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On the Pseudo-Analytic Functions

By Yukinari Tόκι and Keichi SHIBATA

Introduction. Various extensions of the analytic functions have
been studied as 'pseudo-analytic functions', the definitions of which
differ more or less from one another (cf. Grotzsch [1], Lavrentieff [3Γ],
Teichmϋller [10])- In the present paper we shall define and inves-
tigate a kind of pseudo-analytic function which seems to us the
fittest in order to preserve the validity of some qualitative theorems
in the theory of functions.

In §1, it is shown that a known theorem (cf. Pompeiu [6], [7])
holds for our pseudo-regular function. In § 2, families of pseudo-
regular functions are studied. Finally in § 3, theorems on the analytic
functions are extended to our class of functions.

DEFINITION. A complex-valued function f(z)=u + iv defined in a
domain D of the z(= x + iy)-plane is pseudo-regular, if it has the
following property:

1) f(z) is one-valued and continuous in D\
2) f(z) satisfies the following conditions a), b) except for the set
which is at most enumerable and closed with respect to D:

a) continuous partial derivatives ux , uy, υx , vy exist,

b) /w - j
Let f(z) be pseudo-regular in a domain D and let E be the set

on which the condition a) or b) is not satisfied. Then a point of D
is said to be pseudo-conformal or critical, according as it belongs to
D—E or to E. If f(z) is pseudo-regular in some neighbourhood of a
point ZQ , we say simply that it is pseudo-regular at ZQ . We agree

also to say that f(z) is pseudo-regular on a closed domain D, if it is

so in an appropriate domain containing D. Let f(z) be pseudo-regular
in a neighbourhood of z0 except for ZQ and l im/(2)=oo. Then the

point z0 is a pole of the function f ( z ) . A function which is pseudo-
regular at every point of a domain D except for poles is called
pseudo-meromorphic in D. A function is called pseudo-analytic, when it
is pseudo-regular, pseudo-meromorphic or a constant.
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§ 1. Let W and W0 be two orientable surfaces and p0 = S(p) a
transformation from W to W0. Then S(p) is called an interior trans-
formation in Stoϊlow's sense, if and only if it satisfies the following
conditions:

1) S(p) is one-valued and continuous on W\
2} It transforms each open set on W to an open set on W0

3) It never transforms any continuum on W to a point on W0.

Theorem 1. A pseudo-regular function f(z] in D is an interior
transformation of D.

PROOF. Since f(z) is univalent in an appropriate neighbourhood
of a pseudo-conformal point, it is obviously an interior transformation
in D except for critical points.

Let {Dn} (w = l, 2, •••) be an interior exhaustion of the domain ϋ,
each of which is enclosed by a finite number of Jordan curves Cn

passing no critical points of f ( z ) . Since the set of critical points in
Ώn is closed and at most enumerable, f ( z ) is an interior transforma-
tion in Dn, therefore we see easily that it is so in the whole domain
D (cf. Stoϊlow [8]).

Let z0 be a pseudo-conformal point. Then lim ^——-—-^ °' varies

generally with the direction, in which z approaches ZQ . We denote

this directional derivative by ^ ' , where θ is the angle between
az Q

the #-axis and the curve of approach. The following is an immediate
consequence :

df(z}_ _

where

M\_f(z}~\ and P\_f(z}~] are called respectively the mean and the Pompeiu's
derivative of f ( z ) .

It is well-known that the infinitesimal circle with centre at any
pseudo-conformal point z0 is transformed by f(z) to the infinitesimal
ellipse with centre f ( z Q ) , whose major and minor axes are of length
a and b respectively. Dilatation-quotient Q\_f(zQ}~\ of f(z) at z0 is
defined by ratio a/b and we have the expression
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where

Dilatation-quotient is conformally invariant and for the inverse func-
tion z=f~l(w) of w=f(z)

Let ds be the line-element corresponding to \dz\ by f ( z ) . Then
we have

and

( 2 ) ||̂
It is possible to choose a disc \z— z^\<r in D, so that f(z) has

no critical point on its periphery \z~~ z0 = r. Suppose the disc is
mapped by f(z] onto a region, whose area is A(r) and whose boundary
curve has length L(r). Then we obtain by Schwarz's inequality
and (2)

that is,

( 3 )

On the behaviour of f(z) in the neighbourhood of critical points
various cases may be considered. We shall give some examples, in
which the origin is an isolated critical point :

Example 1.

w=f(reiθ) =arκ cosnθ + ibrκ sinnθ (a, £, #> 0 n = 1,2, •••) .

This is pseudo-regular in 0 < r <^ oo and all the points except for
the origin are its pseudo-conformal points.

