

Title	Diffeomorphic extension of biholomorphic mappings with smooth modulus
Author(s)	Abe, Yukitaka
Citation	Osaka Journal of Mathematics. 1990, 27(3), p. 621–627
Version Type	VoR
URL	https://doi.org/10.18910/10807
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Abe, Y. Osaka J. Math. 27 (1990), 621-627

DIFFEOMORPHIC EXTENSION OF BIHOLOMORPHIC MAPPINGS WITH SMOOTH MODULUS

ЧИКІТАКА АВЕ

(Received September 18, 1989)

1. Introduction

Fefferman proved in [8] that any biholomorphic mapping between two smooth bounded strictly pseudoconvex domains D_1 and D_2 in C^n extends to a diffeomorphism of \overline{D}_1 onto \overline{D}_2 . Later Fefferman's theorem was extended by Bell and Ligocka [7] and Bell [2].

Let D be a smooth bounded pseudoconvex domain in \mathbb{C}^n . Let $L^2(D)$ be the space of square-integrable functions on D. We denote by H(D) the space of square-integrable holomorphic functions on D. The Bergman projection P is the orthogonal projection from $L^2(D)$ to H(D). The domain D is said to satisfy condition R if P maps $C^{\infty}(\overline{D})$ continuously into $C^{\infty}(\overline{D})$. Bell's result [2] is as follows:

Let D_1 and D_2 be smooth bounded pseudoconvex domains in \mathbb{C}^n . If either D_1 or D_2 satisfies condition R, then any biholomorphic mapping between D_1 and D_2 extends to a diffeomorphism of \overline{D}_1 onto \overline{D}_2 .

It is not known that any biholomorphic mapping between smooth bounded weakly pseudoconvex domains in \mathbb{C}^n can be extended to a diffeomorphism onto the bouundary. Fornaess proved in [9] that any biholomorphic mapping $f: D_1 \rightarrow D_2$ between bounded pseudoconvex domains D_1 and D_2 in \mathbb{C}^n with \mathbb{C}^2 boundary extends to a \mathbb{C}^2 -diffeomorphism of \overline{D}_1 onto \overline{D}_2 , if f has a \mathbb{C}^2 -extension $f: \overline{D}_1 \rightarrow \overline{D}_2$. In this paper we shall prove the theorem of this type. Let D_1 and D_2 be smooth bounded pseudoconvex domains in \mathbb{C}^n . Using Bell's method we shall prove that any biholomorphic mapping $f: D_1 \rightarrow D_2$ extends to a \mathbb{C}^∞ -diffeomorphism of \overline{D}_1 onto \overline{D}_2 , whenever $|f|^2$ is \mathbb{C}^∞ .

2. Preliminaries

Let D be a smooth bounded pseudoconvex domiain in \mathbb{C}^{n} . We denote by $W^{s}(D)$ the usual Sobolev space for s>0. A negative Sobolev space $W^{-s}(D)$ is the dual space of $W^{s}_{0}(D)$, where $W^{s}_{0}(D)$ is the closure of $C^{\infty}_{0}(D)$ in $W^{s}(D)$. We now consider the dual space $W^{s}(D)^{*}$ of $W^{s}(D)$ for s>0.

Let \langle , \rangle be the $L^2(D)$ inner product. For any $f \in L^2(D), \langle \cdot, f \rangle$ is a

Ү. Аве

continuous complex linear functional on $W^{s}(D)$. We set

$$\|\|f\|\|_{-s} = \sup_{\substack{\psi \in W_s(D) \\ ||\psi||_s = 1}} |\langle f, \psi \rangle|_s$$

Then we regard $L^2(D)$ as a subspace of $W^s(D)^*$ via \langle , \rangle , and denote it by $L^{-s}(D)$. The norm of $W^{-s}(D)$ is denoted by $|| \cdot ||_{-s}$. By the same way as in [5], we obtain the following proposition.

