the easy implementation
due to its simple algebraic structure.

Stiffler[s] has first shown that a coset code can be designed
to be capable of correcting either synchronization slippage or

[6]

additive errors in any received word. Tong has also proposed

the interesting coset codes. However, these coset codes rely on

—5-



the assumption that both synchronization slippage and additive
errors do not occur concurrently in any received word. Redinbo

[7]

and Wintz have designed coset codes, based on the concept of
minimum distance of the Hamming metric, capable of correcting both
synchronization slippage and random additive errors concurrently
existing in any received wordf

In this chapter, we present the required condition of a burst
error correcting cyclic code and the optimal pattern of coset
leader, where they constitute the proposed coset code capable of
correcting both syﬁchronization siippage and multiple additive
burst errors in any received word. Obtaining the minimum
redundancy of the ideal coset codes, we evaluate the proposed
coset codes and compare with some of the pfeviously known codes.
rically, the bounds on the required number of check symbols-
for the original burst-error correcting codes were first derived

[8, pp.110]

by Reiger The bounds on the multiple burst-error

correcting codes were recently derived by Belelli, Bianciardi and
Cappellini[g]. But these bounds are derived assuming that mno

end-around burst error exists, which, however, appears as a

correctable burst error for any cyclic code.

2.2 Preliminaries
Let us represent a cyclic (n,k) code [ as follows;
ncl i n
C=X==) £,z | X(2)=0, z -1=0 mod G(z)} (2.1)

1=0



where EiEEGF(Z), i=1,2,+++-,n-1, G(z) is the generator polynomial

of degree n~k and gn—l is the first symbol to be transmitted.

Definition 2.1 A synchronization slippage of s bits occurs

when the counter at the channel-decoder counts s bits more that it

should.

As shown in Figure 2.1, a received word Y(z) corrupted by a

synchronization silppage of s(>0) bits can be represented by

Y(2)=z""X(2)-z X (2)+2" K] (2); >0 (2.2)

s-1 . s-1 .
where XL(z)= z Eizl and Xi(z)= Z Eizl, which is the suffix of
i=o i=o0

the code word transmitted just prior to X(z). Using the
well-known property of cyclic codes, z"-1=0 mod G(z), the equation

(2.2) is given by
Y(z)=z“SX(z)+z‘SxE(z) (2.3)
where

XE(Z)=—XL(Z)+X£(Z)

Noting that equation (2.3) also holds even when s takes on a

negative value except that we have the relation XE(Z)=XH(Z)+XU(Z)

n-1 .
=) (E™+£ )z  where Xy (2) is the prefix of the code word following
) i ”i

i=n-s

X(z), we only assume that s>0 in what follows for simplicity.



Definition 2.2 An end around burst error occurs when the
burst error starts from the (n-j)th position and ends with the ith

position where i<n-j.
b,

] .
Definition 2.3 Two polynomials Z,(z)= Y e, izl with
i=a, -°

. =e, . =1, j= , - .
eJ,aj eJ,bj j=1 and 2, overlap by b1 a2+1 when the relationm,

La_<b.<b holds.

81=852512P9>»

1
For example, Zl(z)=z 0 +e1,1lz11 +z12 and Zz(z)=z11 +e

12
2,12%

13
+z are overlapped by 2 regardless of the values of e 11 and
’

€2,12°

A coset code (

C is generated by adding a fixed polynomial R(z)

to the cyclic code ( as follows;
Cc 2 {A)=X(2)*R(2)| X(2)=( and R(2)&( } (2.4)

Therefore, in decoding of the code C R(z) should be subtracted

C,
from the received word B(z) before decoding of the underlying
cyclic code ( in the ordinary way. For the received word B(z)

corrupted by a synchronization slippage of s bits, we have
Y(2)2B(z)-R(z) =z "X(2)+z "X (2)+z °R(z)-R(2) (2.5)

from (2.3). Since z °X(z) is divisible by G(z) for any s, we
delete the term z—SX(z) in the expression in (2.5) and call the
resulting polynomial an efror polynomial E(z) in what follows.

Then from (2.5), E(z) can be represented by



code word X(z)

»1%— code word X' (z)

XL(Z)

Xi(Z)

Figure 2.1

ag———em—e received word Y(z)

S wencemanciiint

>

flow of sequence mwem—e—)

Received word when a synchronization slippage

of 8(>0) bits occurs.




E(z)=(z‘s-1)R(z)+z‘SxE(z) mod G(z) (2.6)

[6])

Example (Tong's coset codes

When R(z)=1+zn_1 is used, E(z) is given by

E(z)=(z's-1)(1+z“'1)+z'SxE(z)

—14 (22571 +z“fs(1+xE(z)-zS‘1)) (2.7)

Equation (2.7) shows that E(z) is an end-around burst error
started from the (n-s-1)st position and ended with the Oth position
whenever a synchronization slippage of s bits occurs. Therefore,
(i) if an additive burst error of length B or less does not
overlap the end-around burst error due to the synchronization
slippage, and (ii) if an additive burst error of length B or less
does not occur as an end-around Burst error when no synchronization
slippage occurs, then by using a cyclic code capable of Aetecting
an end-around burst error of length S+2 and double additive burst
errors of length B or less, both a synchronization slippage of s
(|sL§S) bits and an additive burst error of length B or less can be
corrected.

But obviously the above assumptions (i) and (ii) cannot
always be applied to general situations. Thus we should choose
an appropriate polynomial R(z) so as to be able to correct both a
synchronization slippage and any single additive burst error , and
simultaneously we should clarify the required condition on the

underlying cyclic code (.

-10-



2.3 Correction of Both Synchronization Slippage and Additive
Burst Errors
2.3.1 Decoding Algorithm
Before describing a new class of coset codes in detail which
is éapable of correcting both a synchronization slippége and
additive burst errors, we first give the decoding algorithm for
the codes.

Decoding Algorithm

Step 1: For the received word B(z), obtain Y(z)=B(z)-R(z) and
detect errors if any in Y(z). If no error is detected,
i.e., Y(z)/G(z)=0, the decoding is completed.

Otherwise, go to Step 2.

Step 2: Estimating a burst error EB(Z) of length B or less to
offset the burst error ZB(z), obtain Y(z)=B(z)—R(z)—§B(z)
and go to Step 1. If all of the possible QB(Z) have
been assumed, resulting in non-zero residue in Y(2)/G(z),
then decide that a synchronization slippége and/or an
additive burst error have occurred and go to Step 3.

Step 3: Estimating a synchronization slippage of §('§|é§) bits
to recover the synchronization slippage of s bits, shift
the received sequence by § bits and go to Step 1.

The precise decoding algorithm is shown in Figure 2.2.

-11-
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Figure 2.2 Decoding algorithm for proposed coset codes.
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2.3.2 Synchronization Slippage and An Additive Burst Error
Consider a coset code capable of correcting both a

synchronization slippage of s(lsléﬁ) bits and an additive burst
error of length B or less and let

L-1 i

R(z)= ] r,z 3 L<n/2 (2.8)

i=o

When a synchronization slippage of s bits and a burst error ZB(z)

of length B or less occur, the error polynomial E(z) in the

decoding process can be represented by
E(2)=(z "-1DR(2)+z "X (2)+2,(2) -2, (2) (2.9)

The two typical error-patterns of the error polynomial are
illustrated in Figure 2.3, where ZL(Z) is the suffix of (z °-1)R(z)
and Xé(z) is the sum of the prefix of (z_s—l)R(z) and XE(Z).

From this, we see that the two conditions given below should be
satisfied for the coset code in order to correct both the
synchronization slippage and the burst error ZB(z).

Condition 1 The underlying cyclic code is abie to detect
double burst errors of length B or less and a burst error of length
L+S or less.

Condition 2 For any ZB(z) and EB(Z), certain errors are
detected whenever a synchronization slippage exists.

Let us derive the optimal pattern of R{z) in the sense that
the underlying cyclic code requires the minimum number of check

symbols for a given capability. From Condition 1, we should

-13-
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choose L as small as possible so as to make the number of check
symbols small. On the other hand, L should be greater than 2B
since Condition 2 should hold even if ZB(Z) and 2B(z) overlap ZL(z)

and even if Xﬁ(z)=0. Thus, the optimal L is given by

L=2B+1 (2.10)
For this value of L, there may occur three cases where ZB(z) and

ZB(z) overlap ZL(z), leaving at least one symbol of ZL(z) non-

overlapped as shown in Figure 2.4, We then have
2B-Z-S 3 2§ i
Z.(z)= )(-r+7r,, dz= -~ r.z
L i=o ' Tts 1=2B-g+1"
2B-1 .
=1+zB+22B+ ) r]!.z1 mod 2 for any s(0<s<S) (2.11)
i=1,i#B

which implies that ri=l for i=0, B and 2B and r =rs=0 for s<S<B.

s+B
We then have ri=0 for i=1,2,¢+-, B-1, B+1,---, 2B-1. Thus, the
polynomial R(z) is given by

R(z)=1+ zB+ ZZB (2.12)

Furthermore, since the decoder does not know the direction of
slippage in general, the relation |s+§!§§ should hold. Then,
the maximum allowable amount of synchronization slippage in any
direction is given by

S=[ (B-1) /2] (2.13)
where [al] dénotes the largest integer less than or equal to a.
For this R(z) the burst error (z—s-l)R(z)+z-sXE(z) in (2.9) due to

the synchronization slippage can be partitioned into double burst

- ~15-
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errors, Zl(z) and ZZ(Z)’ as follows;
Z,(2)=2 %X} (2)+1+2° (2.14)

and

Z, (=2 o 2B-s 2B (2.15)

These are of length B+l or less and of length B+1, respectively.
Let us summarize the above result in the following theorem.