In case /£"> 1 and n = 1, all the partial derivatives uχyuy,vχy vy

are continuous and vanish at the origin. But w = 0 is no branch-
point.

In case K=l and w^>l, non-vanishing partial derivative exists
at the origin. But w — 0 is a branch-point.
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In case K<^1, no finite partial derivative exists at the origin.
w = 0 is a branch-point or not, according as n ]> 1 or n = 1.

Example 2. w =f(reiθ) = r cos — cos θ + ir sin — sin θ .

This function, pseudo-regular in 0 < r <^ oo , has no partial deriv-
ative at the origin and has no branch-point.

Lemma 1. Let C be a rectifiable Jordan curve and D its interior.
Let f(z) be a pseudo-regular function on D+C. Then

\^f(z}dz = 2i JJ P[/(*)] do- (dσ = dx dy] ,
C D-H

where E is the set of critical points of f(z) in D.

PROOF. We can choose a finite number of disjoint smooth Jordan
curves Cf in D, so that C' encloses E and its total length is less than
arbitrary positive number 8. By Green's formula

(f(z}dz + \f(z}dz = ( (u + iυ}(dx + idy}+ ί
C Cf C Cf

= 2i J j P[/(ar)] dσ ,
D'

where D' is the domain bounded by C and C. Since

f(*}dz
f

the left-hand side tends to zero with 6. Therefore

C Ό-B

Hereafter we shall write simply

Lemma 2. Let f(z) be pseudo -regular and let ψ(z) be regular.
Then

PROOF.

*^
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= ψ(*) •/>[/(*)].
Theorem 2. L#/ D be a domain bounded by a finite number of recti-

fiable Jordan curves C and let f(z] be a pseudo-regular function on
D + C. Then

PROOF. Let C be a circle \ζ—z\=r in D with centre at a
pseudo-conformal point z. Then by Lemma 1

where Dr is the domain bounded by C and C'. Applying Lemma 2
to the right-hand side, we have

— Z
) dθ = 2i

ξ — Z

Let r tend to zero. Then

v ' ' J^l~2πί^ζ-Z
C D

Next we shall prove that the above relation (4) is also valid at any
critical point. For an arbitrary critical point z' in D we can choose
a positive number r «1), a pseudo-conformal point z and a circle C":

r3

| f — z \ = r, so that \z'—z\ = -y and the disc |f —£| < r is contained
in D.

Then

:— ξ
-*

z —
-

—,—— acr

where D" is the domain bounded by C and C". By (4)

2 \dξ\

max

0<θ<r2τr
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and by Lemma 1 and 2

?'-£ z-ζ

z—z'

where L is the length of C. Therefore the left-hand side of (5) tends
to zero with r. Sinca z tends to z' as r —> 0, it follows that

lim f(z) = /(*') ,

Therefore we have

z-ζ z'-ζ

We can easily extend this result to obtain the following:

Theorem 3. Let D be the domain bounded by a finite number of
rectifiable Jordan curves C. Let f(z) be pseudo-regular in D and contin-
uous on D + C. Then we have

§ 2. From this § on, we deal with a little more restricted class
of the pseudo-regular functions, that is, of bounded dilatation-quotient.

Theorem 4. Let w=f(z) be a pseudo-regular function of bounded
dilatation-quotient (Q\_f(z)~\ < K), which maps z <^ 1 one-to-one to

I w \ <^ 1. Then f(z] is continuously prolongable up to the circumference.



On the pseudo-analytic functions 151

PROOF. We may assume /(O) = 0 without loss of generality. We
show first that the boundary values of f(z) is uniquely determined.
In fact, otherwise, there would exist two sequences of points {£„'}
and {*„"} (n = 1,2, •••) both converging to z* on z j — 1 , such that
{/(Ό} an(l {/(*«")} (w = l>2, •••) converge to different points «;* and
ztf** on \w =1 respectively. Suppose the circular arc of \z—z*\=r
(^^^ \1) inside of |^|<^1 is mapped by this function onto an arc
in \w\<^l, the length of which is denoted by L(r}. Then the arc
necessarily divides the origin from both w* and w**, whence

Fig. 1
w\<\

The common part of r <^ \z—z*\ <^1 with |>ε|<^l will then be mapped
onto some portion of \w\<^l, the area of which is denoted by A ( r } .
So by (3)

dA(r)

or

A(6),
I W*— W** I

while A(£) <^ π must always hold. We have a contradiction when 6
tends to zero.

It is the same with the inverse function z — f ~ l ( w ] of w=f(z),
since Q\_f~*(w}~\ = Q[/(^)] < K by (1).

