

Title	Decompositions of a completely simple semigroup
Author(s)	Tamura, Takayuki
Citation	Osaka Mathematical Journal. 1960, 12(2), p. 269- 275
Version Type	VoR
URL	https://doi.org/10.18910/10827
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Decompositions of a Completely Simple Semigroup

By Takayuki TAMURA

§1. Introduction.

In this paper we shall study the method of finding all the decompositions of a completely simple semigroup and shall apply the result to the two special cases: an indecomposable completely simple semigroup [2] and a \mathfrak{G} -semigroup [4]. By a decomposition of a semigroup S we mean a classification of the elements of S due to a congruence relation in S. Let S be a completely simple semigroup throughout this paper. According to Rees [1], it is faithfully represented as a regular matrix semigroup whose ground group is G and whose defining matrix semigroup is $P = (p_{\mu\lambda}), \ \mu \in L, \ \lambda \in M$, that is, either $S = \{(x; \ \lambda \mu) | x \in G, \ \mu \in L, \ \lambda \in M\}$ or S with a two-sided zero 0, where the multiplication is defined as

$$(x; \lambda \mu)(y; \xi \eta) = \begin{cases} (x p_{\mu \xi} y; \lambda \eta) & \text{if } p_{\mu \xi} \neq 0 \\ 0 & \text{if } p_{\mu \xi} = 0 \text{ and hence } S \text{ has } 0. \end{cases}$$

For the sake of simplicity S is denoted as

Simp.
$$(G, 0; P)$$
 or Simp. $(G; P)$

according as S has 0 or not. L and M may be considered as a rightsingular semigroup and a left-singular semigroup respectively [5].

§2. Normal Form of Defining Matrix.

We define two equivalence relations $\stackrel{\circ}{\underline{M}}$ and $\stackrel{\circ}{\underline{L}}$ in M and L respectively: we mean by $\lambda \stackrel{\circ}{\underline{M}} \sigma$ that $p_{\eta\lambda} \pm 0$ if and only if $p_{\eta\sigma} \pm 0$ for all $\eta \in L$; by $\mu \stackrel{\circ}{\underline{L}} \tau$ that $p_{\mu\xi} \pm 0$ if and only if $p_{\tau\xi} \pm 0$ for all $\xi \in M$. Let $L = \sum_{\mathfrak{l}} L_{\mathfrak{l}}$, and $M = \sum_{\mathfrak{m}} M_{\mathfrak{m}}$ be the classifications of the elements of L and M due to the relations $\stackrel{\circ}{\underline{L}}$ and $\stackrel{\circ}{\underline{M}}$ respectively.

Lemma 1. A defining matrix is equivalent to one which satisfies the following two conditions. Let e be a unit of G.

- (1) For any m, there is $\alpha(m) \in L$ such that $p_{\alpha(m),\xi} = e$ for all $\xi \in M_m$.
- (2) For any \mathfrak{l} , there is $\beta(\mathfrak{l}) \in M$ such that $p_{\eta,\beta(\mathfrak{l})} = e$ for all $\eta \in L_{\mathfrak{l}}$.

Proof. First, for any m, we can easily choose $a(m) \in L$ such that

(3) $p_{\alpha(\mathfrak{m}),\xi} \neq 0$ for all $\xi \in M_{\mathfrak{m}}$,

(4) If $\alpha(\mathfrak{m}_1) \xrightarrow{0}{L} \alpha(\mathfrak{m}_2)$, then $\alpha(\mathfrak{m}_1) = \alpha(\mathfrak{m}_2)$.

Next, for a mapping $m \to \alpha(m)$, $\beta(l) \in M$ is determined such that the following conditions are satisfied:

(5) $p_{\eta,\beta(\mathfrak{l})} \neq 0$ for all $\eta \in L_{\mathfrak{l}}$

(6) if there is m such that $\alpha(m) \in L_{I}$, then we let $\beta(I) \in M_{\mathfrak{m}_{1}}$ and $\alpha(\mathfrak{m}_{1}) \in L_{I}$ for one \mathfrak{m}_{1} among m.

