Osaka University Knowledge Archive

Title	On finite groups with given conjugate types. II
Author(s)	Itô, Noboru
Citation	Osaka Journal of Mathematics. 1970, 7(1), p. 231-251
Version Type	VoR
URL	https://doi.org/10.18910/10804
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

ON FINITE GROUPS WITH GIVEN CONJUGATE TYPES II*

Dedicated to Professor Keizo Asano on his sixtieth birthday

Noboru ITO**

(Received December 11, 1969)

Let ©S be a finite group. Let $\left\{n_{1}, \cdots, n_{r}\right\}$ be the set of integers each of which is the index of the centralizer of some element of \mathbb{E} in (S). We may assume that $n_{1}>n_{2}>\cdots>n_{r}=1$. Then the vector (n_{1}, \cdots, n_{r}) is called the conjugate type vector of © \mathbb{C}. A group with the conjugate type vector (n_{1}, \cdots, n_{r}) is said to be a group of type $\left(n_{1}, \cdots, n_{r}\right)$.

In an earlier paper [5] we have proved that any group of type ($n_{1}, 1$) is nilpotent. In the present paper we want to prove the following theorem.

Theorem. Any group of type $\left(n_{1}, n_{2}, 1\right)$ is solvable.***
At few critical points the proof requires heavy group-theoretical apparatus.
Notation and Defination. Let $\mathbb{E S}$ be a finite group. $Z(\mathbb{S})$ is the center of (S). $Z_{2}(\mathbb{G})$ is the second center of $\mathbb{G} . ~ D(\mathbb{S})$ is the commutator subgroup of \mathbb{E}. $\Phi(\mathscr{S})$ is the Frattini subgroup of $\mathbb{C S}$. Let p be a prime. $O_{p}(\mathscr{S})$ is the largest normal p-subgroup of \mathbb{S}. $\quad F(\mathbb{S})$ is the Fitting subgroup of $\mathscr{S}\left(F(\mathbb{S})=\prod_{p} O_{p}(\mathbb{S})\right)$. Let \mathfrak{X} be a finite set. $|\mathfrak{X}|$ is the number of elements in $\mathfrak{X} .|\mathfrak{X}|_{p}$ is the highest power of p dividing $|\mathfrak{X}|$. $\pi(\mathbb{S})$ is the set of prime divisors of $|\mathbb{S}|$. If $\mathfrak{X} \subseteq \mathbb{E}$ and is non-empty, then $C(\mathfrak{X})$ is the centralizer of \mathfrak{X} in \mathbb{S}. If $\mathfrak{X}=\{X\}, C(\mathfrak{X})=$ $C(X)$. $\quad N(\mathfrak{X})$ is the normalizer of \mathfrak{X} in \mathscr{E}. Let \mathfrak{X} be a subgroup of \mathscr{E} and \mathfrak{Y} a subgroup of \mathfrak{X}. If $G^{-1} \mathfrak{Y} G \subseteq \mathfrak{X}(G \in \mathbb{E})$ implies that $G^{-1} \mathfrak{Y} G=\mathfrak{Y}$, we say that \mathfrak{Y}) is weakly closed in \mathfrak{X} with respect to \mathfrak{E}. (5) is called a Frobenius group, if \mathfrak{A} is a product of a normal subgroup \mathfrak{R} and a subgroup \mathfrak{S} such that no elements $(\neq E)$ of \mathfrak{R} and \mathfrak{S} commute one another. Let Σ be a group of automorphisms of \mathbb{C}. If every element $\sigma \neq 1$ of Σ leaves no element $(\neq E)$ of \mathbb{E} fixed, Σ is called regular. If all the Sylow subgroups of $(\mathbb{S}$ are cyclic, then $(\mathbb{S}$ is called a Z-group. $\operatorname{PGL}(2, q)$ and $\operatorname{PSL}(2, q)$ denote the projective general and special linear groups of degree 2 over the field of q-elements.

[^0]A proper subgroup \mathfrak{F} of \mathscr{S} is called fundamental, if there exists an element X of (5) such that $\mathfrak{F}=C(X)$. A fundamental subgroup \mathfrak{F} is called free, if \mathfrak{F} is not contained in and does not contain any other fundamental subgroup of \mathbb{E}. ${ }^{(5)}$ is called of type F, if all the fundamental subgroups of $\mathbb{C S}$ are free.

Let (5) be a group of type $\left(n_{1}, n_{2}, 1\right)$. If \mathfrak{F}_{1} and \mathfrak{F}_{2} are fundamental subgroups of $\mathscr{C S}$ such that $\mathfrak{F}_{1} \supsetneq \mathfrak{F}_{2}$, then \mathfrak{F}_{1} and \mathfrak{F}_{2} are called fundamental subgroups of \mathbb{E} of type 1 and of type 2 respectively.

1. Preliminaries

Let \mathbb{E} be a group of type $\left(n_{1}, n_{2}, 1\right)$ which is a counter-example of the least order against the theorem. Then $\mathbb{E S}$ is non-solvable.

Proposition 1.1. (Burnside). $|\pi(\mathbb{S})| \geq 3$.
Proof. ([3], p. 492]).
Proposition 1.2. $Z(\mathbb{G}) \cong \Phi(\mathbb{S})$.
Proof. Otherwise, there exists a proper subgroup \mathfrak{S} of $\mathbb{E S}$ such that $\mathscr{S}=Z(\mathscr{S}) \mathfrak{S}$. Let X be an element of \mathfrak{S}. Since $C(X) \supseteq Z(\mathbb{S})$, we have that (G): $C(X)=\mathfrak{g}: \mathfrak{S} \cap C(X)$. Hence \mathfrak{S} is a group of type $\left(n_{1}, n_{2}, 1\right)$. By the choice of $\mathscr{C S} \mathfrak{S}$ is solvable. Then \mathscr{C} is solvable against the assumption.

Proposition 1.3. For every prime divisor p of $|\mathbb{S}|$ there exists a p-element X such that $C(X) \neq \mathbb{G}$.

Proof. Otherwise, a Sylow p-subgroup \mathfrak{B} of \mathbb{E} is contained in $Z(\mathbb{B})$. By a theorem of Zassenhaus ([3], p. 126) there exists a Sylow p-complement of \mathbb{E}. Hence $\mathfrak{F} \subseteq \Phi(\mathbb{S})$. This contradicts Proposition 1.2.

Proposition 1.4. (Cf. [5], Proposition 1.1). Let \mathfrak{F} be a free fundamental subgroup of (5). Then \mathfrak{F} is either (i) abelian, or (ii) a non-abelian p-subgroup for some prime p, or (iii) a direct product of a non-abelian p-subgroup and the Sylow p-complement $\mathfrak{C}_{p} \neq \mathfrak{F}$ of $Z(\mathbb{S})$.

2. Case where (\mathcal{E} is of type F

In this section we assume that \mathbb{S} is of type F
Proposition 2.1. (S) contains no fundamental subgroup of prime power order.

Proof. Let \mathfrak{F} be a fundamental p-subgroup of $(\mathbb{S}$. Let $q(\neq p)$ be a prime divisor of $|\mathbb{B}|$ (Cf. Proposition 1.1) and let $X(\neq E)$ be an element of the center of a Sylow q-subgroup $\mathfrak{\Omega}$ of \mathbb{E}. Then $C(X)$ contains $\mathfrak{\Omega}$. Since $Z(\mathbb{S}) \subseteq \mathfrak{F}$,
$Z(\mathbb{S})$ is a p-group. Now let \mathfrak{F}_{1} be a fundamental subgroup of \mathscr{E} such that $\left|\mathfrak{F}_{1}\right| \neq|\mathfrak{F}|$. Then \mathfrak{F}_{1} contains a Sylow q-subgroup of $\mathbb{C S}$ for every $q(\neq p)$. By Propositions 1.1 and $1.4 \mathfrak{F}_{1}$ is abelian. Let \mathfrak{F} be a Sylow p-subgroup of (G). Then $\mathscr{G}=\mathfrak{F}_{1} \mathfrak{F}$, and hence $\mathscr{C S}$ is solvable (For instance, [4]). This is a contradiction.

Proposition 2.2. (\$) contains a fundamental subgroup which is of the form (iii) in Proposition 1.4.

Proof. Assume the contrary. Then by Propositions 1.4 and 2.1 all the fundamental subgroups of \mathbb{E} are abelian. The intersection of any two distinct fundamental subgroups of \mathscr{E} is equal to $Z(\mathbb{S})$. Hence $\mathbb{S} / Z(\mathscr{S})$ admits an abelian normal partition whose components are factor groups of fundamental subgroups of $\mathbb{C S}$ by $Z(\mathbb{B})$. Then by a theorem of Suzuki ([6], Theorems 2 and 3) $\mathbb{S} / Z(\mathbb{S})$ has the following structures: If $C(X Z(\mathbb{S}))$ is nilpotent for every involution $X Z(\mathbb{S})$ of $G / Z(\mathbb{S})$, then $\mathbb{E} / Z(\mathbb{E})$ is isomorphic to $\operatorname{PSL}(2, q)$. If $\mathscr{S} / Z(\mathbb{S})$ contains an involution $X Z(\mathscr{S})$ with non-nilpotent $C(X Z(\mathbb{S}))$, then $\mathscr{S} / Z(\mathscr{S})$ is isomorphic to $\operatorname{PGL}(2, q)$.

First assume that q is even. Then $\operatorname{PSL}(2, q)(=P G L(2, q))$ contains an involution whose centralizer is a 2 -group. Hence $(S S$ contains a 2 -element X such that $C(X) / Z(\mathbb{S})$ is a 2 -group. Let \mathfrak{F} be a fundamental subgroup of (S) such that $|\mathfrak{F}| \neq|C(X)|$. By Proposition $1.3|\mathfrak{F} / Z(\mathscr{S})|$ must be divisible by every odd prime divisor of $|\mathscr{C}|$. But $\operatorname{PSL}(2, q)$ contains no elements of order $a b$, where $a(\neq 1)$ and $b(\neq 1)$ are divisors of $q+1$ and $q-1$ respectively. This is a contradiction. So $q=p^{m}$ is odd. $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ contain p-elements whose centralizers are p-groups. Hence $(\mathbb{S}$ contains a p-element X such that $C(X) / Z(\mathbb{S})$ is a p-group. Let \mathfrak{F} be a fundamental subgroup of \mathbb{E} such that $|\mathfrak{F}| \neq|C(X)|$. By Proposition $1.3|\mathfrak{F} / Z(\mathbb{S})|$ must be divisible by every prime divisor of $|\mathbb{G}|$ other than p. Let a and b be odd prime divisors of $q+1$ and $q-1$ respectively. Then $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ contains no element of order $a b$. This is a contradiction. Therefore $q+1$ or $q-1$ is a power of 2 . But then $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ contain 2-elements whose centralizers are 2-groups. Hence $\mathbb{E S}$ contains a 2 -element Y such that $C(Y) / Z(\mathbb{S})$ is a 2-group. Since $|C(Y)=|\mathfrak{F}|$, this is a contradiction.

Let $\mathfrak{F}_{0}=\mathfrak{F}_{0} \times \mathbb{C}_{p}$ be a fundamental subgroup of $\mathbb{E S}$ which is of the form (iii) in Proposition 1.4; namely, \mathfrak{S}_{0} is the non-abelian Sylow p-subgroup of \mathfrak{F}_{0} and $\mathfrak{C}_{p} \neq \mathfrak{F}$ is the Sylow p-complement of $Z(\mathbb{S})$. So in this section p is fixed henceforth.

Proposition 2.3. Let \mathfrak{F}_{1} be a fundamental subgroup of (S) such that $\left|\mathfrak{F}_{1}\right| \neq$ $\left|\mathfrak{F}_{0}\right|$. Then \mathfrak{F}_{1} is abelian.

Proof. By Propositions 2.1 and 1.3, otherwise, \mathfrak{F}_{1} is a direct product of
a non-abelian q-subgroup and the Sylow q-complement $\mathfrak{C}_{q} \neq \mathfrak{F}$ of $Z(\mathbb{S})$. By Propositions 1.1 and 1.3 there exist a prime divisor r of $|\mathscr{S}|$ distinct from p and q and an r-element X of \mathbb{E} such that $C(X) \neq \mathbb{G}$. Then we obtain that $|C(X)|_{r}>$ $\left|\mathfrak{F}_{0}\right|_{r}$ and $|C(X)|_{r}>\left|\mathfrak{F}_{1}\right|_{r}$. This is a contradiction.

Proposition 2.4. Let \mathfrak{F}_{1} be a fundamental subgroup of $\mathbb{C S}$ such that $\left|\mathfrak{F}_{1}\right| \neq$ $\left|\mathfrak{F}_{0}\right|$. Let q be a prime divisor of $|\mathbb{(}|$ distinct from p. Let $\mathfrak{\Omega}_{1}$ be the Sylow q subgroup of \mathfrak{F}_{1} and $\mathfrak{\Omega}$ a Sylow q-subgroup of $\mathbb{C S}$ containing $\mathfrak{\Omega}_{1}$. If $\mathfrak{\Omega}$ is abelian, then $\mathfrak{Q}=\mathfrak{\Omega}_{1}$. If $\mathfrak{\Omega}$ is non-abelian, then $\mathfrak{Q}: \mathfrak{\Omega}_{1}=q$. Hence q^{2} does not divide $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ and $\mathscr{S}: N\left(\mathfrak{F}_{1}\right)$ is a power of p.

Proof. If \mathfrak{Q} is abelian, then by Proposition $1.3 \mathfrak{\Omega}=\mathfrak{\Omega}_{1}$. So let us assume that $\mathfrak{\Omega}$ is non-abelian. Then by Proposition $2.3 \mathfrak{\Omega}_{1} \subsetneq \mathfrak{Q}$, and hence $Z(\mathfrak{\Omega})=$ $\mathfrak{Q} \cap Z(\mathscr{S})$. Let X be an element of $Z_{2}(\mathfrak{Q})$ such that $X \notin Z(\mathfrak{Q})$ and $X^{q} \in Z(\mathfrak{Q})$. Then $C(X) \supseteq D(\mathfrak{Q})$. Take any element Y of $\mathfrak{\Omega}$. Then $Y^{-1} X Y=X Z$ with $Z \in$ $Z(\mathfrak{Q})$. Therefore $C(X)=C(X Z)=C\left(Y^{-1} X Y\right)=Y^{-1} C(X) Y$ and Y^{q} belongs to $C(X)$. Let $\mathfrak{\Omega}_{2}$ be the Sylow q-subgroup of $C(X)$. Then $N(C(X)$) contains $\mathfrak{\Omega}$ and $\mathfrak{Q} / \mathfrak{Q}_{2}$ is an elementary abelian q-group.

