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Abstract
The n-th modular equation for the elliptic modular functionj (z) has large

coefficients even for smalln, and those coefficients grow rapidly asn ! 1. The
growth of these coefficients was first obtained by Cohen ([5]). And, recently Cais
and Conrad ([1], §7) considered this problem for the Hauptmodulj5(z) of the
principal congruence group0(5). They found that the ratio of logarithmic heights of
n-th modular equations forj (z) and j5(z) converges to 60 asn!1, and observed
that 60 is the group index[0(1) :0(5)]. In this paper we prove that their observation
is true for Hauptmoduln of somewhat general Fuchsian groupsof the first kind with
genus zero.

1. Introduction

Let H = fz 2 C j Im z> 0g be the complex upper half plane andj (z) = q�1 + 744 +
196884q + � � � be the elliptic modular function onSL2(Z) with z 2 H and q = e2� i z.

Further, let8 j
n(X, Y) = 0 be then-th modular equation forj (z) (see [6, 10, 11]). Then8 j

n(X, Y) is a polynomial with integral coefficients satisfying8 j
n( j (z), j (nz)) = 0, and

is irreducible as a polynomial inX over C(Y). Moreover it is known that8 j
p(X, Y)

satisfies the Kronecker congruences, and8 j
n(X, Y) has large coefficients even for small

n. For example,

8 j
3(X, Y) = X(X + 215 � 3 � 53)3 + Y(Y + 215 � 3 � 53)3 � X3Y3

+ 23 � 32 � 31X2Y2(X + Y)� 22 � 33 � 9907XY(X2 + Y2)

+ 2 � 34 � 13 � 193� 6367X2Y2 + 216 � 35 � 53 � 17 � 263XY(X + Y)

� 231 � 56 � 22973XY.

Note that the coefficients of8 j
n(X, Y) grow quite rapidly asn!1, which was first

estimated by Cohen ([5]) as follows.
For a nonzero polynomialP(X1, : : : , Xr ) 2 C[X1, : : : , Xr ], let h(P(X1, : : : , Xr )) be

the logarithmic heightof P(X1, : : : , Xr ) defined by the logarithm of the maximum of
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the absolute values of its coefficients. And, throughout this article we useO-notation
which has the following meaning; letf and g be complex valued functions defined on
some setS and h be a real valued positive function defined onS. Then f = g + O(h)
means that there exists an absolute positive constantA such thatj f � gj � A � h on

S. With the aid of height andO-notation Cohen showed that how rapidlyh(8 j
n(X, Y))

grows asn!1, that is, for any positive integern we have

(1.1) h(8 j
n(X, Y)) = 6 (n)

(
log n� 2

X
pjn

log p

p
+ O(1)

)
,

where (n) = n
Q

pjn(1 + 1=p).
On the other hand Cais and Conrad recently considered the modular equations of

the Hauptmodulj5(z) = q�1=5(1 + q � q3 + q5 + � � � ) of 0(5). For a positive integern

with (n, 5) = 1 we let8 j5
n (X, Y) = 0 be then-th modular equation forj5(z) defined as in

[1, Definition 6.4]. Then8 j5
n (X, Y) is a polynomial with integral coefficients satisfying8 j5

n ( j5(z), j5(nz)) = 0, and is irreducible as a polynomial inX over C(Y). In addition,8 j5
p (X, Y) also satisfies the Kronecker congruences ([1, Theorem 6.8]). But unlike the

case of8 j
n(X, Y), 8 j5

n (X, Y) has much smaller coefficients, for example,

8 j5
3 (X, Y) = X4Y3 + X3� 3X2Y2 � XY4 � Y.

They indeed estimated the logarithmic height of8 j5
n (X, Y), precisely, for any positive

integern with (n, 5) = 1

h(8 j5
n (X, Y)) =

1

10
 (n)

(
log n� 2

X
pjn

log p

p
+ O(1)

)
,

from which they derived by comparing withh(8 j
n(X, Y)) that

lim
n!1
(n,5)=1

h(8 j
n(X, Y))

h(8 j5
n (X, Y))

= 60 = [0(1) : 0(5)]

where0(1) and0(5) denote the images of0(1) and0(5) in PSL2(R). But Cais and
Conrad did not explain why the ratio of logarithmic heights converges to the group
index.

So it is natural and worthwhile to ask whether

h(8 j
n(X, Y))

h(8 f
n (X, Y))

! [0(1) : 0]

as n!1 with some conditions onn for a Hauptmodul f (z) of arbitrary congruence
subgroup0. In Theorem 2.1 (1) we shall prove that the answer is affirmative for clas-
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sical congruence subgroups. We further consider a similar question about subgroupsh00(N), Weie2S of SL2(R) which appear in “Monstrous Moonshine” phenomenon. And
we will prove in Theorem 2.1 (2) that the ratio of logarithmicheights in this case is
also related to a certain summand of group indices.

In what follows we fix an integerN, and define necessary congruence subgroups

00(N) =

��
a b
c d

� 2 SL2(Z)

�
a b
c d

� � � � �
0 �

�
mod N

�
,

00(N) =

��
a b
c d

� 2 SL2(Z)

�
a b
c d

� � � � 0� �
�

mod N

�
,

01(N) =

��
a b
c d

� 2 SL2(Z)

�
a b
c d

� � � 1 �
0 1

�
mod N

�
,

01(N) =

��
a b
c d

� 2 SL2(Z)

�
a b
c d

� � � 1 0� 1

�
mod N

�
,

0(N) =

��
a b
c d

� 2 SL2(Z)

�
a b
c d

� � � 1 0
0 1

�
mod N

�
.

2. Preliminaries and statements of the results

In this section we recall the definition of modular equationsfor Hauptmoduln of
various subgroups ofSL2(R).