Thus the boundary correspondence is biunique and continuous.

Theorem 5. Let w=fn(z) (n = 1, 2, •••) be the pseudo-regular func-
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tions of uniformly bounded dilatation-quotient ((?[/„(£)] <Ξ-K") with the
condition /„(()) = 0, each of which is a topological mapping from \z\<^\
to \w\<^l. If the sequence {fn(z}} converges to a function f(z) uniformly
in \z\<^\y then f(z] is also a topological mapping from |z|<[l to \

PROOF. It is clear that f(z) is one-valued, continuous and \f(z}\
in

i) We shall show |/(*)|<1 for |*|<1. If it were not true,
there would exist a point *0 , such that |^0|<^1, |/(20)|=1. However
small 8 OO) may be preassigned, fn(z0) is contained in \w — wQ\<^8
for sufficiently large «, where wQ=f(zϋ}. Suppose the circular arc
\w — w0 =r (£<r<[l) inside of |^|<^1 is mapped by the inverse
function of tv=fn(z), say z=f~1(w), onto an arc in |^|<]1. Then

where L(r) is the length of the arc. The common part of r <^\w — tu0\
<]1 with |«;|<]1 will be mapped by the same function onto some
portion of |z|<^l, the area of which is denoted by A(r). Then by (3)

/ 2πK

which is a contradiction.

ii) Let {zm} (m = l, 2, •••) be an arbitrary sequence converging to
a periphery point z0. Let w0 be one of the accumulating points of
(f(zm)}. Then an appropriate subsequence, say again {f(zm)}9 con-
verges to WQ . We shall show | w0 \ = 1. For otherwise, for arbitrarily
preassigned £ there would exist a number N, such that all the
images of \z—z0\<^6 by w — fn(z] have points in common with

-tl— \wo\) so l°nβ as n>N. Then the image of z—£0| —
 r

Zί

by w=fn(z] would have length greater than 1— tv0\. On
the other hand the common part of r <^\z—^0|<"1 with |z|<^l is
mapped onto some portion of |z0|<^l, the area of which is obviously
less than π. We can thus extract a contradiction in the same way
as in i).

iii) f(z) is univalent. For, otherwise, there would exist z0 Φ £0'
such that f ( Z t ) = f ( z J ) = wQ. On account of i), |«;0|<;i. For any 6
all fn(z0) and fn(z^} fall within \w — wQ\<^8 so long as n>N. The
length of the image, onto which \w — w0\=r (8<^r<^l—\w0 ) is
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mapped by fήl(w), would be greater than \ZQ — z0'|. The common
part of r <^\w —
confined in |

1 — w0 with evidently has an image
Thus we have a contradiction as above.

M<ι
Fig. 2

Lemma 3. // f(z) is a pseudo-regular function of bounded dilata-
tion-quotient Q\\f(z}~\<^K, then we have

PROOF.

2Q 27

Hence

" 4Q — 4/C '

Theorem 6. Let each term of a sequence {fn(z}} (# = 1, 2, •••) δ^ ίΛβ
pseudo-regular function which furnishes a topological mapping from
\z\<^\ to |«;|<^1 with the condition /n(0) — 0 and the sequence be uni-

formly convergent in \ z\<^ 1 . // further Q[fn(z)~] < Kn , Km Kn = 1 ,
) == eiθz (0 < 6> < 2^).

PROOF. Let z0 be a point in | z |<[ 1 and let C be a smooth Jordan

V jζ _ -r

0

 n

/Έ??- , then lim rn = 0. Hence,
/ A W->oo
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for sufficiently large n, the circle Cn : \z— ZQ\ = rn is containd in the
interior of £C], where [C] is the domain bounded by C. Application
of Theorem 2 to fn(z) and [C] yields

t *~=

Denoting the interior of Cn by [CM], we have by Lemma 3 and
Schwarz's inquality

JL ff
it JJ

r^-ccv) ccr-j-cc^

while by Theorem 2

t ̂
J-7t

: 0

0

Hence it follows that

If we put lim/^ί^) = f ( z ) , it is regular, since the above integral is
W->oo

regular and the convergence is uniform. Moreover, /(O) f— 0, and
w=f(z] supplies a homeomorphism between z <^1 and |^|<^1 by
Theorem 4. Consequently we obtain f(z] = eίθz (0 <C# <Γ2τr).

