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1. Introduction

Let be a finite group. Write| | = , where is a prime number and ( ) =
1, and letQ = Q( 2π / ), the field generated by2π / over the fieldQ of rationals.
Recall that an ordinary characterχ of is said to be -rational ifχ( ) ∈ Q , for
every ∈ .

Now, let ϕ be an irreducible 2-Brauer character of and denote by (resp.),
the number of ordinary (resp. 2-rational) irreducible charactersξ of such that the
restrictionξ

2′
of ξ to the subset 2′ of 2′-elements of , is equal toϕ.

Let be a simple -module affordingϕ, where is an algebraically closed
field of characteristic 2, and let be a vertex of .

If is cyclic and | | > 1, the module belongs to a 2-block of having
as a defect group (see Theorem VII.15.1 in [2]). By the theoryof blocks with cyclic
defect groups (see, for instance, Theorem 68.1 in [1]), we have = | |.

More generally, assume now that has a normal subgroup such that *
and that the quotient group / is cyclic. Then, in case is solvable, the main
result of this paper (Theorem 1) asserts that≥ | / | and that ≥ 2.

It is worth mentioning that the statement concerning above is really an exclu-
sive feature of the prime 2. In fact, it has been shown by I.M. Isaacs that ifφ is an
irreducible -Brauer character of a -solvable group , where is odd, then there
exists a unique irreducible -rational characterθ of such thatθ ′ = φ (see Theo-
rem X.2.3 in [2]).

2. Background

Although the main result of this paper (Theorem 1) concerns ordinary characters
and 2-Brauer characters of solvable groups, its proof relies heavily on Isaacs’ theory
of partial characters developed in [6, 7]. In this section, we review few concepts of
that theory needed for our purpose.

Let π be an arbitrary set of primes and assume throughout this section that is
a finite π-separable group. Recall that theπ′-partial characters of are just the re-
strictions χ0 of ordinary charactersχ of to the set ofπ′-elements of . Further-
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more, χ0 is said to be irreducible if it cannot be written as a sum of twoπ′-partial
characters. The set of irreducibleπ′-partial characters of is denoted by Iπ′( ). For
any ξ ∈ Irr( ), there are uniquely determined nonnegative integersξψ, such that
ξ0 =

∑
ψ ξψψ, whereψ runs through Iπ′( ).

In caseπ = { }, it follows from the Fong-Swan theorem that theπ′-partial char-
acters of are exactly the Brauer characters (at ) and consequently Iπ′( ) = IBr( ).

Next, assume that is a subgroup of and thatψ is a π′-partial character of
. Then, it is obvious that the restrictionψ is a π′-partial character of . Forϕ ∈

Iπ′( ), we denote by Iπ′( | ϕ), the set of allω ∈ Iπ′( ) such thatϕ is a constituent
of ω . Inductionτ of a π′-partial characterτ of can also be defined by using the
usual formula of induced characters and applying it only toπ′-elements. It is easy to
see thatτ is a π′-partial character of .

In [9], a vertex ofψ ∈ Iπ′( ) is defined to be a Hallπ-subgroup of some sub-
group of for which there existsα ∈ Iπ′( ) such thatα = ψ and α(1) is a
π′-number. It turns out that the set of vertices ofψ is not empty and that it forms a
single conjugacy class ofπ-subgroups of (see Theorem B in [9]). Ifψ is an irre-
ducible -Brauer character of a -solvable group, then it is not hard to see that the
vertices ofψ defined above (whenπ = { }), are exactly the vertices of the simple
module (in characteristic ) affordingψ.

It is clear from the definitions that for everyψ ∈ Iπ′( ), there existsχ ∈ Irr( )
such thatχ0 = ψ. However,χ is not unique in general. Nevertheless, in [6], Isaacs
has canonically defined a set Bπ′( ) of irreducible characters of such that the map
χ 7→ χ0 is a bijection of Bπ′ ( ) onto Iπ′( ).