Theorem 2.1 A coset code (,, generated by a cyclic code (

C,

capable of detecting double burst errors of length B or less and

another double burst errors of length B+l or less by adding the
2

sequence R.(z)=1+zB +z B, can correct both a synchronization

slippage of s(|s|<[(B-1)/2]) bits and an additive burst error of

length B or less.

2,3.3 Synchronization Slippage and
Multiple Additive Burst Errors
Generalizing the coset code specified in Theorem 2.1, we can
easily obtain the following theorem.

Theorem 2.2 A coset code CC’ generated by a cyclic code (|
capable of detecting 2M-ple burst errors of length B or less and
another (M+1+[(M+1)/31)-ple burst errors of length B+l or less,
by adding the sequence

2™
R(z)= ) zP, (2.16)
i=o

can correct both a synchronization slippage of s(lsléI(B—l)/Z])

-17-



bits and M-ple burst errors of length B or less.

2.3.4 Coset Codes Generated by Shortened Cyclic Codes

A shortened cyclic (n—ls,k) code C is derived from the cyclic

S

(n,k) code [ can be represented by

n—ls—l _
= {X(2)= V £.27|X(2)=0, 2z"-1=0 mod G(z)} (2.17)
S izo i
For the coset code CCS given by

B ZB}

= {A(2)=X(2)+R(z) ]X(z)ecs and R(z)=l+z +z (2.18)

CCS
a synchronization slippage of s bits gives the following error
polynomial;

E(z) = (z‘s-l)R(z)-z‘SXL(z)+z“‘1s'Sxi(z) (2.19)

As shown in Figure 2.5, the second and the third terms in (2.19)

appear as burst errors overlapped or non-overlapped, depending upon

the relative magnitude of s and 1. Thus, we have the following
theorem.
Theorem 2.3 A coset code CCS’ generated by a shortened

cyclic code CS capable of detecting triple burst errors of length B
or less and another double burst errors of length B+l or less by
adding the sequence R(z)=1+zB +22B, can correct both a
synchronization slippage of s(ls]ij(B—l)/Z]) bits and an additive

burst error of length B or less.

-18-
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2.4 Bounds for Coset Codes Generated by Cyclic Codes

Let us derive the lower bounds on the redundancy required for
the underlying cyclic codes of coset codes which are capable of
correcting both a synchronization slippage of s(]sléﬁ) bits and
M-ple burst errors of length B or less. - We use the fact that
the total number of the possible syndrome patterns of any error
correcting code should be greater than or equal to the total
number of the possible error-patterns which can be corrected by
the syndrome decoding.

Definition 2.4 Any one of burst errors such as

b-2
Q2)=1+ ] e z" +2°7! for e & CF(2) and bel,---,B (2.20)
i=1

is called a burst-error block of length B.

We then have the following lemma.

Lemma 2.1 The total number of the possible error-patterns of

a burst-error block of length B is ZB_l.

The following lemma states an inherent property of any coset
code generated by the cyclic code.
Lemma 2.2 The total number of the possible error-patterns of
the coset code CC given by (2.4) is 25, when a synchronization

slippage of s bits occurs.

(proof) When a synchronization slippage of s bits occurs, the

resulting error can be represented by (2.6) as follows;

E(z>=<z‘s-1>R(z>+z‘SXE(z) (2.6)
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Since R(z) is a fixed polynomial, the first term of (2.6) takes on
a fixed error polynomialvfor each value of s. The second term
takes on one of the 2° possible error polynomials depending on the
components of the transmitted code words, Therefore, the total
number of the error-patterns of (2.6) is 1X23, completing the

proof. Q.E.D.

We also have the following lemma.
Lemma 2.3 Fof non-negative integers Voo i=1,2,+-+, m and N

the relation

Y Vm-1 Va2 1 N
Iy -1 1 1=00 (2.21)
v =0 v =0 v,=0 v, =0
holds, where
v! =N
m
m (2.22)
vi=N- Jv,; I<i<m-1
J i=j+1"
(proof) Let us use the induction on m. Equation (2.21) is
clearly valid for m=1. Assume that (2.21) is valid for m=m'-1.
v vl v!
m -1 m'-2 v_
2 w1 N+m'-1
) Loee s L= Ju) = () (2.23)
V1170 Vo 50 v,=0 i=2
Then, the left hand side of (2.21) can be represented by
Vm Vo1 vy Vm  Vpel v, n-1
I 1 o3 1=1 € ] -1 ow-Lvmu)
vm=o vo_17° v,=0 v =0 v.17° vy=0 i=2
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\ \ ] t
v V-1 v

m m-1
=Y { ] ---F @4-7 vi)} (2.24)
Ym0 Vm-17% V27° 1=2
where N'=N—vm. Using (2.23), we have
w Vac 2w N'+m-1 " N 1
oo —V —
e o o = = m
I L 11=3 C 0= 100 (2.25)
V=0 Vp_1=0 v, =0 vp=O0 V=0
By using the well-known formula;
n k
1 (n+k+D)]
L T (rts) =45 D)1 (2.26)
r=1 s=o
. . N+m i
equation (2.25) reduces to ( o ), completing the proof. Q.E.D.

In addition to the synchronization slippage, let us assume
that the multiple additive burst errors of m burst-error blocks
Qi(z), i=1,2,++-, m, each of length B, occur as shown in Figure 2.6.
Note that the fixed error-pattern (z—s—l)R(z) of (2.6) is omitted
in this figure. Letting v, denote the interval between Qi(z)
and Qi+l(z)’ the error polynomial ESB(z) due to the synchronization

slippage and multiple additive burst errors can be represented as

follows;
ESB(z)=ZL(1)Qm(Z)+ZL(2)Qm-1(z)+'"+ZL(m)Q1(z)+z_SXE(z)
+(z °-1)R(2) (2.27)
where
i-1
L(i)=(i-1)B+ ) v__, (2.28)
j=o ™

Let us enumerate the possible error-patterns represented by (2.27)

for fixed values of s and m, by dividing them into the following
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Figure 2.6  Error for coset code generated by cyclic code when a synchronization
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three cases.
(1) In case of Q,(z) which is non-overlapping 5'32%(2)

The total number of the possible error-patterns in an array
m
of the burst-error blocks is IT ZB_l from Lemma 2.1. For
i=1

each of the error-patterns of the burst—error blocks, z—SXE(z)
takes on one of the 2° possible error-patterns from Lemma 2.2,

Thus, ESB(Z) takes on one of the 2(B—1)m+s

possible error-patterns
for an array of the burst-error blocks. Let us derive the
total number of the possible arrays of the burst-error blocks.
(i-1) If we let v2=v3=---=vm=0, the variable v, can takes on
an integer between 0 and n-mB-s, i.e., the total number of

the possible arrays is n-mB-s+l1.

(i-2) If we let v,=v,=...=v =0 and Q7(z) be shifted by v,,

374 m
the variable v, can take on an integer between 0 and n-mB-s
~V,. Thus, the total number of the possible arrays is
Np
Y (Ny#+1-v,) where Ny=n-mB-s.
V,=0

(i-3) Inducing this enumeration up to Qm(z), we obtain the
total number of the possible arrays of the burst-error blocks

as follows;

Vg Vmel vé o .
) IR R I I G (2.29)
v =0 V_ .=0 v,=0 j=2 J
m-1 2
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<
[
=
E]
Il
=]
!
B
=
1
]

m (2.30)

4_
1
Z
1
t~
<
H
{]f:/’\
A
7
'—-l

and we have used Lemma 2.3 in (2.29).
Therefore, letting Nl(B,m,s) denote the total number of the
possible error-patterns of the error polynomial ESB(z) with Ql(z)

which is non-overlapping z_SXE(z), we have

(B—l)m+s(Nm+m) (2.31)

Nl(B,m,s) = 2 m
(11)  In case of Q,(z) which is overlapping é'sz%(z)

In this case, introducing a new parameter h which denotes the

length of the overlap between Ql(z) and z_SXE(z) instead of vy,

we consider for convenience sake that z_SXE(z) starts from not the
(n-s-1)st position but from the (n-s-1-h)th position so that m-ple
burst errors exist. Then the total number of the possible
error—-patterns for an array of the burst-error blocks is
2(B—1)m+s-h. On the other hand, the total number of the

possible arrays of the burst-error blocks QZ(Z)’ Q3(z),---, Qm(z)

is given by

v$+h vy_1th v§+h n N

) oo ) Qigtléh- ) ov) = (OO 2RT) (2.32)
v_=0 V_ .=0 v_,=0 j=3 ]
m m-1 3

Note that the range of h should be 1<h<B when s+1>B, and 1<h<S
when s+1<B so that m-ple burst errors exist. Letting NZ(B,m,s)

denote the total number of the possible error-patterns of this
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case, we have