Proposition 1. Let D be a smooth bounded pseudoconvex domain in \mathbb{C}^n . Then the norms $||\cdot||_{-s}$ and $|||\cdot|||_{-s}$ are equivalent on H(D).

We set

$$|||f|||_s = \sup_{\substack{g \in L^{-s}(D) \\ |||g|||_{-s} = 1}} |\langle f, g \rangle|,$$

for $f \in L^2(D)$. If $|||f|||_s < \infty$, then we regard f as an element of the dual space $L^{-s}(D)^*$ of $L^{-s}(D)$ and we write $f \in L^{-s}(D)^*$. $H^s(D)$ is the subspace of $W^s(D)$ consisting of holomorphic functions. Note that $C^{\infty}(\overline{D}) = \bigcap_{s>0} W^s(D)$ and $H^{\infty}(\overline{D}) = \bigcap_{s>0} H^s(D)$.

Bell constructed a bounded linear operator $\Phi^s: H^s(D) \to W^s_0(D)$ such that $P\Phi^s h = h$ for all $h \in H^s(D)$ (see [1], [2] and [4]). This operator was extended to a bounded linear operator $\tilde{\Phi}^s: W^s(D) \to W^s_0(D)$ with $P\tilde{\Phi}^s = P$ ([11]). For t > 0, we denote by $L^2_t(D)$ the weighted Hilbert space of complex valued functions on D with inner product given by

$$\langle g,h\rangle_t = \int_D g(z)\overline{h(z)}e^{-t|z|^2}d\mu(z).$$

The weighted Bergamn projection P_t is the orthogonal projection of $L_i^2(D)$ onto H(D) with respect to the inner product \langle , \rangle_t . By a Kohn's result [10] it holds that for a positive integer s there exists a positive number t_0 such that P_t maps $W^s(D)$ into $W^s(D)$ continuously, if $t > t_0$. There exists a bounded linear operator $\Phi_t^s \colon W^s(D) \to W_0^s(D)$ such that $P_t \Phi_t^s = P_t$ (cf. [5]).

3. Holomorphic Functions with duality condition

Throughout this section we assume that D is a smooth bounded pseudoconvex domain in C^{n} .

Proposition 2. Let s be a positive integer and let $f \in L^2(D)$. If $f \in L^{-s}(D)^*$, then there exists a positive constant C such that

$$|||hf|||_{s} \leq C |||f|||_{s} ||h||_{s}$$

for all $h \in W^{s}(D)$.

622

Proof. For any $\psi \in L^{-s}(D)$ we have

$$|\langle hf, \psi \rangle| \leq |||f|||_{s}|||\bar{h}\psi|||_{-s}$$
.

There exists a positive constant C such that

$$||h\varphi||_s \leq C ||h||_s ||\varphi||_s$$

for all $h, \varphi \in W^{s}(D)$. Then it follows that

$$\begin{split} |||\bar{h}\psi|||_{-s} &= \sup_{\substack{\varphi \in W^s(D) \\ ||\varphi||_s = 1}} |\langle \bar{h}\psi, \varphi \rangle| \\ &\leq \sup |||\psi|||_{-s} ||h\varphi||_s \\ &\leq C |||\psi|||_{-s} ||h||_s \,. \end{split}$$

Hence we have

$$egin{aligned} |||hf|||_s &= \sup_{\substack{\psi \in L^{-s}(D) \ |||\psi|||_{-s} = 1}} |\langle hf, \psi
angle| \ &\leq C |||f|||_s ||h||_s \,. \end{aligned}$$

Let t > 0. For $h \in H(D)$, we define

$$|||h|||_{s,t} = \sup_{\substack{g \in H(D)\\||g||_{-s} = 1}} |\langle h, g \rangle_t|.$$

This norm was defined in [2].