For a Fuchsian group0 of the first kind with genus zero, we define a Haupt-
modul of 0 by an automorphic functionf (z) for 0 satisfying A0(0) = C( f (z)). Here
by A0(0) we mean the field of all automorphic functions for0 (see [11]). In this paper
we fix that0 = 01(N)\00(mN) for a positive integerm, and f (z) = q�1 +

P1
n=0 anqn

is a Hauptmodul of0 with an 2 R for all n � 0. While considering this Hauptmodul
f (z) of 0, it is a necessary condition that the genus of0 is zero, and as for the genus
formula of 0 we refer to [9, Theorem 1.1].

For a positive integern with (n, mN) = 1 we have the following disjoint coset
decomposition

0� 1 0
0 n

�0 =
[
a>0
ad=n

[
0�b<d

(a,b,d)=1

0�a

�
a b
0 d

�
,

where�a 2 SL2(Z) satisfies�a � � a�1 0
0 a

�
mod mN. This can be proved by observing

����0 n 0
�

1 0
0 n

�0���� = n
Y
pjn
�

1 +
1

p

�
=  (n)

and using [11, Proposition 3.36].
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REMARK . Since�a0��1
a = 0 for any positive divisora of n, we haveC( f ) =

A0(0) = A0(��1
a 0�a) = C( f Æ�a), and hence for givena we can define a rational func-

tion Pa(T) 2 C(T) such that f Æ �a = Pa( f ). For positive divisorsa, b of n we easily
see that
(1) a � �1 mod N , Pa(T) = T, and ā = b̄ 2 (Z=NZ)�=f�1g , Pa(T) = Pb(T),
(2) Pa(Pb(T)) = Pab(T) = Pb(Pa(T)).

If we let Pa(T) = A(T)=B(T) 2 C(T) with A(T), B(T) 2 C[T ] and (A(T), B(T)) =
1, then degA(T), degB(T) � 1 except when degA(T) = degB(T) = 0 becauseC( f Æ�a) = C( f ).

We now consider the following polynomial9 f
n (X, z) with the indeterminateX

9 f
n (X, z) =

Y
a>0
ad=n

Y
0�b<d

(a,b,d)=1

�
X � f Æ �a Æ

�
a b
0 d

�
(z)

�
.

Note that degX 9 f
n (X, z) =  (n). Since all the coefficients of9 f

n (X, z) are the ele-

mentary symmetric functions of thef Æ �a Æ � a b
0 d

�
, they are invariant under0, i.e.,

9 f
n (X, z) 2 C( f (z))[X] and we may write9 f

n (X, f (z)) instead of9 f
n (X, z). Then as

in the usual argument of modular equations, we see that9 f
n (X, f (z)) is irreducible

over C( f (z)). And we see from [8] thatf (z)rn9 f
n (X, f (z)) 2 C[X, f (z)] for rn =

�Ps2S1,1\S2,0
ords f (z), whereS1,1 (respectively,S2,0) is the set of all points of

�0 \�
n 0
0 1

��10� n 0
0 1

�� n H� such that f (z) (respectively, f (nz)) has poles (respectively,

zeros) (see also [3, Theorem 3.3] or the proof of [4, Theorem 10]). Here we note
that rn � �Ps2S1,1 ords f (z) = [C( f (z), f (nz)) : C( f (z))] � n

Q
pjn(1 + 1=p), because

9 f
n (Pn( f (nz)), f (z)) = 0.

Therefore for those Hauptmodulnf (z) of 0 and integern with (n, mN) = 1 we

define then-th modular equation8 f
n (X, Y) = Yrn9 f

n (X, Y), namely

8 f
n (X, f (z)) = f (z)rn �Y

a>0
ad=n

Y
0�b<d

(a,b,d)=1

�
X � f Æ �a Æ

�
a b
0 d

�
(z)

�
.

Here we remark that if we confine ourselves to a Hauptmodulf (z) = q�1 +
P1

n=0 anqn

with an 2 Z, we could justify that8 f
n (X, Y) 2 Z[X, Y] and 8 f

p(X, Y) satisfies the
Kronecker congruences depending onPp(T) in the above remark. But we will not go
further into this direction.

Next, unlike the case0 = 01(N) \ 00(mN) we further consider a subgrouph00(N), Weie2S of SL2(R) which appears in “Monstrous Moonshine” phenomenon. For
the details, we recommend the readers to refer [2].
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Let N > 1 be an integer ande be a Hall divisor of N, that is, e is a positive
divisor of N such that (e, N=e) = 1. For a Hall divisore of N we define an Atkin-
Lehner involution of00(N) as a matrix with determinant 1 of the form

0
B� a
p

e
bp
e

c
Np
e

d
p

e

1
CA where a, b, c, d 2 Z.

Let We be the set of all Atkin-Lehner involutions with a fixed Hall divisor e of N.
Then these sets satisfy the following multiplication rule:

(2.1) WeWf = Wf We = Wk where k =
e

(e, f )
� f

(e, f )
.

Notice thatk is a Hall divisor of N if e and f are Hall divisors ofN. Assume that
S is a subset of the Hall divisors ofN closed under the above multiplication rule. Byh00(N), Weie2S we mean the subgroup ofSL2(R) generated by all elements of00(N)
and We for all e2 S. If h00(N), Weie2S is of genus zero, then we can choose a Haupt-
modul f (z) = q�1 +

P1
n=0anqn with an 2 Z. In [2] Chen and Yui defined, for a positive

integern prime to N, the n-th modular equation8 f
n (X, Y) = 0 for which

8 f
n (X, f (z)) =

Y
a>0
ad=n

Y
0�b<d

(a,b,d)=1

�
X � f Æ � a b

0 d

�
(z)

�
.

And they proved that8 f
n (X, Y) is a polynomial with integral coefficients satisfying8 f

n ( f (z), f (nz)) = 0 and it is irreducible as a polynomial inX over C(Y). But, for
the purpose of this article, it is enough to assume thatf (z) has only real Fourier co-
efficients, i.e.,an 2 R for all n � 0.

Now we are ready to state our main theorem.

Theorem 2.1. (1) Let f(z) = q�1 +
P1

n=0 anqn be a Hauptmodul of0 = 01(N)\00(mN) with an 2 R. For a positive integer n with(n, mN) = 1, we get

h(8 f
n (X, Y)) =

6 (n)

[0(1) : 0]

(
log n� 2

X
pjn

log p

p
+ O(1)

)
.