H
_ 2(B—l)m+s z z-h(N +h+m—l) (2.33)

NZ(B’m’S) = oLy mm—l

where
B~1 ; st+1>B
H = (2.34)
s 3 stl<B
(iii) In case of Ql(z)zohieh appears as
an end-around burst error block
Since any cyclic code can correct an end-around burst error,
we should enumerate the case where s+1<B and Ql(z) appears as an
end-around burst-~error block (A burst-error block is called an
end-around b urst-error block if it takes on positions starting
from a higher position and ending with a lower position. Note
that a burst error of the burst-error block does not always appear
as an end-around burst error.). Let h' denote the length of’
the suffix of the end-around burst-error block Ql(z). Then
the variable h' should satisfy the relation 1<h'<B-s-1 and h'iym

so that m-ple burst errors exist. The total number of the

possible arrays of the burst blocks Qz(z), Q3(z),---, Qm(z) is

given by
Vm  Vm-1th vyt m N +stm-1
y Yoo ) (N+l+h- ) v,) = ( o1 ) (2.35)
vp=h' vp-1=o0 v3=0 3=3 J
where h=h'+s. Taking acount of z_sXE(z) which is totally

overlapped by Ql(z), we obtain the total number of the possible

error-patterns in this case as follows;
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N, (B,m,5)=2 50T B;E:(N‘“;ﬂm’l)
=(B-s—l)2(B_l)m(ngizm—l); s+1<B (2.36a)
and
N3(B,m,s)=0 ; s+1>B (2.36b)
Finally let us summarize the above iesults in the following
theorem.
Theorem 2.4 An underlying cyclic (n,k) code of a coset

code capable of correcting both a synchronization slippage of s
(!sléﬁ) bits and M—-ple additive burst errors of length B or less

has a redundancy given by

n—k;logzN(B,M,S) (2.37)
where
g M
N(B,M,S)=4(2"-1)+ Z{Nl(B,m,0)+N3(B,m,O)}

m=1

M S 3
+2 ) } ) N,(B,m,s) (2.38)

m=1 s=1 i=1 =

This bound on redundancy is general in the following sense.
(a) For S$=0, it gives the bound on redundancy of a cyclic
code capable of correcting M-ple burst errors of length B or less.
By Benelli, Bianciardi and Cappellini[gl, a bound on redundancy of
a multiple-burst-error correcting code was derived. But this
bound does not take acount of the end-around burst errors which
can usually be corrected by the cyclic code, very large class of

linear codes.
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(b) For S=0 and M=2, our bound is tighter than the Reiger

[8, pp.110]

bound for a single burst-error correcting code.

(c) For S=0 and B=1, our bound coincides the Hamming bound.

2.5 Concluding Remarks

Let us compare the efficiency of the codes capable of
correcting both a synchronization slippage of S(ISLi B/2) bits and
an additive burst error of length B or less with four class of
codes, i.e., ideal coset codes whose number of check symbols meets
the bound, the coset codes derived in Section 2.3, Tong's coset

[6]

codes and comma codes. In Figure 2.7; some of the upper
bounds on the information rate are shown for the code length n=2000.
(1) From the bound of (2.38), the ideal coset code requires

approximately B check symbols in order to correct the
synchronization slippage, while the coset code derived in Section
2.3 requires approximately 2B check symbols. This is due to the
fact that the latter code relies on the assumption that a systematic
decoding method is used and that it does not take acount of the fact
that (z °-1)R(z) is the low density and with the fixed pattern.

(ii) Tong's coset code does not require check symbols for the
correction of the synchronization slippage on the condition that
the synchronization slippage and an additive burst error do not

occur concurrently and the additive burst error does not occur as

an end-around burst error. But the weak condition that the
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Figure 2.7 Upper bounds on iﬁformation rate for various

coset codes.
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synchronization slippage and the additive burst error occur
concurréntly but not overlap.each other, Tong's coset code does
require B check symbols more. Therefore, we can conclude that
the coset code derived in Section 2.3 further requires B check
symbols more in order to release the weak condition.

(iii) A comma code, generated by inserting an autocorrelation
function fetween code words of a burst-error correcting code,
requires the autocorrelation function of length 4B. Therefore,
this code is inferior to the coset code derived in Section 2.3.

The proposed coset code may be difficult to construct in
practical use since it is hard to find therideal multiple burst-
error correcting code, but the principle of the codes will provide

the fundamental concepts of the following chapters.
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CHAPTER 3

10
INTERLEAVED CODES[ ]

3.1 Introduction

In the previous chapter we have constructed the coset codes
which are capable of correcting both a synchronization slippage
and additive burst errors. But the synchronization slippage is
in general, due to the timing errors such as deletion or insertion
errors occurred in the preceding code words. Since these codes
have no capability of correcting original timing errors, a message
of the received word corrupted by the timing errors may be totally
lost. Therefore, it is desirable to construct timing-error
correcting codes from not only practical but also information-

theoretical standpoints. Sellers[ll] [12]

and Ullman constructed
block codes capable of correcting a single deletion or insertion
error, provided that no additive error exists in the received word.
The codes are constructed by inserting the special sequence into

an additive-error correcting code at fixed periodic intervals.

[13]

Tanaka and Kasai investigated the block codes capable of
correcting tiﬁing errors besides additive errors based on the
Levenshtein metric under the condition that both types of error

do not exist in a received word. Greene[l] described a decoding

algorithm, for any single burst-error correcting code, which can be

used for correcting a few deletions within a single burst error.
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This code should be properly synchronized at the start of the
received word and has a possibility of false correction. Thus
it is desirable to construct a code capable of correcting timing
errors occurring at any position within a received word with
possible additive errors.

In this chapter, we present a new class of block codes capable
of correcting both a deletion error and an additive burst error in
order to provide the basic concept of timing- and additive-error

correcting codes which are to be presented in the next chapter.

3.2 Heuristic Approach

In channels, the symbols can be deleted from or inserted into
a code word, forcing the decoder misframe this received word and
the subsequent words. One method of recovering synchronization
in a communication system with such a channel, which we call
Method I. requires the use of a special synchronization sequence (
syn—seQuence) which is inserted between code words (see Figure 3.1
(a)). This sequence may be one with the ideal autocorrelation

[16, pp.465]

function such as a Barker sequence or one with a fixed

11

pattern[ ]. In this case, even though the occurrence of a
deletion error is detected by the syn-sequences, the position where
the deletion error occurs is uncertain. This is due to the fact

that the possible deleted position ranges over the entire code word

as illustrated in Figure 3.1(a). Accordingly, a deletion error
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due to two types of aligning svnchronization sequences.
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occurred at the central position of a code word causes a slippage
in the remaining parts of the code word, resulting in a burst
error of length approximately one half of the code length.

Since the number of check symbols required to correct a single
burst error of length b or less is approximately 2b from the
argument of the section 2.4, we should use a very low rate code,
which is impractical.

"In order to improve the capability in estimating a deleted
position, let us consider the other method, which we call Method II,
where the special syn-sequences are.insertedvinto an additive-
error correcting code at fixed periodic intervals (see Figure
3.1(b)). When a deletion error occurs between the syn-sequences
B and C, a slippage of 1 bit is detected in the syn-sequences A and
B, and no slippage is detected in the syn-sequences C, D and E.
Therefore, wé can assume that a deletion error has occurred in the
subblocks between the syn-sequences B and C. Since the possible
deleted position ranges over the region between the syn-sequences
B and C, we can correct the deletion error by using a block code
capable of correcting an additive burst error of length less than
or equal to the length of the subblocks.

However, Method II is inferior to Method I with respect to
the capability of distinguishing additive errors from deletion
errors, since the length of each syn-sequence of the former is less
than that of the latter when the total length of syn-sequence per

word is made equal. In what follows, we shall present a new
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method of using an appropriate coset code generated by the cyclic

code as the syn-sequences of Method II.

3.3 Preliminaries
Let us consider a binary cascaded channel which consists of
two channels as shown in Figure 3.2. The first is the channel
with additive errors and the second, with deletion errors. Let
us represent a codé word consisting of the N input symbols to the
N-1

cascaded channel as 7A=(ao, ul,---,aN_l) or A(z)= X aizl where
i=o

aiEEGF(Z), 0<i<N-1. Similarly, let us represent the output word

N-1 .
) or B(z)= Z szJ

from the cascaded channel as B=(Bo’ Bl,"', B
j=o

N-1
where BjEEGF(Z), 0<j<N-1. We assume that On—1 is the first
symbol of the code word being transmitted and that the successive

code words are transmitted in a continuous manner.

additive errors

A ~+ > B

deletion errors

Figure 3.2 Cascaded channel with additive

errors and deletion errors.