By Propositions 1.1 and 1.3 there exist a prime divisor r of $|C(X)|$ and the Sylow r-subgroup \Re_{2} of $C(X)$ such that $\Re_{2} \supsetneq Z(\mathscr{S}) \cap \Re_{2}$. We show that $\mathfrak{\Omega} / \mathfrak{N}_{2}$ can be considered as a regular automorphism group of $\Re_{2} / Z(\mathbb{S}) \cap \Re_{2}$. In fact, let us assume that there exist $W \in \mathfrak{Q}$ and $V \in \Re_{2}$ such that $W \notin \mathfrak{\Omega}_{2}, V \notin Z(\mathbb{S})$ $\cap \Re_{2}$ and $W^{-1} V W=V U$ with $U \in Z(\mathscr{S}) \cap \Re_{2}$. Then $[V, W]^{q}=\left[V, W^{q}\right]=E$ $=U^{q}$, which implies that $U=E$. Therefore W belongs to $C(V)=C(X)$, which is a contradiction. Hence $\mathfrak{Q} / \mathfrak{Q}_{2}$ is cyclic ([3], p. 499), and $\mathfrak{Q}: \mathfrak{Q}_{2}=q$. Therefore
 the contrary. Then there exist an element A of $\mathfrak{\Omega}$ and a Sylow r-subgroup \Re_{1} of \mathfrak{F}_{1} such that $\mathfrak{R}_{1} \neq A^{-1} \mathfrak{R}_{1} A$. Then an abelian group $\mathfrak{F}_{1}=C\left(\mathfrak{\Re}_{1}\right)$ contains \Re_{1} and $A^{-1} \mathfrak{R}_{1} A$ as its Sylow r-subgroups. Hence $\Re_{1}=A^{-1} \Re_{1} A$, which is a contradiction.

Proposition 2.5. Let \mathfrak{F}_{1} be a fundamental subgroup of $\mathbb{E S}$ such that $\left|\mathfrak{F}_{1}\right| \neq$ $\left|\mathfrak{F}_{0}\right|$. Then $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$ is not a p-group and has a square-free order.

Proof. In order to prove that $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ is square-free, it suffices to show that p^{2} does not divide $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ (Proposition 2.4). Let $\mathfrak{S}_{3}, \overline{\mathfrak{P}}_{1}, \mathfrak{B}_{1}$ and \mathfrak{S}_{p} be Sylow p-subgroups of $\mathfrak{G}, N\left(\mathfrak{F}_{1}\right)$, \mathfrak{F}_{1} and $Z(\mathscr{S})$ such that $\mathfrak{F} \supseteq \overline{\mathfrak{B}}_{1} \supseteq \mathfrak{F}_{1} \supseteq \mathfrak{S}_{p}$.

If $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$ is a p-group, then by Proposition 2.4 we have that $\mathbb{G}=\mathfrak{B} \mathfrak{F}_{1}$. Since \mathfrak{F}_{1} is abelian (Proposition 2.3), © is solvable (For instance, [4]). This is a contradiction.

Now assume that $\overline{\mathfrak{F}}_{1}: \mathfrak{F}_{1} \geq p^{2}$. If $\mathfrak{F}_{1} \supsetneq \mathfrak{S}_{p}$, then $C\left(\mathfrak{F}_{1}\right)=\mathfrak{F}_{1}$. Thus $\overline{\mathfrak{G}}_{1}$ is non-abelian. Then $Z\left(\mathfrak{B}_{1}\right)=Z(\mathscr{S}) \cap \mathfrak{F}$, and \mathfrak{F}_{1} contains an element X such that $X \in Z_{2}\left(\overline{\mathfrak{S}}_{1}\right), X \notin Z\left(\overline{\mathfrak{S}}_{1}\right)$ and $X^{p} \in Z\left(\overline{\mathfrak{F}}_{1}\right)$. As in the proof of Proposition 2.4 we
obtain that $\overline{\mathfrak{S}}_{1} / \mathfrak{F}_{1}$ is an elementary abelian p-group. By Propositions 1.1 and 1.3 there exist a prime divisor q of $\left|\mathfrak{F}_{1}\right|$ distinct from p and the Sylow q subgroup $\mathfrak{\Omega}_{1}$ of \mathfrak{F}_{1} such that $\mathfrak{\Omega}_{1} \neq Z(\mathscr{S}) \cap \mathfrak{\Omega}_{1}$. As in the proof of Proposition 2.4 we can show that $\overline{\mathfrak{B}}_{1} / \Re_{1}$ can be considered as a regular automorphism group of $\mathfrak{\Omega}_{1} / Z(\mathscr{S}) \cap \mathfrak{Q}_{1}$. Hence $\overline{\mathfrak{F}}_{1} / \mathfrak{F}_{1}$ is cyclic and $\overline{\mathfrak{F}}_{1}: \mathfrak{F}_{1}=p$, which is against the assumption. So we can assume that $\mathfrak{F}_{1}=\mathscr{S}_{p}$. As above $\overline{\mathfrak{F}}_{1} / \mathfrak{F}_{1}$ can be considered as a regular automorphism group of $\mathfrak{\Omega}_{1} / Z(\mathbb{S}) \cap \mathfrak{\Omega}_{1}$. Hence if p is odd, then $\overline{\mathfrak{B}}_{1} / \mathfrak{F}_{1}$ is cyclic. So $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$ is a Z-group. We already know that there exists a prime divisor r of $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ distinct from p. Let $\mathfrak{X} / \mathfrak{F}_{1}$ be a Hall $\{p, r\}$ subgroup of $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$. By Propositions 1.1 and 1.3 there exist a prime divisor q of $\left|\mathfrak{F}_{1}\right|$ distinct from p and r and a Sylow q-subgroup $\mathfrak{\Omega}_{1}$ of \mathfrak{F}_{1} such that $\mathfrak{Q}_{1} \neq Z(\mathbb{S}) \cap \mathfrak{\Omega}_{1}$. Then $\mathfrak{X} / \mathfrak{F}_{1}$ can be considered as a regular automorphism group of $\mathfrak{\Omega}_{1} / Z(\mathscr{S}) \cap \mathfrak{\Omega}_{1}$. So $\mathfrak{X} / \mathfrak{F}_{1}$ contains an element $Y \mathfrak{F}_{1}$ of order pr ([3], p. 499). Then $|C(Y)|_{p}>\left|\mathfrak{F}_{1}\right|_{p}$ and $|C(Y)|_{r}>\left|\mathfrak{F}_{0}\right|_{r}$. This is a contradiction. If $p=2$ and $\overline{\mathfrak{F}}_{1} / \mathfrak{F}_{1}$ is cyclic, we get a contradiction as above. Thus we may assume that $\overline{\mathfrak{B}}_{1} / \mathscr{F}_{1}$ is a (generalized) quaternion group. Let $I \mathscr{F}_{1}$ be an involution of $N\left(\mathfrak{F}_{1}\right) /$ \mathfrak{F}_{1}. Then for every element K of $\mathfrak{\Omega}_{1}$ we get that $I K I \equiv K^{-1}\left(\bmod . \mathfrak{\Omega}_{1} \cap Z(\mathbb{S})\right)$. Let $W \mathfrak{F}_{1}$ be an element of order r of $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$. Then we obtain that $I W^{-1} K W I$ $\equiv W^{-1} K^{-1} W \equiv W^{-1} I K I W\left(\bmod . \mathfrak{\Omega}_{1} \cap Z(\mathscr{S})\right)$. Put $\mathfrak{Y} / \mathfrak{N}_{1} \cap Z(\mathscr{S})=C\left(\mathfrak{\Omega}_{1} / \mathfrak{N}_{1} \cap\right.$ $Z(\mathbb{Y}))$. Then $\mathfrak{Y}: \mathfrak{F}_{1}$ equals a power of q and \mathfrak{Y} is normal in $N\left(\mathfrak{F}_{1}\right)$. Since $|W I \mathfrak{Y}|=2 r,|C(W I) / Z(\mathbb{B})| \equiv 0(\bmod 2 r)$. Then $|C(W I)|_{2}>\left|\mathfrak{F}_{1}\right|_{2}$ and $|C(W I)|_{r}$ $>\left|\mathfrak{F}_{0}\right|_{r}$. This is a contradiction.

Proposition 2.6. Let \mathfrak{F}_{1} be a fundamental subgroup of \mathbb{B} such that $\left|\mathfrak{F}_{1}\right| \neq$ $\left|\mathfrak{F}_{0}\right|$. Let q be a prime divisor of $|\mathfrak{S}|$ distinct from p. Let \mathfrak{Q}_{1} be the Sylow q-subgroup of \mathfrak{F}_{1} and $\mathfrak{\Omega}$ a Sylow q-subgroup of $\mathbb{E S}$ containing $\mathfrak{\Omega}_{1}$. If Ω_{1} is not weakly closed in Ω with respect to \mathbb{E}, then $\Omega / \Omega \cap Z\left(\mathbb{G}^{2}\right)$ is an elementary abelian q-group of order q^{2}.

Proof. This is obvious by Proposition 2.4.
Proposition 2.7. Let \mathfrak{F}_{1} be a fundamental subgroup of (SS such that $\left|\mathfrak{F}_{1}\right| \neq\left|\mathfrak{F}_{0}\right|$. Let q be a prime divisor of $|\mathfrak{G}|$ distinct from $p . \quad$ Let Ω, Ω_{1} and \mathfrak{S}_{q} be Sylow q-subgroups of $\mathfrak{S}, \mathfrak{F}_{1}$ and $Z(\mathbb{S})$ such that $\mathfrak{Q} \supseteq \mathfrak{N}_{1} \supseteq \mathfrak{S}_{q}$. Now if (S) contains a normal subgroup \mathfrak{S} of index q, then $\mathfrak{Q} / \mathfrak{\Omega} \cap Z(\mathscr{S})$ is an elementary abelian group of order q^{2}.

Proof. Since $\left|\mathfrak{F}_{0}\right|_{q} \doteq\left|\mathscr{S}_{q}\right|, \mathfrak{\Omega}_{1} \supsetneq \mathscr{S}_{q}$ by Proposition 1.3. Let \mathfrak{F}_{0} be a fundamental subgroup of $\mathscr{G S}$ such that $\left|\mathfrak{F}_{0}\right|=\left|\mathfrak{F}_{0}\right|$. By Proposition $1.2 \mathfrak{J}$ contains $Z(\mathbb{S})$. Thus \mathfrak{S} contains \mathfrak{F}_{0}. So if for every pair of fundamental subgroups \mathfrak{F}_{1} and \mathfrak{F}_{1} such that $\left|\mathfrak{F}_{1}\right|=\left|\mathfrak{F}_{1}\right| \neq\left|\mathfrak{F}_{0}\right|$ we have that $\mathfrak{S} \cap \mathfrak{F}_{1}=\mathfrak{K}$ $\cap \mathfrak{F}_{1}$, then \mathfrak{F} is of type $\left(n_{1}^{\prime}, n_{2}^{\prime}, 1\right)$. By the minimality of $\mathscr{C S} \mathfrak{S}$ is solvable, and hence $\mathscr{E S O}$ is solvable against the assumption. So there exists a pair of funda-
mental subgroups \mathfrak{F}_{1} and \mathfrak{F}_{1} such that $\left|\mathfrak{F}_{1}\right|=\left|\mathfrak{F}_{1}\right| \neq\left|\mathfrak{F}_{0}\right|$ and $\mathfrak{S} \supseteq \mathfrak{F}_{1}$ and $\mathfrak{F}_{1}: \mathscr{G}$ $\cap \mathfrak{F}_{1}=q$. This implies, in particular, that \mathfrak{Q} is non-abelian. Let $\hat{\mathfrak{N}}_{1}$ be the Sylow q-subgroup of $\mathfrak{\mathfrak { F }}_{1}$. We may assume that $\hat{\mathfrak{N}}_{1} \subseteq \mathfrak{\Omega}$. Then $\mathfrak{\Omega}_{1} \neq \hat{\mathfrak{Q}}_{1}$ and Ω_{1}
 group of order q^{2}.

Proposition 2.8. Let \mathfrak{F}_{1} be a fundamental subgroup of (5) such that $\left|\mathfrak{F}_{1}\right| \neq\left|\mathfrak{F}_{0}\right|$. Then $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ cannot be divisible by three distinct prime numbers q, r and s which are distinct from 2 and p.

Proof. Assume that $q>\boldsymbol{r}>\boldsymbol{s}$. Let $\mathfrak{X} / \mathfrak{F}_{1}$ be a Hall $\{r, s\}$-subgroup of $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$ (cf. Proposition 2.5). Let $\mathfrak{\Omega}_{1}$ be a Sylow q-subgroup of \mathfrak{F}_{1}. Then $\mathfrak{Q}_{1} \neq \mathfrak{N}_{1} \cap Z(\mathscr{S})$ (cf. Proposition 1.3). Now $\mathfrak{X} / \mathfrak{F}_{1}$ can be considered as a regular automorphism group of $\mathfrak{\Omega}_{1} / \mathfrak{\Omega}_{1} \cap Z(\mathbb{S})$ (cf. Proof of Proposition 2.4). So $\mathfrak{X} / \mathfrak{F}_{1}$ is cyclic ([3], p. 499). The same argument holds for any Hall $\{r, t\}$-or $\{s, t\}$-subgroup of $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$, where t is a prime divisor of $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ distinct from r and s. Thus $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$ is cyclic. Let \mathfrak{S} and \mathfrak{S}_{1} be Sylow s-subgroups of $N\left(\mathfrak{F}_{1}\right)$ and \mathfrak{F}_{1} respectively. Then \mathfrak{S} is a Sylow s-subgroup of \mathscr{S}. If \mathfrak{S}_{1} is weakly closed in \mathfrak{S} with respect to \mathscr{E}, then since s is odd and \mathscr{S}_{1} is abelian, $(\mathscr{S}$ contains a normal subgroup of index s ([2], p. 212). So by Propositions 2.6 and 2.7 we have that $\mathfrak{S}_{1}: Z(\mathscr{S}) \cap \mathfrak{S}_{1}=s$. Let \mathfrak{Q} be a Sylow q-subgroup of $N\left(\mathfrak{F}_{1}\right)$. Then $\mathfrak{Q} / \mathfrak{N}_{1}$ can be considered as a regular automorphism group of $\mathfrak{S}_{1} / Z(\mathbb{S})$ $\cap \mathbb{S}_{1}$. Since $q>s$, this is a contradiction.