(2) Let f(z) = q�1 +
P1

n=0 anqn be a Hauptmodul ofh00(N), Weie2S with an 2 R. For
a positive integer n with(n, N) = 1, we have

h(8 f
n (X, Y)) =

X
e2S

6 (n)

[0(1) : 00(N=e)]

(
log n� 2

X
pjn

log p

p
+ O(1)

)
.
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Combining (1.1) and Theorem 2.1, we can readily achieve the following corollary.

Corollary 2.2. (1) With the notations as inTheorem 2.1 (1),we obtain

lim
n!1

(n,mN)=1

h(8 f
n (X, Y))

h(8 j
n(X, Y))

=
1

[0(1) : 0]
.

(2) With the notations as inTheorem 2.1 (2),we get

lim
n!1

(n,N)=1

h(8 f
n (X, Y))

h(8 j
n(X, Y))

=
X
e2S

1

[0(1) : 00(N=e)]
.

We conclude this section with some remarks. For an arbitraryintersection of clas-
sical congruence subgroups

00 = 00(N1) \ 00(N2) \ 01(N3) \ 01(N4) \ 0(N5),

we have��100� = 01(N) \ 00(mN) where N = lcm(N3, N4, N5) and

� =

�
lcm(N2, N4, N5) 0

0 1

�
, m =

lcm(N1, N3, N5) lcm(N2, N4, N5)

N
.

If g(z) = q�1
h +

P1
n=0 anqn

h is a Hauptmodul of00 with h = lcm(N2, N4, N5) and qh =
e2� i z=h, then f (z) := g Æ �(z) = q�1 +

P1
n=0 anqn is a Hauptmodul of01(N) \ 00(mN).

Since then-th modular equation8g
n(X,Y) for g(z) is, essentially, irreducible as a poly-

nomial in X over C(Y) satisfying8g
n(g(z), g(nz)) = 0, we obtain8 f

n (X, Y) =8g
n(X, Y)

by observing8g
n(g(hz), g(hnz)) = 0 and f (z) = g(hz). Thus Theorem 2.1 (1) holds

for any congruence subgroup of00(N1), 00(N2), 01(N3), 01(N4), 0(N5) or arbitrary
intersection of them. For example, since

�
5 0
0 1

��10(5)

�
5 0
0 1

�
= 01(5)\ 00(25)

and f (z) := j5(5z) is a Hauptmodul of01(5) \ 00(25) with the samen-th modular
equation when (n, 5) = 1, we can recover the result of Cais and Conrad from Theo-
rem 2.1 (1).

If Scontains all the Hall divisors ofN, we write00(N)+ as the grouph00(N), Weie2S.
In [2, Appendix 2] Chen and Yui calculated some modular equations for Hauptmoduln
of 00(N) and00(N)+. For instance,

800(3)
2 (X, Y) = X3 + (�Y2 + 108)X2 + (�153Y + 2268)X

+ (Y3 + 108Y2 + 2268Y � 46224),
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800(3)+
2 (X, Y) = X3 + (�Y2 + 1566)X2 + (17343Y + 741474)X

+ (Y3 + 1566Y2 + 7417474Y � 28166076),

where800(3)
2 and800(3)+

2 stand for the second modular equations of the (normalized)
Hauptmoduln of00(3) and00(3)+, respectively. We remark that Theorem 2.1 (2) also
gives a reason why the logarithmic height of800(3)

n is smaller than that of800(3)+
n for

not only n = 2 but also sufficiently largen.

3. Proof of Theorem 2.1

To prove Theorem 2.1 it is necessary to study the behavior of Hauptmodul at each
cusp of0 = 01(N)\00(mN) or h00(N), Weie2S. In this section we recall some lemmas
which give us useful informations about these cusps.

First lemma provides us a criterion to determine whether or not given two cusps
are equivalent under0.

Lemma 3.1. Let 0 = 01(N) \ 00(mN) and

1 = f�(1 + Nk) 2 (Z=mNZ)� j k = 0, 1,: : : , m� 1g.
We assume that a, c, a0 and c0 are integers such that(a, c) = (a0, c0) = 1. By �1=0 we
mean1. Then the cusp a=c is equivalent to a0=c0 under 0 if and only if there exist
x 2 1 and n2 Z such that�

a0
c0
� � � xa + nc

x�1c

�
mod mN.

Proof. Suppose thata=c is equivalent toa0=c0 under0, i.e., there exists
 2 0
such thata0=c0 = 
 (a=c). Sincea, c, a0, c0 are integers satisfying (a, c) = (a0, c0) = 1,

we have
�

a0
c0
�

= �
� a
c

�
. By putting 
 =

�
x n
z w � 2 0 we have the desired assertion.

Conversely suppose that there existx 21 andn 2 Z satisfying the above congruence in
the hypothesis. Since the natural reduction map ofSL2(Z) into SL2(Z=mNZ) is surjec-

tive, let 
 2 SL2(Z) be a preimage of
�

x n
0 x�1

� 2 SL2(Z=mNZ). Note that
 2 f�1g �0
and

�
a0
c0
� � 
� a

c

�
modmN. Now it is an elementary fact that ifu, v, z,w are integers

such that (u, v) = (z, w) = 1 and
�

uv
� � � zw

�
mod N, then u=v and z=w are equiv-

alent under0(N) ([11, Lemma 1.42]). So in our case there exists
 0 2 0(mN) such
that a0=c0 = 
 0(
 (a=c)). This completes the proof since0(mN) � 0.

Let �(x) be the Euler function. Then it is worthy of remarking that

(3.1) [0(1) : 0] = [0(1) : 00(mN)][00(mN) : 0] =
[0(1) : 00(mN)]�(mN)j1j ,
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which will be used in the proof of Lemma 3.10 and Lemma 3.11. From the next two
lemmas we can determine whether a given cusp is equivalent tothe cusp infinity underh00(N), Weie2S.