-35-



We shall denote the output word corrupted by a deletion error
of al+l’ ~1<A<N-2, with no additive error by the vector AA or

polynomial A(z|)A) as follows;

B(z)=A(z|\)=0o! + ) a, ;20 + ) o,z (3.1)
R R e

where aﬁ_l is the first symbol of the subsequently transmitted code

word following A. Let A(ZIA;A), 1<)A<N, represent the word that
is formed by inserting a symbol ux_lEEGF(Z) between the (A-1)st and
the Ath positions of the received word B(z)=A(z|})). In what

follows, the term position means an exponent of z in any polynomial.

Let B(le) be defined as follows;

nw

B(z|%) 2 ACz|A;0) (3.2)

For A, 1<A<A+2, B(zIA) can be represented by

R-2 £q M . N-1

B(z|D=J o,z 4ur 22T+ T, 2l 4 T a2 (3.3)
j=o0 A1 =5 3-1 j=A+2

Let us define a subset CX of a cyclic (nx’kx) code which is
capable of detecting a burst error of length nX—kX—f or less, or of
correcting a burst error of length f or less as follows;

n_-1
X

a 3 LRI ) 3 i—
Cx = {X—(EO’ El, ’ Enx—l)IX(Z)—,z Eiz =0 mod GX(Z)}

i=o
n n
{0% 1% (3.4)

where EiEEGF(Z), Qéiépx—l, and Gx(z) is the generator polynomial of

n
the cyclic (nX,kX) code which will be specified later. The 0 *

n
x . .
and 1 are the nX—dlmen51onal all 0's and all 1's vectors,
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respectiyely, Let us also define a block code CU which is

capable of correcting a burst error of length g or less as follows;

S =@ 1 Leee)
CU = {U (]JO’ 111, s llmu__l)} (3.5)
where ijEGF(Z), 0<j<m,-1. We assume that code lengths ny and

m, are given by

ny, = fT for some integer f>k ' (3.6)
and

m, = gT for any integer g : 3.7
respectively, where T 1is a positive integer whose role will be
apparent later.

Let us divide each code word of the code CX into T subblocks

of length f. The subblocks can be represented by

be = Cre Beprn " Sepren) Oe<t-1 (3.8)

Using these f-dimensional vectors, we define two kinds of (f+1)-

dimensional vectors as follows;

x _ . _
Xg = (gtf—l’ it), 2<t<T-1 (3.9
and
Tk . _
X, = (gtf . it) + ry; t=0 and 1 (3.10)
where )
ro = (0, 1, 0f™hH (3.11)

In the above equations and in what follows, each suffix of the
components is evaluated by modulo ng. The vector 1y is used for

generating the coset code on the basis of the code CX'
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Similarly, let us diyide each code word of the code CU into T

subblocks of length g. The subblocks can be represented by

*%

. ko
Using the vectors Xt’ xt

and B let us construct a new class of

the interleaved codes as follows;

& A s k% SR * *
COT = {A—(XO ’ HO’ xl » Hl, x29 FZQ"', XT—]_’ FT—]_)}
(3.13)
where the length of the code COT is given by

Note that Xt* is used only for t=0 and 1 in constructing the code
C“T' The construction of the code C°T is illustrated in Figure
3.3.

Fromithe réceived word B, we can de-interleave the following

two vectors Y and V corresponding to XE and UE{ __, respectively;
y

Y = [B + RolWo, , (3.15)
and

V=B WoU (3.16)
where |

Ro= (ro, 08, ro, 08, o{f¥stD)(T-2), (3.17)

and wDX is the N by ny matrix
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and WoU is the N by m,; matrix;

[

em - - - = = -
'
t

d - e o =
|

g+l

f+1

lg

(3.18)

(3.19)

b .
In (3.18) and (3.19), Ij is the j by j identity matrix and the

blank areas in the matrices indicate zero values.
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3.4 Capabilities of The Code COT
3.4.1 Correction of Either A Deletion Error or
An Additive Burst Error

Definition 3.1 Consider a set of the possible burst errors

due to a deletion error in a received word. We refer to the
burst error of the minimum length in the set as pseudo burst error,

and use the symbol p to denote the length.

The pseudo burst error will play an important role in the
deletion-error correction as we shall see soon.

When the received word B is corrupted by a deletion error, the

. .
[16, pp.463] re¢ in XO* and x:*

*
(together with the suffixes of X, t=2,3,++-, T-1) cause a pseudo

vector Rg and the coset leaders

burst error of length f+1 or more which is not correctable but
detectable. Figure 3.4 shows an example of this type of error.
We see that the pseudo burst error of length at least f+l=4 due to
the deletion error exists in either X(2z) or zX(z2). Thus in
decoding we can exploit this property to decide whether a deletion
error has occurred or not, provided that the length of any additive
burst error in Y is at most f.

In the following we shall give an outline of the basic
decoding algorithm whose complete version is given in APPENDIX I.

When the de-interleaved word Y from the received word B cannot
be decoded by assuming that any additive burst error of length f or
less occurred, the decoder then assumes that a deletion error has

occurred. Then the decoder inserts a symbol uX-l(O or 1) at
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X(z) : |£ EE | lg £ .l le.£.¢8 1 1€,€,8,

9 10 11

A(z) : EIEEEquuIEIEEEquu|£|£€£|uuul£|£££luuu

9 101

Re(z) : 0 ] 00 |0O0OO]oJ100]000]0]oooO|0OO]O|OOO]OOO

A(zllz):*l«EEElEuululEfElEuuIE l&EEquuIElEEEquu

9 10 11 9 10 11

Y2 : [T EE ] - BT e, g | g, g & |

0 1 3 3 4 : _ 5 6 7 9 10 11

X(z)+Y(z) : ’1**| |1 % = | o oo | |o 0o 0 |

zX(2)+Y(z) : |* 1 0 | |* 1 0 | .|* x % | | % % =%

WﬂAm+RoH%X, f=3, g=3, T=4 and (*)=0 or 1.

Figure 3.4  Example of pseudo burst error due to a deletion error.



each position, X=f+g+3, **+, N, and tries to correct a burst error.
When no error is detected or a burst-error correction is successful,
both decoding of Y and corfection of the deletion error of B are
completed. Finally de-interleaving V from B with no deletion
error, the decoder can decode V by assuming that an additive burst
error might have occurred.
Wé shéll give the following theorem.
Theorem 3.1 | The code COT can correct either a deletion error

or an additive burst error of length b=f+g+l or less, provided that

the relation T>6 holds.
Before giving the proof of Theorem 3.1, we shall give the

following lemmas and properties.

Lemma 3.1 If B=A, for A, f+g+2<A\+1<N-1, the length of the

Y
pseudo burst error of Y==[B-FR0]W0X is given by

ny+Hf+2
(3.20)

f+1<p §:[_—_§—-

(proof) Consider the received word Y=[AX+R°]WOX’ A=f+g+1,
whose components Ef of X is deleted and to which Ry is added
erroneously as illustrated in Figure 3.5(a). This word can be

represented by

£-1 n-1

Y(2)=Eo+ ] £,z + § £zt Hl4zs (3.21)
i=1 7 i=f ©

The pseudo burst error is then given by

f-1
E(z) =X(z) +Y(z) =1l+z+z" + Y, +E, )z
i=1

i (3.22)
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Equation (3.22) shows that there exists a burst error of length
f+1 in Y for any XEECX. As A, A>f+g+2, increases, the length of
the pseudo burst error in the suffix of the code word, clearly,
does not decrease. If a deletion error occurs at a higher
position, it is required to assume that the suffix of Y is in the
correct phase and the prefix is shifted by 1 bit in the lower
direction so that it is reduced to the pseudo burst error.

That is, the pseudé burst error appears as an end-around burst
error, zX(z) +Y(z), as illustrated in Figure 3.5(b). Thus a
part of the pseudo burst error, of 1engfh at least f+1, appears in
the subblocks $0 and ¢1' From therabove argument, we can
conclude that the'maximum length of the pseudo burst error of Ak’
f+g+2<A+1< N-1, is given by letting the length of the pseudo burst

error in the suffix be equal to that of the end-around burst error

as shown in Figure 3.6. We then have
ny+f+2
max p =min [ T+2, n~(C+2)+f+2 ] = B — (3.23)
c

Q.E.D.
When the received word B is corrupted by a deletion error with
no additive error, i.e., B==AK’ the pseudo burst error of Y= [B+
Ro]WoX can be corrected by letting A=A+2 and inserting a proper

symbol ui_ between the (i—l)st and the Ath positions of AA'

1
But as we shall see later, the value of % at which the pseudo burst

error is corrected is not necessarily unique, when there is a

consecutive run of 0's or 1's in the part of the code word where
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the deletion error occurs. In this case, even if the decoding
of Y from BX with the insertion at A=A+2 is successful, there may
remain a partial slippage in V=B.5:WoU which has at present no
assurance of being corrected. In this respect we shall give the
following lemma.

Lemma 3.2 The amount of the deviation from the position of
deletion to the position where the correction is made is given by

A-A < f4g42 (3.24)
provided f >kx.
We shall present the fundamental properties of cyclic codes

before giving the proof 6f Lemma 3.2.

Property 3.1 In any cyclic (n,k) code the length of the

consecutive run of 0's is at most k-1 in any code word except the
all 0's word.