Proposition 2.9. Let \mathfrak{F}_{1} be a fundamental subgroup of (5) such that $\left|\mathfrak{F}_{1}\right|$ $\neq\left|\mathfrak{F}_{0}\right|$. If $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ is even, then $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ cannot be divisible by two distinct prime numbers q, r which are distinct from 2 and p.

Proof. This is obvious by the proof of Proposition 2.8.
Remark. By Propositions $2.5,2.8$ and 2.9 we have that $N\left(\mathfrak{F}_{1}\right): \mathfrak{F}_{1}=q$ or $p q$ or $q r$ or $p q r$, where $q \neq r$ and $q \neq p \neq r$.

Proposition 2.10. Let \mathfrak{F}_{1} be a fundamental subgroup of $(\mathbb{S}$ such that $\left|\mathfrak{F}_{1}\right| \neq\left|\mathfrak{F}_{0}\right|$. Let $\mathfrak{F}, \mathfrak{S}_{1}$ and \mathfrak{S}_{p} be Sylow p-subgroups of $\mathbb{G}, \mathfrak{F}_{1}$ and $Z(\mathfrak{S})$ respectively, such that $\mathfrak{P} \supseteq \mathfrak{P}_{1} \supseteq \mathfrak{S}_{p}$. Then we have that $\mathfrak{\beta}_{1}=\mathfrak{S}_{p}$.

Proof. Assume that $\mathfrak{P}_{1} \supsetneq \mathbb{S}_{p}$. Then since $\mathfrak{\beta}$ is not abelian (Proposition 2.2), $C\left(\mathfrak{F}_{1}\right)=\mathfrak{F}_{1}$ and $N\left(\mathfrak{F}_{1}\right)=N\left(\mathfrak{F}_{1}\right) \supseteqq Z_{2}\left(\mathfrak{F}_{\mathfrak{F}}\right)$. Let \Re be the largest normal subgroup of \mathscr{S} contained in $N\left(\mathfrak{F}_{1}\right)$. Then since $\mathfrak{G}=\mathfrak{B} N\left(\mathfrak{F}_{1}\right)$ (Proposition 2.4), \Re contains $Z_{2}(\mathfrak{P})$. Let X be an element of $Z_{2}(\mathfrak{F})$ not belonging to $Z(\mathbb{S})$. Let \mathfrak{Q}_{1} be a Sylow q-subgroup of \mathfrak{F}_{1}. If X belongs to \mathfrak{F}_{1}, then $\mathfrak{F}_{1}=C(X)$ contains $D(\mathfrak{F})$, and $N\left(\mathfrak{F}_{1}\right)=N\left(\mathfrak{F}_{1}\right)$ contains \mathfrak{F}. This is a contradiction. Thus X does not belong to \mathfrak{F}_{1}. So $X Z(\mathbb{S})$ induces a regular automorphism on $\mathfrak{\Omega}_{1} / Z(\mathscr{S}) \cap \bigcap_{1}$.

Hence Ω contains $\mathfrak{\Omega}_{1}$. Therefore $\Omega: \Omega \cap \mathfrak{F}_{1}$ is a power of p, and Ω_{1} is the Sylow q-subgroup of the Fitting subgroup of \AA. Thus Ω_{1} is normal in (\$). Since $N\left(\mathfrak{\Re}_{1}\right)=N\left(\mathfrak{F}_{1}\right)$, this is a contradiction.

Proposition 2.11. p is odd.
Proof. Assume that $p=2$. Let $I Z(\mathbb{S})$ be an involution of $\mathbb{S} / Z(\mathbb{S})$ and put $C(I Z(\mathscr{S}))=\frac{\mathfrak{X}}{Z(\mathscr{S})}$. Then $\mathfrak{X}: C(I)$ is a power of 2 . Since $|C(I)|=\left|\mathfrak{F}_{0}\right|$ (Proposition 2.10), $C(I) / Z(\mathbb{S})$ is a 2-group. So $\frac{\mathfrak{X}}{Z(\mathbb{S})}$ is a 2-group. Therefore by a theorem of Suzuki ([9], Theorem 2) $\mathbb{E} / Z(\mathbb{S})$ possesses one of the following properties: (a) $(\mathbb{S} / Z(\mathbb{S})$ contains a normal Sylow 2 -subgroup. (b) $\mathfrak{P} Z(\mathbb{S}) / Z(\mathbb{S})$ is cyclic or (generalized) quaternion and if $X^{-1} \mathfrak{B} Z(\mathbb{S}) X \neq \mathfrak{F} Z(\mathbb{S})$, then $X^{-1} \mathfrak{B Z} Z(\mathbb{S}) X \cap \mathfrak{F} Z(\mathscr{S})=Z(\mathbb{S})$, where \mathfrak{P} is a Sylow 2-subgroup of \mathbb{E}. (c) $\mathbb{(S} / Z(\mathbb{F})$ contains two normal subgroups $\mathscr{S}_{1} / Z(\mathbb{G})$ and $\mathscr{S}_{2} / Z(\mathbb{S})\left(\mathbb{S}_{1} \supseteq \mathscr{S}_{2}\right)$ such that (i) a Sylow 2-subgroup of $\mathscr{S}_{2} / Z(\mathbb{S})$ is normal, (ii) \mathbb{S}_{2} : $\mathscr{S}_{1}=$ is odd, and (iii) $\mathscr{S}_{1} / \mathscr{G}_{2}$ is isomorphic to $\operatorname{PSL}(2, q)$ (q is a Fermat or a Mersenne prime) or $\operatorname{PSL}\left(2,3^{2}\right)$ or $\operatorname{PSL}\left(2,2^{m}\right)(m \geq 2)$ or $S(q)$ or $\operatorname{PSU}(3, q)(q>2)$ or $\operatorname{PSL}(3, q)$ $(q>2)$ or M_{q}; where $S(q), \operatorname{PSU}(3, q), \operatorname{PSL}(3, q)$ and M_{q} denote the Suzuki group, the 3-dimensional projective special unitary group, the 3-dimensional special linear group and the linear fractional group over the non-commutative nearfield of 9 elements respectively.

If $\mathscr{G} / Z(\mathscr{S})$ has Property (a), then \mathfrak{F} is normal in \mathscr{S}. Since $\mathscr{G}=\mathfrak{P} N\left(\mathfrak{F}_{1}\right)$, $\mathbb{S} / \mathfrak{F} \cong N\left(\mathfrak{F}_{1}\right) / \mathscr{F} \cap N\left(\mathfrak{F}_{1}\right)$. So $\mathbb{C B}$ is solvable against the choice of \mathbb{E} (Proposition 2.5). Suppose that $\mathbb{E} / Z(\mathbb{S})$ has Property (b). Since \mathfrak{S}_{0} is non-abelian (Proposition 2.2), $\mathfrak{B Z} Z(\mathbb{S}) / Z(\mathbb{S})$ is (generalized) quaternion. So \mathfrak{F} contains two elements A and B such that $A^{2^{m}} \equiv E B A^{-1} B \equiv A^{-1}, B^{2} \equiv A^{2^{m-1}}(\bmod Z(\mathfrak{F}))$. Put $B A^{-1} B=A^{-1} Z, Z \in Z(\mathfrak{F})$. Then since $C\left(B^{2}\right)$ contains A, we get that $C\left(B^{2}\right) \supsetneq C(B)$. Since $B^{2} \notin Z(\mathbb{F})$ and \mathbb{E} is of type F, this is a contradiction. So $\mathbb{E} / Z(\mathbb{C})$ has Property (c).

Suppose that $\mathscr{G}_{2} \neq Z(\mathbb{S})$. Let \mathfrak{F}_{2} be the Sylow 2-subgroup of \mathscr{S}_{2} and let \mathfrak{Q} be a Sylow q-subgroup of $N\left(\mathfrak{F}_{1}\right)$ not contained in \mathfrak{F}_{1} (Proposition 2.5). If $\mathfrak{B}_{2} \subsetneq Z(\mathbb{S})$, then $\mathfrak{Q} / \mathfrak{Q} \cap Z(\mathbb{F})$ can be considered as a regular automorphism group of $\mathfrak{B}_{2} / \mathfrak{F}_{2} \cap Z(\mathbb{S})$ (Proposition 2.10). So $\Omega / \mathfrak{Q} \cap Z(\mathbb{S})$ is cyclic ([3], p. 499), and \mathfrak{Q} is abelian. Then $\mathfrak{\Omega}$ is contained in \mathfrak{F}_{1} (Proposition 1.3), which is a contradiction. Thus \mathfrak{S}_{2} is contained in $Z(\mathbb{S})$ and $\mathscr{E}_{2} / Z(\mathbb{S})$ has an odd order. But then $\mathfrak{P} / \mathfrak{B} \cap Z(\mathbb{S})$ can be considered as a regular automorphism group of $\mathscr{S}_{2} / Z(\mathscr{S})$. So $\mathfrak{P} / \mathfrak{P} \cap Z(\mathscr{B})$ is cyclic or (generalized) quaternion. This leads to a contradiction, as above. Thus we get that $\mathscr{H}_{2}=Z(\mathbb{S})$.

It can be easily checked that $\operatorname{PSU}(3, q)$ and $\operatorname{PSL}(3, q)(q>2)$ contain involutions whose centralizers are not 2 -groups. Thus $\mathscr{S}_{1} / Z(\mathbb{S})$ is not isomorphic to $\operatorname{PSU}(3, q)$ nor $\operatorname{PSL}(3, q)(q>2)$. Now assume that $\mathscr{S}_{\mathscr{S}} \neq \mathscr{S}_{1}$. Then it can
be easily checked tha $\mathbb{S} / Z(\mathbb{S})$ contains an element of even order, which is not a power of 2. Thus we get that $\mathscr{G}=\mathscr{S}_{1}$. By the proof of Proposition 2.2 we can assume that $\mathbb{E} / Z(\mathbb{S})$ is isomorphic to $S(q)$ or $M_{9} . \quad S(q)$ contains no element of order $a b$, where a and b are prime divisors of $q^{2}+1$ and $q-1$ respectively (cf. [7]). $\quad M_{9}$ contains no element of order 15. This contradicts Proposition 1.3.

Proposition 2.12. A Sylow 2-subgroup $\mathfrak{\Omega}$ of \mathbb{E} is not abelian.

Proof. If \mathfrak{Q} is abelian, then we may assume that \mathfrak{Q} is contained in \mathfrak{F}_{1}. By a theorem of Feit-Thompson [1] $\mathfrak{Q} \neq \mathfrak{G}$. If $X^{-1} Z(\mathbb{S}) \mathfrak{Q} X / Z(\mathbb{S}) \cap Z(\mathbb{S}) \mathfrak{Q} / Z(\mathbb{S})$ $\neq Z(\mathbb{S})$, then choose an element Y of $X Z^{-1}(\mathscr{S}) \mathfrak{Q} X \cap \mathfrak{Q}$ not belonging to $Z(\mathbb{S})$. $C(Y)$ contains $X^{-1} \mathfrak{Q}$ and $\mathfrak{\Omega}$. Since $C(Y)$ is abelian (Proposition 2.3), we get that $X^{-1} \mathfrak{Q}=\mathfrak{Q}$. So by a theorem of Suzuki ([8], Theorem 2) $\mathbb{(S} / Z(\mathbb{S})$ possesses one of the following properties: (a) $\mathbb{G} / Z(\mathbb{F})$ contains a normal Sylow 2-subgroup. (b) $\mathfrak{Z}(\mathbb{S}) / Z(\mathbb{S})$ is cyclic or (generalized) quaternion. (c) $(\mathbb{S} / Z(\mathbb{S})$ contains two normal subgroups $\mathscr{S}_{1} / Z(\mathbb{S})$ and $\mathscr{S}_{2} / Z(\mathbb{S})$ such that (i) $\mathscr{S}_{2} / \mathscr{S}_{1}$ and $\mathfrak{S}_{2} / Z(\mathbb{F})$ have odd orders and (ii) $\mathscr{H}_{1} / \mathscr{G}_{2}$ is isomorphic to $\operatorname{PSL}(2, q)(q>3)$, $\operatorname{PSU}(3, q)(q>2)$ or $S(q)$.

If $\mathscr{S} / Z(\mathbb{S})$ has Property (a), then \mathfrak{Q} is normal in (5). Then $N(\mathfrak{Q})=N\left(\mathfrak{F}_{1}\right)$ $=(\mathscr{S}$, which implies the solvability of $\mathbb{E}($ Proposition 2.5). This is a contradiction. If $\mathbb{E} / Z(\mathbb{S})$ has Property (b), then, since \mathfrak{Q} is abelian, $\mathfrak{Q}(\mathscr{S}) / Z(\mathbb{S})$ is cyclic. Take a prime divisor r of $\left|N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ and an r-element R of $N\left(\mathfrak{F}_{1}\right)$ not belonging to \mathfrak{F}_{1}. Then $R \mathfrak{F}_{1}$ induces a regular automorphism of $\Omega / \Omega \cap Z(\mathscr{F})$, which is a contradiction. So $\mathbb{8} / Z(\mathbb{S})$ has Property (c).