Lemma 4. A family {fx(z}} ( λ e Λ ) of the pseudo-regular functions of
uniformly bounded dilatation-quotient (Q[/λ(z)] < /ί), ^cA o
^ topological mapping from |#|<^1 /o |^|<^1, /5 normal in

PROOF. Since uniform boundedness of /λ(#) is evident, we shall

show that {/ λ(2f)} is equicontinuous in |z|<l. F°r^ otherwise, there would

exist a positive number a, such that the relations \f\(z')—f\[z"} |> Λ
^> 0 and l^— 2"|<^£ simultaneously hold for appropriate / λ£{/ λ}
and ^7, ^7/ in any |^|</o<^l, however small 8 may be chosen. Con-

sider the mapping by w = fλ(z). The image of the circle \z — z'\= r
(£<^r<^l — p) would have length greater than a. The circular ring

£ <^\z— zr\<^r is mapped onto some ring-domain contained entirely in

. We would have



On the pseudo-analytic functions 155

then the same reasoning as in the proof of Theorem 4 leads to a
contradiction.

Lemma 5. Let Dz and Dw be domains in the z- and to-plane respec-
tively. Let w=fn(z) be a topological mapping from Dz to Dw . // the
sequence (fn(z)} (w = 1, 2, •••) converges to a topological mapping f(z) from
Dz to Dw uniformly in Dzy then the sequence {fnl(w}} (w = l, 2, •••) of
their inverse functions converges to the inverse function f~l(w] of the
limit function f(z) uniformly in Dw .

PROOF. Let D* be an arbitrary closed domain contained in Dw

and {wn} (n = 1, 2, •••) be a sequence such that wneD*, \imwn — w0.
W->oo

Then the sequence { z n } satisfying wn = fn(zn] (n = 1, 2, •••) has its
accumulating points in Dz, one of which we denote by z0. An appro-
priate subsequence {zHv} will converge to z0 . Uniform convergence
of {fn(z}} yields equicontinuity of fn(z), and so for suίlSciently large v

that is

This implies that the original sequence {zn} accumulates only at a
single point f ~ l ( w 0 } , since f(z) is assumed to be univalent.

Hence

and in particular

If the last convergence were not uniform, there would exist a positive
number 8, a subsequence {/~*(^)} of (fήl(w)} a^d a sequence {tϋμf}
(μ — 1,2, •••) in D* converging to to0 9 such that

which contradicts the above relation

lim/rj(«»/) =/-(«;„).
μ->c^ **

Let w=f(z) be a pseudo-analytic function of bounded dilatation-
quotient in |0|<^1. Then it is easily seen that the Riemann surface
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W of its inverse function is of hyperbolic type (cf. Kakutani [j2],
Teichmϋller [10]). Let ζ = F~l(w] be the function which maps W
conformally onto \ξ\<^l. Then its inverse function to = F(ζ) is
analytic in |f |<l. Put ξ = F-1(w) = F - 1 ( f ( z ) ) = . φ ( z ) . Then ξ = φ(z)
is a pseudo-regular function which maps |^|<[1 one-to-one to |f|<[l.
Since w=f(z] = F(φ(z)), it can be considered as an analytic function
in |2|<]1, if we define the metric by ξ = φ(z). In particular, if we
normalize it so that <p(0) = 0, lim φ(z) — 1, then φ(z) is a function

*->!

uniquely determined by f(z). It is called the uniformizer for f(z).

Theorem 7. // a sequence {fn(z}} (n = 1, 2, •••) of pseudo-regular
functions of uniformly bounded dilatation-quotient is uniformly convergent
in |zKl, then the limit function f(z] is an interior transformation
in 1 2 K 1 unless it reduces to a constant.

PROOF. Let f = φn(z) be the uniformizer for fn(z) and put fn(z)
=Fn(φn(z}}. Then the family {φn(z)}(n=l9 2, •••) is normal in |^|<^1 by
Lemma 4. Hence we can choose a subsequence {φn^(z}} (v=l , 2, •••)
out of it, which is uniformly convergent in |^|<^1. Let ζ = φ(z] be
the limit function. Then it is a topological mapping from |2|<1 to
|f«l by Theorem 4. Hence by Lemma 5 (φ~l(ξ)} converges

uniformly to φ~l(ξ) in |f |<l. Fn^(ξ] is also uniformly convergent in
| f |<l, since FΛv(ξ) =ΛV(^J(?)).V Let F(ξ) be the limit function.
Then it is regular in [f |<^1. Consequently f(z) is an interior trans-
formation in |2|<[1, since f(z) = F(φ(z}}.