(proof) In any cyclic code the existence of the code word with k
or more consecutive run of 0's implies the existence of fhe code
word of degree n-k-1 or less, which is less than the degree of the
generator polynomial, yielding the contradictiomn. Q.E.D.

Property 3.2 In any cyclic (n,k) code the length of the

consecutive run of 1's is at most k in any code word except the

all 1's word.

(proof) Suppose that there exists a code word with k+1l or more
consecutive run of 1's. This word can be represented by
J-1 i J+k i n-1 i
F(z) = ) ¢iz + )z + Y ¢iz for any integer J
i=o i=J i=J+k+1 (3.25)
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where d)iEGF(Z) . The cyclically shifted version, zF(z), is

also a code word. Then F(z) +zF(z) is also a code word and is
given by
J 5 J+k 5 n-1
F(z)+zF(z) = Z(¢i+¢i_l)z + ) (+Dz + ) (¢ +6, 1)
i=o0 i=J+1 i=J+k+1
(3.26)

which has a k or more consecutive run of 0's, contradicting

Property 3.1. : Q.E.D.
(proof of Lemma 3.2) Consider a deletion error occurred in the
range [t(f+g+l), (t+1) (f+g+l)], 1<t<T-1, and an insertion of ui\\‘l
between the (X—l)st and the Ath position of B. Let the parameter

0, which indicates the position :of the deleted symbol E"6+1 of X,

be. given by

6 =A-(g+t)t-1 (3.27a)
when the deletion error occurred in Xi, or

D=ft+f-2 (3.27p)
when it occurred in B, - Then from Figure 3..7 we see that the

error polynomial of Y(z) is represented by

w_l ¢+1 i A
E(z) = (uw_1+€w_l)z +izw(gi+ £, Pz 3 A2 (3.28)
where
A=U+1+ (g+1)[Y/£] (3.29)

Thus in the case where E(z) =0 holds for some X(z)= CX’ the

g g =, =8 holds. From

Y1 -1 Y ¢ "¢+l
Property 3.2, the length of any consecutive run of 1's of XECX is

relation u
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at most kg, i.e., 0+1-(¥-2)=0-9+3<kyg. Since the correct
insertion is w==6-+2, the upper-bound on the amount of thé
deviation due to the erroneous estimation is given by 6 -9P+2<ky,-1.
In the worst case, 0 -y+2=ky -1, we have the following relation
for Oeg[tf, tf+f-2]

(t-Df<tf-ky+3<Y (3.30)
The left inequality of (3.30) comes from the restriction f >ky in
(3.6). Equality in (3.30) implies that the insertion, by which
the decoding of Y is completed for the first time, may be made in
the subblock it—l' Since the sﬁbblock Fe1 is located between

% ..
and X, , the amount of the deviation due to the

the subblocks it—l N

erroneous estimation in a code word of COT is the sum of the length
' . ps *

of the sequence cosisting of .Y and one symbol gtf—l of X and

the length ky-1, yielding (3.24). 0.E.D.

(proof of Theorem 3.1) By the assumption we can excludé the case
that both an additive burst error and a deletion etrror occur
concurrently in a code word. For an additive burst error of
length f+g+1 or less, we can correct it by the capability of the
codes CX and CU For a deletion error, let us consider two cases
depending upon the deleted position .

() For )\; 0<A+1<f+g+1, there exists a pseudo burst error
of length f or less in Y= [A)\+R°]WOX’ which is correctable as an

additive burst error. The de-interleaved word V=A)\WoU can be
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successfully decoded by assuming that an additive burst error has
occurred.

(ii) For A, £+g+2<A+1<N-1, there exists a pseudo burst

+f4+2
error of length at least f+1 and at most -5 in

Y= [A)\+R0]V‘JoX from Lemma 3.1. When the following inequality

is satisfied.

nx—kx—finX—Zf;

ng+£+2 rnx+f+2] (3.31)

2 z[ 2
i.e., ng/f=T2>6, the code CX can successfully detect the pseudo
burst error, distinguishing a deletion error from an additive burst
error. After the insertion by which therdecoding of Y is
completed for the first time, there may exist a burst error of
length g or less in V from Lemma 3.2. Since the code CU can

correct the burst error of lengthg or less, we can successfully

decode the received word B. Q.E.D.

3.4.2 Correction of A Deletion Error Imbedded within
An Additive Burst Error

Consider a deletion error imbedded within an additive burst

error. In this case there may occur the following problems.
Problem 1 The length of a pseudo burst error due to a

deletion error may be decreased by an additive burst error.
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+--100111010110---3A - - - -transmitted sequence

0000011111 00+-3E - -~ -additive burst error

.+-100110101010--+;A+E - - —output sequence of
\ \ \ \ \ \ \ \ \ l l the first channel
eee+21 001101011 - —output sequence of

Q--- (A+E)X

the second channel

----- 1 0100000CO0C0O 0'--;A+(A+E)7\ -error sequence

(pseudo) burst error

Figure 3.8 An example of related Problem 1.

Problem 2 An insertion, by which the decoding of Y is
completed for the first time, may be made at a lower position by £
bits (f+g bits with respect to the received word B) beyond the range
(3.24) in Lemma 3.2. because the additive burst-error correction in
addition to the deletion-error correction is performed in this case
even if there exists no additive error.

For these reasons we must modify the basic decoding algorithm
described in Section 3.4.1 as follows;
M1 : Try to insert at
Xt=t(f+g+1)+1; t=1,2,+++, T-1 (3.32)
M2-1: Detect errors of Y for each insertion.
M2-2: 1If errors are detected in Y for all imsertions, try to
correct a burst error of length f or less for each

insertion.
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In APPENDIX 1I, the complete decoding algorithm is given, taking
acount of these modifications.

First, we show that the code COT is able to detect a deletion
error, even when an additive burst error exists. For a deletion
error imbedded within an additive burst error of length f+g+l or

less, the length of a pseudo burst error is varied by *f bits at

most. Therefore, the following relation;
ne+f+2 ny+f+2
ng —kyx-f2ng-2f> ———+f2>|———|+f (3.33)

i.e., nX/f=TP2;8 should hold so that the code CX can detect the
pseudo burst error successfully. On the other hand, the pseudo
burst error of length f or less can occur when additive errors
occur over the subblocks ¢0 and ¢1, and a deletion error occurs,
which causes those errors in il no error by the slippage, but
leaves errors in ¢0 due to the additive errors and the slippage.
Therefore, when a burst-error correction of Y is made successfully
assuming that there exists a burst error in only the subblock io,
we should decode V assuming that errors occur not only in the
subblock Hﬁ but also in Pi-

Second, we show that the code COT is able to correct a deletion
error imbedded within an additive burst error of length f+g+l or
less. These errors can be classified into four types of error
according to the relative position of the additive burst error with
respect to the final position of the iﬂsertion as shown in Figure

3.9. " In the case (a), there exists no error in the subblock it

—54—



~—3:additive burst

% terrors in X.

Figure 3.9

{errors

bt G bear] Pean Lieer
i'.-' Y/ -"{-'_-.'_“, '
I ;.-11'] {// T J beanl Pes | oo
A t+1
|
P8y Pt—___li § "Ll,r fera| Perr [} Beno
R Al
—— .
L %5‘3"’1‘:&{%_ B ! + bora| Pear |! $eao
' : : i ] X
\ N 1 ! H ' H
- : : : : - -
X1 | Xt | X Xie2

error of length f+g+l with deletion error.

in U

Insertion for deletion error imbedded within an additive burst error.

(a)

(b)

(c)

(d)



but a slippage of 1 bit in the subblocks ti’ i<t, so that the
decoding of Y is completed only by the insertion at Xt in the
detection mode of M2-1. After the decoding of Y there may
‘exist a burst error in the subblocks }%ﬁl and Ft°
In the case (b), there exist errors in $t~and a slippage of 1 bit
in ti’ i<t, so that errors are detected by the proper insertion at
Xt' If errors are detected by the next insertion at Xt+1’ then
errors are detected for all the remaining insertions, resulting in
the successful transition to the correction mode of M2-2. Thus
the errors in ¢t as well as the slippage are corrected by the
insertion at Xt' Otherwise, by the finél insertion at Xt”
there may exist a burst error in | ) and P%Ll where t'=t+1.
Similarly as we see in the cases (c¢) and (d), there may exist a
burst error in.Ht_1 and Pt by the final insertion at th
Therefore, the code CU should correct a burst error over the
subblocks Pt-Z’ Pt—l and,;t when the final insertion at Xt is made,
i.e., consequently it should be capable of correcting a burst error
of length 3g or less.

Now we give the following property of burst—error correcting
codes (This is based on the erasure correction capability of the
[15, pp.393].).

burst-error correcting code. See also Berlekamp

Property 3.3 A code which can detect a single burst error of

length 3g or less is capable of correcting a single burst error of
length 3g_or less, provided that the position of the burst error is

known.
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In what follows, let COTB denote the code COT if the number of

check symbols of the code CU is 3g or more. Thus we have the
following theorem.

Theorem 3.2 The code COTB can correct a deletion error
imbedded within an additive burst error of length b=f+g+l or less,

provided that the relation T>8 holds.