Lemma 3.2. Let S00(N) be the set of pairs(c, a) satisfying
(1) (1, 0)2 S00(N).
(2) c > 1, c j N, 1� a < c, (c, a) = 1.
(3) If (c, a), (c, a1) 2 S00(N) and a1 � a mod (c, N=c) then a= a1.
Then the setfa=c j (c, a) 2 S00(N)g is a set of complete representatives of all inequivalent
cusps of00(N).

Proof. This lemma is indeed well-known ([7, Proposition 1.23]). For the reader’s
convenience we give an alternative proof. We first observe that the cardinality ofS00(N)

is 1 +
P

c>1,cjN '((c, N=c)) because the natural map (Z=cZ)�! (Z=(c, N=c)Z)� is sur-
jective. Since the number of inequivalent cusps of00(N) is

P
djN '((d, N=d)) (see [11,

Proposition 1.43]), it is enough to prove that arbitrary twodistinct pairs (c, a), (c0, a0) 2
S00(N) are inequivalent to each other. Suppose that they are equivalent under00(N).
By substitutingN = 1, m = N, and1 = (Z=NZ)� in Lemma 3.1, we must have that
c = c0 and x � 1 modN=c. Thus a0 � xa + nc mod N with x � 1 modN=c implies
that a0 � a mod (c, N=c). By hypothesis (3) we havea0 = a.

Lemma 3.3. Let S be a subset of Hall divisors of N closed under the multipli-
cation rule (2.1). Then the cusps

�
1

N=e e2 S

�

are all those equivalent underh00(N), Weie2S to 1 among the set of representativesfa=c j (c, a) 2 S00(N)g described inLemma 3.2.

Proof. For givene2 S there existb, d 2 Z satisfyingde� b(N=e) = 1. Thus we

have We = 00(N)

� p
e b=pe

N=pe d
p

e

�
. Since

� p
e b=pe

N=pe d
p

e

�
(1) = 1=(N=e), we have the

assertion.

Using the above lemmas we are able to prove Theorem 2.1 by adopting the idea
of Cais and Conrad ([1]). For convenience, iff (z) = q�1 +

P1
n=0 anqn with an 2 R is a

Hauptmodul of0 (respectively,h00(N), Weie2S), then we simply write “f (z) is on 0”
(respectively, onh00(N), Weie2S).

Lemma 3.4. 0 and h00(N), Weie2S have no elliptic points on iR>1.
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Proof. If i t (t > 1) is a fixed point of an elliptic element� 2 SL2(R), then the ab-
solute value of the trace of� , jtr(� )j, is less than 2. Moreover, if� 2 SL2(Z), we have

� = �� 0 1�1 0

�
which gives rise to a contradiction. If� 2 SL2(R) n SL2(Z), then we

may assume� =�� a
p

e b=pe
cN=pe d

p
e

�
for a, b, c, d 2 Z and a Hall divisore of N. Since

� fixes i t and jtr(� )j < 2, we havea = d; hencea = 0 and� = �� 0 b=pe
cN=pe 0

�
.

Since� has determinant 1, we obtain�bcN = e and sobc(N=e) = �1, that is, b=c =�1. On the other hand� fixes i t , so we haveb = �cNt. Thus Nt2 = 1, which is a
contradiction.

Since f (z) = q�1 + � � � has real Fourier coefficients,f (i t ) is real andj f (i t )j !1
as t ! 1. Moreover f 0(z) is nonvanishing oni R>1 by Lemma 3.4, so we see that
f (i t ) is strictly increasing fort � 1. Thus we can choose real numberss > 1 and
1� t0 � t1 such that f (i t0) = s, f (i t1) = 2s.

Lemma 3.5. For t0 � t � t1, we have

h(8 f
n (X, f (i t ))) =

X
a>0
ad=n

Sd(t) + O( (n)),

where

Sd(t) =

8>>>>>><
>>>>>>:

X
0�b<d

(a,b,d)=1

log max

�
1,

���� f Æ �a

�
ait + b

d

�����
�

if f (z) is on 0,

X
0�b<d

(a,b,d)=1

log max

�
1,

���� f

�
ait + b

d

�����
�

if f (z) is on h00(N), Weie2S.

Here the implicitO-constant depends only on f, t0 and t1.

Proof. It is well-known that the coefficients of a monic polynomial P(x) = (x �w1) � � � (x � wd) are laid in between 2�d M and 2d M where M =
Qd

j =1 maxf1, jw j jg.
Taking logarithm we see that

(3.2) h(P) =
dX

j =1

log maxf1, jw j jg + O(d)

with an implicit absoluteO-constant which is independent ofd and P.
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If f (z) is on 0, then for t0 � t � t1

8 f
n (X, f (i t )) = f (z)rn

Y
a>0
ad=n

Y
0�b<d

(a,b,d)=1

�
X � ( f Æ �a)

�
ait + b

d

��
.

Applying (3.2) we have

h(8 f
n (X, f (i t )))

= rn log f (i t ) +
X
a>0
ad=n

X
0�b<d

(a,b,d)=1

log max

�
1,

���� f Æ �a

�
ait + b

d

�����
�

+ O( (n)).

Since 0� rn �  (n) ands = f (i t0) � f (i t ) � f (i t1) = 2s, we getrn log f (i t ) = O( (n))
where the implicitO-constant depends only onf , t0 and t1.

As for the case wheref (z) is on h00(N), Weie2S, the same argument can be ap-
plied, and hence we omit the detailed proof.

Next goal is to calculate each term in the summationSd(t). For this purpose we
are in need of the following lemma.

Lemma 3.6. For z = � + i� 2 H, let g(z) = a�1q�1
h +

P1
n=0 anqh

n with qh = e2� i z=h
for a positive integer h. We assume that if a�1 = 0 (respectively, a�1 6= 0), then g(z)
(respectively, qhg(z)) is absolutely convergent for� > 0. Then for� � 1=2, we have

log maxf1, jg(z)jg =

8<
:
O(1) if a�1 = 0,
2� i�

h
+ O(1) if a�1 6= 0.

Here the implicitO-constants depend only g(z).