Theorem 8. Let {fn(z}} (n = l,2, •••) be a sequence of pseudo-regular
functions of uniformly bounded dilatation-quotient, which is uniformly
convergent in \z\<^\ . Let ζ — φn(z) be the uniformizer for fn(z) and
fn(z} = Fn(φn(z}}. Then {φn(z}} and {Fn(ζ}} (« = 1,2, ) are uniformly
convergent in |#|<^1 and |ξ"|<^l respectively, and further f(z] = F(φ(z))9

where f(z] = limfn(z}y φ(z] = lim φn(z], and F(ζ] = lim Fn(ζ).
W->co ΐl-+<x> ί?<->co

PROOF. Since w=f(z) is an interior transformation by Theorem
7, there exists the well-determined inverse function z = f ~ l ( w } . If
{φn(z}} (n — 1, 2, •••) were not uniformly convergent, there would exist
at least two functions φ(z) and φ(z), to which some subsequences
of it uniformly converge respectively in |^|<^1. Put f(z}=F(φ(z}} =
F(φ(z}}. Then both F(ζ) and F(ζ) are regular in |f |<l. If we denote
each inverse function of them by F~1(w) and F~l(w] respectively, we have
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Put /(O) = to, . Then

(»o)) = 0 =
Hence

F-1(to)=eitF-l(u>) (0<

while 0 = 0 on account of the normalizing condition. Thus we have

F-^W) = F-I(W) ,
that is,

F ( ξ ) = F ( ξ ) , φ(z) = φ(z).
It follows that

lim φn(z) = φ(z) , lim Fn(ξ) = F(ξ) ,
ίZ-ί oo ί̂ -»•oo

and consequently

Let f(z) be a pseudo-analytic function of bounded dilatation-
quotient in a domain D. For each point 20 in D consider a sufficiently
small circular neighbourhood VZo entirely contained in D. Let W be
the Riemann surface of the inverse function z = f ~ l ( w ] and let
ξ = F~l(w) be the function which maps conformally the image of Vz0

on W°onto |?|<1. Put ς = F ^ ( f ( z ) ) = φz^(z). Then <pZo(z) is a
pseudo-regular function which supplies a homeomorphism between
Vz0 and | fKl. It will be uniquely determined by f(z) and ZQ , if
we normalize it as follows :

z^ z'

where z' is the point at which the radius of VZQ parallel to the
positive real axis intersects the circumference of Vz0. We shall call it
local uniformizer for f(z) at z0. The analogous statements to Theorem
6,7 and 8 will be obtained if we consider VZo in place of |^|<^1.

Theorem 9. // a sequence {fn(z}} (n = 1, 2, •••) of pseudo-regular
functions of uniformly bounded dilatation-quotient is uniformly convergent
in a domain D, then the limit function is an interior transformation of D.

PROOF. It is evident by Theorem 7 if we consider the local
uniformizer for fn(z) at each point of D.

Theorem 10. // a sequence {fn(z}} (n = 1,2, •••) of pseudo -regular
functions is uniformly convergent in D and further Q{_fn(z}~\ <C Kn ,
lim Kn — 1, then the limit function is regular in D.
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PROOF. Let φ2o,n(
z} be the local uniformizer for fn(z) at 2 0 e/λ

Then by Theorem 8 the sequence {<pz0fH(z)} (n = 1, 2, ...) converges
uniformly to a function φz^(z], which is regular by Theorem 6. Again
by Theorem 8 we see that \\rnfn(z] is regular.

W->00

§ 3. A pseudo-regular function in a domain D is an interior
transformation of D by Theorem 1. Therefore by Stoϊlow's theorem
[9] we obtain immediately the following two:

Theorem 11. Let { z n } (£„=+=£«, n=^m; « = 1,2, •••) be a sequence of
points in a domain D accumulating at a point in D. If f(z) is a pseudo-
analytic function in D such that f ( z n ] = 0 (n = 1, 2, •••), then f(z] = 0.

Theorem 12. (MAXIMUM-MODULUS PRINCIPLE) // f(z) is pseudo-
regular in a domain D, then \f(z)\ cannot attain its maximum in D at
any interior point of D.

A point ZQ , at which f(z) is not pseudo-analytic, is called a
singular point of the pseudo-analytic function f(z).

If f(z) is pseudo-analytic in D except an interior point z0 in D and
l i m f ( z ) does not exist, then the point z0 is called an isolated essential
Z-+ZQ

singularity of the pseudo-analytic function f ( z ) .

Theorem 13. // w=f(z] is a pseudo-analytic function of bounded
dilatation-quotient in 0 <^ z\<^l, then the Riemann surface of its inverse
function z=f~1(w) can be mapped one-to-one and conformally to

o<ιrί<ι.
PROOF. This Riemann surface can be mapped one-to-one and

conformally to a ring-domain 0<r<|?Kl by an analytic function
ζ=g(tc). Then φ ( z ) = g ( f ( z ) ) is a univalent pseudo-regular function
of bounded dilatation-quotient in 0<^\z\<^l. By Teichmϋller's
theorem [10] we conclude r — 0.

