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1. Introduction

Let G be a finite group. WritéG| = p?k, wherep is a prime number and,p )=
1, and letQ; = Q(e2"i/%), the field generated by?™/* over the fieldQ of rationals.
Recall that an ordinary character of G is said to bep -rational ify(x) € Qy, for
everyx € G.

Now, let ¢ be an irreducible 2-Brauer character Gf and denote:by  (r@3p.
the number of ordinary (resp. 2-rational) irreducible euters¢ of G such that the
restriction&g,, of ¢ to the subseGy of 2'-elements ofG , is equal tg.

Let V be a simpleFG -module affording, where F is an algebraically closed
field of characteristic 2, and le@ be a vertex vf

If Qis cyclic and|Q]| > 1, the moduleV belongs to a 2-blogk  6f  havigy
as a defect group (see Theorem VII.15.1 in [2]). By the theafnplocks with cyclic
defect groups (see, for instance, Theorem 68.1 in [1]), we ha=|Q)|.

More generally, assume now tha has a normal subg®up  suthpta N
and that the quotient grou@N /N is cyclic. Then, in cases is solvable, the main
result of this paper (Theorem 1) asserts that |ON/N| and thatm > 2.

It is worth mentioning that the statement concerning  abaveeally an exclu-
sive feature of the prime 2. In fact, it has been shown by I.Mats that if¢ is an
irreducible p -Brauer character of a -solvable groHp , whgres odd, then there
exists a unique irreduciblp -rational characteof H such thatdy , = ¢ (see Theo-
rem X.2.3 in [2]).

2. Background

Although the main result of this paper (Theorem 1) concemnary characters
and 2-Brauer characters of solvable groups, its proof gdiieavily on Isaacs’ theory
of partial characters developed in [6, 7]. In this sectiore meview few concepts of
that theory needed for our purpose.

Let 7 be an arbitrary set of primes and assume throughout thisogettiat G is
a finite w-separable group. Recall that thé-partial characters oG are just the re-
strictions x° of ordinary characters of G to the set ofr’-elements ofG . Further-
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more, x° is said to be irreducible if it cannot be written as a sum of twepartial
characters. The set of irreducibté-partial characters oG is denoted by (G). For
any ¢ € Irr(G), there are uniquely determined nonnegative integkis, such that
€0=3",, deytp, wherey runs through }.(G).

In casern = {p}, it follows from the Fong-Swan theorem that thé&partial char-
acters ofG are exactly the Brauer charactersp(at ) and coesdyu.. (G) = IBr(G).

Next, assume thak is a subgroup 6f and titats a n’-partial character of
G. Then, it is obvious that the restrictiop is a n’-partial character oK . Fop €
I-(K), we denote by I (G | ¢), the set of allw € 1,/(G) such thaty is a constituent
of wk. Induction7¢ of a n’-partial characterr of K can also be defined by using the
usual formula of induced characters and applying it onlyrteelements. It is easy to
see thatr® is a ’-partial character of; .

In [9], a vertex ofy € 1,/(G) is defined to be a Halkr-subgroup of some sub-
group J of G for which there existsx € 1,.(J) such thata® = ¢ and o(1) is a
7’-number. It turns out that the set of verticesfis not empty and that it forms a
single conjugacy class af-subgroups ofG (see Theorem B in [9]). #f is an irre-
ducible p -Brauer character of g -solvable group, then it it mrd to see that the
vertices of¢y defined above (whem = {p}), are exactly the vertices of the simple
module (in characteristip ) affording.

It is clear from the definitions that for every € |..(G), there existsy € Irr(G)
such thaty® = 1. However, y is not unique in general. Nevertheless, in [6], Isaacs
has canonically defined a set./BG) of irreducible characters of such that the map
x — x° is a bijection of B.(G) onto L./(G).

Let now N <G and . € B,/(N). Two charactersy, x2 € Irr(G | ) are said to
be linked if there exists) € |./(G) such thatd,,, 7 0 andd,,, 7 0. The equivalence
classes defined by the transitive extension of this linkielgtion are called relative-
blocks of G with respect toN, 1), and the set of all these relativeblocks is denoted
by Bl-(G | 1) (see Section 3 in [11]). In caseV(u) = ((1), 113)), where 1y is the
trivial character of(1), the relativerr-blocks of G with respect toN, i) are just the
m-blocks defined by M. Slattery [12].