Proof. Sinceg(z+h) = g(z), we may assume that�h=2� � � h=2. Suppose first
that a�1 = 0. Sincejg(z)j ! ja0j as�!1, there is a real number�0 � 1=2 such that
for � > �0, ja0j=2� jg(z)j � ja0j+ 1. Hence, for� > �0 we derive log maxf1, jg(z)jg =
O(1). Here the implicitO-constant depends only ona0, that is g. For 1=2 � � � �0

we note that log maxf1, jg(z)jg is a continuous function on the set

�� + i� 2 H �h

2
� � � h

2
and

1

2
� � � �0

�

and hence is bounded on this set. Note that the upper bound depends only ong and
is independent of the choice of�0.

If a�1 6= 0, jqhg(z)j ! ja�1j as � ! 1 so that we obtain the assertion by the
same argument as above.
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Let M be a positive integer. Then it is more convenient to considerthe displaced
interval IM = [1=(M + 1), (M + 2)=(M + 1)) rather than the usual interval [0, 1). Cohen
proved in [5] thatIM can be expressed as

IM =
M[

k=1

k[
h=1

(h,k)=1

IM

�
h

k

�
,

which is a disjoint union of setsIM (h=k). Here eachIM (h=k) is an interval of the

form [�(h=k)
1 , �(h=k)

2 ) containingh=k and

1

2Mk
� h

k
� �(h=k)

1 � 1

(M + 1)k
,

1

2Mk
� �(h=k)

2 � h

k
� 1

(M + 1)k
.

For real numbersh, k and x, we put

gh,k(x) =
2�nt=d2k2

(at=d)2 + (x � h=k)2
,

which will be used for estimating the sumSd(t). Thus a, d and t are related toSd(t).
Note that the width of the cusp�a(1) is 1, becausef Æ�a = Pa( f ) as remarked in§2.

Also observe thath00(N), Weie2S contains
�

1 1
0 1

�
. Hence in any case we may reindex

the sum inSd(t) via

b 7!
8>>><
>>>:

b if
b

d
2 � 1

N + 1
, 1

�
,

b + d if
b

d
2 �0,

1

N + 1

�
.

Lemma 3.7. Let f be on0.
(1) If at=d � 1=2, then we have

log max

�
1,

���� f Æ �a

�
ait + b

d

�����
�

=

8<
:

2�nt

d2
+ O(1) if a 2 1,

O(1) otherwise.

(2) Put M = [d=pnt ]. If at=d � 1, then M� 1 and, for b=d 2 IM (h=k), we get

log max

�
1,

���� f Æ �a

�
ait + b

d

�����
�

=

�
gh,k(b=d) + O(1) if k � 0 modmN and h 2 a1,
O(1) otherwise.
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In both cases the implicitO-constants depend only on f.

Proof. (1) By Lemma 3.1,�a(1) is equivalent to1 under 0 if and only if
a 2 1. Using this, Lemma 3.6 gives us the assertion.

(2) Since (h,k) = 1, we can find
h,k :=
� v u�k h

� 2 SL2(Z). By routine calculation

we see that

Im

�
h,k

�
ait + b

d

��
=

nt=d2k2

(at=d)2 + (b=d � h=k)2
=

1

2� gh,k

�
b

d

�
.

Sinceb=d 2 IM (h=k) = [�(h=k)
1 , �(h=k)

2 ), we obtain

����bd � h

k

���� � 1

(M + 1)k
� pnt

dk
.

Moreover, we achieve

at

d
=

nt

d2
� pnt

dk

which implies that

Im

�
h,k

�
ait + b

d

�� � 1

2
.

By Lemma 3.1,�a(
�1
h,k (1)) is equivalent to1 under0 if and only if k � 0 mod

mN and h 2 a1. Taking g(z) = f Æ �a Æ 
�1
h,k (z) in Lemma 3.6, we have the assertion.

More precisely, ifk � 0 mod mN and h 2 a1, then���� f Æ �a

�
ait + b

d

����� =

���� f Æ �a Æ 
�1
h,k

�
h,k

�
ait + b

d

������
= 2� Im

�
h,k

�
ait + b

d

��
= gh,k

�
b

d

�
.

Other case corresponds to the holomorphic one in Lemma 3.6. Therefore we prove the
lemma.

Lemma 3.8. Let f be onh00(N), Weie2S.
(1) If at=d � 1=2, then we have

log max

�
1,

���� f

�
ait + b

d

�����
�

=
2�at

d
+ O(1).
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(2) Put M = [d=pnt ]. If at=d � 1, then M� 1 and, for b=d 2 IM (h=k), we establish

log max

�
1,

���� f

�
ait + b

d

�����
�

=

8<
:gh,k

�
b

d

�
+ O(1) for e2 S, k � 0 modN=e and h 2 (Z=(N=e)Z)�,

O(1) otherwise.

In both cases the implicitO-constants depend only on f.

Proof. Since the first assertion can be proved in a similar wayto Lemma 3.7,
we only prove (2). The fact that
�1

h,k (1) is equivalent to1 under h00(N), Weie2S

yields by Lemma 3.7 thath=k is equivalent to 1=(N=e) under 00(N) for some Hall
divisor e 2 S exactly. In other words, by Lemma 3.1 there arex 2 (Z=NZ)�, n 2 Z
such thath � x�1 + n � (N=e) mod N and k � x � (N=e) mod N. This is equivalent to
h � x�1 mod (N=e) and k � 0 mod (N=e), becauseN=e is also a Hall divisor. Thus
we have the conclusion.

Now, we calculateSd(t) more precisely in Lemma 3.10 and 3.10. To this end we
need the following lemma in advance.

Lemma 3.9. Let k, j and a be positive integers satisfying jj k and ( j , a) = 1.
We further let� be a primitive k-th root of unity and let

c0k(l ) =
X

h2(Z=kZ)�
h�a mod j

� hl for l 2 Z.

Then

(3.3) jc0k(l )j � j � (k, l ) for any l 2 Z.