Consider the matrices

$$Q = (q_{\lambda_1\lambda_2}) \qquad \lambda_1, \ \lambda_2 \in M$$

and $R = (r_{\mu_1\mu_2}) \qquad \mu_1, \ \mu_2 \in L$

where

$$q_{\lambda_{1}\lambda_{2}} = \begin{cases} p_{\alpha(\mathfrak{m}), \mathfrak{k}}^{-1} & \text{if } \lambda_{1} = \lambda_{2} = \mathfrak{k} \in M_{\mathfrak{m}} \\ 0 & \text{if } \lambda_{1} = \lambda_{2} \end{cases}$$

$$r_{\mu_{1}\mu_{2}} = \begin{cases} e & \text{if } \mu_{1} = \mu_{2} = \alpha(\mathfrak{m}) \text{ for some } \mathfrak{m} \\ p_{\alpha(\mathfrak{m}'), \beta(\mathfrak{l})} p_{\eta, \beta(\mathfrak{l})}^{-1} & \text{if } \alpha(\mathfrak{m}) \coloneqq \mu_{1} = \mu_{2} = \eta \text{ for all } \mathfrak{m}, \text{ and we} \\ & \text{let } \eta \in L_{\mathfrak{l}} \text{ and } \beta(\mathfrak{l}) \in M_{\mathfrak{m}'} \end{cases}$$

Then, setting $R(PQ) = (t_{\mu\lambda})$, we have

$$t_{\mu\lambda} = \begin{cases} p_{\mu\lambda} p_{\alpha(\mathfrak{m}),\lambda}^{-1} & \text{if } \mu = \alpha(\mathfrak{m}'') \text{ for some } \mathfrak{m}'', \text{ and } \lambda \in M_{\mathfrak{m}} \\ p_{\alpha(\mathfrak{m}'),\beta(\mathfrak{l})} p_{\mu,\beta(\mathfrak{l})}^{-1} p_{\mu\lambda} p_{\alpha(\mathfrak{m}),\lambda}^{-1} & \text{if } \mu \neq \alpha(\mathfrak{m}'') \text{ for all } \mathfrak{m}'', \text{ we let } \lambda \in M_{\mathfrak{m}}, \\ \mu \in L_{\mathfrak{l}}, \beta(\mathfrak{l}) \in M_{\mathfrak{m}'}, \end{cases}$$

and it is easily shown that RPQ satisfies (1) and (2). The conditions (4) and (6) are available for the proof of (2) in the case that $\eta = \alpha(m) \in L_{I}$ for some m. Thus the proof of the Lemma is completed.

The form, RPQ, which satisfies (1) and (2), is called a normal form of P.

§ 3. Decompositions.

Hereafter we shall assume that S has a matrix of normal form as the defining matrix. Let \sim denote a congruence relation in S. \sim is said to be trivial if either $x \sim y$ for all x, y or $x \sim y$ for only x = y.

Lemma 2. Let ~ be a non-trivial congruence relation. $(x; \lambda_{\mu}) \sim (y; \sigma\tau)$ implies $\lambda_{\underline{M}}^{\circ}\sigma$, $\mu_{\underline{L}}^{\circ}\tau$ and hence there are α and β such that

 $p_{\alpha\lambda} = p_{\alpha\sigma} = e$, $p_{\mu\beta} = p_{\tau\beta} = e$ where e is a unit of G.

Proof. Suppose $p_{\eta_0\lambda} \neq 0$ as well as $p_{\eta_0\sigma} = 0$ for some η_0 , and take any element $(u; \xi\eta)$, then, for certain $p_{\mu\xi_0} \neq 0$,

$$egin{aligned} &(u\,;\, \xi\eta)=(ux^{-1}p_{\eta_0\lambda}^{-1}\,;\, \xi\eta_0)\,(x\,;\,\lambda\mu)\,(\,p_{\mu\xi_0}^{-1}\,;\,\xi_0\eta)\ &lackstriangleq (ux^{-1}p_{\eta_0\lambda}^{-1}\,;\,\xi\eta_0)\,(\,y\,;\,\sigma au)\,(p_{\mu\xi_0}^{-1}\,;\,\xi_0\eta)=0\,. \end{aligned}$$

This shows that the relation \sim is a trivial congruence relation, contradicting the assumption. The remaining part is similarly proved. The existence of α and β is clear by a normal form of the defining matrix, q. e. d.

Now we derive the relations \approx in G, \mathcal{L} in M, and \mathcal{L} in L from the congruence relation \sim in S as defined in the following way.

$$x \approx y$$
 if there are $\lambda, \sigma \in M, \mu, \tau \in L$ such that $(x; \lambda \mu) \sim (y; \sigma \tau)$,

- $\lambda_{\widetilde{M}}\sigma$ if there are $x, y \in G, \mu, \tau \in L$ such that $(x; \lambda_{\mu}) \sim (y; \sigma \tau)$,
- $\mu \simeq \tau$ if there are $x, y \in G, \lambda, \sigma \in M$ such that $(x; \lambda \mu) \sim (y; \sigma \tau)$.