3. The main theorem

We start this section by stating the main theorem of this pape

Theorem 1. Let G be a finite solvable group and It be an algebraically
closed field of characteristi2. Let V be a simpleFG -module with vertgx  and {et
be the irreducible Brauer character afforded By . Suppos# there exists a normal
subgroupN ofG such thaQ ¢ N and QN /N is cyclic. Then
(i) G has at leas§ON/N| ordinary irreducible charactersy such that the restriction
XG, Of x to the subseGy of 2'-elements ofG, is equal top.

(i) G has at least twd-rational irreducible characterst such thatég, = .
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In order to prove this theorem, we need few preliminary rssutor the sake of
generality, all but the last of these results are proved & dkneral setting of finite
m-separable groups, where is an arbitrary set of prime numbers. (Note that a solv-
able group is necessarily-separable.)

Before stating our first preliminary result, recall that aaidcter-triple is a triple
(H, M, o), where M is a normal subgroup of the grodp  amds an H -invariant
irreducible character oM . By definition (see Definition 13.1 [5]), if the triple
(H, M, «) is isomorphic to {’, M’, '), then there exists an isomorphism H/M —
H'/M'.If M C L C H and L’ is the subgroup ofH’ containing M’ such that
7(L/M)=L"/M’, then also by the definition of character-triple isomorphisve have
a bijectionoy: Irr(L | @) — Irr(L' | ). Let o be the union of the maps,. Then,
the pair ¢, o) is the corresponding isomorphism from/ (M, o) to (H', M', o).

Lemma 2. Let 7 be a set of primes and lef  be a-separable group. Let
M < H and let o be an H -invariantr’-special character ofM . Therthere exist a
central extensiond’ of H = H/M by a n’-subgroupM’ of H’, a linear charactera’
of M’ and bijectionsW¥ oflrr(H | ) onto Irr(H’ | o') and ¥° of I..(H | a°) onto
I.(H' | &) such that
(@) For anyd € |I.(H | a9, if ¢ is any character inlrr(H | ) such that¢® = 6, we
have wO(9) = w(£)°.

(b) For any y € Irr(H | a) and anyé € |(H | a®), we haved,y = dy(y)wo(0)-

(c) The correspondencE8 — W(B) is a bijection ofBl.(H | «) onto the set of (Slat-
tery) w-blocks of H' over «'.

(d) If 0 €1(H |, thend has a vertexQ such tha®M /M is isomorphic to some
vertex Q' of wo(0).

Proof. This lemma without (d), is the invariant case of Tleor3.1 in [10].
Recall, by the proof of that theorem, that the triple’( M’, ') is chosen to be
isomorphic to f, M, «). In other words, there exists a character-triple isomisrph
(r,0): (H,M,a) — (H', M’,a’). The bijection¥ is just the mapy introduced just
before the lemma. All we need now is to show (d).

Let § € I.(H | a®). Then, there exist§ € B, (H) such thatd = ¢°. Since the
irreducible constituents of,, are all in B..(M) (Corollary 7.5 in [6]) andd lies over
a9, it follows that ¢ lies overa. Now, asa is 7’-special, Lemma 1.2 in [13] says that
there exists a nucleusk( p) of ¢ such thatM C K andp € Irr(K | ) (see Section
4 of [6], for the definition of the nucleus). In particular, viave ¢ = p and hence
6 = ¢ = (p°)H. Moreover, sincet € B,.(H), the charactep is n’-special. Therefore,
a Hall m-subgroupQ ofK is a vertex fof.

Next, by Lemma 11.35 in [5], we have

W) = W) = on(p™) = (ox (P)™ .
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As WO(0) = W (£)° by (a), we get thatb®(h) = (ox(p)°)" . Let K’ be the subgroup
of H' containing M’ such thatr(K/M) = K'/M’. Now, sinceWw®(#) € |,..(H'), it
follows that ok (0)° € 1./(K").

By Lemma 11.24 in [5], we have(1l)a/(1) = ok (p)(1)a(l). Sincep(l), a(l) and
o’(1) are all #’-numbers, we conclude thatx(p)(1) is a #’-number. Hence, a Hall
m-subgroupQ’ of K’ is a vertex ofwO(f).

Now, QM /M is a Hall w-subgroup ofK /M and Q’'M’/M’ is a Hall =-subgroup
of K'/M'. As K/M = K'/M', we obtainQM /M = Q'M'/M' = Q'/Q' N M’. Fur-
thermore, sinceQ’ is a w-group andM’ is a «’-group, we getQ’ N M’ = 1 and it
follows that QM /M = Q’. This proves (d) and completes the proof of the lemma.