Proof. Using a primitivej -th root of unity � k= j we may rewrite the sum as

c0k(l ) =
1

j

X
i2Z= j Z

��kia= j
X

h2(Z=kZ)� �
(l+ik= j )h.

Let �(x) be the Möbius function. Since the Ramanujan’s sum satisfies

X
h2(Z=kZ)� �

hx = �� k

(k, x)

� � �(k)

��� k

(k, x)

�
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for x 2 Z and �(xy) � x�(y) for any x, y 2 Z>0, we have�����
X

h2(Z=kZ)� �
(l+ik= j )h

����� � �(k)�(k=(k, l + ik= j ))
� �k, l +

ik

j

�
=

�
k, l +

ik

j
, j l

�

� (k, j l ) � j � �k

j
, l

� � j � (k, l ),

which implies jc0k(l )j � j � (k, l ).

Here we remark that Cais and Conrad dealt with the case of a rational prime j
dividing k in [1, Lemma D.3], but it seems to be not true. Indeed, we can find a
counterexample whenk = p = 3, a = m = 1 with the notations as in there. So we
correct it and prove the expanded version. It doesn’t crucially matter, however, to the
results because we need just its boundedness.

Lemma 3.10. Let f be on0.
(1) If d <pnt, then Sd(t) = O(n=d). Here the implicitO-constant depends only upon
f , t0 and t1.
(2) If d � pnt, then

Sd(t) =
1

[0(1) : 0]
� 6d

(a, d)
�((a, d)) log

�
d2

n

�
+ O

��1

�
d

(a, d)

��
+ O

�
d�1((a, d))

(a, d)

�
,

where�(x) is the Euler function and�1(x) is the sum of positive divisors of x. Here
the implicit O-constant depends only upon0, f , t0 and t1.

Proof. (1) Since the number of elements infb j 0 � b < d, (a, b, d) = 1g is
d�((a, d))=(a, d), by Lemma 3.6 and the fact that�((a, d))=(a, d) � 1 we have

jSd(t)j � X
0�b<d

(a,b,d)=1

log max

�
1,

���� f Æ �a

�
ait + b

d

�����
�

=

8>><
>>:

d�((a, d))

(a, d)

2�nt

d2
+ O

�
d�((a, d))

(a, d)

�
if a 2 1,

O

�
d�((a, d))

(a, d)

�
otherwise

�
8<
:

2�nt

d
+ C � d if a 2 1

C0d otherwise.

Using the fact thatd < nt=d � nt1=d we conclude the first assertion.
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(2) Note that the assumptiond � pnt implies at=d � 1. Put M = [d=pnt ] � 1.
Then we have by Lemma 3.7

Sd(t) =
MX

k=1

kX
h=1

(h,k)=1

X
b=d2IM (h=k)

0�b<d
(a,b,d)=1

log max

�
1,

���� f Æ �a

�
ait + b

d

�����
�

=
X

1�h�k�M
(h,k)=1

k�0 modmN
h2a1

X
b=d2IM (h=k)

0�b<d
(a,b,d)=1

�
gh,k

�
b

d

�
+ O(1)

�
+

X
1�h�k�M

(h,k)=1
otherwise

X
b=d2IM (h=k)

0�b<d
(a,b,d)=1

O(1)

=
X

1�h�k�M
(h,k)=1

k�0 modmN
h2a1

X
b=d2IM (h=k)

0�b<d
(a,b,d)=1

gh,k

�
b

d

�
+ O(d).

Since the total number for error termsO(1) is less thand and soO(d) lies outside of
the summation, we can get the last expression in the above summation.

Meanwhile, we see from [5, Lemma 6] that

X
b=d2IM (h=k)

0�b<d, (a,b,d)=1

gh,k

�
b

d

�
= k�2

X
f j(a,d)

�( f )F f

�
dh

f k

�
+ O

�p
n�1((a, d))

k(a, d)

�
,

where F f (�) = (2�2d= f )
Pv2Z

e�2� jvjnt=d f e2� i v� and�(x) is the Möbius function.
Since we have as in [1]

(3.4)

C

p
n�1((a, d))

(a, d)

X
1�h�k�M

(h,k)=1

1

k
= C

p
n�1((a, d))

(a, d)

X
1�k�M

�(k)

k
� C � Mpn�1((a, d))

(q, d)

� C

p
n�1((a, d))

(a, d)

dp
nt
� C

d�1((a, d))

(a, d)
,

we establish that

Sd(t) =
X

1�h�k�M
(h,k)=1

k�0 modmN
h2a1

(
k�2

X
f j(a,d)

�( f )F f

�
dh

f k

�
+ O

�p
n�1((a, d))

k(a, d)

�)
+ O(d)

=
X

1�h�k�M
(h,k)=1

k�0 modmN
h2a1

(
k�2

X
f j(a,d)

�( f )F f

�
dh

f k

�)
+ O

�
d�1((a, d))

(a, d)

�
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=
X

f j(a,d)

�( f )
X

1�h�k�M
(h,k)=1

k�0 modmN
h2a1

k�2F f

�
dh

f k

�
+ O

�
d�1((a, d))

(a, d)

�
.

We now consider the sum

(3.5)
X

1�h�k�M
(h,k)=1

k�0 modmN
h2a1

k�2F f

�
dh

f k

�
=

2�2d

f

X
v2Z

CM

�
dv
f

�
e�2� jvjnt=d f ,

where

CM (l ) =
X

1�k�M
k�0 modmN

k�2ck(l )

and

ck(l ) =
X

1�h�k
(h,k)=1
h2a1

e2� ihl=k for any l 2 Z.

We have to calculateCM (l ) and ck(l ) to know the upper bound of the sum of (3.5).
By Lemma 3.9 we know thatjck(l )j � j1jmN(k, l ) for l 2 Z � f0g. So whenl 6= 0,
we have

jCM (l )j � j1jmN
1X
k=1

k�2(k, l ) � j1jmN
X
djl d

1X
j =1

1

j 2d2

= j1jmN
�2

6

1jl j
X
djl
jl j
d

= j1jmN
�2

6

�1(jl j)jl j ;

hence

jCM (l )j = O

��1(jl j)jl j
�

for l 6= 0, where the implicitO-constant depends only on0. In case ofl = 0 we con-
sider the natural surjective homomorphism� : (Z=kZ)� ! (Z=mNZ)� which gives us

ck(0) = j��1(1)j = j1j jker� j = j1j �(k)�(mN)
.



