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Strict Convexity and Smoothness of Normed Spaces

Junzo Wapa

V. L. Klee [11]°> and M. M. Day [6] have considered various pro-
blems on strict convexity and smoothness of normed spaces. In his paper,
Day [6] raised several questions. Two of these are the following :

(1) Is any L,-space strictly convexifiable ?

(2) Is there a nonreflexive nonsparable scm space?

In this paper, we consider these questions. In §2 we deal with spaces
of bounded continuous functions and consider strict convexity and
smoothness on these spaces. In §3 we give a partial answer to the first
question, and in §4 we give an answer to the second, by showing an
example of a nonreflexive nonseparable scm space.

81. Preliminary.

Let E be a normed space. If every chord of the unit sphere has its
midpoint below the surface of the unit sphere, then E is called strictly
convex (written SC); if through every point of the surface of the unit
sphere of E there passes a unique hyperplane of support of the unit
sphere, then E is called smooth (written SM); if both occur, then E is
called SCM. If E is isomophic to an SM, an SC and an SCM space, then
E is called an sm, an sc and an scm space respectively.

If I is an index set, we define :

m(I)=the space of all bounded real functions on I with ||x||=1Lu.b.
| x(3)].

¢{I) = the subspace of those x in m(I) for which for each €>0 the
set of 7 with |x(¢)|>>¢ is finite; that is, ¢,(I) is the set of functions

vanishing at infinity on the discrete space I
l,(I) (for p=1) =the set of those real functions x on I for which

2], =221 2(0) | #]/2 <+ oo.
Let X be a topological space. Then C(X) denotes the space of all
real-valued bounded continuous functions on X such that the norm || f||=

ggglf(x)l-

1) Numbers in bracket refer to the references cited at the end of the paper.
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If X is a set and F is a Borel field of sets in X and if p# is a
countably additive, non negative set function defined on F, then L (X, »)
denotes the space of all measurable functions f on X such that || fll,,=
[/ 1f(x)|2dp(x)]/?. It is called a L ,-space.

Day [6] has proved the following theorems, which we shall frequently
refer to later.

D,. If a normed space E is isomophic with a subspace of an sm(or sc)
space, then E is sm(or sc).

D,. If E is an sm space and if there is a one-to-one linear conti-
nuous mapping T from E into an scm space F, then E is scm.

D,. If E is separable then E is scm.

D,. Let J be an index set and let E; be an sc space for any j € J.
If E is a normed space of all functions f such that for any j,f(j)€E;
and ;Hf(j)ll%j<+oo (p=1) and the norm of f is (;Hf(j)\l%j)‘“’, then

E is sc. E is called the /, product of E;.

D,. Let J be an index set and let E; be an sm space for any je s
Then the /, product of E(p>1) is sm.

D,. If I is infinite, then m(l) is not sm. If I is uncountable, m(l)
is not sc.

D,. For any index set I, c,(I) is sm and sc.

D,. For any index set I, /() is sc.

§2. Spaces of bounded continuous functions.

Throughout this paragraph, spaces are always completely regular
Hausdorff spaces.
We first prove the following lemma.

Lemma 1. (i) If R is a countably paracompact® space and if C(R)
is sm, then R is countably compact.?
(i1) If R is paracompact®and if C(R) is sm, then R is compact.?

Proof. If R is not countably compact, then there exists a countably
infinite set N in R such that N has no accumulation point. Let N be
a set {x,, x,, -, x,,-}. Since R is regular, there exists a sequence of
mutually disjoint open sets {U,} in R such that U,>x, for any n. We
consider an open covering 1 consisting of {U,} and R—N. Since R is

2) Compactness will always mean the bicompactness of Alexandroff-Hopf [[1]; a space
with the property that every infinite subset has an accumulation point will be called countably
compact. A Hausdorff space is paracompact (or countably paracompact) if every open cover-
ing (or countably open covering) of it can be refined by one which is locally finite, that is,
every point of the space has a neighborhood meeting only a finite number of sets of the refining
covering (cf. [13] and [7]).
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countably paracompact, 1 can be refined by a locally finite covering B.
We see easily that for any # there exists a V, €8 such that x,€ V,CU,.
For any » we take an open set W, and a continuous function f, on R
such that V,OW,>> W,>x,, f,(x,)=1, f,(x) for any x€ R—W, and

0<f(x)<1 for any x€R. For any t=(¢, ¢, ,1t,, ") €Em, we put
Si(x) =i]lt,,f,,(x) for any x€R.