Suppose that $\mathscr{S}_{2} \neq Z(\mathbb{S})$. Let \mathfrak{B}_{2} be a Sylow p-subgroup of \mathscr{S}_{2}. If $\mathfrak{F}_{2} \supsetneq Z(\mathbb{G})$, then we may assume that $N\left(\mathfrak{B}_{2}\right)$ contains Ω. Thus $\Omega / \mathfrak{Q} \cap Z(\mathbb{O})$ can be considered as a regular automorphism of $\mathfrak{F}_{2} / Z(\mathbb{F}) \cap \mathfrak{F}_{2}$. So $\mathfrak{Q} / \mathfrak{\Omega}$ $Z(\mathscr{S})$ is cyclic, which leads to a contradiction as above. Thus \mathfrak{F}_{2} is contained in $N\left(\mathfrak{F}_{1}\right)$ and \mathscr{G}_{2} is solvable. If \mathscr{S}_{2} is contained in \mathfrak{F}_{1}, then $\mathfrak{F}_{1}=C\left(\mathscr{S}_{2}\right)$ is normal in \mathscr{A}, which implies the solvability of \mathbb{E}. This is a contradiction. So \mathscr{A}_{2} is not contained in \mathfrak{F}_{1}. Take an element X of \mathscr{S}_{2} not belonging to \mathfrak{F}_{1}. Then $X \mathfrak{F}_{1}$ induces a regular automorphism of $\mathfrak{\Omega} / \mathfrak{Q} \cap Z(\mathbb{S})$. Hence \mathbb{S}_{2} contains $\mathfrak{\Omega}$, which is a contradiction. Thus we get that $\mathscr{S}_{2}=Z(\mathbb{S})$.

It can be easily checked that Sylow 2-subgroups of $\operatorname{PSU}(3, q),(q>2)$ and $S(q)$ are non-abelian. Thus $\mathbb{S}_{1} / Z(\mathbb{S})$ is isomorphic to $\operatorname{PSL}(2, q)$. Now if q is odd, then a Sylow 2-subgroup of $\operatorname{PSL}(2, q)$ is dihedral and contains its own centralizer (in $P S L(2, q)$). Since \mathfrak{Q} is abelian, we get that $\mathfrak{\Omega} / \mathfrak{Q} \cap Z(\mathbb{S})$ is elementary abelian of order 4. If q is even, then a Sylow 2-subgroup of $\operatorname{PSL}(2, q)$ is an elementary abelian 2-group of order q and coincides with its own centralizer (in $P S L(2, q)$). \quad Since $\mathfrak{F}_{1}=C(\mathfrak{Q})$, we get that $\mathfrak{F}_{1} \cap \mathscr{S}_{1}=\mathfrak{Q}(\mathbb{S})$.

If r is an odd prime divisor of $(q+1)(q-1)$ distinct from p, then let R be an r element of \mathscr{G}_{1} not belonging to $Z(\mathbb{S})$. We may assume that $\mathfrak{F}_{1}=C(R)$ and that $\mathfrak{F}_{1} \supseteq \mathfrak{\Omega}$. Since \mathfrak{F}_{1} is abelian, this is a contradiction. So we must have that $(q+1)(q-1)=2^{a} p^{\beta}$ with $\alpha, \beta \geqq 0$. Since $q>3$, if we put $q=l^{m}$, then $l \neq 2$ and $l \neq p$. Let L be an l-element of \mathscr{G}_{1} not belonging to $Z(\mathbb{S})$. We may assume that $\mathfrak{F}_{1}=C(L)$ and that $\mathfrak{F}_{1} \supseteq \mathfrak{\Omega}$. Since \mathfrak{F}_{1} is abelian, this is a contradiction.

Remark. By the remark after Proposition 2.9 and by Proposition 2.12 we have that $N\left(\mathfrak{F}_{1}\right): \mathfrak{F}_{1}=2$ or $2 p$ or $2 q$ or $2 p q$, where q is an odd prime distinct from p.

Proposition 2.13. We have that $N\left(\mathfrak{F}_{1}\right): \mathfrak{F}_{1}=2$ or $2 q$.
Proof. If $N\left(\mathfrak{F}_{1}\right): \mathfrak{F}_{1}=2 p$, then $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$ can be considered as a regular automorphism group of $\mathfrak{\Omega}_{1} / \mathfrak{\Omega}_{1} \cap Z(\mathbb{S})$, where $\mathfrak{\Omega}_{1}(\neq \mathfrak{F})$ is a Sylow q-subgroup of \mathfrak{F}_{1} (By Proposition 1.1 there exists such a prime q). Thus $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$ is cyclic and there exists an element of order $2 p$ of $\mathscr{H} / Z(\mathscr{S})$. This is a contradiction (Proposition 2.10). The case $N\left(\mathfrak{F}_{1}\right): \mathfrak{F}_{1}=2 p q$ can be treated in the same way.

Proposition 2.14. For any subgroup \mathfrak{X} of $\mathfrak{E s}$ put $\overline{\mathfrak{X}}=\mathfrak{X} Z(\mathscr{S}) / Z(\mathscr{S})$. $\quad N(\overline{\mathfrak{F}})$ is a Frobenius group with $\overline{\mathfrak{B}}$ as its kernel, where \mathfrak{F} is a Sylow p-subgroup of \mathbb{B}.

Proof. (S) is not p-nilpotent. In fact, if so, $N\left(\mathfrak{F}_{1}\right)$ is normal in $\mathfrak{C s}$ (Proposition 2.13), which implies the solvability of $\mathbb{E S}$ against the choice of \mathbb{F}. Hence $\overline{(\mathbb{S}}$ also is not p-nilpotent. Thus by a theorem of Frobenius ([3], p. 436) there exists a non-trivial subgroup $\overline{\mathfrak{S}}$ of $\overline{\mathfrak{S}}$ such that $N(\overline{\mathfrak{D}}) / C(\overline{\mathfrak{y}})$ is not a p group. We choose $\overline{\mathscr{F}}$ so that $|\overline{\mathfrak{E}}|$ is as big as possible. We show that $\overline{\mathfrak{E}}=\overline{\mathfrak{S}}$. Assume that $\overline{\mathfrak{~} \subseteq \bar{\Im}}$. First we notice that $C(\overline{\mathfrak{S}})$ is a p-group. In fact, otherwise, there exist a p-element X not belonging to $Z(\mathbb{S})$ and an element Y which does not belong to $Z(\mathbb{S})$ and has order prime to p, such that $X Y=Y X$. This contradicts Proposition 2.10. Then we get that $C(\overline{\mathfrak{~}}) \subseteq \overline{\mathscr{L}}$. Otherwise, notice that $N(C(\overline{\mathfrak{F}}), \overline{\mathfrak{E}}) \supseteq N(\overline{\mathfrak{V}})$ and $C(C(\overline{\mathfrak{V}}) \overline{\mathfrak{V}}) \subseteq C(\overline{\mathfrak{y}})$, which contradicts the choice of $\overline{\mathfrak{S}}$. Let $\overline{\mathfrak{D}}$ be a Sylow q-subgroup of $N(\overline{\mathfrak{S}})$, where $q \neq p$, and consider $\mathfrak{\nwarrow} \bar{D}$. Then the above argument shows that $\overline{\mathfrak{D}}$ can be considered as a regular automorphism group of $\overline{\mathfrak{\varrho}}$. Hence $\bar{\Omega}$ is cyclic or (generalized) quaternion ([3], p. 499). Suppose that $\overline{\mathfrak{}}$ is (generalized) quaternion. Then $\overline{\mathfrak{}}$ contains two elements A and B such that $|A Z(\mathbb{S})|=4$ and $B^{2}=A^{2} Z_{1}, B A^{-1} B=A^{-1} Z_{2}$ with $Z_{1}, Z_{2} \in Z(\mathbb{F})$. Then $\mathscr{G} \supsetneq C\left(B^{2}\right) \supseteq C(B)$. Since (S) is of type F, this is impossible. So $\overline{\mathfrak{}}$ is cyclic. By a theorem of Feit-Thompson [1] $N(\overline{\mathfrak{E}})$ is solvable. So let $\overline{\mathfrak{S}}^{*}$ and $\overline{\mathfrak{X}}$ be a Sylow p-subgroup and a Sylow p-complement of $N(\overline{\mathfrak{E}})$
 There exists a non-trivial cyclic subgroup $\overline{\mathscr{Y}}$ of $\overline{\mathfrak{X}}$ such that $\overline{\mathcal{S}} \bar{y}$ is normal
in $N(\overline{\mathfrak{y}})$. By a theorem of Sylow we obtain that $N(\overline{\mathfrak{E}})=\overline{\mathfrak{y}} \cdot N(\overline{\mathfrak{Y}}) \cap N(\overline{\mathfrak{E}})$. Therefore there exist an abelian subgroup \mathfrak{Y} which is not contained in $Z(\mathbb{S})$ and has order prime to p and a p-element Z not belonging to $Z(\mathbb{F})$ such that Z normalizes \mathfrak{Y}. Let Y be an element of \mathfrak{Y} not belonging to $Z(\mathbb{O})$. Then $C(Y)$ and $C\left(Z Y Z^{-1}\right)=Z^{-1} C(Y) Z$ contains \mathfrak{Y}. Thus we get that $C(Y)=Z^{-1} C(Y) Z$ (Proposition 2.3). This contradicts Proposition 2.13. So we must have that $\overline{\mathfrak{S}}=\overline{\mathfrak{F}}$.

Let $\overline{\mathfrak{X}}=\mathfrak{X} / Z(\mathbb{F})$ be a Sylow p-complement of $N(\overline{\mathfrak{B}})$. Then, as above, $\overline{\mathfrak{X}}$ can be considered as a regular automorphism group of $\overline{\mathfrak{S}}$. Thus $N(\overline{\mathfrak{P}})$ is a Frobenius group with $\overline{\mathcal{P}}$ as its kernel.

Proposition 2.15. Let \bar{X} be an element of $\overline{(G)}=(\mathbb{S} / Z(\mathbb{S})$ whose order is divisible by p. Then \bar{X} is a p-element.

Proof. Otherwise, put $\bar{X}=\bar{Y} \bar{Z}=\bar{Z} \bar{Y}$, where \bar{Y} is a p-element and \bar{Z} is an element whose order is prime to p. We may assume that \bar{Y} belongs to $\overline{\mathfrak{G}}$ (in Proposition 2.14). Then $\bar{Z}^{-1} \overline{\mathfrak{S}} \bar{Z} \neq \overline{\mathfrak{B}}$ (Proposition 2.14) and $\bar{Z}^{-1} \overline{\mathfrak{F}} \bar{Z} \cap \overline{\mathfrak{B}} \ni \bar{Y} \neq \bar{E}$. Let $\overline{\mathfrak{D}}=\overline{\mathfrak{B}} \cap \bar{W}^{-1} \overline{\mathfrak{G}} \bar{W}$ be a maximal intersection of $\overline{\mathfrak{G}}$ with other Sylow p subgroups. Then $\bar{D} \neq \overline{\mathscr{C}}$ and a Sylow p-subgroup of $N(\overline{\mathfrak{D}})$ is not normal in $N(\bar{D})([10]$ p. 138). This leads to a contradiction as in the proof of Proposition 2.14.

Proposition 2.16. Sylow p-subgroups of $\overline{\mathbb{E}}$ are independent, namely if $\bar{X}^{-1} \overline{\mathfrak{B}} \bar{X} \neq \overline{\mathfrak{F}}$, then $\bar{X}^{-1} \overline{\mathfrak{S}} \bar{X} \cap \overline{\mathfrak{B}}=\overline{\mathfrak{C}}$.

Proof. This is obvious from the proof of Proposition 2.15.
Proposition 2.17. Let X be an element of (S) not belonging to $Z(\mathbb{S})$ whose order is prime to p. Then $C(X)$ is conjugate with \mathfrak{F}_{1} in $(\mathscr{F}$.

Proof. If there exists a prime divisor r of $\left|\mathfrak{F}_{1}\right|$ distinct from 2 and q, then let \mathfrak{R} be a Sylow r-subgroup of \mathfrak{F}_{1}. Then $C(\mathfrak{R})=\mathfrak{F}_{1}$ and \mathfrak{R} is a Sylow r subgroup of \mathbb{E} (Proposition 2.13). $C(X)$ is abelian and contains $Y^{-1} \mathfrak{R} Y$ for some $\quad Y \in \mathbb{B}$. Thus $C(X)=C\left(Y^{-1} \mathfrak{R} Y\right)=Y^{-1} C(\Re) Y=Y^{-1} \mathfrak{F}_{1} Y$. The same argument holds if \mathfrak{F}_{1} contains a Sylow subgroup of \mathbb{E}. Therefore by Proposition 2.13 we may assume that \mathfrak{F}_{1} is a $\{2, q\}$-group and that $N\left(\mathfrak{F}_{1}\right): \mathfrak{F}_{1}=2 q$. Let $\mathfrak{S}, \mathfrak{S}_{1}, \mathfrak{S}_{X}$ be Sylow 2 -subgroups of $N\left(\mathfrak{F}_{1}\right), \mathfrak{F}_{1}$ and $C(X)$ respectively. We may assume that $\mathfrak{S} \supseteq \mathfrak{S}_{1}, \mathfrak{S} \supseteq \mathfrak{S}_{X}$ and $\mathfrak{S}_{1} \neq \mathfrak{S}_{X}$. Since $\mathfrak{S}_{1} \cap \mathfrak{S}_{X} \subseteq Z(\mathbb{S})$, we obtain that $\mathfrak{S}_{1}: Z(\mathscr{S}) \cap \mathfrak{S}_{1}=2$. Now let \mathfrak{Q} and \mathfrak{Q}_{1} be Sylow q-subgroups of $N\left(\mathfrak{E}_{1}\right)$ and \mathfrak{F}_{1} respectively. Then $\mathfrak{Q} / \mathfrak{Q}_{1}$ can be considered as a regular automorphism group of $\mathfrak{S}_{1} / Z(\mathscr{S}) \cap \mathfrak{S}_{1}$. This is a contradiction.

Now we count the number of elements in $\overline{\mathbb{S}}$. Put $|\overline{\mathfrak{B}}|=p^{a},\left|N\left(\overline{\mathfrak{F}}_{1}\right)\right|=x$, $\left|\widetilde{\mathscr{F}}_{1}\right|=y$, and $|N(\overline{\mathfrak{S}})|=p^{a} z$. By Propositions 2.15 and 2.16 there exist $\frac{x}{z}\left(p^{a}-1\right)$
elements $(\neq \bar{E})$ of \mathscr{S} whose orders are prime to p. Thus we obtain that

$$
\begin{equation*}
p^{a}=x \frac{x}{z}\left(p^{a}-1\right)+p^{a}(y-1)+1 \tag{*}
\end{equation*}
$$

From (*) we obtain that

$$
x<\frac{x}{z}+y
$$

Since y and z are divisors of x, it is only possible when either $z=1$ or $y=x$. By Proposition 2.13 we have that $y \neq x$. By Proposition 2.14 we have that $z \neq 1$.

Thus (${ }^{5}$ cannot be of type F.