Let now ⊳ and µ ∈ Bπ′ ( ). Two charactersχ1 χ2 ∈ Irr( | µ) are said to
be linked if there existsψ ∈ Iπ′( ) such that χ1ψ 6= 0 and χ2ψ 6= 0. The equivalence
classes defined by the transitive extension of this linking relation are called relativeπ-
blocks of with respect to ( µ), and the set of all these relativeπ-blocks is denoted
by Blπ( | µ) (see Section 3 in [11]). In case ( µ) = (〈1〉 1〈1〉), where 1〈1〉 is the
trivial character of〈1〉, the relativeπ-blocks of with respect to ( µ) are just the
π-blocks defined by M. Slattery [12].

3. The main theorem

We start this section by stating the main theorem of this paper.

Theorem 1. Let be a finite solvable group and let be an algebraically
closed field of characteristic2. Let be a simple -module with vertex and letϕ

be the irreducible Brauer character afforded by . Suppose that there exists a normal
subgroup of such that * and / is cyclic. Then
(i) has at least| / | ordinary irreducible charactersχ such that the restriction
χ

2′
of χ to the subset 2′ of 2′-elements of , is equal toϕ.

(ii) has at least two2-rational irreducible charactersξ such thatξ
2′

= ϕ.
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In order to prove this theorem, we need few preliminary results. For the sake of
generality, all but the last of these results are proved in the general setting of finite
π-separable groups, whereπ is an arbitrary set of prime numbers. (Note that a solv-
able group is necessarilyπ-separable.)

Before stating our first preliminary result, recall that a character-triple is a triple
( α), where is a normal subgroup of the group andα is an -invariant
irreducible character of . By definition (see Definition 11.23 in [5]), if the triple
( α) is isomorphic to ( ′ ′ α′), then there exists an isomorphismτ : / →

′/ ′. If ⊆ ⊆ and ′ is the subgroup of ′ containing ′ such that
τ ( / ) = ′/ ′, then also by the definition of character-triple isomorphism, we have
a bijectionσ : Irr( | α) → Irr( ′ | α′). Let σ be the union of the mapsσ . Then,
the pair (τ σ) is the corresponding isomorphism from ( α) to ( ′ ′ α′).

Lemma 2. Let π be a set of primes and let be aπ-separable group. Let
⊳ and let α be an -invariantπ′-special character of . Then, there exist a

central extension ′ of = / by a π′-subgroup ′ of ′, a linear characterα′

of ′ and bijections ofIrr( | α) onto Irr( ′ | α′) and 0 of Iπ′( | α0) onto
Iπ′( ′ | α′) such that
(a) For any θ ∈ Iπ′( | α0), if ξ is any character inIrr( | α) such thatξ0 = θ, we
have 0(θ) = (ξ)0

(b) For any χ ∈ Irr( | α) and anyθ ∈ Iπ′( | α0), we have χθ = (χ) 0(θ).
(c) The correspondenceB 7→ (B) is a bijection ofBlπ( | α) onto the set of (Slat-
tery) π-blocks of ′ over α′.
(d) If θ ∈ Iπ′( | α0), thenθ has a vertex such that / is isomorphic to some
vertex ′ of 0(θ).

Proof. This lemma without (d), is the invariant case of Theorem 3.1 in [10].
Recall, by the proof of that theorem, that the triple (′, ′, α′) is chosen to be
isomorphic to ( α). In other words, there exists a character-triple isomorphism
(τ σ) : ( α) → ( ′ ′ α′). The bijection is just the mapσ introduced just
before the lemma. All we need now is to show (d).