3.5 Conclusion

Using the concepts of an interleaved method, Method II,
discussed in Section 3.2, we have constructed the interleaved code,
first, COT capable of correcting either a deletion error or an
additive burst error, and second, COTB capable of correcting a

deletion error imbedded within an additive burst error.
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CHAPTER 4
EXTENDED INTERLEAVED CODES[14]
4.1  Introduction
In this chapter we shall present the extended interleaved code
CT. We shall show that the new code CT can be constructed for
correcting an arbitrary number of deletion errors as well as fér
correcting either deletion or insertion errors in a received word.
In Sections 4.2 and 4.3, we shall treat only deletion errors,
and in Section 4.4 we shall show that the proposed code can also
correct insertion errors. In Section 4.5 we shall show that the
redundancy newly added for correcting deletion or insertion errors
besides additive errors can be made sufficiently small by

reinforcing the capabilities of the both codes CX and CU'

4.2 Definitions

A successive deletion-error of s bits on a vector A causes a
slippage of s bits in the suffix of the received word as illustrated
in Figure 4.1.

Definition 4.1 When successive s symbols, al+1’ ak+2’.‘.’

and o are deleted in A i
Oy 4e1 s i , we refer to this event as
successive deletion-error of s bits, or SD(s) error in abbreviated

notation.

We shall denote the output word of the second channel, provided
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that no additive error occurs, by the vector A(-s,A) or polynomial
A(zl—s,k) as follows;
s—1 . Ats

i i N-1 i
?
.Z ai+N—sz 4-.2 ai_sz 4-. 2 aiz
i=o i=s i=)+s+1

B(z) =A(z|-s,)\) =
4.1
where s is a positive integer, A, -1<A<N-s-1, represents a position

where the deletions begin, and (aﬁ;s, dﬁ;s+1"

. ] . .
» ay ;) is a prefix

of the subsequently transmitted code word following A. Let

A(z|—s,A; 8,%), 80 and LiXiN, represent the word that is formed

by inserting a sequence (ui‘é,...’ ui‘l) of length § between the

(A-1)st and the Ath positions of the received word B(z)=A(z|-s,))
where quGF(Z), X—g_g_j_fj-l. Let B(z|8§,X) be defined as follows;
B(z|§,%) #A(z]|-s,1;8,%) (4.2)

When 8 and X satisfy 0<§§§ and s§2§)+s+1, B(z|§.ﬁ) is given by

s—5-1 i 2-8-1 i -1
) —_ \ ]
B(z|5,%) = .z O inosta? ) O, _o4gZ T ) u .z
i=o i=s-8 i={-8
Ats i N-1 i
+ ) o,z + ) o.z (4.3)

=% 7% i=dts+lt
Figure 4.1 also depicts this situation.
Let us define the interleaved code CT by replacing the
subblocks X¥ and X;* of the code (o defined in (3.13) with the

subblocks it and it*, respectively, which are given by

7"— L B
¢t-_(£tf—D’ Etf—D+1’ > Etf—1’ it’

3 )s 2<e<T-1 (4.4)

tf° Cefafa1’ T Sepafapol
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and

% D 4D

it - @tf’ ¢t’ ¢tf+f)+r’ £=0, 1 (4.5)

where the vectors ¢ 0<t<T-1, are given in (3.8), the ¢D and itD
t? == e tf tf+f

—_Ads . 13 |
are the D-dimensional all gtf s and all gtf+f s vectors,
respectively, and

r=©°, 1, 0572, 1, 0% (4.6)

Thus we define the code CT as follows;

- *% %% * *

CoZla=y s pos &1 5 pps §os Pooeoos dpgs o} 42D
where the length of the code CT is given by

N = ny +m, + 2DT (4.8)

Note that (Brr ps Beepars "> Bere1) 20 Crpnpr Brpprr

SR gtf+f+D—l) in (4.4) are the prefix of length D of ¢t-—1 and the
suffix of length D of ¢t+1’ respectively. Therefore, they are
doubly transmitted for t>2. The construction of the code C‘I‘ is
illustrated in Figure 4.2.

The relationship between the Zth component of AECT and the Zth

component of XECX is given by

L=1+D+ (g+2D)[1/£] 2L, (1) (4.9)
Sim;'.larly, the relationship between the Zth component of A and the
jth component of UECU is given by

=g+ (f+2)- (1+[j/g]) 2L () (4.10)

From the received word B, we can de-interleave the following

two vectors Y and V corresponding to XECX and UECU, respectively;
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Y=[B +R]WX (4.11)
and
V=B’WU ' (4.12)

where WX is the N by ny matrix;

We=1l's U=Ly(@) 3 0Li<my-1, 0<Z<N-1  (4.13)

ZZ' Il k4 =
and WU is the N by my matrix;

W=l 8 mlls 27 =1,G); 0<F<my-1 (4.14)
In (4.13) and (4.14), aij is the Kronecker delta and R is given by

R=(r, 0F, r, 08, Q(F+&t2D}(T-2), (4.15)
The decoding algorithm of the code CT is‘the same that of
Section 3.4.2, precisely given in APPENDIX I, except that the
decoder inserts a sequence of the predetermind pattern of length §
at each inserting position. The complete version of the

decoding algorithm is given in APPENDIX TT.

4.3 Capabilities of The Code CT
4.3.1 Correction of Either An SD error
or An Additive Burst Error

The next lemma assures that the code C can distinguish

T

additive errors from deletion errors.
Lemma 4.1 If B=A(-s,)\) for s, 0<s<D, and A, f+g+3D<A+s<N-1,

the length of the pseudo burst error of Y==[B+R]WX is given by

f+1;p;[r—r—;—2]f (4.16)
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In the proof, for convenience' sake we shall use a
transmitted code word A instead of a received word B haying an SD
error which occurred in ¢1 or higher subblocks than i:*.

(proof) Consider a received word Y==[A(-S,A)+R]NX, 0<s<D, and

A=LX(C), whose components < of X are deleted

SR SUSTELNE S
and to which R is added erromeously. This word can be

represented by

Cts ng-1 i s-1
Y(2)= ] &, _ 1y LEz + ] (By+E,
i=o 1—C+s+1 i=o
f+s-1
+ ] (E+E&;_ )zi+(1+zs+'zf_1)-(1+zf); 0<s<D
i=f

(4.17)
As shown in Figure 4.3, the pseudo burst error can be classified
into two types of error depending upon the position where the
deletion error starts, i.e.,

2f-1 i C+s
E(z) =X(2) +Y(2) = (1+zf)+ X 4y z + Z (E +E
i=1, #ET i=2f

(4.18a)
or
s s f-1 £ 2£22 i
E(z) =z X(2)+Y(2)=(z" +2 Y 14+z7)+ Z 9,2

i=o
i#s,f-1,f+s

ny-1
+ Z (5, +&, _ (4.18b)
1—C+s+1

where qi=0 or 1 for any i.

Equations (4.18a) and (4.18b) show that there always exists in Y

—64—



<— 2f —>fe— r+s+1-2f ny—(Ctstl) —>f
a b c : Y(z)

i Pt : X(z) +Y(2)

4—1-- .- _mem - - e SR ol : z5X(z) +Y(2)

a: Region where a burst error of length at least f+l

definitely occurs as a part of pseudo burst error.
b= .,
€2 SC)

¢=(g

2f-g’ E2f-s+1"'

Chstl’ Crest2’ gnx—l)

Figure 4.3 Pseudo burst error due to SD(s) error of X=LX(C).



a burst error whose length is at least f+1 and at most Z+s+l or
nx—(§+s+1)+2f (See also Figure 4.3.). From Definition 3.1, we
see that the length of the pseudo burst error for any pair of T and
s is upper-bounded by

p<min{z+s+1, nx- (E+s+1)+2f} (4.19)
The maximum p with respect to [ and s is given by equating the two

terms in the braces of (4.19) as follows;

' +2f
max p = [nx ] = [—T%-z—]f (4.20)

C,s Q.E.D.

We shall give the following lemma on cyclic code before giving
Lemma 4.3.

Lemma 4.2 Assume that H(z)=(l+zn)/G(z) can be factored into

]
H(z)= hi(z), 1<i<k, where each factor hi(z) is an irreducible
. i

q =

polynomial of degree k or less over GF(2) whose roots in an -

extension field have order e Then for any X(z)&( and s, 0<s<D
X(z) +2z°X(z) #0  (mod 1+2z") (4.21)
where
D<min{ f, esT ", ej} (4.22)
(proof) Suppose that X(z)+zSX(z)=0 (mod 1+zn). Letting X(z)

be represented by P(z)G(z) where P(z) is some polynomial of degree

at most k-1, we have the following relation for some polynomial Q(z)

(1+2°)P(2)G(z) = (1 +2zM)0(z) (4.23)

Dividing both sides of (4.23) by G(z), we have
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(1+z°)P(2) =H(2)Q(2) (4.24)
Since H(z) is the polynomial of degree k, it cannot divide P(z)
whose degree is at most k-1. On the other hand, there is no

common factor between H(z) and (l+zs), 0<s<D, by the assumption.