3. Case where G is not of type F

In this section \mathbb{S} is not of type $F($ See $\S 2)$. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be fundamental subgroups of $\mathfrak{C s}$ such that $\mathfrak{F}_{1} \supseteq \mathfrak{F}_{2}$.

Proposition 3.1. $\left|\mathfrak{F}_{1}\right|$ is divisible by every prime divisor p of $|\mathbb{\$}|$.
Proof. This is obvious by Proposition 1.3.
Proposition 3.2. If \mathfrak{F} is a free fundamental subgroup of $\left(\mathbb{S}\right.$ with $|\mathfrak{F}|=\left|\mathfrak{F}_{1}\right|$, then \mathfrak{F} is abelian.

Proof. If \mathfrak{F} is of type (iii) in Proposition 1.4, then $\left|\mathfrak{F}_{1}\right|_{q}=\left|\mathfrak{S}_{q}\right|$, where \mathfrak{S}_{q} is the Sylow q-subgroup of $Z(\mathscr{C})$ with $q \neq p$. This contradicts Proposition 1.3.

Proposition 3.3. $\left|\mathfrak{F}_{2}\right|$ is divisible by every prime divisor p of $|\mathbb{S}|$.
Proof. Suppose that there exists a prime divisor p of $|\mathfrak{G}|$ which does not divide $\left|\mathfrak{F}_{2}\right|$. Since $Z(\mathscr{G}) \cong \mathfrak{F}_{2},|Z(\mathbb{S})| \equiv 0(\bmod . p)$. Let $X \neq E$ be an element of $Z(\mathfrak{F})$, where \mathfrak{F} is a Sylow p-subgroup of \mathscr{E}. Then we have that $|C(X)|$ $=\left|\mathfrak{F}_{1}\right|$. If $C(X)$ is of type 1 , then X belongs to a fundamental subgroup of type 2 contained in $C(X)$. Then $\left|\mathfrak{F}_{2}\right| \equiv 0(\bmod . p)$ against the assumption. So $C(X)$ is free, and by Proposition $3.2 C(X)$ is abelian. Since $|C(X)|=\left|\mathfrak{F}_{1}\right|$ and $C(X) \supseteq \mathfrak{F}$, we may assume that $\mathfrak{F} \subseteq \mathfrak{F}_{1}$. But then $C(X) \supseteq Z\left(\mathfrak{F}_{1}\right)$ and $C(X)=\mathfrak{F}_{1}$. This is a contradiction.

Proposition 3.4. We may choose \mathfrak{F}_{2} so that there exist (at most) two primes p and q such that \mathfrak{F}_{2} is a direct product of $a\{p, q\}$-Hall subgroup and an abelian $\{p, q\}$-Hall complement.

Proof. We can find a p-element X with $C(X)=\mathfrak{F}_{1}$ for some prime p. Assume that for any other prime q and for any q-element Y of \mathfrak{F}_{1} we have that
$C(Y) \supseteqq \mathfrak{F}_{1}$. Then \mathfrak{F}_{1} is a direct product of a Sylow p-subgroup and an abelian Sylow p-complement. Hence the same is true for \mathfrak{F}_{2}. So we may assume that there exists a prime $q\left(\neq \mathfrak{p}_{1}\right)$ and a q-element Y of \mathfrak{F}_{1} such that $C(Y) \not \equiv \mathfrak{F}_{1}$. Then we can choose $C(X Y)$ as \mathfrak{F}_{2} with the claimed property.

Proposition 3.5. $\left|\mathfrak{F}_{2}\right| Z(\mathbb{(}) \mid$ is divisible by every prime divisor p of $\mid(\mathbb{S} \mid$.
Proof. Let \mathfrak{B}_{2} be a Sylow p-subgroup of \mathfrak{F}_{2}. Assume that \mathfrak{F}_{2} is contained in $Z(\mathscr{F})$. Let \mathfrak{B}_{1} be a Sylow p-subgroup of \mathfrak{F}_{1} containing \mathfrak{P}_{2}. Then by Proposition 1.3 we have that $\mathfrak{\beta}_{1} \supsetneq \mathfrak{\Re}_{2}$. Let Y be an element of $\mathfrak{\Re}_{1}$ not belonging to \mathfrak{B}_{2}. Then $|C(Y)|=\left|\mathfrak{F}_{1}\right|$ and, since $\mathfrak{F}_{2} \supseteq Z\left(\mathfrak{F}_{1}\right), C(Y)$ must be free. By Proposition 3.2 $C(Y)$ is abelian. Since $C(Y) \supseteqq Z\left(\mathfrak{F}_{1}\right), \mathfrak{F}_{1}=C(Y)$. This is a contradiction.

Proposition 3.6. Every fundamental subgroup \mathfrak{F}_{2} of type 2 is nilpotent.
Proof. If there exists a p-element X with $C(X)=\mathfrak{F}_{2}$, then \mathfrak{F}_{2} is a direct product of a Sylow p-subgroup and an abelian Sylow p-complement of \mathfrak{F}_{2} (cf. the proof of Proposition 3.4). So we may assume that there exists no element X of a prime power order such that $C(X)=\mathfrak{F}_{2}$.

Let X be a p-element of \mathfrak{F}_{1} with $C(X)=\mathfrak{F}_{1}$, where $\mathfrak{F}_{1} \supsetneq \mathfrak{F}_{2}$. Let Y be an element of the least order of \mathfrak{F}_{2} such that $C(Y)=\mathfrak{F}_{2}$. Put $\pi(|Y|)=\{q, r, \cdots\}$. Then $|\pi(|Y|)| \geq 2$. Put $Y=Y_{q} Y_{r} \cdots$, where $Y_{q} \neq E, Y_{r} \neq E \cdots$ are $q-, r-, \cdots$ elements which are commutative with each other. Then by assumption $C\left(Y_{q}\right) \supseteqq \mathfrak{F}_{2}$ for each q in $\pi(|Y|)$. If $C\left(Y_{q}\right)=\mathbb{S}$, then $\mathfrak{F}_{2}=C(Y)=C\left(\underset{r \neq q}{ } \prod_{q} q Y_{q}\right)$, which contradicts the choice of Y. So we get that $\left|C\left(Y_{q}\right)\right|=\left|\mathfrak{F}_{1}\right|$. Assume that $q \neq p$. Then $\mathfrak{F}_{1} \supseteqq C\left(X Y_{q}\right) \supseteqq \mathfrak{F}_{2}$. If for every $q \neq p$ we have that $\mathfrak{F}_{1}=C\left(X Y_{q}\right)=C\left(Y_{q}\right)$, and if $\mathfrak{F}_{1}=C\left(Y_{p} Y_{q}\right)$ provided that p belongs to $\pi(|Y|)$, then $\mathfrak{F}_{1}=\mathfrak{F}_{2}$, which is a contradiction. So we may assume that either for some $q C\left(X Y_{q}\right)=\mathfrak{F}_{2}$ or $\mathfrak{F}_{2}=C\left(Y_{p} Y_{q}\right)$. Thus, in any case, \mathfrak{F}_{2} is a direct product of a Hall $\{p, q\}$-subgroup and an abelian Hall $\{p, q\}$-complement (Proposition 3.4).

Let $r \neq p, q$ and let Z be an r-element of \mathfrak{F}_{2} with $C(Z) \neq(5)$ (Proposition 3.5). Then we may assume that $C(Z)=\mathfrak{F}_{1}$. In fact, otherwise, $\mathfrak{F}_{1} \supseteqq C(X Z) \supseteqq \mathfrak{F}_{2}$ and hence, $C(X Z)=\mathfrak{F}_{2}$. Then \mathfrak{F}_{2} is a direct product of a Hall $\{p, r\}$-subgroup and an abelian Hall $\{p, r\}$-complement of \mathfrak{F}_{2} (Proposition 3.4). Since $q \neq r$, \mathfrak{F}_{2} is then nilpotent. So $C(Z)=\mathfrak{F}_{1}$. Then the above argument shows that there exists a prime $s \neq r$ such that \mathfrak{F}_{2} is a direct product of a Hall $\{r, s\}$-subgroup and an abelian Hall $\{r, s\}$-complement. Since $\{p, q\} \neq\{r, s\}$, this implies that \mathfrak{F}_{2} is nilpotent.

Proposition 3.7. No Sylow subgroup $(\neq \mathfrak{F})$ of $\mathscr{C S}$ is contained in \mathfrak{F}_{2}.
Proof. Let \mathfrak{F} be a Sylow p-subgroup ($\neq \mathfrak{F}$) of $(\mathscr{S}$. Assume that \mathfrak{B} is
contained in \mathfrak{F}_{2}. Then every element of \mathbb{E} belongs to some conjugate subgroup of $C(\mathfrak{F})$ (Proposition 3.6). This implies that $\mathscr{S}=C(\mathfrak{P})$ and $\mathfrak{F} \subseteq Z(\mathscr{S})$ contradicting Proposition 1.3.

Remark. For every prime divisor p of $|\mathbb{S}|$ we have that p^{2} divides |(S)|. This is obvious by Propositions 3.5 and 3.7.

Definition 3.8. Let $\mathfrak{F}_{1}=C(X)$ with a p-element X. Then \mathfrak{F}_{1} is called-p-singular if $Z\left(\mathfrak{F}_{1}\right) / Z(\mathbb{S})$ is a p-group.

Proposition 3.9. Let \mathfrak{X} be a finite group and \mathfrak{C} a Sylow p-subgroup of \mathfrak{X}. Let \mathfrak{Y} be a p-subgroup of \mathfrak{X} such that $\mathfrak{Y} \supseteq D(\mathbb{S})$. Then there exists a Sylow psubgroup \mathfrak{I} of \mathfrak{X} such that $\mathfrak{T} \supseteq \mathfrak{Y} \supseteq D(\mathfrak{I})$.
 $\mathfrak{Y}: \mathfrak{Y} \cap \mathfrak{I}$ is the least. We show that $\mathfrak{V}=\mathfrak{Y} \cap \mathfrak{I}$. Assume that $\mathfrak{Y}: \mathfrak{Y} \cap \mathfrak{I} \neq 1$.

Since $\mathfrak{Y} \cap \mathfrak{I} \supseteq D(\mathfrak{T}), N(\mathfrak{Y} \cap \mathfrak{I})$ contains \mathfrak{I}. Put $\mathfrak{B}=\mathfrak{Y} \cap N(\mathfrak{Y} \cap \mathfrak{I})$. Then $\mathfrak{Z} \supsetneq \mathfrak{Y} \cap \mathfrak{I}$. If $N(\mathfrak{Y} \cap \mathfrak{I})=\mathfrak{X}$, then $\mathfrak{V} \cap \mathfrak{I} \supseteq G^{-1} D(\mathfrak{I}) G$ for all $G \in \mathfrak{X}$. This contradicts the assumption $\mathfrak{Y}: \mathfrak{Y} \cap \mathfrak{I} \neq 1$. So we must have that $N(\mathfrak{Y} \cap \mathfrak{I}) \neq \mathfrak{X}$. Then by an induction argument with respect to $|\mathfrak{X}|$ we may assume that there exists a Sylow p-subgroup \mathfrak{U} of $N(\mathfrak{Y} \cap \mathfrak{I})$ such that $\mathfrak{u} \supseteq \mathfrak{Z} \supseteq D(\mathfrak{U})$. But \mathfrak{U} is a Sylow p-subgroup of \mathfrak{X} and $\mathfrak{Y} \cap \mathfrak{U} \supseteq \mathfrak{B} \supsetneq \geqslant \supseteq \mathfrak{I}$. This is a contradiction.

Proposition 3.10. Let \mathfrak{F}_{1} be a fundamental subgroup of type 1. Let q be a prime divisor of $\left(\mathbb{5}: \mathfrak{F}_{1}\right.$. If there exists no q-singular fundamental subgroup of \mathfrak{G}, then q^{2} does not divide $\left(\mathfrak{G}: \mathfrak{F}_{1}\right.$.

Proof. Let \mathfrak{Q} and \mathfrak{Q}_{1} be Sylow q-subgroups of $\mathfrak{G S}$ and \mathfrak{F}_{1} such that $\mathfrak{Q} \supseteq \mathfrak{\Omega}_{1}$. Then $Z(\mathfrak{Q}) \cong Z(\mathscr{S})$ and $\mathfrak{\Omega}$ is not abelian by Proposition 1.2. Let X be an element of $Z_{2}(\mathfrak{Q})$ not belonging to $Z(\mathfrak{Q})$ and $X^{q} \in Z(\mathfrak{Q})$. Let Y be an element of $\mathfrak{\sim}$. Then $Y^{-1} X Y=X Z$ with $Z \in Z(\mathbb{S})$. Thus $C\left(Y^{-1} X Y\right)$ $=Y^{-1} C(X) Y=C(X)$ and $Y^{-q} X^{-1} Y^{q} X=Y^{-1} X^{-q} Y X^{q}=E$. Therefore \mathfrak{Q} is contained in $N\left(C(X)\right.$) and $\mathfrak{Q} / \mathfrak{\Omega}_{X}$ is an elementary abelian q-group, where $\mathfrak{\Omega}_{X}$ $=\mathfrak{Q} \cap C(X)$ is a Sylow q-subgroup of $C(X)$. If $|C(X)|=\left|\mathfrak{F}_{2}\right|$, then by Pro position 3.6 or Proposition 1.4 $C(X)$ is nilpotent. If $\mathfrak{Q} / \mathfrak{N}_{X}$ can be considered as a regular automorphism group of $\Re_{X} / Z(\mathbb{S}) \cap \Re_{X}$, where \Re_{X} is a Sylow r subgroup of $C(X)$ and $r \neq q$, then $\Omega / \mathfrak{\Omega}_{X}$ is cyclic ([3], p. 499) and $\mathfrak{\Omega}: \mathfrak{\Omega}_{X}=q$ (Cf. Proposition 3.5). If Ω / Ω_{X} is not regular as an automorphism group of $\Re_{X} / Z(\mathbb{S}) \cap \Re_{X}$, there exists an r-element Y in \Re_{X} not belonging to $\mathcal{Z}(\mathbb{S})$ such that a Sylow q-subgroup $\mathfrak{\Omega}_{Y}$ of $C(Y)$ contains $\mathfrak{\Omega}_{X}$ properly. By Proposition
 $Z^{-1} \mathfrak{Q} Z=\mathfrak{\Omega}_{\boldsymbol{Y}}$. Now put $\mathfrak{R}^{*}=\left\langle Z^{-1} Y Z, Z \in \mathfrak{Q}\right\rangle$. Then \mathfrak{R}^{*} is a \mathfrak{Q}-invariant subgroup of \Re_{X} and $\mathfrak{\Omega}_{Y}=\mathfrak{Q} \cap C\left(\mathfrak{R}^{*}\right)$. Since a Sylow q-complement of $C(X)$ is abelian (cf. Proposition 3.4), $C(Y)$ is a fundamental subgroup of type 1.