Proposition 3. Let $f \in L^2(D)$. If $f \in L^{-s}(D)^*$, then $|||P_t(hfe^{t|z|^2})|||_{s,t} \leq C|||f|||_s||h||_s$

for all $h \in W^{s}(D)$ and all t > 0, where C is a constant.

Proof. By the definition we have

$$|||P_{t}(hfe^{t|z|^{2}})|||_{s,t} = \sup_{\substack{g \in H(D) \\ ||g||_{-s} = 1}} |\langle P_{t}(hfe^{t|z|^{2}}), g \rangle_{t}|$$

= sup |\langle hf, g \rangle |
\lesup ||\hf |||_{s} ||g||||_{-s}.

Then the conclusion follows from Propositions 1 and 2.

Proposition 4. Suppose $f \in H(D)$ is contained in $L^{-s}(D)^*$. Then $f \in H^{s}(D)$.

Proof. By Lemma 3 in [2], it suffices to show that $|||f|||_{s,t} < \infty$ for some t > 0. We prove it according to an idea of Bell [2].

Ү. Аве

First, we expand $e^{-t|z|^2}$ in a power series

$$e^{-t|z|^2} = \sum c_{\alpha} z^{\alpha} \overline{z}^{\alpha}$$
.

Let $R>\sup\{|z|; z\in D\}$. Then we have $||z^{\sigma}||_{\sigma} \leq c_{\sigma}R^{|\sigma|}$, where c_{σ} is a constant depending only on the integer σ . For $g\in H(D)$ we have

$$\begin{aligned} |\langle f, g \rangle_t| &= |\int_D f \bar{g} e^{-t|z|^2}| \\ &\leq \sum |c_{\alpha}| |\langle z^{\alpha} f, z^{\alpha} g \rangle| \end{aligned}$$

Next we obtain

$$\begin{aligned} |\langle z^{\alpha}f, z^{\alpha}g \rangle| &= |\langle z^{\alpha}fe^{t|z|^2}, z^{\alpha}g \rangle_t| \\ &= |\langle P_t(z^{\alpha}fe^{t|z|^2}), z^{\alpha}g \rangle_t| \\ &\leq |||P_t(z^{\alpha}fe^{t|z|^2})|||_{s,t}||z^{\alpha}g||_{-s}. \end{aligned}$$

It follows from Proposition 3 that

$$|||P_t(z^{\alpha}fe^{t|z|^2})|||_{s,t} \le C_1|||f|||_s||z^{\alpha}||_s.$$

And also we have

$$\begin{aligned} ||z^{\alpha}g||_{-s} &= \sup_{\substack{\varphi \in C_0^{\infty}(D) \\ ||\varphi||_s = 1}} |\langle z^{\alpha}g, \varphi \rangle| \\ &\leq \sup ||g||_{-s} ||\overline{z}^{\alpha}\varphi||_s \\ &\leq C_2 ||g||_{-s} ||z^{\alpha}||_s . \end{aligned}$$

Since $||z^{\alpha}||_{s} \leq c_{s} R^{|\alpha|}$, we finally obtain

$$|||f|||_{s,t} = \sup_{\substack{g \in H(D) \\ ||g||_{-s} = 1}} |\langle f, g \rangle_t|$$

$$\leq C_3 \sum |c_{\alpha}| |||f|||_s ||z^{\alpha}||_s^2$$

$$\leq C_4 |||f|||_s \sum |c_{\alpha}| R^{2|\alpha|}$$

$$\leq C_4 |||f|||_s e^{tnR^2}.$$

Hence the proof finishes.

4. Theorem

Theorem. Let D_1 and D_2 be smooth bounded pseudoconvex domains in \mathbb{C}^n , and let $f: D_1 \rightarrow D_2$ be a biholomorphic mapping. If $|f|^2$ is \mathbb{C}^∞ , then f extends to a diffeomorphism of \overline{D}_1 onto \overline{D}_2 .