Put φ(Q) = 0 in the above proof. Then 2 — 0 must be a pseudo-
conformal point or a critical point of φ(z). Hence ξ = φ(z) is pseudo-
regular in |2|<]1. Then ξ= φ(z] can be considered as the uniformizer
for f(z) at the isolated singularity. The local uniformizer at the
isolated singularity is defined in the same way. The following theorem
is well-known (cf. Grδtzsch [1], Lavrentieff [3]) :

Theorem 14. (EXTENSION OF PICARD'S THEOREM) A pseudo-analytic
function of bounded dilatation-quotient takes every value infinitely often,
with two possible exceptions, in any neighbourhood of an isolated essential
singularity of it.
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PROOF. By the local uniformizer for f(z) at the singularity we
can reduce our theorem to the Picard's theorem on the analytic
functions.

Theorem 15. // a pseudo-regular function f(z) of bounded dilatation-
quotient in 0<^|^|<^1 is bounded, it is pseudo-regular in \z\<^\.

PROOF. By Theorem 14 z — 0 cannot be an essential singularity of
/(*). Hence l i m f ( z ) = a exists and is finite. Put /(O) = a. Then f(z)
is continuous in 0 < | z \ <^ 1 and consequently is pseudo-regular there.

Theorem 16. (EXTENSION OF LIOUVILLE'S THEOREM) A pseudo-analyt-
ic function of boundnd dilatation-quotient cannot be bounded at all finite
points of the plane unless it reduces to a constant.

PROOF. Let f(z) be pseudo-regular and bounded in z\<^oo.

Suppose it were not a constant. Put z — — . Then f(-γ\ is bounded

in a neighbourhood of ξ = 0 . Hence by Theorem 15 ξ — 0 is a
removable singularity. Therefore \f(z)\ must take its maximum at
a finite point, which contradicts Theorem 12.

Let D0 be the domain after extracting a closed set of capacity
zero from J£|<^1. The following two facts are already known:

Let w=f(z] be the univalent pseudo-regular function of bounded
dilatation-quotient in DQ such that it establishes the correspondence
between |*|=1 and \w\=\ and that | /"(z) |< 1 for l<r |<l. Then
the boundary of this image in | w \ <^ 1 is a closed set of capacity zero
(cf. Pfluger [5], Yosida [11]).

If an analytic function f(z) in D0 is bounded, then it is regular
in D (cf. Nevanlinna [4]).

Therefore we obtain immediately the following :

Theorem 17. // a pseudo-analytic function of bounded dilatation-
quotient in a domain D except for a closed set consisting of an enumerable
number of points is bounded, then it is pseudo-regular in D.

We say that a sequence {/„(£)} (n = 1, 2, •••) of functions is
spherically convergent if and only if, for an arbitrary positive number
6 we can find a number N such that for n,m~>N we have d(fn(z}y

f m ( z } } < ^ 8 , where d is the distance on the Riemann sphere.
We shall extend the concept of the normal family by replacing

the planer uniform convergence with the spherical one.

Theorem 18. Let % be a family of pseudo-analytic functions of
uniformly bounded dilatation-quotient in D. If all functions of % do
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not take three fixed values in D, then % is a normal family in D.

PROOF. Let D* be an arbitrary closed domain in D. If g were
not spherically equicontinuous, there would exist a positive number
a, such that d(fn(zn)y fn(zn

f}} >a^> 0 for appropriate sequences {zn}>
{zn'} and {/„(*)} (n = l, 2, -••), where zneD*, lim zn = lim *n' = z0 φ znn-+oo n-ϊoo

and /„€§. We denote by ξ = φn(z) the local uniformizer for fn(z) at
£0 and put Fn(ζ) =fn(φ~l(ζ)). Since {φ r a(^)} (w = 1, 2, •••) is normal by
Lemma 4, an appropriate subsequence {φn (z)} (v = l, 2, •••) of it will
converge to a function φ(z). Denote ?ΛV = φnv(znj, £„„'= <?,,„(*,, v')

 and

ξ Q ~ 9>(20). Then we have lim ξn =Hmξn'=ζQ as in the proof of
V->oo V V-><» V

Lemma 5, while rf(FMv(?ΛJ, F W v (f M /)) > α> 0. This contradicts the
fact that (F W v ( f)} is spherically equicontinuous, for the functions FHv(ζ)
are analytic and do not take three fixed values in

Theorem 19. (EXTENSION OF SCHOTTKY'S THEOREM). // f(z] is a
pseudo-regular function of bounded dilatation-quotient [Q\_f(z}~]<^K] in
\z\<^R with the conditions f(z) Φ 0, f(z) Φ 1 and f(Q) = a0, then we have

\ f ( z ) \ < S ( a , , θ , K ) in \z\<ΘR (0<f l<l) ,

where S ( a Q y θ , K) depends on a0 , θ and K only.