]

We can now improve Theorem 3.1 of [11].

Theorem 3. Let N be a normal subgroup of a-separable groupG and let
p € Br/(N) with T = 15(i). Then there exist a central extensioli @ = T /N by
a n’-subgroupZ ofU, a linear characterv of Z and bijectionsI" ofirr(G | 1) onto
Irr(U | v) and T'° of 1..(G | u°) onto I..(U | v) such that the following hold.
(@) Foranyy €Irr(G | ) and any¢ € 1..(G | u°), we haved, s = dr(x)ro(g)-
(b) The correspondenc8 — I'(B) is a bijection ofBl.(G | 1) onto the set ofSlat-
tery) m-blocks ofU overv.
(©) If ¢ €1,.(G | 10, then¢ has a vertexQ such tha@N /N is isomorphic to some
vertex P ofI"%(¢).

Proof. Let (W,~) be a nucleus fop. and letS = N- (W, 7)), the stabilizer of
(W,~) in T. First, we note that this theorem without (c), is Theor8rh in [11]. Re-
call, by its proof, that Theorem 3.1 of [11] is obtained by tfisgpplying Theorem 3.2
in [11] to the groupG , the normal subgroup  and the charagter B,.(N), and
then applying the invariant form of Theorem 3.1 in [10] (tiésLemma 2 above with-
out (d)) to the groupS , the normal subgrollp  and she -invaridrgpecial charac-
ter v of W.

To complete the proof, we need to show (c). lete 1.(G | u°). By Theo-
rem 3.2 (b) in [11], there exists a partial charadiee 1..(S | 4°) such thatp = 0¢.
Now, T'%(¢) is the element of J(U | v) corresponding td via the bijectionw® of
Lemma 2.

By Lemma 2 (d),0 has a vertexQ such thg@W /W is isomorphic to some ver-
tex P of T'9(¢) (= wo(9)).

Now, by Lemma 3.6 (a) of [11], we hav€N N = W. Therefore, we geQ NN =
QNSNN=QNW.SinceQN/N = Q/QNN and QW/W = Q/Q N W, it follows
that ON/N =~ QW /W = P. Finally, note that the subgrou@ is also a vertex¢of
as ¢ =6°. This proves (c) and finishes the proof of the theorem. l
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Let (H, M,a) be a character-triple, wherél  is 7aseparable group and is
7’-special, and lef3 be a relativer-block of H with respect to M, ).

Let R be the normal subgroup @i  containing such tRatM = O, (H/M).
If ¢ €Irr(H | o), then by Lemma 2.3 in [6], there existsrd-special charactef of
R such thaté is a constituent offz. By Lemma 3.2 in [10], ifG € B,/(H) satisfies
degpo 7 0, we haves € Irr(H | 6). Therefore, the constituents ¢y are precisely
the constituents ofy by Clifford’s theorem (Theorem 6.2 in [5]). It follows thaf i
¢' € Irr(H | ) also satisfiesi. g0 7 0, then¢’ also lies over theH -orbit ob. This
implies that the characters & all lie over the H -orbit of somer’-special character
n of R. So, there exists a relative-block By of H with respect to R, n) such that
B C Bp. Assume now that € B and &y € By satisfy dg,, 7 0 anddg,, # 0 for some
w € |l (H). Then, asn lies overa, the charactety lies over« and it follows that
&0 € B. Consequently3 = By and thus we may view3 as a relativer-block of H
with respect to R, n).

We now have the following “Fong reduction” type result.

Lemma 4. Let N <« G, where G isw-separable and lety € B./(N). If B €
Bl (G | 1), then there exist a subgroupp ~ ¢f, a normal subgroupt ofA satisfying
O,/ (A/E) =1 and an A -invariantr’-special characterd of E such that induction de-
fines a bijection ofirr(A | ) onto B. Furthermore if D is a Hall w-subgroup ofA,
then D is a defect group df and DN /N is isomorphic toDE/E.

Proof. Let W,~) be a nucleus fop: and letS = N- (W, 7)), whereT = ().
(Note thaty is 7’-special asu € B,/ (N).) By Theorem 3.2 of [11], there exists a rel-
ative -block By € Bl.(S | 7) such that the induction map — o defines a bijection
of By onto 5. Let now P be any defect group d¥. Then, P is also a defect group
of B (see Section 4 in [11]). Sincé C S, we havePNN = PNW, by Proposition 4.1
in [11] and it follows thatPN/N =~ PW/W.