Therefore $\mathfrak{\Omega} / \mathfrak{\Omega}_{Y}$ can be considered as a regular automorphism group of $\mathfrak{R}^{*} / \mathfrak{R}^{*} \cap Z(\mathbb{S})$. Hence $\mathfrak{\Omega} / \mathfrak{\Re}_{Y}$ is cyclic ([3], p. 499) and $\mathfrak{Q}: \mathfrak{\Omega}_{Y}=q$.

If $|C(X)|=\left|\mathfrak{F}_{1}\right|$ and if $C(X)$ is free, then $C(X)$ is abelian by Proposition 3.2. $\mathfrak{\Omega} / \mathfrak{\Omega}_{X}$ can be considered as a regular automorphism group of $\Re_{X} / \Re_{X} \cap Z(\mathbb{B})$, where \Re_{X} is a Sylow r-subgroup of $C(X)$ and $r \neq q$. Thus $\mathfrak{\Omega} / \mathfrak{\Omega}_{X}$ is cyclic and $\mathfrak{Q}: \mathfrak{N}_{X}=q$. So we may assume that $C(X)$ is of type 1 . By the assumption there exists an r-element Y such that $C(X)=C(Y)$, where $q \neq r$. Then $\mathfrak{\Omega} / \mathfrak{\Omega}_{X}$ can be considered as a regular automorphism group of $\Re_{X} \cap Z(C(X)) / \Re_{X} \cap Z(\mathbb{S})$, where \Re_{X} is a Sylow r-subgroup of $C(X)$. Hence Ω / Ω_{X} is cyclic and $\Omega_{:} \Omega_{X}=q$.

Proposition 3.11. Let $\mathfrak{F}_{1}=C(X)$ be p-singular, where X is p-element. Let Y be a q-element of \mathfrak{F}_{1} not belonging to $Z(\mathbb{S})$ (Cf. Proposition 3.5). Let \mathfrak{R}_{1} and \Re_{Y} be Sylow r-subgroups of \mathfrak{F}_{1} and $C(X Y)$ such that $\Re_{1} \supseteq \Re_{Y}$. If $r \neq p$, then $\Re_{1}: \Re_{Y} \leq r$.

Proof. By assumption Y does not belong to $Z\left(\mathfrak{F}_{1}\right)$, and thus $C(X Y)$ is of type 2. Assume that $\Re_{1} \supsetneq \Re_{Y}$. Let Z be an element of $Z\left(\Re_{1}\right)$. Then $|C(X Z)|_{r}>|C(X Y)|_{r}$ and $C(X) \supseteqq C(X Z)$. Hence by assumption $C(X)=C(X Z)$ and Z belongs to $Z(\mathscr{S})$. So $Z\left(\Re_{1}\right) \cong Z(\mathscr{S})$ and \Re_{1} is not abelian. Let W be an element of $Z_{2}\left(\Re_{1}\right)$ not belonging to $Z(\mathscr{S})$ and such that $W^{r} \in Z(\mathbb{S})$. Then $C(X W)$ is of type 2. Let \Re_{W} be a Sylow r-subgroup of $C(X W)$. Then as in the beginning of the proof of Proposition 3.10 we have that $\mathfrak{R}_{1} \subseteq N(C(X W))$ and \Re_{1} / \Re_{W} is an elementary abelian r-group. By Proposition 3.6 $C(X W)$ is nilpotent. Let \mathfrak{S}_{W} be a Sylow s-subgroup of $C(X W)$ with $s \neq r$. Then $\mathfrak{R}_{1} / \mathfrak{R}_{W}$ can be considered as a regular automorphism group of $\mathfrak{S}_{W} / \mathscr{S}_{W} \cap Z(\mathbb{S})$ (Proposition 3.5). Thus \Re_{1} / \Re_{W} is cyclic ([3], p. 499) and $\mathfrak{R}_{1}: \Re_{W}=\mathfrak{R}_{1}: \Re_{Y}=r$.

Proposition 3.12. Let \mathfrak{F}_{1} be p-singular and $q \neq p$. Then q^{2} does not divide $\mathfrak{F}_{1}: \mathfrak{F}_{2}$.

Proof. This is obvious by Proposition 3.11.
Proposition 3.13. Assume that there exist no p-singular fundamental subgroups of (\$) for every p. If a Sylow q-subgroup \mathfrak{N}_{2} of a fundamental subgroup \mathfrak{F}_{2} of type 2 is not abelian, then for every prime divisor r of $|\mathbb{S}|$ distinct from q there exists a $\{q, r\}$-element X such that $\mathfrak{F}_{2}=C(X)$. In particular, a Sylow q-complement of \mathfrak{F}_{2} is abelian.

Proof. By Proposition $3.6 \mathfrak{F}_{2}$ is nilpotent. Let $\mathfrak{F}_{1}=C(Y)$ is a fundamental subgroup of type 1 containing \mathfrak{F}_{2}. By assumption we may assume that Y is a p-element with $p \neq q$. If a Hall $\{p, q\}$-complement \mathfrak{N} of \mathfrak{F}_{2} contains an element Z not belonging to $Z\left(\mathfrak{F}_{1}\right)$, then $C(Y Z)$ is of type 2 and contains Ω_{2}. This implies that $\mathfrak{\Omega}_{2}$ is abelian against the assumption ($c f$. the proof of Proposition 3.4). So we must have that $\mathfrak{A} \subseteq Z\left(\mathfrak{F}_{1}\right)$. Then for every $r \neq p, q$ there
exists an r-element W such that $\mathfrak{F}_{1}=C(W)$ (Proposition 3.5). The above argument shows that a Hall $\{r, q\}$-complement of \mathfrak{F}_{2} is contained in $Z\left(\mathfrak{F}_{1}\right)$. By Propositions 1.1 and 3.5 a Sylow q-complement of \mathfrak{F}_{2} is contained in $Z\left(\mathfrak{F}_{1}\right)$.

Put $\mathfrak{F}_{2}=C(V)$ and $V=V_{p} V_{q} \cdots$, where $V_{p}, V_{q} \neq E, \cdots$ are $p-, q-, \cdots$ elements which are commutative with each other. Let U be an r-element such that $\mathfrak{F}_{1}=C(U)$. Then $\mathfrak{F}_{1} \supseteq C\left(U V_{q}\right) \supseteqq \mathfrak{F}_{2}$. If $\mathfrak{F}_{1}=C\left(U V_{q}\right)$, then V_{q} belongs to $Z\left(\mathfrak{F}_{1}\right)$ and $\mathfrak{F}_{1}=\mathfrak{F}_{2}$ which is a contradiction. So $\mathfrak{F}_{2}=C\left(U V_{q}\right)$ as claimed.

Proposition 3.14. Assume that there exist no p-singular fundamental subgroups of ${ }^{(8)}$ for every prime p. Then every fundamental subgroup \mathfrak{F}_{1} of type 1 is nilpotent and n_{1} / n_{2} is a prime power. Hence all the fundamental subgroups of (S) are nilpotent.

Proof. We show that for every element X of $\mathfrak{F}_{1} \mathfrak{F}_{1}: \mathfrak{F}_{1} \cap C(X)=1$ or n_{1} / n_{2}. If $C(X)=\mathscr{S}$, this is obvious. If $C(X)$ is free, then $C(X)$ is abelian (Propositions 3.5 and 1.4) and $C(X)$ contains $Z\left(\mathfrak{F}_{1}\right)$. This implies that \mathfrak{F}_{1} contains $C(X)$, which is a contradiction. If $C(X)$ is of type 1 , then we may assume that X is a p-element. By the assumption we can find a q-element Y such that \mathfrak{F}_{1} $=C(Y)$ and $p \neq q$. Then $C(X Y)=C(X) \cap \mathfrak{F}_{1}$, which implies that $\mathfrak{F}_{1}: \mathfrak{F}_{1} \cap C(X)$ $=1$ or n_{1} / n_{2}. So we may assume that $C(X)$ is of type 2 . If $C(X)$ is abelian, then $C(X)$ contains $Z\left(\mathfrak{F}_{1}\right)$ and $C(X)$ is contained in \mathfrak{F}_{1}. Hence we may assume that a Sylow p-subgroup of $C(X)$ is not abelian for some p. Let $\mathfrak{F}_{1}=C(Y)$, where Y is a q-element. By Proposition 3.13 there exists a $\{p, r\}$-element \bar{X} such that $C(X)=C(\bar{X})$ and $q \neq p, r$. Since Y belongs to $C(X)$ and $C(X)$ is nilpotent (Proposition 3.6), $Y \bar{X}=\bar{X} Y$. Thus by Proposition 3.13 we get that $C(\bar{X} Y)=C(\bar{X})$ is contained in \mathfrak{F}_{1}.

Hence by Theorem 1 of [5] \mathfrak{F}_{1} is nilpotent and n_{1} / n_{2} is a prime power.
Proposition 3.15. There exists a p-singular fundamental subgroup of (S) for some p.

Proof. Assume the contrary. Then by Proposition $3.10{\mathbb{S S}: \mathfrak{F}_{1} \text { is square- }}^{\text {s }}$ free, and by Proposition $3.14 \mathfrak{F}_{1}$ is nilpotent. We show that \mathfrak{F}_{1} is normal in \mathfrak{A}, whence $\left(\mathbb{S}\right.$ is solvable against the assumption. Now let \mathfrak{P}_{1} and \mathfrak{P} be Sylow p-subgroups of \mathfrak{F}_{1} and $\mathfrak{C S}$ such that $\mathfrak{F}_{1} \subseteq \mathfrak{F}$. We show that $\mathfrak{\beta} \subseteq N\left(\mathfrak{F}_{1}\right)$. We may assume that $\mathfrak{F}: \mathfrak{F}_{1}=p$. Put $\mathfrak{F}_{1}=\mathfrak{B}_{1} \times \overline{\mathfrak{F}}_{1}$, where $\overline{\mathfrak{B}}_{1}$ is a Sylow p-complement of \mathfrak{F}_{1}. Let X be an element of \mathfrak{P} not belonging to \mathfrak{F}_{1}. Then $X^{-1} \mathfrak{F}_{1} X=\mathfrak{F}_{1}$ $\times X^{-1} \overline{\mathfrak{\beta}}_{1} X$. Let Y be an element of \mathfrak{F}_{1} not belonging to $Z(\mathbb{F})$. Then $C(Y)$ is nilpotent (Proposition 3.14) and contains $\overline{\mathfrak{P}}_{1}$ and $X^{-1} \overline{\mathfrak{P}}_{1} X$ as Sylow p-complements. Hence $\overline{\mathfrak{B}}_{1}=X^{-1} \overline{\mathfrak{B}}_{1} X$, and X belongs to $N\left(\mathfrak{F}_{1}\right)$.

Proposition 3.16. Assume that there exists a p-singular fundamental subgroup and that there exist no q-singular fundamental subgroups of $\mathbb{C S}$ for every
prime q distinct from p. If a Sylow r-subgroup of a fundamental subgroup \mathfrak{F}_{2} of type 2 is not abelian, then for every prime divisor s of $|\mathbb{S}|$ distinct from r there exists a $\{r, s\}$-element X with $\mathfrak{F}_{2}=C(X)$. In particular, a Sylow r-complement of \mathfrak{F}_{2} is abelian.

Proof. By Proposition $3.6 \mathfrak{F}_{2}$ is nilpotent. Let $\mathfrak{F}_{1}=C(Y)$ is a fundamental subgroup of type 1 containing \mathfrak{F}_{2}. The proof of Proposition 3.13 shows that the assertion is true if we can choose Y as an s-element with $s \neq r$. Then such a choice is possible, unless $r=p$ and \mathfrak{F}_{1} is p-singular. So assume that $r=p$ and \mathfrak{F}_{1} is p-singular. Let \mathfrak{F}_{2} be a Sylow p-subgroup of \mathfrak{F}_{2}. Let $Z \neq E$ be a q-element of \mathfrak{F}_{2} not belonging to $Z(\mathbb{S})$ with $q \neq p$. Then $C(Z)$ contains \mathfrak{P}_{2}. If $C(Z)$ is free or of type 2 , then \mathfrak{P}_{2} is abelian against the assumption. Thus $C(Z)$ is of type 1 and we may assume that $C(Z) \not \equiv \mathfrak{F}_{2}$. So $C(Y Z)$ is of type 2 and contains a Hall $\{p . q\}$-complement \mathfrak{N} of \mathfrak{F}_{2}. \mathfrak{Y} is abelian (Proposition 3.4). Let $W \neq E$ be an s-element of \mathfrak{A} not belonging to $Z(\mathbb{S})$ (By Proposition 3.5 such an element always exists). $C(W)$ cannot be free nor of type 2 as above. So $C(W)$ is of type 1 and contains \mathfrak{F}_{2}. So we can apply the proof of Proposition 3.13.

Proposition 3.17. Assume that there exists a p-singular fundamental subgroup and that there exist no q-singular fundamental subgroups for every q distinct from p. If \mathfrak{F}_{1} is not $(p-)$ singular and of type 1 , then \mathfrak{F}_{1} is nilpotent and n_{1} / n_{2} is a prime power.

Proof. It is not difficult to check that the proof of Proposition 3.14 can be applied here.

Proposition 3.18. Assume that there exists a p-singular fundamental subgroup and that there exist no q-singular fundamental subgroups for every q distinct from p. Then exists no non-singular fundamental subgroup of type 1.

Proof. Assume the contrary and let \mathfrak{F}_{1} be a non-singular fundamental subgroup of type 1. By Proposition 3.10 the prime to p part of $\mathbb{C}: \mathfrak{F}_{1}$ is squarefree. By Proposition $3.17 \mathfrak{F}_{1}$ is nilpotent. By the proof of Proposition 3.15 (S): $N\left(\mathfrak{F}_{1}\right)$ is a power of p.