6**24**

Proof. First we show that $U \cdot h \circ F \in L^{-s}(D_2)^*$ for all s > 0 and all $h \in H^{\infty}(\overline{D}_1)$, where $F = f^{-1}$ and U = Det[F'].

Let s>0 and let $h \in H^{\infty}(\overline{D}_1)$. Take a t>0 such that $P_t: W^s(D_2) \to H^s(D_2)$ is bounded. There exists an integer M such that the operator $\varphi \mapsto U \cdot (\varphi \circ F)$ is bounded from $W_0^{s+M}(D_1)$ to $W_0^s(D_2)$ (Lemma 4 in [2].). For $\psi \in L^{-s}(D_2)$ we have

$$|\langle U \cdot h \circ F, \psi \rangle| = |\langle U \cdot h \circ F, P_t(\psi e^{t|w|^2}) \rangle_t|.$$

Letting $g = P_t(\psi e^{t|w|^2})$, we obtain

$$|\langle U \cdot h \circ F, g \rangle_t| = |\langle h, u \cdot g \circ f e^{-t|f|^2} \rangle|,$$

where u = Det[f']. Using a bounded operator $\Phi^{s+M}: W^{s+M}(D_1) \to W_0^{s+M}(D_1)$ with $P\Phi^{s+M} = P$, we get

$$\begin{aligned} |\langle h, u \cdot g \circ f e^{-t|f|^2} \rangle| &= |\langle \Phi^{s+M}(h e^{-t|f|^2}), u \cdot g \circ f \rangle| \\ &\leq C_1 ||h||_{s+M} ||u \cdot g \circ f||_{-s-M} \,. \end{aligned}$$

Now we estimate the norm $||u \cdot g \circ f||_{-s-M}$. By the definition we have

$$\begin{aligned} ||u \cdot g \circ f||_{-s-M} &= \sup_{\substack{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1}} |\langle u \cdot g \circ f, \varphi \rangle| \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1} \\ &= \sup_{\varphi \in C_0^{\infty}(D$$

Since $||| \cdot |||_s \leq || \cdot ||_s$, we obtain

$$||u \cdot g \circ f||_{-s-M} \leq C_2 |||\psi|||_{-s}.$$

Thereofre we get

$$\begin{aligned} |||U \cdot h \circ F|||_s &= \sup_{\substack{\psi \in L^{-s}(D_2) \\ |||\psi|||_{-s} = 1}} |\langle U \cdot h \circ F, \psi \rangle| \\ &\leq C_2 ||h||_{s+M} \,. \end{aligned}$$

Then it follows from Proposition 4 that $U \cdot h \circ F \in H^{\infty}(\overline{D}_2)$ for all $h \in H^{\infty}(\overline{D}_1)$. Putting h=1 and $h=z^{\infty}$, we obtain $U \in H^{\infty}(\overline{D}_2)$ and $U \cdot F^{\infty} \in H^{\infty}(\overline{D}_2)$. Then F extends smoothly to the boundary (see the proof of Theorem 1 in [6]). Of course it implies $|F|^2 \in C^{\infty}(\overline{D}_2)$. Similarly, we obtain that $u \cdot H \circ f \in L^{-s}(D_1)^*$ for all s>0 and all $H \in H^{\infty}(\overline{D}_2)$. By the same reason we obtain that f extends smoothly to the boundary. Since U=1/u, f is a diffeomorphism of \overline{D}_1 onto \overline{D}_2 . Ү. Аве

5. Remarks

By the proof of Theorem we obtain that a biholomorphic mapping $f: D_1 \rightarrow D_2$ between smooth bounded pseudoconvex domains D_1 and D_2 extends to a diffeomorphism of \overline{D}_1 onto \overline{D}_2 , if f has the following property

$$u \cdot H \circ f \in L^{-s}(D_1)^*$$

for all s>0 and all $H \in H^{\infty}(\overline{D}_2)$.

The relation between the above property and condition R is as follows.