Now, to complete the proof, we may therefore assume thas a G -invariant
7’-special character.

Let R be the normal subgroup & containilg  such tRatN = O,/ (G/N).
By the discussion preceding the lemma, there exists-special characten of R ly-
ing over i such that3 € Bl.(G | ). Next, letJ =k (). Then, by Lemma 3.4 in [10],
there is a unique relative-block B of J with respect to R, n) such that the induction
map y — X is a bijection of B onto B.

CAse 1. AssumeJ =G . Then, the characteris G-invariant and so by

Lemma 2, there exist a central extensi6h of G = G/R by a n’-subgroupR’ of G’,
a linear characten’ of R’ and a bijection¥ of IrrG | n) onto Irr(G’ | ) such that
the correspondence — W(b) is a bijection of BL(G | n) onto the set of (Slattery)
m-blocks of G’ over 7.

SinceG/R ~ G'/R’ and O (G/R) = 1, we get that @ (G’/R’) = 1, and thence
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0./(G') = R’. By Theorem 2.8 in [12]G’ has a singler-block over#'. It follows that
Irr(G | n) consists of the single relative-block B. We can then taked € E R
and g =n.

By the definition of defect groups (see Section 4 in [10])Dif s a Hall
w-subgroup ofG , thenD is a defect group f& Next, we show thatDN/N =
DR/R. Since DN/N = D/DNN and DR/R = D/D N R, it suffices to show that
DNN=DNR.

First, note thatD N N is a Hall 7-subgroup of N . SinceR/N is a «’-group, it
follows that DN N is also a Hallr-subgroup ofR . HenceDN N = DN R, as wanted.

CASE 2. AssumeJ < G. Then, working by induction on the group order, we
can find a subgroupd of , a normal subgrolp Af  satisfying(@/E) = 1
and anA -invariantr’-special characte of E such that induction defines a bijection
of Irr(A | ) onto B. Moreover, if D is a Hallr-subgroup ofA , thenD is a defect
group of B and DR/R = DE/E.

Now, since induction of characters defines a bijectionBobnto B, the induction
map 6 — 6¢ is a bijection of Irr@ | 3) onto B. Next, by the definition of defect
groups (Section 4 of [10]), the subgroup is a defect groug3ofFurthermore, by
Lemma 4.1 in [10],D N N is a Hall m-subgroup of N . Now, just as in case 1, it
follows that DN/N = DR/R, and consequenthDN/N = DE/E. This completes
the proof of the lemma. l

Lemma 5. Letd € By(G), whereG is solvable and lep be a vertex ot 6°.
Suppose thaiv is a normal subgroup 6f  such tigatZ N and QN/N is cyclic
and let 4 be an irreducible constituent ofy. Then 1 € By(N) and if § € B €
Blo(G | 1), we haveQN/N = DN/N, for any defect groupD oB5. Furthermore
B={xe€lm(G|u):x°=¢} and the number of elements Bfis exactly|ON/N|.

Proof. Sincef < Irr(G | w), the characten lies in By (N) by Corollary 7.5
in [6]. Consequently, we havg® € 1»(N) and ¢ € 1x(G | ).

By Theorem 3, there exist a solvable group ,’ss@bgroupZ C Z(U), a linear
characterv of Z and bijectionsI" of IriG | 1) onto IrrU | v) andT'° of 1,(G | u°)
onto b/(U | v). Furthermorew =T%) has a vertexP such tha& ~ QN/N.

Let b =T (B). By Theorem 3 (b)p is a 2-block d/ over. Moreover,w is an
irreducible Brauer character associated with . @&/ /N is cyclic, the vertexP is
cyclic and it follows by Theorem VII.15.1 in [2], thdt haR® adafect group.

Let now D be any defect group faf. Then, by Theorem 4.2 in [11], we have
D/DNN = P. SinceQN/N = P, it follows that ON/N = DN/N.

Next, by the theory of blocks with cyclic defect groups (Ttera 68.1 in [1]),
w is the unique irreducible Brauer character associated witind there are exactly
|P| (= |QN/N]) ordinary irreducible characters in b. Furthermore, every character
A lies overv and satisfies\’ = w. In particular, we havé #n < Irr(U | v) : n° = w}.
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It follows from Theorem 3 (a) thaB =T ~1(b) = {x € Irr(G | ) : x° = ¢}, and con-
sequently, the number of elements Bfis equal to the numbefQN/N| of elements
in b. The proof of the lemma is now complete. U

We are almost ready to start the proof of Theorem 1. All we need are few
general facts aboup -rational characters.