Let θ ∈ Iπ′( | α0). Then, there existsξ ∈ Bπ′ ( ) such thatθ = ξ0 Since the
irreducible constituents ofξ are all in Bπ′( ) (Corollary 7.5 in [6]) andθ lies over
α0, it follows that ξ lies overα. Now, asα is π′-special, Lemma 1.2 in [13] says that
there exists a nucleus ( ρ) of ξ such that ⊆ and ρ ∈ Irr( | α) (see Section
4 of [6], for the definition of the nucleus). In particular, wehave ξ = ρ and hence
θ = ξ0 = (ρ0) . Moreover, sinceξ ∈ Bπ′( ), the characterρ is π′-special. Therefore,
a Hall π-subgroup of is a vertex forθ.

Next, by Lemma 11.35 in [5], we have

(ξ) = (ρ ) = σ (ρ ) = (σ (ρ))
′
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As 0(θ) = (ξ)0 by (a), we get that 0(θ) = (σ (ρ)0)
′

. Let ′ be the subgroup
of ′ containing ′ such thatτ ( / ) = ′/ ′. Now, since 0(θ) ∈ Iπ′ ( ′), it
follows that σ (ρ)0 ∈ Iπ′( ′).

By Lemma 11.24 in [5], we haveρ(1)α′(1) = σ (ρ)(1)α(1). Sinceρ(1), α(1) and
α′(1) are all π′-numbers, we conclude thatσ (ρ)(1) is a π′-number. Hence, a Hall
π-subgroup ′ of ′ is a vertex of 0(θ).

Now, / is a Hall π-subgroup of / and ′ ′/ ′ is a Hall π-subgroup
of ′/ ′. As / ∼= ′/ ′, we obtain / ∼= ′ ′/ ′ ∼= ′/ ′ ∩ ′. Fur-
thermore, since ′ is a π-group and ′ is a π′-group, we get ′ ∩ ′ = 1 and it
follows that / ∼= ′. This proves (d) and completes the proof of the lemma.

We can now improve Theorem 3.1 of [11].

Theorem 3. Let be a normal subgroup of aπ-separable group and let
µ ∈ Bπ′( ) with = I (µ). Then, there exist a central extension of = / by
a π′-subgroup of , a linear characterν of and bijections ofIrr( | µ) onto
Irr( | ν) and 0 of Iπ′( | µ0) onto Iπ′( | ν) such that the following hold.
(a) For any χ ∈ Irr( | µ) and anyφ ∈ Iπ′( | µ0), we have χφ = (χ) 0(φ).
(b) The correspondenceB 7→ (B) is a bijection ofBlπ( | µ) onto the set of(Slat-
tery) π-blocks of overν.
(c) If φ ∈ Iπ′( | µ0), thenφ has a vertex such that / is isomorphic to some
vertex of 0(φ).

Proof. Let ( γ) be a nucleus forµ and let = N (( γ)), the stabilizer of
( γ) in . First, we note that this theorem without (c), is Theorem3.1 in [11]. Re-
call, by its proof, that Theorem 3.1 of [11] is obtained by first applying Theorem 3.2
in [11] to the group , the normal subgroup and the characterµ ∈ Bπ′ ( ), and
then applying the invariant form of Theorem 3.1 in [10] (thisis Lemma 2 above with-
out (d)) to the group , the normal subgroup and the -invariantπ′-special charac-
ter γ of .

To complete the proof, we need to show (c). Letφ ∈ Iπ′( | µ0). By Theo-
rem 3.2 (b) in [11], there exists a partial characterθ ∈ Iπ′ ( | γ0) such thatφ = θ .
Now, 0(φ) is the element of Iπ′( | ν) corresponding toθ via the bijection 0 of
Lemma 2.

By Lemma 2 (d),θ has a vertex such that / is isomorphic to some ver-
tex of 0(φ) (= 0(θ)).

Now, by Lemma 3.6 (a) of [11], we have∩ = . Therefore, we get ∩ =
∩ ∩ = ∩ . Since / ∼= / ∩ and / ∼= / ∩ , it follows

that / ∼= / ∼= . Finally, note that the subgroup is also a vertex ofφ

as φ = θ . This proves (c) and finishes the proof of the theorem.
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Let ( α) be a character-triple, where is aπ-separable group andα is
π′-special, and letB be a relativeπ-block of with respect to ( α).