ON THE COEFFICIENTS OFMODULAR EQUATIONS 495

Hence by [1, Lemma D.1] and (3.1) we obtain

CM (0) =
X

1�k�M
k�0 modmN

k�2 j1j�(mN)
�(k)

=
6�2

j1j�(mN)[0(1) : 00(mN)]
log M + O(1)

=
6

�2[0(1) : 0]
log M + O(1),

where the implicitO-constant is absolute, i.e., it is independent of0 and M.
Therefore we get

X
1�h�k�M

(h,k)=1
h�0 modmN

h2a1
k�2F f

�
dh

f k

�
=

12d

f [0(1) : 0]
log M + O

�
d

f

�

+ O

 X
v2Z�f0g

�1(djvj= f )jvj e�2� jvjnt=d f

!
,

where the implicitO-constants depend only on0 and t . Since f j (a,d) and (a,d) j a =
n=d, we haved f � n; hence 1� t0 � t implies that

e�2�(jvj�1)nt=d f � e�2�(jvj�1)t � e�2�(jvj�1).

By putting

C1 =
X

v2Z�f0g
�1(jvj)jvj e�2�(jvj�1)

and using the fact

�1

�
d

f
jvj� � �1

�
d

f

��1(jvj),
we obtain

X
v2Z�f0g

�1(djvj= f )jvj e�2� jvjnt=d f � C1�1

�
d

f

�
e�2�nt=d f � C1�1

�
d

f

�
e�2�n=d f .

Thus we deduce

O

 X
v2Z�f0g

�1(djvj= f )jvj e�2� jvjnt=d f

!
= O

��1

�
d

f

�
e�2�n=d f

�
,
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where the implicitO-constant depends only on0.
Since M = [

p
d2=(nt)] and 1� t0 � t � t1, we see that logM = (1=2) log(d2=n) +

O(1) where the implicitO-constant depends only ont0 and t1.
Consequently, we have

X
1�h�k�M

(h,k)=1
k�0 modmN

h2a1
k�2F f

�
dh

f k

�
=

6d

f [0(1) : 0]
log

�
d2

n

�
+ O

�
d

f

�
+ O

��1

�
d

f

�
e�2�n=d f

�

where the implicitO-constants depend only on0, t0 and t1. By substituting this for
the sum ofSd(t) we obtain

Sd(t) =
X

f j(a,d)

�( f )

�
6d

f [0(1) : 0]
log

�
d2

n

�
+ O

�
d

f

�
+ O

��1

�
d

f

�
e�2�n=d f

��

+ O

�
d�1((a, d))

(a, d)

�
,

where the implicitO-constants depend only on0, f , t0 and t1. Since

X
f j(a,d)

�����( f )
d

f

���� � X
f j(a,d)

d

f
=

d�1((a, d))

(a, d)
,

the first error term contributesO(d�1((a, d))=(a, d)).
Similarly, since�1(d f =(a, d)) � �1(d=(a, d))�1( f ) and e�2�n f =d(a,d) � e�2� f , we

derive

X
f j(a,d)

�����( f )�1

�
d

f

�
e�2�n=d f

���� � X
f j(a,d)

�1

�
d

f

�
e�2�n=d f =

X
f j(a,d)

�1

�
d f

(a, d)

�
e�2�n f =d(a,d)

� �1

�
d

(a, d)

� X
f j(a,d)

�1( f )e�2� f ,

and so the second error term contributesO(�1(d=(a, d))). From the fact�((a, d)) =P
f j(a,d) �( f )(a, d)= f we finally obtain

Sd(t) =
6

[0(1) : 0]

d

(a, d)
�((a, d)) log

�
d2

n

�
+ O

��1

�
d

(a, d)

��
+ O

�
d�1((a, d))

(a, d)

�
,

where the implicitO-constants depend only on0, f , t0 and t1. This completes the
proof.
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Lemma 3.11. Let f be onh00(N), Weie2S.
(1) If d < pnt, then Sd = O(n=d). Here the implicitO-constant depends only upon
f , t0 and t1.
(2) If d � pnt, then

Sd =
X
e2S

1

[0(1) : 00(N=e)]

6d

(a, d)
�((a, d)) log

�
d2

n

�

+ O

��1

�
d

(a, d)

��
+ O

�
d�1((a, d))

(a, d)

�
.

Here the implicitO-constant depends only uponh00(N), Weie2S, f , t0 and t1.

Proof. It is possible for us to prove (1) with similar arguments as in Lemma 3.10,
so we omit the detail. We only give a proof of (2). By using Lemma 3.8 we have

Sd(t) =
MX

k=1

kX
h=1

(h,k)=1

X
b=d2IM (h=k)

0�b<d
(a,b,d)=1

log max

�
1,

���� f

�
ait + b

d

�����
�

=
X
e2S

X
1�h�k�M

(h,k)=1
k�0 modN=e

h2(Z=(N=e)Z)�

X
b=d2IM (h=k)

0�b<d
(a,b,d)=1

gh,k

�
b

d

�
+ O(d � s),

where M = [d=pnt ] and s is the number of Hall divisors inS. From [5, Lemma 6]
and (3.4) we can see that

Sd(t) =
X
e2S

X
1�h�k�M

(h,k)=1
k�0 modN=e

h2(Z=(N=e)Z)�

(
k�2

X
f j(a,d)

�( f )F f

�
dh

f k

�
+ O

�p
n�1((a, d))

k(a, d)

�)
+ O(d � s)

=
X
e2S

X
1�h�k�M

(h,k)=1
k�0 modN=e

h2(Z=(N=e)Z)�

(
k�2

X
f j(a,d)

�( f )F f

�
dh

f k

�
+ O

�p
n�1((a, d))

k(a, d)

�)
+ O(d � s)

=
X
e2S

X
f j(a,d)

�( f )
X

1�h�k�M
(h,k)=1

k�0 modN=e
h2(Z=(N=e)Z)�

k�2F f

�
dh

f k

�
+ O

�
d�1((a, d))

(a, d)
� s�.
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As we did in (3.5) we change the inner summand as

X
1�h�k�M

(h,k)=1
k�0 modN=e

h2(Z=(N=e)Z)�
k�2F f

�
dh

f k

�
=

2�2d

f

X
v2Z

CM

�
dv
f

�
e�2� jvjnt=d f ,

where

CM (l ) =
X

1�k�M
k�0 modN=e

k�2ck(l )

and

ck(l ) =
X

1�h�k�M
(h,k)=1

h2(Z=(N=e)Z)�
e2� ihl=k for any l 2 Z.