Let G be any finite group and for an integér > 1, denote byQ, the field
Q(e?™i/") generated by?™/" over the fieldQ of rationals. Now, fix a primep and
write |G| =1 = p%, where k, p ) = 1. LetG denote the Galois group G&J(/Qy). If
x is a character (resp. irreducible character)®f and i G, the functiony? de-
fined by x?(x) = x(x)? is also a character (resp. irreducible characterfzof . Itiesrc
from the definition ofp -rational characters given in the agtuction of this paper, that
x is p-rational if and only ifxy? = x for all o € G.

Next, let H be a subgroup off . TheQs € Q; and it follows thatf” is de-
fined for every characte? of H and everyo € G.

We can now prove our main result.

Proof of Theorem 1. Le# be the element of B(G) such that?® = », and fix an
irreducible constituen, of 6y. By Lemma 5, € Bx(N) and if 6 € B € Blo(G | 1),
we have,B = {x € Irr(G | p) : X° = ¢}, and the number of elements 6fis |QN/N]|.
This suffices to prove (i). Next, we prove (ii).

By Lemma 4, there exist subgrougs< A C G satisfying Q. (A/E) = 1 and
an A -invariant 2-special charactepp of E such that induction defines a bijection of
Irr(A | B) onto B. Furthermore, ifD is a Sylow 2-subgroup @f , thén is a defect
group of B and DE/E =~ DN/N. By Lemma 5, we haveDN/N = QN/N. There-
fore, DE/E = QN/N and it follows thatDE/E is a cyclic 2-group. Moreover, as
Q ¢ N, we have tha{DE/E| > 1.

Next, write |G| = 2’k and |A| = h = 2m, where bothk and:z are odd inte-
gers. Assume that a charactére Irr(A | §) is 2-rational. Then, the values @f are
in Q,,. Sincem dividesk , the values df lie in Q; and it follows that the values of
the charactec@ all lie in Q. In other words(¢ is 2-rational. Therefore, to show (ii),
it suffices to find two 2-rational characters in Wr( ().

Recall thatD is a Sylow 2-subgroup ef . ThePE/E is a Sylow 2-subgroup
of A/E. Since Q/(A/E) = 1 and DE/E is cyclic, it follows from Theorem 6.3.3
in [4], that DE/E <« A/E. Now, let R be the subgroup af  such th&Y/E is the
unique subgroup oDE/E of index 2. AsDE/E < A/E, it is clear thatR/E < A/E,
and SoR < A.

Since 3 is A-invariant, Corollary 4.8 in [3] implies that there exsa 2-special
character¢y € Irr(A | 3). Set o)° = w. Next, fix an irreducible constituent of (Co)z
and write S ={\ € Irr(A | ) : \° = w}. As (o is 2-special, D is a vertex of.
Moreover, sinceDR/R is cyclic of order 2, Lemma 5 says th&t contains exactly 2
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elements, the charactég, of course, and another charactgr

As (o € Irr(A | B) and g is A-invariant, we have) € Irr(R | 5), and consequently
S ClIrr(A | 5). So now, to complete the proof, it suffices to show that tharatters
(o and (1 are 2-rational. First, note thap is 2-rational by Lemma 3.1 in [8]. Next,
we prove that(; is 2-rational.

Write (C1)r = Y_i=y i, Wheren; € Irr(R) and 1, = 1. Now, leto € Gal@Q;/Qyn).
Then, for each 77 is well defined (see the remarks preceding the proof) &fidl(=
Yoimin?. Since (o is 2-special, then so is) by Lemma 2.2 in [6]. Hencey is
2-rational by Lemma 3.1 in [8]. In other words, the valuesnofre in Q,, where!
is the order of a Hall 2subgroup ofR . Ad divides: , we hav@, C Q,, and it fol-
lows thatn? =17. This shows that{ € Irr(A | 7). Next, we have ¢;)° = w. So, clearly
(¢f)° =w and we conclude thaty € S. Now, asS ={(o, (1} and (o is 2-rational, we
have (§ = (1, necessarily. Hence{; is 2-rational, as wanted. ]
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