Therefore, H(z) cannot divide (1+2%)P(z). This is a
contradiction, completing the proof. Q.E.D.
Lemma 4.3 In any code word of CX under the same condition of

Lemma 4.2, if any.consecutive components of length f(>ky) starting
from the Cth position, 0<f<ny-f-1, is substituted by the
corresponding components starting from the {th position of the
cyclically shifted version of the code word by s bits, then there
exists at least a burst error of length 1 in the code word where
0<s<D

(proof) The word mentioned above can be expressed as follows;

T+f-1 i
F(z) =X(z) + iZC(€i+gi"S)z ;5 0LC<ng~-ky-1 (4.25)
where X(z) is a code word of CX' We then have the error E(z) as
follows;
+f-1 5
E(z) =F(2) +X(2) = }J(E, +E, )z (4.26)
s=r i i-s

Thus the errbr E(z) is proved to be the consecutive components of
length f existing in another code word X(z)+zSX(z)EECX from

Lemma 4.2. Since the code word X(z)+zSX(z) has a consecutive
run of at most ky-1 0's from Property 3.1, there exists at least a

burst error of length 1 in X(z), completing the proof. Q.E.D.
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Lemma 4.4 Consider an insertion of length s at the X(t)th
position of the received word B=A(-s,\) where the positional index
A(t) is given by

R(t) =t(f+g+2D) +D (4.27)
Using the function X(t), the location of the SD(s) error is given by

X(to);k+siﬁ(to+l)-1; 2<tg<T (4.28)
Then, for all §, S§#s and 0<8<D, and 2<t<t,, there exists a pseudo
burst error of length at least f+1 and at most ny-2f, provided that
T>8.
(proof) If s-§>0, there exists a pseudo burst error of length at
least f+1 in ¢O and &1 from Lemma 4.1. bEven if s-8<0, we can
show that there exists a pseudo burst error of length at least f+1
in ¢0 and 11 as shown in the proof of Lemma 4.1. In these cases,
the pseudo burst error assumes one of the three types of burst
error corresponding to X(z), z°X(z) and zs_§X(z) (See Figure 4.4.).
The length p is then given by

p<min{g+s+1, n, - (£-2)f, nx- (C+s+1-tf) (4.29)
where C+1 denotes the starting position of the SD(s) error.
The maximization with respect to T, s and t is given by equating

the three terms in the braces of (4.29) as follows;

ma;{p = [gl;;z]fi(T— 2)f (4.30)
C,8,t
This relation implies that T2>8. Q.E.D.
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Now we haye the following theorem.

Theorem 4,1 The code CX can correct either an SD(s) error,
s<D, or an additive burst error of length b=£f+g+2D or less,
ﬁrovided that the relations (4.22) and T>8 hold.

In the proof of Theorem 4.1, we shall need the following
decoding rules.

Rule 1 Each insertion of lengths §, §=1,2,:-:,D starts at
R(1) and the insertions are made at A(t) where t increases by 1 up
to T-1.

Rule 2 Burst-error correction of length f is made only in
it—l and it'

(proof) -detectability of SD error- The length of an additive
burst error in Y is limited to be at most £ by the assumption.

On the other hand, from Lemma 4.1 the 1engtﬁ of a pseudo burst
error caused by an SD error is at least f+1 for A, f+g+3D<A+s<N-1.
This implies that the code CX can detect an SD error in Y or B,

provided that the following relation holds;

[TJZ’Z]féT;ZfifT-Zf;fT—,kX-f (4.31)

i.e., T>6. Note that for an SD error at A, X+s§f+g+3D—1, we can
correct it simply as an additive burst error.

-correctability of SD error- For an SD(s) error that satisfies
the relation (4.28), we fail to decode Y==[B(§,X(t))+R]WX by any
insertion §#s and t<to, from Lemma 4.4. For an insertion of §=s

and tgﬁo,bthe slipped subblocks ¢O’ ¢1,-.., ¢t—2 and ¢t—1 are
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restored to their original positioms. Therefore, the remaining

slippage is in the subblocks ¢t’ $t+1"'

it in case of X(t0)§A+S§X(to)+f—2, or with a whole of ¢t° in case
o SATSS

< it , a@nd with a part of
o

of X(to)+f—1§}+§§?(to+l)-l (See Figure 4.5.). Since each .
slipped subblock of length f has at least a single error from
Lemma 4.3, using Rule 2, we can decode Y successfully by the
insertion at t=tg-1 when there is no error in ito’ or at t=ty when
there are errors in ito\in case of X(to)§)+giﬁ(to)+f—2. In case
of X(t0)+f—1§}+s§?(to+l)—l, we can decode Y successfully by the
insertion at t=ty, since all the components of $to are slipped.

Also for an SD(s) error of X(l)é}+qiﬁ(2)—l, we fail to decode Y
by any insertion of §<s from (4.18a). We can decode Y
successfully by the insertion of §=s at £(1) since the remaining
slippage is only in $1.

In decoding of V=B(8=s,i(t=to-1 or to))wU, it is sufficient to

correct a pseudo burst error of length g or less in’Ht' Q.E.D.

4.3.2 Correction of An SDB Error

Definition 4.2 When an additive burst error of length b or

less occurs in the first channel and a successive deletion error of
s bits occurs within that burst error in the second channel, we
refer to such errors as successive deletion error of s bits imbedded
within the burst error of length b or less, or as SDB(s,b) error in

abbreviated notation.
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Consequently, the additive burst error of length b or less is
reduced to that of length b-s or less due to successive deletion
error of s bits.

We show that the code CT is capable of not only correcting
either an SD error or an additive burst error but also correcting
an SDB error.

Lemma 4.5 For any SDB(s,b) error, s<D and b=f+g+2D, occurred
in the higher positions than f+g+3D-1, the length of pseudo burst
error in Y=[B+R]WX is given by

T+3

f+1<p< f (4.32)

(proof) Consider an additive burst error of length b=f+4g+2D in B,
which is reduced to a burst error of length at most f in a subblock
and $

it or in two adjacent subblocks i depending upon the
0

to to+l
starting position of the additive burst error of length b. An
SD(s) error occurred within the additive burst error of length b,
i.e., an SDB(s,b) error, causes the slippage of s bits in the
suffix followed by the additive burst error in Y=[B+R]WX.

From the assumption that the SDB(s,b) error occurs in the
higher positions than f+g+3D-1, there always exists a pseudo burst
error of length at least f+1 in the suffix of Y as shown in the
proof of Lemma 4.1.

Letting T denote the starting position of the additive burst

error in Y (See Figure 4.6.), we can obtain the upper-bound on

length p as follows;
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ng + 3£
max p <max { min(g+ £, ng - (T =2£))} < =

4,33
2 2 3 ( )
Q.E.D.
In decoding of B corrupted by an SDB error, we shall need the
following decoding rule in addition to Rule 1 and Rule 2.
Rule 3 After decoding of Y by the insertion at X(t), burst-
error correction of length 3g is made in Pt—l’ K¢ and Ht+l,'
When a burst-error correction in iO with no insertion is successful,

then decide that a burst error has occurred in HO and Hl'

In the following,as in Chapter 3, we denote the code CT by CTB

if the code CU is capable of detecting a single burst error of
length 3g or less.

Theorem 4.2 The code CIB can correct an SDB(s,b) error, s<D
and b=f+g+2D, provided that the relations (4.22) and T>9 hold.
(proof) -Detectability of deletion errors- TFrom Lemma 4.5, we see

that the code (., can detect an SDB(s,b) error, provided that the

TB

following relation holds;

ny + 3£
2

IA

nx-2f<n, - kg - f (4.34)

ie., T27.
-Correctability of SDB erron- By combining the proofs of Lemmas

4.4 and 4.5, the upper-bound on length p is given by

2ny + 3f

pimin{+f, ng- (t-2f, ny- (T-tH}<—=

C,t

(4.35)

for any insertion of §, 0<'s§D, and t, X(t)_i_z; where 7 denotes the

starting position of the additive burst error as shown in Figure 4.6.
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From (4.35) the length p is upper-bounded by (T-2)f, provided that
T>9.

After decoding of Y by an insertion of 8=s at X(t), there are
exactly four cases of the remaining burst error in V=B(s,£(t))WU as
shown in Figure 4.7. For the SDB error including $:o, there may
be no error in ito by the slippage and/or additive errors in spite
of possible errors existing in Pto—l and Hto' Thus there may
exist a burst error of length at most 2g in the three subblocks
Pt—l’ Ht and Ht+1 after decoding of Y by the insertion at X(t).
From Property 3.3 and Rule 3, we can decode V successfully,

completing the proof. ' Q.E.D.

4.3.3 Corfection of Either An SDB Error or SIB Error
The code CT can also correct a successive insertion error of s
bits (or an SI(g) error in abbreviated notatién). This can be
shown by simply translating deletions into insertions in the

previous sections. Note that a deletion of § at X(t) for an
SI(s) error is made by deleting BX(t)—g’ BX(t)—§+l’...’ BX(t)—Z

and BX(t)—l of B=A(+s,)). But in this case an inserted sequence
on the channel may appear in Y as a burst error. Especially an
SI(s) error imbedded within an additive burst error of length
b=f+g+2D or less (or an SIB(s,b) error in abbreviated notation)

incurs an additive burst error of length f4+s in Y. For a

received word B corrupted by an SIB(s,b) error, s<D and b=f+g+2D,
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the length of pseudo burst error in Y=[B+R]WX is given by

n,+3f+s

f+1<p< 2

(4.36)

Also by any deletion of § at X(t), the length of pseudo burst error

in Y=[B(—§,X(t))+R]WX is given by

2n +3f+s

f+1<p< 3

(4.37)

We see that from (4.36) the relation T>8 assures that the code CTB
can detect the SIB error and from (4.37) the relation T>10 assures
that the code CTB can correct the SIB error. Thus we have the

following theorem corresponding to Theorem 4.2.