Since B is locally finite and {; W,,(‘Z V.. We see easily that f, is

continuous for £ € m and || f,||=sup|?,| =||#||,,. Then by D, and D,, C(R)
is not sm. "

(ii) R. Arens and J. Dugungi [3] have proved that if R is para-
compact, then R is compact if and only if it is countably compact.
Therefore (ii) is clear by (i).

By Lemma 1. (ii) we obtain

Theorem 1. Let R be a metric space. Then C(R) is sm if and only
if R is compact.

Proof. Since a metric space is paracompact, the necessity is clear.
Conversely, if R is metric and compact, then C(R) is separable, therefore
C(R) is sm.

Kakutani [9] proved the following lemma.

Lemma 2. If H is a locally separable, closed subset of a metric space
R, then there is a linear isometry T of C(H) into C(R) such that Tx(h)=
x(h) for all h in H.

Theorem 1 also follows from Lemma 2.

We obtain moreover,

Theorem 2. Let R be a metric space. Then C(R) is sc if and only if
R is separable.

Proof. Let R be separable and let {x,} be a countable dense set in
R. Then we consider a new norm |f| for any f€C(R). We define

171 = (11 S e L 1 [}

We easily see that C(R) is SC by this new norm. Conversely, if C(R)
is sc, and if N is a subset (in R) having R, elements, then N has an
accumulation point. For, if there is a subset N which has R, elements

3) A denotes the closure of A.
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and has no accumulation point, then C(N) is isomorphic to m(I), where
I is an index set which has R, elements. By D,, D, and Lemma 2, C(R)
is not sc. Therefore, we may prove the following lemma.

Lemma 3. Let R be a metric space. If every subset N (in R) having
R, elements has an accumulation point, then R is separable.

Proof. Suppose the hypothesis holds. Then for any positive number
&, there is a sequence of elements, x,, x,, -, x,, --- such that for any
element x in R, there is an x; with p(x, x,)<&, where p is a distance
function on R. For otherwise, if x, is any element in R, there is
an element x, in R—S(x,, &, where S(x,, &) denotes the sphere with
center x, and radius & For any positive integer #, there exists x, in
R— \jS x;, €). By repetition, for any @< o, we can find an element x, in
R such that x,€ R—\JS(xz, §). Therefore we have a set N={x,|a<w}.

B-a

Since N has X, elements, N has an accumulation point by hypothesis.
Let x be an accumulation point of N. Then there are two distinct

ordinary number «, 8 (,6’<a<co1) such that x, € S< x, g) and x; € S< x, %>
Therefore p(x,, xﬁ)<u8 This is a contradiction since p(x, %g)=¢€.
Therefore, for any positive integer m, we can select a sequence x7', xz,

, ¥m, -+ such that for any x in R there is an x7 with p(x, x7 < -

Put D={x?\m=1, 2,---.i=1, 2,---.}. Then D is dense in R, that is
R is separable.

If X and Y are topological spaces and if there is a one-to-one con-
tinuous mapping ® from X onto Y, then Y is called a contraction of X,
and we write X>=Y. If X=Y and if the inverse of @ is not continuous,
then we write X >Y. We can assume here that X and Y are two spaces
on the same set with different topologies. (Cf. [8] or [15]). If Y is
metric (or locally compact), then Y is called a metric (or a locally compact)
contraction of X.

Lemma 4. If a completely regular space R has a metric contraction,
then C(R) is sm if and only if R is metvic and compact.