Lemma 3. The relations \approx , \mathfrak{A} and \mathfrak{T} are all congruence relations.

Proof. Reflexivity and symmetry are evident. Let us prove transitivity. By $x \approx y$ and $y \approx z$ there are λ , μ , σ , τ , σ' , τ' , κ and ν such that

$$(x, \lambda \mu) \sim (y; \sigma \tau), \quad (y; \sigma' \tau') \sim (z; \kappa \nu).$$

According to Lemma 2,

$$p_{\alpha\lambda} = p_{\alpha\sigma} = e$$
, $p_{\mu\beta} = p_{\tau\beta} = e$ for certain α and β ,

so that we get

$$(e; \sigma'\alpha)(x; \lambda\mu)(e; \beta\tau') \sim (e; \sigma'\alpha)(y; \sigma\tau)(e; \beta\tau')$$
$$(x; \sigma'\tau') \sim (z; \kappa\nu).$$

and hence

Thus we have proved $x \approx z$.

Transitivity of $\widetilde{\mu}$ is proved from $(x; \lambda_{\mu}) \sim (y; \sigma\tau), (y'; \sigma\tau') \sim (z; \kappa_{\nu})$ and $(x; \lambda_{\mu}) (y^{-1}y'; \beta\tau') \sim (y; \sigma\tau) (y^{-1}y'; \beta\tau')$ where $p_{\mu\beta} = p_{\tau\beta} = e$. We get transitivity of $\widetilde{\mu}$ analogously.

Next, $x \approx y$ implies $xz \approx yz$ and $zx \approx zy$ because

$$(x; \lambda\mu)(z; \beta\mu) \sim (y; \sigma\tau)(z; \beta\mu)$$
$$(z; \lambda\alpha)(x; \lambda\mu) \sim (z; \lambda\alpha)(y; \sigma\tau)$$

under the assumption $(x; \lambda_{\mu}) \sim (y; \sigma \tau)$ where $p_{\mu\beta} = p_{\alpha\beta} = p_{\alpha\lambda} = p_{\alpha\sigma} = e$. The proof for $\underline{\chi}$ and $\underline{\chi}$ is clear.

Lemma 4. If $\lambda_{\widetilde{\mu}\sigma}$ and $p_{\eta\lambda} \neq 0$, then $p_{\eta\lambda} \approx p_{\eta\sigma} \neq 0$ for all η . If $\mu_{\widetilde{\mu}\tau} = and p_{\mu\xi} \neq 0$, then $p_{\mu\xi} \approx p_{\tau\xi} \neq 0$ for all ξ .

Proof. By Lemma 2, it is evident that $p_{\eta\sigma} \neq 0$, $p_{\tau\xi} \neq 0$. Find β such that $p_{\mu\beta} = p_{\tau\beta} = e$. Multiplying each of $(x; \lambda_{\mu})$ and $(y; \sigma\tau)$ by $(x^{-1}; \beta_{\mu})$ from right, we get

$$(e; \lambda \mu) \sim (yx^{-1}; \sigma \mu)$$
 whence $e \approx yx^{-1}$.

Moreover, from $(e; \lambda \eta)(e; \lambda \mu) \sim (e; \lambda \eta)(yx^{-1}; \sigma \mu)$

we have $p_{\eta\lambda} \approx p_{\eta\sigma} y x^{-1} \approx p_{\eta\sigma}$

completing the proof. Similarly $p_{\mu\xi} \approx p_{\tau\xi}$ is proved, q. e. d.

Conversely, consider congruence relations \mathfrak{T} , \mathfrak{T} , \approx in M, L, G respectively such that

$$\begin{split} \lambda_{\widetilde{M}} \sigma & \text{implies} \quad \lambda_{\widetilde{M}}^{\circ} \sigma, \\ \mu_{\widetilde{L}} \tau & \text{implies} \quad \mu_{\widetilde{L}}^{\circ} \tau, \\ \approx & \text{makes Lemma 4 hold.} \end{split}$$

For these congruence relations, a relation \sim in S is defined as

$$(x; \lambda \mu) \sim (y; \sigma \tau)$$
 if $x \approx y, \lambda \widetilde{\mu} \sigma$, and $\mu \widetilde{\mu} \tau$.