Proposition 5. Let D_1 and D_2 be smooth bounded pseudoconvex domains in \mathbb{C}^n . Suppose that D_1 satisfies condition R. Then any proper holomorphic mapping $f: D_1 \rightarrow D_2$ has the property

$$u \cdot H \circ f \in L^{-s}(D_1)^*$$

for all s > 0 and all $H \in H^{\infty}(\overline{D}_2)$.

Proof. Let P_i be the Bergman projection associated to D_i . Bell [3] proved a transformation formula

$$P_1(u \cdot \varphi \circ f) = u \cdot (P_2 \varphi) \circ f$$

for $\varphi \in L^2(D_2)$. For a given s > 0, there exists an integer M such that $P_1: W^{s+M}(D_1) \to H^s(D_1)$ is bounded. We have an integer N depending on s and M such that the operator $\varphi \mapsto u \cdot \varphi \circ f$ is bounded from $W_0^N(D_2)$ to $W_0^{s+M}(D_1)$. There exists a bounded operator $\Phi^N: W^N(D_2) \to W_0^N(D_1)$ such that $P_2 \Phi^N = P_2$. For $\psi \in L^{-s}(D_1)$ it holds that

$$\begin{aligned} |\langle u \cdot H \circ f, \psi \rangle| &= |\langle u \cdot (\Phi^N H) \circ f, P_1 \psi \rangle| \\ &\leq ||u \cdot (\Phi^N H) \circ f||_{s+M} ||P_1 \psi||_{-s-M} \,. \end{aligned}$$

It is easily seen that

$$||u \cdot (\Phi^N H) \circ f||_{s+M} \leq C_1 ||H||_N$$
.

By the boundedness of P_1 we have

$$\begin{split} ||P_1\psi||_{-s-M} &= \sup_{\substack{\varphi \in C_0^{\infty}(D_1) \\ ||\varphi||_{s+M} = 1}} |\langle P_1\psi, \varphi| \rangle \\ &= \sup_{\substack{|\varphi||_{s+M} = 1}} |\langle \psi_1, P_1\varphi \rangle| \\ &\leq \sup_{\substack{||\psi|||_{-s} \\ \leq C_2|||\psi|||_{-s}}} . \end{split}$$

Therefore we obtain

626

$$|||u \cdot H \circ f|||_s = \sup_{\substack{\psi \in L^{-s}(D_1) \\ |||\psi|||_{-s} = 1}} |\langle u \cdot H \circ f, \psi \rangle|$$

$$\leq C_3 ||H||_N.$$

This completes the proof.

References

- S. Bell: Non-vanishing of the Bergman kernel function at boundary points of certain domains in Cⁿ, Math. Ann. 244 (1979), 69-74.
- [2] S. Bell: Biholomorphic mappings and the $\bar{\partial}$ -problem, Ann. of Math. 114 (1981), 103-113.
- [3] S. Bell: Proper holomorphic mappings and the Bergman projection, Duke Math. J. 48 (1981), 167-175.
- [4] S. Bell: A representation theorem in strictly pseudoconvex domains, Illinois J. of Math. 26 (1982), 19-26.
- [5] S. Bell and H. Boas: Regularity of the Bergman projection in weakly pseudoconvex domains, Math. Ann. 257 (1981), 23-30.
- [6] S. Bell and D. Catlin: Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385-396.
- [7] S. Bell and E. Ligocka: A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-289.
- [8] C. Fefferman: The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65.
- [9] J. Fornaess: Biholomorphic mappings between weakly pseudoconvex domains, Pacific J. Math. 74 (1978), 63-65.
- [10] J.J. Kohn: Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273–292.
- [11] E. Straube: Harmonic and analytic functions admitting a distribution boundary value, Ann. Scuola Norm. Sup. Pisa 11 (1984), 559-591.

Department of Mathematics Faculty of Science Toyama University Toyama 930 Japan