Then, by Lemma 3.9 we know thatjck(l )j � �(N=e) � (N=e) � (k, l ) for l 2 Z� f0g. So
when l 6= 0, we have

jCM (l )j = O

��1(jl j)jl j
�

,

where the implicitO-constant depends only onh00(N), Weie2S. When l = 0, we obtain
ck(0) = �(k). Hence it follows from [1, Lemma D.1] that

CM (0) =
X

1�k�M
k�0 modN=e

k�2�(k)

=
6�2

1

[0(1) : 00(N=e)]
log M + O(1),

where the implicitO-constant is absolute, namely it is independent ofh00(N), Weie2S

and M.
Therefore we get

X
1�h�k�M

(h,k)=1
k�0 modN=e

h2(Z=(N=e)Z)�
k�2F f

�
dh

f k

�

=
12d

f [0(1) : 00(N=e)]
log M + O

�
d

f

�
+ O

 X
v2Z�f0g

�1(djvj= f )jvj e�2� jvjnt=d f

!
,
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where the implicitO-constants depend only onh00(N), Weie2S and t . Applying the
same estimates as in the proof of Lemma 3.10 we have

X
1�h�k�M

(h,k)=1
k�0 modN=e

h2(Z=(N=e)Z)�
k�2F f

�
dh

f k

�

=
6d

f [0(1) : 00(N=e)]
log

�
d2

n

�
+ O

�
d

f

�
+ O

��1

�
d

f

�
e�2�n=d f

�
,

where the implicitO-constants depend only onh00(N), Weie2S, t0 and t1. By plugging
this into the sum ofSd(t) we achieve

Sd(t) =
X
e2S

X
f j(a,d)

�( f )

�
6d

f [0(1) : 00(N=e)]
log

�
d2

n

�
+O

�
d

f

�
+O

��1

�
d

f

�
e�2�n=d f

��

+O

�
d�1((a,d))

(a,d)
� s�,

where the implicitO-constants depend only onh00(N), Weie2S, f , t0 and t1. Thus, in
like manner as in the proof of Lemma 3.10 we finally conclude

Sd(t) =
X
e2S

6

[0(1) : 00(N=e)]

d

(a, d)
�((a, d)) log

�
d2

n

�

+ O

��1

�
d

(a, d)

� � s� + O

�
d�1((a, d))

(a, d)
� s�,

where the implicitO-constants depend only onh00(N), Weie2S, f , t0 and t1. The num-
ber s depends only on the grouph00(N), Weie2S, and so we have the assertion.

Lemma 3.12. For 1� t0 � t � t1,
(1) if f (z) is on 0, then we have

h(8 f
n (X, f (i t ))) =

6 (n)

[0(1) : 0]

 
log n� 2

X
pjn

log p

p
+ O(1)

!
,

(2) if f (z) is on h00(N), Weie2S, then we achieve

h(8 f
n (X, f (i t ))) =

X
e2S

6 (n)

[0(1) : 00(N=e)]

 
log n� 2

X
pjn

log p

p
+ O(1)

!
.

In case (1) (resp., (2)) the implicit O-constant depends only on0 (resp.,h00(N), Weie2S), f , t0 and t1.
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Proof. In each case we are able to use the same method. Thus we put down only
the first case. From Lemma 3.10 we know that

h(8 f
n (X, f (i t ))) =

X
a>0
ad=n

Sd(t) + O( (n)) = H1 + H2 + O( (n)),

where

H1 =
X

a>0, ad=n
d<pnt

Sd(t) = O( (n))

and

H2 =
X

a>0, ad=n
d�pnt

Sd(t) =
6 (n)

[0(1) : 0]

 
log n� 2

X
pjn

log p

p
+ O(1)

!

by means of Cohen’s results in [5,§4].

Lemma 3.13. Let P(X) 2 C[X] be any nonzero polynomial of degree� D. Then
for any � > 0, there exists an absolute constant c� > 0, depending only on� , such that��(h(P(X))� log sup��x�2� jP(x)j�� � c� D.

Proof. We refer to [1] or [5].

Now we are ready to prove our main theorem.

Proof of Theorem 2.1. To avoid troublesome, we defineh(0) = �1. Let D = (n) and we write

8 f
n (X, Y) = P0(Y)XD + P1(Y)XD�1 + � � � + PD(Y)

with Pj (Y) 2 C[Y] and P0(Y) 6= 0. Certainly,h(8 f
n (X, Y)) = max0� j�D h(Pj (Y)). Since

degPj (Y) � D, Lemma 3.13 yields that

h(8 f
n (X, Y)) = max

0� j�D
log sup

s�y�2s
jPj (y)j + O(D)

= sup
s�y�2s

max
0� j�D

log jPj (y)j + O(D)

where the implicit O-constant depends only ons. Since max0� j�D logjPj (y)j =

h(8 f
n (X, y)), we obtain

h(8 f
n (X, Y)) = sup

s�y�2s
h(8 f

n (X, y)) + O(D).
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Here we note that the interval [t0, t1] corresponds bijectively to the interval [s, 2s], and
so we have

h(8 f
n (X, Y)) = sup

t0�t�t1
h(8 f

n (X, f (i t ))) + O(D).

Therefore, we get the conclusion by Lemma 3.12.
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