Then it is easily shown that the relation is a congruence relation.

Theorem 1. We obtain, as follows, every congruence relation in a completely simple semigroup S with a ground group G and with a defining matrix $P = (p_{\mu\lambda}), \lambda \in M, \mu \in L$. First, for a pair of the congruence relations \mathfrak{T} and \mathfrak{T} taken arbitrarily, independently each other, there is at least one congruence relation \approx in G which satisfies

$$\begin{split} \lambda_{\widetilde{M}} \sigma \quad implies \quad p_{\eta\lambda} \approx p_{\eta\sigma} \quad for \quad all \quad \eta, \\ \mu_{\widetilde{T}} \tau \quad implies \quad p_{\mu\xi} \approx p_{\tau\xi} \quad for \quad all \quad \xi. \end{split}$$

By a triplet of the three congruence relations \mathfrak{T} , \mathfrak{T} , \approx , a congruence relation \sim in S is determined as

 $(x; \lambda \mu) \sim (y; \sigma \tau)$ means that $x \approx y, \lambda \mathfrak{m} \sigma$, and $\mu \mathfrak{T} \tau$.

§4. Examples.

We shall arrange a few examples which follow from Theorem 1. First, we can easily determine the structure of an indecomposable completely simple semigroup, which was obtained in $\lceil 2 \rceil$. **Example 1.** A completely simple semigroup S is indecomposable if and only if the following three conditions are satisfied.

- (7) The ground group is $G = \{e\}$.
- (8) $\lambda \stackrel{\circ}{\mathcal{M}} \sigma$ if and only if $\lambda = \sigma$.
- (9) $\mu \stackrel{\circ}{\underset{L}{\sim}} \tau$ if and only if $\mu = \tau$.

Example 2. Consider a finite simple semigroup S with a ground group G and with the defining matrix $\begin{pmatrix} e \\ e \end{pmatrix}$ or (e e).

Let $x \to f(x)$ be a homomorphism of G to certain group G': G' = f(G), e' = f(e). Then any homomorphism of S is given as either (10) or (11).

(10)
$$(x; \lambda_{\mu}) \rightarrow (f(x); \lambda_{\mu})$$

where the homomorphic image S' of S is also a completely simple semigroup in which G' is the ground group and $P'=(f(p_{\mu\lambda}))$ is the defining matrix.

(11) $(x; \lambda_{\mu}) \rightarrow f(x)$ where S' = G'.

Example 3. A finite simple semigroup S with a ground group G and with the defining matrix $\begin{pmatrix} e & e \\ e & a \end{pmatrix}$ where $a \neq 0$. Any homomorphic image of S is given as one of

$$\begin{aligned} & (x ; \lambda \mu) \to (f(x) ; \lambda \mu) \quad \text{where } S' = Simp. \left(f(G) ; \begin{pmatrix} e' & e' \\ e' & f(a) \end{pmatrix} \right), \\ & (x ; \lambda \mu) \to (f(x) ; \lambda 1) \quad \text{where } S' = Simp. \left(f(G) ; (e' & e') \right) \text{ and } f(e) = f(a) = e', \\ & (x ; \lambda \mu) \to (f(x) ; 1\mu) \quad \text{where } S' = Simp. \left(f(G) ; \begin{pmatrix} e' \\ e' \end{pmatrix} \right) \text{ and } f(e) = f(a) = e'. \\ & (x ; \lambda \mu) \to f(x) \qquad \text{where } S' = f(G). \end{aligned}$$

§ 5. S-Semigroups.

In this paragraph S denotes a finite simple semigroup. If a decomposition of S classifies the elements into some classes composed of equal number of elements, then the decomposition is called homogeneous. We term by \mathcal{D} -semigroup a finite semigroup S with \mathcal{D} -property, i.e., the property that every decomposition of S is homogeneous [4]. It goes without saying that any semigroup of order 2 and any indecomposable finite semigroup are \mathcal{D} -semigroups. We assume that the order of S is >2.

Lemma 5. A \mathfrak{D} -semigroup is simple.

Proof. If a \mathfrak{D} -semigroup S is not simple, a proper ideal I exists so

that the difference semigroup (S:I) of S modulo I would result in a non-homogeneous decomposition of S, q. e.d.

Lemma 6. If a \mathfrak{G} -semigroup S has zero 0, then S is indecomposable.