PROOF. If it were not true, there would exist a sequence {fn(z)}
of pseudo-regular functions of bounded dilatation-quotient and a
sequence { z n } in \z\<^ΘR (» = 1, 2, •••), such that lim /„(£„) =00. But

ra->oo

by Theorem 18 (fn(z)} is normal in \z\<^R, so an appropriate sub-
sequence {fnv(z)} (v = 1, 2, •••) of it would converge to an interior
transformation g(z) there. Since limzn =ZQJ \zQ\<LΘR> we would

V->oo V

have g(z0) = oo. This contradicts the maximum-modulus principle.

Let f(z) be a pseudo-analytic function and let ζ = φt(z] be the
local uniformizer for f(z) at z = t. If we put f ( z } = f ( φ ^ ( ζ } } = F ( ζ } y

then F(ζ) is alalytic. Let Vt and Ft, be the circular neighbourhoods
with centres at / and t' respectively. If V f. V/φO, then for ^e Vt Vt,
the correspondence between 0>t(z) and ^/t^) is conformal. Hence

t t , .
dφc(z) ™ dφt,{z] ^* V

We have immediately :

Theorem 20. Let f(z) be a pseudo-meromorphϊc function in a domain
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D, and N(Q) and N(o°) be respectively the number of zeros and poles of
f(z) within a closed contour C in D. Then

C

where φ(z] is the local uniformizer for f(z] at z.

Corollary.

Suppose a sequence of pseudo-analytic (pseudo-regular) functions
of uniformly bounded dilatation-quotient (Q < K) converges uniformly
in a domain D. Then the limit function of it is an interior trans-
formation on the Riemann sphere, but is not pseudo-analytic (pseudo-
regular) in general. The class of all such functions contains all the
pseudo-analytic (pseudo-regular) functions of bounded dilatation-
quotient (Q<K). We shall call it PAK-clαss [PRK-clαss] in D. It
will be easily seen that almost all theorems after §2 remain valid
for functions belonging to PAK-class. In addition we have for this
class the following :

Theorem 21. The PAK-clαss in α domain D is complete.

PROOF. Let {fn(z}} (n = 1, 2, •••) be a uniformly covergent sequence
of functions of PAfΓ-class in D. Then for each term fn(z) we can
choose a sequence {gn,m(z)} (m = l,2, •••) of pseudo-analytic functions
of uniformly bounded dilatation-quotient (Q[gn,m(z)'] < K) converging
uniformly to fn(z) in D. Hence for sufficiently large N, we have

!/(*) -/»(*)!<-! > I /»(*)-*»,*(*) K-f,

provided that n,m>N, where f(z) = limfn(z). Therefore

that is, f(z) is the limit function of uniformly convergent sequence
of uniformly bounded dilatation-quotient (Q < K) in D.

In the proof of Theorem 9 let ξ = φntt(z] be the local uniformizer
for fn(z) at t. Then the sequence {φn,t(z)} (n = l, 2, •••) is uniformly
convergent in D. If we denote this limit function by ξ = φt(z), then
f(<P7l(ζ}) is analytic in |f |<^1. In the analogous manner as for Theorem
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20 and Corollary we obtain the following :

Theorem 22. Let f(z] be a function of PAK-class in a domain Dy

and let N(0) and N(oo) be respectively the number of zeros and poles of
f(z] within a closed contour C in D. Then

Corollary.

Theorem 23. (EXTENSION OF ROUCHE'S THEOREM). // f ( z ) and
f(z)-\-g(z) are functions of PRK-class inside and on a closed contour C,
and \g(z) \<^\f(z) \ on C, then f ( z } + g ( z ] has exactly as many zeros inside
C as f ( z } .

PROOF. If z is on C

log (f(z)+g(z)) = log f(z) + log

whence

π & ( f ( z ) + g ( z ) ) =

On C, we have further ^J— I <^ 1, and it follows therefore that the
g(z) *^Z>

points ω = l + γτ^ are all situated in the interior of the circle JΓ— i

<^ 1. Hence
Γ

darg (f(z}-±g(z}} = d a r g f ( z ) .