First assume that $N\left(\mathfrak{F}_{1}\right)$ is solvable, and let \mathfrak{S} be a Sylow p-complement of $N\left(\mathfrak{F}_{1}\right)$. \mathfrak{E} is a Sylow p-complement of \mathscr{E}. Put $\mathfrak{K}_{1}=\mathfrak{S} \cap \mathfrak{F}_{1}$. Then \mathfrak{K}_{1} is a Sylow p-complement of \mathfrak{F}_{1}. Let $\mathfrak{\beta}_{1}$ be a Sylow p-subgroup of \mathfrak{F}_{1}. Then \mathfrak{B}_{1} is normal in $\mathfrak{B}_{1} \mathfrak{S}$. Let \mathfrak{P} be a Sylow p-subgroup of \mathscr{E} containing \mathfrak{B}_{1}. Since $\mathscr{A}=\mathfrak{B} \mathfrak{E}, \mathfrak{P}$ contains a normal subgroup $\overline{\mathfrak{P}}_{1}$ of \mathscr{A} containing \mathfrak{B}_{1}. \mathfrak{K}_{1} is a Sylow p-complement of $C\left(\mathfrak{F}_{1}\right)$. Hence if $\overline{\mathfrak{B}}_{1} \supsetneq \mathfrak{F}_{1}$, then $\overline{\mathfrak{B}}_{1} \cap N\left(\mathfrak{S}_{1}\right) \supsetneq \mathfrak{\beta}_{1}$. But for $X \in \overline{\mathfrak{F}}_{1} \cap N\left(\mathfrak{S}_{1}\right)$ and $Y \in \mathfrak{K}_{1}$, we have that $X^{-1} Y^{-1} X Y \in \overline{\mathfrak{G}}_{1} \cap \mathfrak{S}_{1}=\mathfrak{F}$. Since \mathfrak{F}_{1} is non-singular, we have that $C\left(\mathfrak{S}_{1}\right) \cong \mathfrak{F}_{1}, \overline{\mathfrak{P}}_{1} \cap N\left(\mathfrak{S}_{1}\right) \subseteq \mathfrak{F}_{1}$ and $\overline{\mathfrak{P}}_{1} \cap N\left(\mathfrak{K}_{1}\right)$
$\subseteq \mathfrak{F}_{1}$, which is a contradiction. Hence we get that $\mathfrak{B}_{1}=\overline{\mathfrak{B}}_{1}$. If $\mathfrak{G}: \mathfrak{F}_{1} \equiv 0$ $(\bmod p)$, then $\mathscr{G}=N\left(\mathfrak{F}_{1}\right)$, and $\mathfrak{G S}$ is solvable against the assumption. So $\mathfrak{G}: \mathfrak{F}_{1}$ $\equiv 0(\bmod p)$, and thus \mathfrak{S} is non-abelian and $Z(\mathfrak{F}) \cong Z(\mathscr{S})$. Now $\mathfrak{S} / \mathfrak{S}_{1}$ can be considered as a regular automorphism group of $\mathfrak{F}_{1} / Z(\mathbb{S})$. Since $\mathscr{S}_{2} / \mathfrak{S}_{1}$ has a square-free order, $\mathfrak{S} / \mathfrak{S}_{1}$ is cyclic ([3], p. 499). Then $\mathbb{B} / \mathfrak{F}_{1} C\left(\mathfrak{F}_{1}\right)$ is a product of a cyclic group and a p-group, and hence is solvable (For instance, [4]). On the other hand, $C\left(\mathfrak{F}_{1}\right)=\left(\mathfrak{P} \cap C\left(\mathfrak{F}_{1}\right)\right) \mathfrak{E}_{1}$ is solvable by a theorem of Wielandt ([3], p. 680). Thus ${ }^{(5)}$ is solvable against the assumption.

Now assume that $N\left(\mathfrak{F}_{1}\right)$ is non-solvable. Let \mathfrak{B}_{1} * be a Sylow p-subgroup of $N\left(\mathfrak{F}_{1}\right)$. Then, since $C\left(\mathfrak{P}_{1}\right) \subseteq \mathfrak{F}_{1}, \mathfrak{F}_{1}{ }^{*} / \mathfrak{F}_{1}$ can be considered as a regular automorphism group of $\mathfrak{E}_{1} / \mathfrak{S}_{1} \cap Z(\mathbb{C})$, where \mathfrak{K}_{1} is a Sylow p-complement of \mathfrak{F}_{1}. Hence $\mathfrak{B}_{1}^{*} / \mathfrak{F}_{1}$ is cyclic or (generalized) quaternion. If $\mathfrak{F}_{1} * / \mathfrak{F}_{1}$ is cyclic, then $N\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}$ is a Z-group, which implies the solvability of $N\left(\mathfrak{F}_{1}\right)$ against the assumption. So $\mathfrak{F}_{1} * / \mathfrak{F}_{1}$ must be (generalized) quaternion, and, in particular, $p=2$. Let \mathfrak{P} be a Sylow 2 -subgroup of $\mathbb{E S}$ containing $\mathfrak{F}_{1}{ }^{*}$. Then \mathfrak{S}_{3} is nonabelian and $Z(\mathfrak{F}) \subseteq Z(\mathscr{S})$. Let X be an element of $Z_{2}(\mathfrak{P})$ not belonging to $Z(\mathscr{S})$ such that $X^{2} \in Z(\mathscr{F})$. Then $C(X) \supseteqq D(\mathfrak{F})$. As in the proof of Proposition $2.4 \mathfrak{F} \subseteq N(C(X))$ and $\mathfrak{B} / \mathfrak{S}_{X}$ is an elementary abelian 2-group, where \mathfrak{B}_{X} is a Sylow 2-subgroup of $C(X)$ such that $\mathfrak{F}_{3} \supseteq \mathfrak{F}_{X} \supseteq D(\mathfrak{F})$. If $C(X)$ is not 2-singular, then by Propositions 1.4, 3.6 and $3.17 C(X)$ is nilpotent. Let $\mathfrak{\Omega}_{X}$ be a Sylow q-subgroup of $C(X)$ with $q \neq p$. If $C(X)$ is not of type $2, \mathfrak{T} / \mathfrak{\beta}_{X}$ can be considered as a regular automorphism group of $\mathfrak{\Omega}_{X} / \mathfrak{Q}_{X} \cap Z(\mathbb{S})$. So $\mathfrak{B} / \mathfrak{F}_{X}$ is cyclic and $\mathfrak{F}: \mathfrak{\beta}_{X}=2$ ([3], p. 499). Then $\left|\mathfrak{F}_{1}{ }^{*} / \mathfrak{\beta}_{1}\right| \leq 2$, which is a contradiction. Suppose that $C(X)$ is of type 2 and that $\mathfrak{F} / \mathfrak{F}_{X}$ is not regular as an automorphism group of $\mathfrak{\Omega}_{X} / \mathfrak{\Omega}_{X} \cap Z(\mathbb{\$})$. Then there exist an element Y of \mathfrak{F} not belonging to \mathfrak{S}_{X} and an element Z of $\mathfrak{\Omega}_{X}$ not belonging to $Z(\mathbb{S})$ such that $Y Z=Z Y$ (cf. the proof of Proposition 2.4). Then $C(Z)$ contains $\left\langle\mathfrak{B}_{X}, Y\right\rangle$, and is free or of type 1 and is not 2-singular. So by Propositions 3.2 and 3.17 $C(Z)$ is nilpotent. Let \Re_{Z} be a Sylow 2-subgroup of $C(Z)$. Then by Proposition 3.9 we may assume that $\mathfrak{F} \supseteq \mathfrak{S}_{Z} \supseteq D(\mathfrak{F})$. Then $W^{-1} \mathfrak{\beta}_{Z} W=\mathfrak{\beta}_{Z}$ for every $W \in \mathfrak{B}$. Put $\mathfrak{Q}^{*}=\left\langle W^{-1} Z W, W \in \mathfrak{B}\right\rangle$. Then \mathfrak{Q}^{*} is a $\mathfrak{\beta}$-invariant subgroup of $\mathfrak{\Omega}_{X}$ and $\mathfrak{S}_{Z}=\mathfrak{B} \cap C\left(\mathfrak{Q}^{*}\right)$. Now $\mathfrak{P} / \mathfrak{P}_{Z}$ can be considered as a regular automorphism group of $\mathfrak{Q}^{*} / \mathfrak{Q}^{*} \cap Z(\mathbb{F})$. So $\mathfrak{P} / \mathfrak{\Re}_{Z}$ is cyclic and $\mathfrak{S}_{3}: \mathfrak{P}_{Z}=2$. Then $\left|\mathfrak{F}_{1} * \mathfrak{B}_{1}\right| \leq 2$, which is a contradiction. Hence we may assume that $C(X)$ is 2 -singular.

Let \mathfrak{F}_{2} be a fundamental subgroup of type 2 contained in $C(X)$. By Proposition $3.17 C(X): \mathfrak{F}_{2}$ is a power of a prime. If $C(X): \mathfrak{F}_{2} \equiv 0(\bmod 2)$, then by Proposition 3.12 $C(X): \mathfrak{F}_{2}=q$ is a prime. By Proposition $3.6 \mathfrak{F}_{2}$ is nilpotent. $C(X)$ is a product of a Sylow q-subgroup of $C(X)$ and a Sylow q-complement of \mathfrak{F}_{2}. Hence by a theorem of Wielandt ([3], p. 680) $C(X)$ is solvable. Let $F(C(X))=\mathfrak{A} \times \mathfrak{B}$, where \mathfrak{A} and \mathfrak{B} are Sylow 2-subgroup and Sylow 2-com-
plement of $F\left(C(X)\right.$) respectively. If $\mathfrak{B} \leftrightarrows Z(\mathfrak{F})$, then, since $\mathfrak{B} \subseteq \mathfrak{F}_{2}$, $\mathfrak{\beta} / \mathfrak{ß}_{X}$ can be considered as a regular automorphism group of $\mathfrak{B} / \mathfrak{B} \cap Z(\mathbb{S})$. So we get a contradiction as before. But if $\mathfrak{B} \subseteq Z(\mathbb{S})$, then by a theorem of Fitting ([3], p. 277) $F(C(X)) \supseteqq C(F(C(X))) \supseteqq \Re_{X}$, where \mathfrak{R}_{X} is a Sylow r-subgroup of \mathfrak{F}_{2} with $r \neq q$, 2. By Propositions 1.1 and 3.5 we have that $\Re_{X} \subseteq Z(\mathbb{F})$. This is a contradiction. Hence we may assume that $C(X): \mathfrak{F}_{2}=$ is a power of 2 .

Let \mathfrak{A} be a Sylow 2-complement of \mathfrak{F}_{2}. Suppose that a Sylow q-subgroup $\mathfrak{\Omega}_{2}$ of $\mathfrak{\Re}$ is non-abelian. Then by Proposition 3.15 a Sylow r-subgroup \Re_{2} of \mathfrak{A} is abelian. Choose an element Y of \Re_{2} not belonging to $Z(\mathbb{F})$. Then $C(X Y) \supseteq \mathfrak{\Omega}_{2}$ and $C(X Y)$ is of type 2 . Then \mathfrak{N}_{2} is abelian against the assumption. Hence \mathfrak{Y} is abelian ($c f$. Propositions 1.1 and 3.5). Hence, in particular, $C(X)$ is solvable (cf. [4]). If $C(X)$ is nilpotent, then $\mathscr{S}_{\beta} / \mathscr{F}_{X}$ can be considered as a regular automorphism group of $\mathfrak{Y} / \mathfrak{H} \cap Z(\mathbb{S})$, and we get a contradiction as before. Hence $C(X)$ is not nilpotent.

Let \mathfrak{W}_{2} be a fundamental subgroup of type 2 contained in \mathfrak{F}_{1}. Since $\mathfrak{F}_{1}: \mathfrak{F}_{2}$ is a power of 2 , every Sylow q-subgroup of \mathfrak{N}_{1} of \mathfrak{F}_{1} is contained in $\overleftrightarrow{\mho}_{2}$ for $q \neq 2$. We show that $\mathfrak{\Omega}_{1}$ is abelian. Suppose that $\mathfrak{\Omega}_{1}$ is not abelian. Let Y be an element of Ω_{1} not belonging to $Z\left(\Omega_{1}\right)$. Then $C(Y)$ is of type 1 and contains the Sylow q-complement of \mathfrak{F}_{1}. In particular, $C(Y)$ contains \mathfrak{R}_{1}, where \Re_{1} is the Sylow r-subgroup of \mathfrak{F}_{1} (Proposition 1.1). Let Z be an element of \Re_{1} not belonging to $Z(\mathbb{S})$ (Proposition 3.5). Then $C(Z)$ contains $\mathfrak{\Omega}_{1}$ and the Sylow q-subgroup of $C(Y)$. This is a contradiction. So the Sylow 2-complement \mathfrak{N}_{1} of \mathfrak{F}_{1} is abelian.

Now we show that we may assume that $\mathfrak{N}=\mathfrak{A}_{1}$. Let $\mathfrak{\Omega}, \mathfrak{N}_{1}$ and $\mathfrak{\Omega}_{X}$ be Sylow q-subgroups of $\mathfrak{G}, \mathfrak{F}_{1}$ and $C(X)$, where $q \neq 2$. We may assume that
 $\mathfrak{\Omega} / \mathfrak{Q} \cap Z(\mathscr{S})$ is elementary abelian of order q^{2} or $\mathfrak{\Omega}_{1}=\mathfrak{\Omega}_{X}$. If $\mathfrak{\Omega}_{1}=\mathfrak{\Omega}_{X}$, then $C\left(\mathfrak{N}_{1}\right)$ is nilpotent and contains \mathfrak{N}_{1} and \mathfrak{N} as its Sylow 2-complement. So we get that $\mathfrak{\Re}_{1}=\mathfrak{A}$. Otherwise, let \mathfrak{R}, \Re_{1} and \Re_{X} be Sylow r-subgroups of $\mathbb{E}, \mathfrak{F}_{1}$ and $C(X)$, where $r \neq q, r \neq 2$. By Propositions 1.1 and 3.5 there exists such a prime. Since we have assumed that $\mathscr{\Re}_{1} \neq \mathfrak{A}$, we get that $\mathfrak{R} / \mathfrak{R} \cap Z(\mathscr{S})$ is elementary abelian of order r^{2}. We may assume that $r>q$. Since \Re / \Re_{1} can be considered as a regular automorphism group of $\mathfrak{\Omega}_{1} / Z(\mathbb{S}) \cap \mathfrak{Q}_{1}$, this is a contradiction. Hence we (may) assume that $\mathfrak{A}=\mathfrak{A}_{1}$.