Proof. If R, is a metric contraction of R, then C(R) >DC(R,). By D,
if C(R) is sm, then C(R,) is also sm. By Theorem 1, R, is (metric) com-
pact. Now we shall prove that R=R,. If R*>R,, then there exists
an f in C(R)—C(R,) since R is completely regular. We put d(x, y)=
|f(x)—f(y)| for any x, y€R, and put p.(x, y)=d(x, y)+p(x, y), where
p(x,y) is a distance function on R,. Let R, be a metric space defined
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by po(x,y). Then we easily see that R=R, and R,_>R,. By Theorem
1, R is compact, since R, is metric. Since R, and R, are both compact,
R,=R,. This contradiction concludes the proof.

Similarly, we obtain

Lemma 5. If a completely regular R has a metric contraction and if
C(R) is sc, then R is a least upper bound® of separable metric spaces.

Proof. If R, is a metric contraction of R and if R™>R,, then for
any open set U in R and for any x € U, there is f € C(R) such that
f(x)=1 and f(y)=0 for any y€ R—U. We put d(x, y)=| f(x)— f(»)| and
put p,(x, y)=d(x, y)+p(x, y), where p(x, y) is a distance function on R,.
Let Ry ., be a metric space defined by p,. Then we easily see that R

is a least upper bound of Ry ..
If R is a topological space, we denote by A the diagonal of the

topological product Rx R, that is, A = {(x, x)|x € R}.

Lemma 6. The following two conditions are equivalent.

a) A is a Gy set.

b) There exists a sequence of open coverings {1,} such that for any
distinct two points x,y in R, no element in 1,, contains both x and y for

some m.
Proof. If a) holds, then Azf\ U, for some sequence of open sets
=1

U, in Rx R containing A. For any x € R, there is an open neighborhood
V.(x) such that V (x)x V, (x)U,. We put U,={V (x)|x€R} for any
n. Then we easily see that {11} satisfies the property b).

Conversely, if b) holds and if U,= {V7%}, then we put U,=

SN(Vex V™. U, is an open set in Rx R containing A and A=[m\ U,.
o n=1

If R satisfies the equivalent condition of Lemma 6, then R will be
called a weakly metric space. Of course, there is a weakly metric space
which is not metric.

Theorem 3. Let R be a paracompact, weakly metric space. Then
C(R) is sm if and only if R is metric and compact.

Proof. In order to prove the theorem, we may show the existence
of a metric space R, such that R= R, (cf. Lemma 4). Since R is weakly
metric, there exists, by Lemma 6, a sequence of open coverings {11}

4) The set of all topologies on the same set forms a lattice by the ordering =. The
least upper bound of topologies means the least upper bound on this lattice.
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such that for any distinct two points x, y in R, no element in 1,, con-
tains both x and y for some m. We may assume that U, >, % for
any #n. Since R is paracompact, every covering of R is normal.® There-
fore, there exists a sequence of coverings on R such that

n,>%B, and B, >V, *> for any n.

Here we have pseudo distance function® p(x,y) in R such that if
y¢S(x, B,),” then p(x,y)>>2"""2 for any = (cf. Tukey [13]). We can
prove easily that if x==y in R, then p(x, ) >0 by the condition of {U,}.
Therefore p is a distance function. If R, is a metric space defined by
p, then R=R,.

Corollary. If R is paracompact and if RXxR is perfectly normal®,
then C(R) is sm if and only if R is metric and compact.
By Lemma 5 we obtain,

Theorem 4. Let R be a paracompact, weakly metric space and let
C(R) be sc. Then R is a least upper bound of separable metric spaces.

ReMARK. (i) Day [6] raised the following question: Is any sm
space an sc space? If R is paracompact weakly metric and if C(R) is
sm, then it is sc¢ (cf. Theorem 3).