Proof. Let \sim be a congruence relation in S. From Lemma 5 follows that there is nothing but the trivial decompositions, i.e., either $0 \sim x$ for all $x \in S$ or $0 \sim x$ for only x=0. In the latter case, by homogeneity, $x \neq y$ implies $x \ll y$ for every x, y, q. e. d.

Corollary 1. If a \mathfrak{G} -semigroup S has a non-trivial decomposition, then S is a simple semigroup without zero.

Accordingly a \mathfrak{D} -semigroup S may be considered as a semigroup S=Simp. (G; (p_{ji})) where let G be a group of order g, let $P=(p_{ji})$ be a matrix of (l, m) type i.e. $i=1, \dots, m; j=1, \dots, l$.

Lemma 7. If S is a \mathfrak{D} -semigroup which has no zero, then $m \leq 2$, $l \leq 2$.

Proof. Suppose, for example, $m \ge 3$. Consider a congruence relation \sim in S as follows.

 $(x; kj) \sim (y; kj')$ for any k > 2, any j, and any j', $(x; kj) \approx (y; k'j')$ for any k > 2, k' > 2, $k \neq k'$ any j, and any j', $(x; 1j) \sim (y; 2j')$ for any j, and any j',

where x and y run independently throughout G.

Then we have a non-homogeneous decomposition

where

 $S = \overline{S} \cup S_3 \cup S_4 \cup \dots$ $\overline{S} = \{(x ; ij) | x \in G, i = 1, 2; 1 \le j \le l\},$ $S_k = \{(x ; kj) | x \in G, 1 \le j \le l\}, k = 3, 4, \dots$

and the order of \overline{S} is 2gl, that of S_k is gl. This contradicts the assumption of \mathfrak{H} . Hence $m \leq 2$. Similarly $l \leq 2$ is proved.

Therefore a \mathfrak{G} -semigroup which has no zero must have a structure of the following four.

Simp.
$$\left(G; \begin{pmatrix} e \\ e \end{pmatrix}\right)$$
,
Simp. $\left(G; (e e)\right)$,
Simp. $\left(G; \begin{pmatrix} e \\ e \\ a \end{pmatrix}\right)$,
Group.

On the other hand, Examples 2, 2' and 3 show that every decomposition of them is homogeneous. At last we have arrived at

274

Theorem 2. A finite semigroup is a \mathfrak{G} -semigroup of order ≥ 2 if and only if it is one of the following six cases.

 (C_1) a z-semigroup of order 2 or a semilattice of order 2

(C₂) a finite group of order ≥ 2

 (C_3) an indecomposable finite semigroup of order >1

 $\begin{array}{ccc} (C_4) & Simp. \left(G; \begin{pmatrix} e \\ e \end{pmatrix} \right) \\ (C_5) & Simp. \left(G; (e \ e) \right) \\ (C_6) & Simp. \left(G; \begin{pmatrix} e \ e \\ e \ a \end{pmatrix} \right) \end{array} \right\} \quad where \ G \ is \ a \ finite \ group \ of \ order \ge 1, \\ a \neq 0 \end{array}$

§ 6. Relations between \mathfrak{S} -property and \mathfrak{F} -property.

In the paper [3, 4] we defined \mathfrak{S} -property of a finite semigroup and proved that an \mathfrak{S} -semigroup is one of the above cases except (C₃). Immediately we have

Theorem 3. \mathfrak{S} -property implies \mathfrak{S} -property. Though the converse is not true, it is true that a \mathfrak{S} -semigroup which has a proper decomposition is an \mathfrak{S} -semigroup.

By the way we give a few theorems.

Theorem 4. A unipotent \mathfrak{S} -semigroup of order >2 is a group. A unipotent \mathfrak{S} -semigroup of order >2 is so also.

Theorem 5. A subsemigroup of an \mathfrak{S} -semigroup is an \mathfrak{S} -semigroup. A subsemigroup of an indecomposable semigroup is not always a \mathfrak{S} -semigroup, but \mathfrak{S} -property, in the other cases, is preserved in a subsemigroup. \mathfrak{S} -property and \mathfrak{S} -property are both preserved in a homomorphic image.

(Received July 8, 1960)

References

- [1] D. Rees: On semigroups, Proc. Cambridge Philos. Soc. 36, 387-400 (1940).
- [2] T. Tamura: Indecomposable completely simple semigroups except groups, Osaka Math. J. 8, 35-42 (1956).

- [5] I have called L a right-singular semigroup if xy=y for all x, $y \in L$. In p. 62, [4], I find a misprint: for "left-singular", read "right-singular". But this is not essential for discussion.