Put $F(C(X))=\mathfrak{C} \times \mathfrak{D}$, where \mathfrak{C} and \mathfrak{D} are the Sylow 2-subgroup and Sylow 2-complement of $F(C(X)$). If $\mathfrak{D} \subseteq Z(\mathscr{S})$, then $C(X) \cap C(\mathfrak{D})$ is nilpotent and contains \mathfrak{A} and is normal in $C(X)$. So \mathfrak{U} is normal in $C(X)$. Then $\mathfrak{B} \subseteq N(C(X)) \subseteq N(\mathfrak{t})$. Since $C(\mathfrak{X})=\mathfrak{F}_{1}, \mathfrak{B}_{1}$ is normal in \mathfrak{F}_{3} Then \mathfrak{S}_{3} is contained in $N\left(\mathfrak{F}_{1}\right)$ and $\mathscr{G}=N\left(\mathfrak{F}_{1}\right)$, which implies the solvability of \mathbb{G}. This is a contradiction. So we must have that $\mathfrak{D} \subseteq Z(\mathscr{S})$. Then $\mathbb{C}^{〔} \supsetneq \mathfrak{B}_{2}$, where \mathfrak{B}_{2} is a Sylow 2-subgroup of \mathfrak{F}_{2}. Then $\mathfrak{A} / \mathfrak{A} \cap Z(\mathscr{F})$ can be considered as a
regular automorphism of $\mathfrak{S}_{X} / \mathfrak{B}_{2}$, and hence $\mathfrak{A} / \mathfrak{A} \cap Z(\mathbb{B})$ is cyclic. Then assume as above that $r>q$. Then since $\mathfrak{\Omega}_{1} / Z(\mathbb{S}) \cap \mathfrak{\Omega}_{1}$ is cyclic, we get a contradiction as above.

Proposition 3.19. Assume that there exists a p-singular fundamental subgroup and that there exist no q-singular fundamental subgroups for every q distinct from p. Then there exists no free fundamental subgroup of index n_{1}.

Proof. This is obvious by the proof of Proposition 3.18.
Proposition 3.20. For at least two distinct primes p there exist p-singular fundamental subgroups of ©S.

Proof. By Proposition 3.15 for some prime p there exists a p-singular fundamental subgroup \mathfrak{F}_{1} of ©S. Suppose that there exists no q-singular fundamental subgroup of \mathbb{C} for every prime q distinct from p.

By Propositions 3.18 and 3.19 if X is a q-element of $\mathbb{C S}$ not belonging to $Z(\mathbb{S})$, then (G): $C(X)=n_{2}$. By Propositions 3.6 and $1.4 C(X)$ is nilpotent. Furthermore by Propositions 3.18, 3.19, 3.5 and $1.1 C(X)$ is abelian.

Let \mathfrak{F}_{2} be a fundamental subgroup of type 2 contained in \mathfrak{F}_{1}. Let $\mathfrak{\Omega}, \mathfrak{\Omega}_{1}$ and \mathfrak{Q}_{2} be Sylow q-subgroups of $\mathbb{C}, \mathfrak{F}_{1}$ and \mathfrak{F}_{2} such that $\mathfrak{Q} \supseteq \mathfrak{\Omega}_{1} \supseteq \mathfrak{Q}_{2}(q \neq p)$. By Propositions 3.10 and 3.11 we have that $\mathfrak{\Omega}: \mathfrak{\Omega}_{1} \leq q$ and $\mathfrak{N}_{1}: \mathfrak{\Omega}_{2} \leq q$. Now we show that Ω_{2} is normal in Ω. Assume the contrary. Then we must have that $\mathfrak{Q} \mathfrak{\Omega}_{1}$ $=q, \mathfrak{\Omega}_{1}: \mathfrak{\Omega}_{2}=q$ and $\mathfrak{\Omega}: \mathfrak{O}_{2}=q^{2}$. Furthermore there exists an element Y in $\mathfrak{\Omega}$ such that $Y^{-1} \mathfrak{Q}_{2} Y \neq \mathfrak{N}_{2}$. Since $\mathfrak{\Omega}_{2}$ is abelian, $Y^{-1} \mathfrak{Q}_{2} Y \cap \mathfrak{\Omega}_{2}=\mathfrak{\Omega} \cap Z(\mathbb{S})$. So $\mathfrak{\Omega}_{1} / \Omega \cap Z(\mathbb{S})$ is elementary abelian of order q^{2}. Let Z be an element of Ω_{1} such that $Z(\mathfrak{\Omega} \cap Z(\mathbb{G}))$ is an element of $Z(\mathfrak{Q} / \mathfrak{Q} \cap Z(\mathbb{S}))$ of order q. Let $\mathfrak{\Omega}_{\boldsymbol{Z}}$ be a Sylow q-subgroup of $C(Z)$. Then $\Omega_{\boldsymbol{Z}}=(\Omega \cap Z(\mathbb{S}))\langle Z\rangle$ is normal in $\mathfrak{\Omega}$. Let \Re_{z} be a Sylow r-subgroup of $C(Z)$ with $r \neq p, q$ (Proposition 3.5). Then $\Omega / \mathfrak{\Omega}_{\boldsymbol{Z}}$ can be considered as a regular automorphism group of \Re_{z} / \Re_{z} $\cap Z(\mathbb{S})$. Thus $\mathfrak{\Omega} / \mathfrak{\Omega}_{Z}$ is cyclic ([3], p. 499). This is a contradiction. So \mathfrak{Q}_{2} is normal in $\mathfrak{\Omega}$. Let \Re_{2} be a Sylow r-subgroup of \mathfrak{F}_{2} with $r \neq p, q$. Then $\mathfrak{Q} / \mathfrak{N}_{2}$ can be considered as a regular automorphism group of $\Re_{2} / \Re_{2} \cap Z(\mathbb{O})$. Thus $\mathfrak{O} / \mathfrak{D}_{2}$ is cyclic. Since $C\left(\mathfrak{D}_{2}\right)=\mathfrak{F}_{2}$, we get that $\mathfrak{N} \subseteq N\left(\mathfrak{F}_{2}\right)$. Therefore (5): $N\left(\mathfrak{F}_{2}\right)$ is a power of p.

Since $N\left(\mathfrak{F}_{2}\right) \subseteq N\left(\mathfrak{F}_{2}\right), \mathscr{S}=\mathfrak{\beta} N\left(\mathfrak{F}_{2}\right)$, where \mathfrak{F} is a Sylow 2-subgroup of (S) containing \mathfrak{F}_{2}. Hence we get that $O_{p}(\mathbb{S}) \supseteqq \mathfrak{F}_{2}$.

Let \mathfrak{F}^{*} be a free fundamental subgroup of index n_{2} ($c f$. Proposition 3.19) and \mathfrak{D}^{*} a Sylow q-subgroup of \mathfrak{F}^{*}. We may assume that $\mathfrak{D}^{*} \subseteq \mathfrak{D}$. We show that \mathfrak{D}^{*} is normal in \mathfrak{D}. Assume the contrary. Then we must have that $\mathfrak{O}: \mathfrak{D}^{*}=q^{2}$. Since $C\left(\mathfrak{D}^{*} \cap \mathfrak{D}_{1}\right)$ contains $Z\left(\mathfrak{F}_{1}\right)$ and since \mathfrak{F}^{*} is free and abelian, we get that $\mathfrak{D}^{*} \cap \mathfrak{O}_{1} \subseteq \mathfrak{D} \cap Z(\mathbb{S})$. Thus $\mathfrak{D}^{*}: \mathfrak{O} \cap Z(\mathbb{S})=\mathfrak{D}_{2}: \mathfrak{Q} \cap Z(\mathbb{S})$ $=q$. We know already that $\mathfrak{D} / \mathfrak{D}_{2}$ is cyclic (of order q^{2}). Let $W \mathfrak{D}_{2}, W \in \mathscr{O}$
be a generater of $\mathfrak{O} / \mathcal{O}_{2}$. Then $C(W)$ has the index n_{2} in \mathbb{S} and $W^{q} \notin Z(\mathscr{S}) \cap \mathfrak{D}$. This is a contradiction. Now $\mathfrak{\Omega} / \mathfrak{Q}^{*}$ is cyclic; in fact, $\mathfrak{\Omega} / \mathfrak{\Omega}^{*}$ can be considered as a regular automorphism group of $\mathfrak{S}^{*} / Z(\mathbb{S}) \cap \mathfrak{S}^{*}$, where \mathfrak{B}^{*} is a Sylow p subgroup of \mathfrak{F}^{*} ($c f$. Proposition 3.7). Furthermore, the above argument shows that $\mathfrak{\Omega}: \mathfrak{\Omega}^{*}=q$ and that $\mathfrak{Q}^{*}: Z(\mathbb{S}) \cap \mathfrak{\Omega}^{*}=q$. Then take a prime divisor r of $\left|\mathfrak{F}^{*}\right|$ distinct from p and q. Let \mathfrak{R} and \mathfrak{R}^{*} be Sylow r-subgroups of \mathscr{E} and \mathfrak{F}^{*}
 We may assume that $r>q$. Then since \Re / \mathfrak{R}^{*} can be considered as a regular automorphism group of $\mathfrak{\Omega}^{*} / Z(\mathbb{S}) \cap \mathfrak{\Omega}^{*}$, this is a contradiction. Hence there exists no free fundamental subgroup (of index \boldsymbol{n}_{2}).

Now every p-element is contained in some fundamental subgroup of type 2. Hence we get that $O_{p}(\mathscr{S})=\mathfrak{F}$. Since \mathfrak{S} is solvable, \mathscr{E} is solvable against the assumption.

Proposition 3.21. Let \mathfrak{F}_{1} and \mathfrak{F}_{2} be fundamental subgroups of type 1 and 2 such that $\mathfrak{F}_{1} \supset \mathfrak{F}_{2}$. Then $\mathfrak{F}_{1}: \mathfrak{F}_{2}$ is square-free.

Proof. This is obvious by Propositions 3.12 and 3.20.
Now let \mathfrak{F}_{1} be p-singular and \mathfrak{F}_{1} be q-singular, where $p \neq q$. Let \mathfrak{F}_{2} be a fundamental subgroup of type 2 contained in \mathfrak{F}_{1}. By Proposition $3.6 \mathfrak{F}_{2}$ is nilpotent. Since \mathfrak{F}_{1} is p-singular, $\mathfrak{F}_{1}: N\left(\mathfrak{F}_{2}\right) \cap \mathfrak{F}_{1}=p$ or 1 . Next let \mathfrak{F}_{2} be a fundamental subgroup of type 2 contained in \mathfrak{F}_{1}. By Proposition $3.6 \mathfrak{\xi}_{2}$ is nilpotent. Since \mathfrak{F}_{1} is q-singular, $\mathfrak{F}_{1}: N\left(\mathfrak{\xi}_{2}\right) \cap \mathfrak{F}_{1}=q$ or 1. Assume that $p>q$. Let $\hat{\mathfrak{B}}_{2}$ be a Sylow p-subgroup of $\mathfrak{\oiint}_{2}$. Since $N\left(\hat{\mathfrak{F}}_{2}\right) \cap \mathfrak{F}_{1}=N\left(\mathfrak{F}_{2}\right) \cap \mathfrak{F}_{1}$, we see that $\hat{\mathfrak{S}}_{2}$ is normal in $\mathfrak{\xi}_{1}$. Hence $\hat{\mathfrak{F}}_{2}$ is normal in $\dot{\mathfrak{F}}_{1}$. Let X be an element of \mathfrak{F}_{1} not belonging to \mathfrak{F}_{2} such that $|X|$ is prime to q. Assume that $\mathfrak{F}_{1}=C(Y)$, where Y is a q-element. Then $C(X Y)$ is a fundamental subgroup of type 2 contained in \mathfrak{F}_{1}. The above argument shows that $C(X Y)$ is a nilpotent normal subgroup of \mathfrak{F}_{1}. Then $\mathfrak{F}_{2} C(X Y)$ is nilpotent. This is a contradiction. This implies that $\mathfrak{F}_{1}: \mathfrak{F}_{2}=q$. But then $\mathfrak{F}_{1}: \mathfrak{F}_{2}=q$ and \mathfrak{F}_{2} is normal in \mathfrak{F}_{1}. There exists an element Z of \mathfrak{F}_{1} not belonging to \mathfrak{F}_{2} such that $|Z|$ is prime to p. Assume that $\mathfrak{F}_{1}=C(W)$, where W is a p-element. Then $C(Z W)$ is a fundamental subgroup of type 2 contained in \mathfrak{F}_{1}. The above argument shows that $C(Z W)$ is a nilpotent normal subgroup of \mathfrak{F}_{1}. Then $\mathfrak{F}_{2} C(Z W)$ is nilpotent. This is a contradiction (cf. Proposition 1.1).

University of Illinois

Bibliography

[1] W. Feit and J.G. Thompson: Solvability of groups of odd order. Pacific J. Math. 13 (1963), 755-1029.
[2] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
[3] B. Huppert: Endliche Gruppen, I. Springer, Berlin-Heidelberg-New York, 1967.
[4] N. Ito: Remarks on factorizable groups, Acta. Sci. Math. Szeged 14 (1951), 83-84.
[5] N. Ito: On finite groups with given conjugate types I, Nagoya Math. J. 6 (1953), 17-28.
[6] M. Suzuki: On a finite group with a partition, Arch. Math. 12 (1961), 241-254.
[7] M. Suzuki: On a class of doubly transitive groups, Ann. of Math. 75 (1962), 105-145.
[8] M. Suzuki: Finite groups of even order in which Sylow 2-subgroups are independent, Ann. of Math. 80 (1964), 58-77.
[9] M. Suzuki: Finite groups in which the centralizer of any element of order 2 is 2closed, Ann. of Math. 82 (1965), 191-212.
[10] H. Zassenhaus: The Theory of Groups, Chelsea, New York, 1958.

[^0]: * This is a continuation of [5].
 ** This research is partially supported by N.S.F. Grant GP 9584.
 *** A part of the theorem, namely in the form of Proposition 2.2 was known at the time of [5].