(ii) An index set J is regarded as a discrete space. Let ], be a
non-point compactification of J (cf. [1], p. 93). Then we easily see that
C(J,) is isomorphic to ¢,(J), therefore C(J,) is sm by D,. But J, is not
weakly metric. (], is paracompact since it is compact.) Therefore, in
Theorem 3, the hypothesis is necessary.

§3. Spaces of summable functions.

Day raised the following question: Is any L,-space an sc space?
We here prove that if R is paracompact, weakly metric and® locally
compact, then L,(R, #) is sc for any positive measure® p. Every L,-space

5) “N>B” denotes that P is a refinement of Y. B* is a covering consisting of {S(V,
W VeEB} S(A,B) denotes the sum of V (€W) with V(N A=f=+. An open covering of R
will be called normal if there is an open covering of R B such that Y >B*. A topological
space will be called fully normal if every open covering is normal (cf. [14]). A.H Stone
[137] has proved that paracompactness is identical with the property of “full normality” in
Hausdorff spaces.

6) p(x,») will be called a pseudo distance function if it is continuous on RXR and if
i r (x! y)_*—>=0: (ii) p (xv y)=rp(y %) and (i“) p (x, y>+P (Jh Z)__>:p<x, z).

7) A topological space X will be called perfectly normal if any closed set in X is a Gj-set.

8) See, §2. Lemma 6.

9) See, for example, [4].
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is represented as L (R, ), where R is a sum of mutually disjoint stonian

spaces' which are both open and closed in R Therefore, by D,, if

LR, ») is sc when R is stonian, then every L,-space is sc. But, stonian

spaces are not always weakly metric. Therefore the question is yet open.
We first prove

Theorem 5. Let R be a locally compact metric space and let p be a
positive measure on R. Then LR, 1) is sc.

Proof. Let S(R) be the set of all continuous functions on R with
a compact carrier. If the norm ||f|| of f in K(R) is sup | f(x)|, &(R)
IER

forms a normed space. Since R is locally compact and metric, R is a
sum of mutually disjoint separable locally compact metric spaces {R;} ¢,
which are both open and closed in R (cf. Alexandroff and Urysohn [2]).
Index set J may be uncountable. For any f in L,(R, p), we denote by f;
the restriction of f on R, and by g; the restriction of x on R;. Then
we can write f=2>1f; and || f]|=2X||f;|l. We easily see that &(R)) is

separable for any j, since R; is separable and locally compact. Therefore
for any j L,(R,, p;) is separable and sc (cf. [5] or [6]). By D, the theo-
rem is then clear.

Moreover, we can prove the following

Theorem 6. Let R be a paracompact, weakly metric®, locally compact
space. Then LR, p) is sc for any positive measure on R.
We first prove two lemmas.

Lemma 7. Let R be a locally compact space and let R have a locally
compact metric contraction. Then L,(R, u) is sc for any positive measure
s on R.

Proof. If R, is a locally compact metric contraction, then R, is a
sum of mutually disjoint separable locally compact metric spaces {S} e,
which are both open and closed in R,. Let ® be the one-to-one conti-
nuous mapping from R onto R,, and let R; be the inverse P7(S;) for
any j. Then R= VRJ. and R; are mutually disjoint and are both open

and closed in R. The mapping ¢ from R, onto S; is continuous and
one-to-one. Therefore the lemma follows immediately from the next
Lemma 8 and D,.

10) A Hausdorff space is stonian if it is compact and if U is open for any open set U.
11) Cf. for example, [10].
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Lemma 8. Let R be a locally compact space and let R have a locally
compact separable metric contraction. Then LR, p) is sc for any positive
measure on R.

Proof. Let R, be a locally compact separable metric contraction of

R and let &R) and RK(R,) be the sets of all continuous functions with

compact carriers of R and R, respectively. The norm [|f|| of f in &(R)

(or R(R,)) is sgg) [ f(x)| (or sg?p |f(x)]). In order to prove the lemma, we
M seR,

have only to prove that L.(R, x#) is isomorphic to a subspace of R(R,)*'?,
since (R, is separable (cf. Klee [11]). Let @ be the one-to-one con-
tinuous mapping from R onto R,. For any f in L,(R, #) and for any g
in &£R,), we put

T g) = | _rwgpndut).