Theorem 4.3 The code C can correct an SIB(s,b) error, s<D

TB
and b=f+g+2D, provided that the relations (4.22) and T>10 hold.

Note that Theorems 4.1, 4.2 and 4.3 hold true only if the
types of timing errors are limited to either deletion or imsertion
errors. However, when either deletion or insertion errors of
amount less than or equal to D occur in a received word, the code
CTB can detect such errors. Thus it is easy to see that the
upper-bound on the resultant amount of timing errors during the
decoding process is given by D, if the amounts of deletion and
insertion errors are limited to [D/2] or less, respectively. We
then have the following theorem.

Theorem 4.4 The code (... can correct either ab SDB(s,b)

TB
error or an SIB(s,b) error, s<[D/2], b=f+g+2D, in a received word,

provided that the relation (4.22) and T>10 hold.
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4.4 Efficiency and Example
We use a maximal length code as the code CX which satisfies

the following relation;

nx=2kx-l=f'1’ for f>ky, and T>8 (4.38)
In this case the polynomial H(z)=(1+znx)/GX(z) is the primitive
polynomial of degree ky, i.e., j=1 and el=2kX--1=nX in (4.22), which
implies that f<e1=nx. Therefore, we can always choose D=f-1 for
any maximal length code that satisfies (4.38).
We use an ideal burst-error correcting cyclic code in the

[15, pl10]

sense that it meets the Reiger bound in equality, i.e.,

m,-k,=2g as the (mu,ku) code CU' The coding rate of the code CT
is given by
R= (ky+ky) /N={ky+g(T-2)}/(ky+g+2D+1)T (4.39)

We can easily see that the following relation holds;

lim R = (T-2)/T (4.40)

g-—)-OO
If the code CT is used for a channel with SDB or SIB error,
then the code CU has the possibility of false correction because
after a successful decoding of Y there may exist a burst error of
length 2g or less in the three consecutive subblocks of V as stated
in the proof of Theorem 4.2. This event occurs if no error
exists in consecutive f components of X within an SDB or an SIB
error. Thus the probability of false correction of the code [

~U

is given by Z—f which is sufficiently small when £ > 1 holds.
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On the other hand, the code CTB where the code CU has 3g check
symbols has no possibility of false correction and the coding rate

in the limit of gy g given by (T-3)/T.

Example

1f we choose the shortest maximal length code as the code CX

which satisfies (4.38) and T>10, there is the (255, 8) code whose

255 2.3

generator polynomial is given by GX(z)=(1+z Y/H(z), H(z)=14+z"+2z"+

24+28_ In this case we have f=17, T=15 and D<16. If we use

a shortened Fire code as the code (

U and if we let g=2f and the

number of its check symbols be 3g, we can choose the generator

polynomial as GU(z)=(1+z+zz+227+z34)(1+268). The length of the
code CU is then 510, although the natural length of the Fire code
generated by GU(z) is about 1.2X1012. We then have the code CTB
whose parameters are N=825, b=55 and R~0.5 for D=2, or N=1245, b=83,

and R=0.33 for D=1l6.

4.5 Conclusion

We have constructed a new class of codes capable of correcting
either deletion or insertion errors together with an édditive burst
error in a received word. One of our results shows that a

maximal length code as the code [, can serve not only to maintain

X
bit-synchronization but also to transmit information, in a sharp

contrast with a usual comma code which is used only as a comma in

order to maintain word-synchronization. Furthermore, we have
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shown that the redundancy newly added for combatting with timing
errors can be made sufficiently small by reinforcing the

capabilities of the codes CX and CU'
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CHAPTER 5

CONCLUSION

We have constructed a new class of codes capable of
correcting timing errors besides additive errors. In this
chapter we shall summarize the principal results achieved in each
chapter.

In Chapter 1, the motivation of this research was given.

In Chapter 2, we have derived the coset codes which are
capable of correcting both a synchronization slippage and multiple
additive burst errors concurrently occurred in a received word,
and have derived the lower bounds on the redundancy of the coset
codes.

In Chapter 3, using the interleaved codes, we have constructed
a new class of codes having the property of generating a pseudo
burst error by which the decoder can detect the occurrence of a
deletion error.

In Chapter 4, we have improved the interleaved code derived in
Chapter 3 so that it is capable of correcting an arbitrary number
of successive deletion errors besides an additive burst error.

We then have shown that the interleaved code has also the
capability of correcting successive deletion or insertion errors
imbedded within an additive burst error. The efficiency of the

interleaved code has been given, which shows that the redundancy
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newly added for combatting with the timing errors can be made
sufficiently small by reinforcing the capabilities of the codes CX
and CU which constitute the interleaved code.

For the future communication network system using independent
clocking technique, the coding theoretical approach to compensate
the deviation in timing between each pair of the nodes and etc.
should be more and more explored. Berore completing this
dissertation, we sincerely wish the present work will be contributed

for realizing such future communication network.
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APPENDIX I

DECODING ALGORITHM OF THE CODE COT

Step I-1: De-interleave Y from B by Y=[B+R0]WoX and try to
correct an additive burst error of length f or less.
If no error is detected, or any burst-error correction is
successful, go to Step I-9. Otherwise, go to Step I-2.
Step I-2: Assume that a deletion error has occurred and proceed
to the deletion- and additive burst-error correction

procedure of Step I-3 through Step I-8.

Step I-3: Set t=1.

Step I-4: Obtain Y=[th+Ro]WoX, Xt=t(f+g+1)+1, by inserting
uXt—l between the (Xt—l)st and the Xtth position of B, and
then detect errors. If no error is detected, go to
Step I-9. Otherwise, go to Step I-5.

Step I-5: If t=T-1, go to Step I-6. Otherwise, increase t

by 1 and return to Step I-4,

Step I-6: Set t=l.

Step I-7: Obtain Y=[BX +Ro]WuX and then try to correct an
additive burst erior of length f or less in ¢t—l and ¢t'
If a burst—-error correction is successful, go to Step I-9.
Otherwise, go to Step I-8.

Step I-8: Increase t by 1 and return to Step I-7.
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Step 1I-9: When the transition from Step I-1 to this step is
made, de-interleave V from B by V=BW0U and decode V in an
ordinary way. If a burst—error correction in ¢O is
made, thgn assume that a burst error in HO and Hl‘has
occufred. When the transition from the deletion and
additive burst-error correction procedure of Step I-2
through Step I-8 to this step is made, de-interleave V

from B . Finally decode by trying to correct a
Ne A

a pseudo burst error of length 3g or less in Ht—l”*t and

P

Figure I.1 shows the flow-chart of the above decoding algorithm.
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Step 1I-1:

Step II-2:

Step II-3:

Step II-4:

APPENDIX 1II

DECODING ALGORITHM OF THE CODE CT

De-interleave Y from B by Y=[B+R]WX and try to
correct an additive burst error. If no error is
detected, or any burst-error correction of length f or
less is successful, go to Step II-6. Otherwise, go to
Step 1I-2,

Assume that timing errors have occurred and proceed
to both the deletion- and the insertion-error correction
procedures of Step II-3 through Step II-5.

Set 8=1 and t=1.

Obtain Y=[B(+8,R(t))4RIW_, A(t)=t(£+g+2D)4D, by
inserting a sequence of length S between the (i(t)—l)st
and the X(t)th position of B, and then try to correct a
burst error of length f or less in it—l and ¢t'

If a burst-error correction is successful, go to Step
I1-6. Otherwise, go to Step II-5.

At the same time, obtain Y=[B(—§,X(t))+R]WX by

deleting the (X(t)-g)th through the (X(t)—l)st components

of B, and then try to correct a burst error of length f

or less in it—l and ¢t' If a burst-error correction
is successful, go to Step II-6. Otherwise, go to
Step II-5.
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Step II-5: If s=[D/2], increase t by 1, set 8=1 and return to

Step II1-4. Otherwise, increase § by 1 and return to
Step II-4.
Step II-6: When the transition from Step II-1 to this step is

made, de-interleave V from B by V=BWU and decode V in an
ordinary way. If a burst-error correction in ¢O is
made, then assume that a burst error in HO and Hl has
occurred.

When the transition to this step from the timing-
error correction procedures of Step II-2 through Step II-5
is‘maae, de-interleave V from B(+§,X(t)) or B(-8,5(t))
depending upon the transition from Step II-4. Finally
decode V by trying to correct a pseudo burst error of
length 3g or less in Ht—l’ Ht and Ht+l'

Figure II.1 shows the flow-chart of the above decoding

algorithm.
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