By Corollary of Theorem 22 we complete the proof.

Theorem 24. (EXTENSION OF HURWITZ'S THEOREM). Let α sequence
{fn(z}} (n = 1,2, •••) of pseudo-regular functions of uniformly bounded
dilatation quotient (QC/W(£)]<Ξ^) be uniformly convergent in a domain
D. Then the limit function f(z] has exactly as many zeros in D* as the
function fn(z) for sufficiently large ny where D* is an arbitrary subdomain
bounded by a closed contour C in D.

PROOF. f(z) is a function of PRK-class in D. We take 6 small
enough so that all points of the circle \z—z0\ = 8 are in the interior of
D and, moreover, f(z) does not vanish in \z—£0|<£ except at z0.
Since f(z) is continuous on \z—zQ\= 6, there exists a positive number
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m such that \ f ( z } \ < ^ m on this circumference. The sequence {fn(z}}
converges uniformly on \z — z0\ = 6 and we shall therefore have
\ f ( z ) — f n ( z ) \ < ^ m for \z — zQ\ = €9 provided n is taken large enough.
Hence

\f(z)-fn(z)\<m<\f(z) , on \2-z0\ = €.

By Theorem 23 the function

/„(*) =f(z) + (fn(z)-f(z))

will therefore have the same number of zeros in \z—z0\<^£ as 'f(z).
Thus our theorem is proved.

Theorem 25. // the terms of a sequence {fn(z}} (n = 1,2, • • • ) are
univalent pseoudo-analytic functions of uniformly bounded dilatation-quotient
(Q[/«(#)] fS K") in a domain D and the sequence converges uniformly to
a non-constant function f(z) in D, then f(z) is also univalent in D.

PROOF. f(z) is of a function of PABΓ-class in D. Suppose
f ( z l ] = f ( z 2 ) (zl Φ z2J zl9 z2 eD) and consider the sequence of functions

g * ( z ) = f n ( z ) - f n ( z 1 ) (» = 1,2, ...)•

Since fn(z) is univalent, we shall have gn(z)=^0 except at z = zlu

The limit function g ( z ) = f ( z ) — f ( z 1 ) vanishes at z = z2. By Theorem
24 gn(z) must therefore vanish within an arbitrary small neighbour-
hood of z2, provided n is large enough. However, since gn(z) does
not vanish in D except at zί, this is impossible. Our assumption
that /(^Ί) =f(z2} thus leads to a contradiction.

Theorem 26. (EXTENSION OF BLOCK'S THEOREM). If f(z) is a pseudo-
regular function of bounded dilatation-quotient (Q[f(z}~\<iK} in |z|<^l
and max\f(z)—f(Q)\^>l, then the Riemann surface of its inverse function

l*i<>-2-

always contains a schlicht circular disc with radius β, where β is a
positive constant independent of the function f(z).

PROOF. Let ξ = φ(z) be the uniformizer for f(z). Then F(ξ)
= f ( ψ ~ l ( ζ } } is regular in \ζ\<^I. Then there exists a positive number
a independent of f(z) such that

max |F / ( f ) |>α>0.
î -koi- i

For, otherwise, we could find a sequence {fn(z}} (n = 1,2, •••) satisfying
the conditions of the theorem, such that
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lim max Fn'(ζ)\ = Q ,
w->co |0-1COI<;J

where ζ = φn(z] is the uniformizer for fn(z) and Fn(ζ}=fn(φήl(ζ}}.
Then we would have max \fn(z}— fn(0) |< 1, provided n is taken large

ι*ι^i
enough. This is contrary to our assumption.

Therefore there exists a point ζ0 in \φ~l(ζ}\<^, such that

\F'(ξ*)\=ct>a. Put

with t=±—S±. Then Φ(ί) is regular in |ί|<l and |Φ'(0) |=1.

By Bloch's theorem the Riemann surface of the inverse function of Φ(t)
contains a schlicht circular disc with radius B. Hence our Riemann

surface contains a schlicht circular disc with radius β.

Theorem 27. If f(z) and g(z] are the pseudo-analytic functions with
common local uniformizer { φ t ( z } } at every point of a domain D, and if
/(*») = g(zn) for zn£D (zn^zm, Λ = 1, 2, - lim zn = z, eD), then we
have

in D.

PROOF. Put f(z)-g(z)=f(φτ*(ς))-g(φτ\ς))=F(ς). Then F(ξ)
= F(φt(z)) is an analytic function of ξ. Hence f ( z } — g(z] is pseudo-
analytic in D. By Theorem 11 we complete the proof.

(Received April 12, 1954)
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