We are here to prove that ||T/||= sup »szi(gﬂzllfl{l. It is clear
g€ i(()R(,) lgll

g
that ||T/||<]|| f|l,. Therefore we shall prove that ||T/||=|] fll,. For any
positive number &, there is an /% in &(R) such that S | flx)—h(x) | dp(x)< &/ 4.
R

We may assume that % is not identically zero. Put U,= {x|h(x)==0},

F, = {xlh(x)g %} and K,= {xlh(x) < - 711} for any natural number

n. Then U0=C/1(F,,UK,,) and therefore w(U,—(F,vK,))< &/4||k||.. for

some #. Since F, and K, are compact on the topology of R, ¢F, and 9K,
are also compact in R,. Therefore there exists a g in &(R,) such that
gpF,)=1, gpK,)=—1 and —1<g(y)<1 for any y in R,. For this g,

T 1@l |<| | Fegendem | rogendse |

+ ‘ SR [A(x)|dp(x)— SRh(x)g(q)x)d/b(x) |< %

| () | dpa(x) <-2+2||k|1w-8/4!|h||w=ie ,

+2S g

Ug—(Fp\U Gy

Therefore | Tf(g)|>‘gklh(x)ld/b(x)— %82, SR [f(x)|dp(x)—&=||fIl,—¢&.

Since | gll.=1, [|T/|=Il fI],-

Proof of Theorem 5. Since R is weakly metric and locally compact,
we can assume, in the proof of Lemma 6, that V,(x) is relatively com-
pact for any x€R. In the proof of Theorem 3, we easily see that R

12) For any normed space E, E* denotes the conjugate space of E.
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has a locally compact metric contraction R,. Then by Lemma 7 the
theorem is clear.

Theorem 7. If an L,-space E is lattice-isomophic and isometric to a
conjugate space of an AM space and if E is sm, then E is lattice-isomorphic
and isometric to [,.

Proof. If an AL space E with an F-unit'® is lattice-isomorphic and
isometric to a conjugate space of an AM space, then E is lattice-isomor-
phic and isometric to /, (cf. [16]). The theorem is clear since if E is
sm, then E has an F-unit (cf. [6]).

§4. scm spaces.

Day [6] has proved that if a normed space E is separable, then it
is scm. He raised the following question: Is there a nonreflexive,
nonseparable scm space? We give an example of nonreflexive, non-
separable scm spaces. If E and F are two normed spaces, we mean by
the /, product of E and F a normed space of all pairs z=(x, y), *€E,
y€F with the norm (|[x]|2+]] y[|?)V2, (p=>1).

We first prove the following.

Theorem 8. If E is a separable normed space, then the I, product
l
of E and 1,(I), Ex1,(I), is scm (p>>1).

Proof. Since E is separable, there exists a one-to-one linear conti-
nuous mapping V from E into /,. V is as follows: let {f;} be a
bounded sequence of elements of E* total over E. Then V(x)={f;(x)/27}

7
for any x€ E. For any z=(x,y)EM=E>i l,(I), we put
W(z) =(V(x), y)

lp Ip
(V(x), y)isin [,x [, (I). Since [,x1,(I) is isomorphic to an /,(]J) for an
index set J, W is a one-to-one linear continuous mapping from M into
1,(]). By D, M is sm. Since [,(]) is scm, by D,, M is scm.

Example. Let E be the space ¢,, that is, the set of all sequences
of real numbers which converge to zero. Then E is separable and
nonreflexive. If the index set I is uncountable, /,(I) is nonseparable.

Therefore, if p>1 and if I is uncountable, M=co>1? /,(I) is an example
of a nonreflexive, nonseparable scm space. For, M is nonreflexive since
any closed subspace of a reflexive space is also reflexive (cf. Pettis [ 12]),
and is scm by Theorem 8.

(Received September 19, 1958)
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