Let be the normal subgroup of containing such that/ = Oπ′ ( / ).
If ζ ∈ Irr( | α), then by Lemma 2.3 in [6], there exists aπ′-special characterδ of

such thatδ is a constituent ofζ . By Lemma 3.2 in [10], ifβ ∈ Bπ′( ) satisfies

ζβ0 6= 0, we haveβ ∈ Irr( | δ). Therefore, the constituents ofβ are precisely
the constituents ofζ by Clifford’s theorem (Theorem 6.2 in [5]). It follows that if
ζ ′ ∈ Irr( | α) also satisfies ζ′β0 6= 0, thenζ ′ also lies over the -orbit ofδ. This
implies that the characters ofB all lie over the -orbit of someπ′-special character
η of . So, there exists a relativeπ-block B0 of with respect to ( η) such that
B ⊆ B0. Assume now thatξ ∈ B and ξ0 ∈ B0 satisfy ξω 6= 0 and ξ0ω 6= 0 for some
ω ∈ Iπ′( ). Then, asη lies overα, the characterξ0 lies overα and it follows that
ξ0 ∈ B. Consequently,B = B0 and thus we may viewB as a relativeπ-block of
with respect to ( η).

We now have the following “Fong reduction” type result.

Lemma 4. Let ⊳ , where is π-separable and letµ ∈ Bπ′( ). If B ∈
Blπ( | µ), then there exist a subgroup of, a normal subgroup of satisfying
Oπ′( / ) = 1 and an -invariantπ′-special characterβ of such that induction de-
fines a bijection ofIrr( | β) onto B. Furthermore, if is a Hall π-subgroup of ,
then is a defect group ofB and / is isomorphic to / .

Proof. Let ( γ) be a nucleus forµ and let = N (( γ)), where = I (µ).
(Note thatγ is π′-special asµ ∈ Bπ′( ) ) By Theorem 3.2 of [11], there exists a rel-
ative π-block B0 ∈ Blπ( | γ) such that the induction mapα 7→ α defines a bijection
of B0 onto B. Let now be any defect group ofB0. Then, is also a defect group
of B (see Section 4 in [11]). Since ⊆ , we have ∩ = ∩ , by Proposition 4.1
in [11] and it follows that / ∼= / .

Now, to complete the proof, we may therefore assume thatµ is a -invariant
π′-special character.

Let be the normal subgroup of containing such that/ = Oπ′( / ).
By the discussion preceding the lemma, there exists aπ′-special characterη of ly-
ing overµ such thatB ∈ Blπ( | η). Next, let = I (η). Then, by Lemma 3.4 in [10],
there is a unique relativeπ-block B̂ of with respect to ( η) such that the induction
mapχ 7→ χ is a bijection ofB̂ onto B.

CASE 1. Assume = . Then, the characterη is -invariant and so by
Lemma 2, there exist a central extension′ of = / by a π′-subgroup ′ of ′,
a linear characterη′ of ′ and a bijection of Irr( | η) onto Irr( ′ | η′) such that
the correspondence 7→ ( ) is a bijection of Blπ( | η) onto the set of (Slattery)
π-blocks of ′ over η′.

Since / ∼= ′/ ′ and Oπ′ ( / ) = 1, we get that Oπ′ ( ′/ ′) = 1, and thence
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Oπ′( ′) = ′. By Theorem 2.8 in [12], ′ has a singleπ-block overη′. It follows that
Irr( | η) consists of the single relativeπ-block B. We can then take = , =
and β = η.

By the definition of defect groups (see Section 4 in [10]), if is a Hall
π-subgroup of , then is a defect group forB. Next, we show that / ∼=

/ . Since / ∼= / ∩ and / ∼= / ∩ , it suffices to show that
∩ = ∩ .

First, note that ∩ is a Hall π-subgroup of . Since / is a π′-group, it
follows that ∩ is also a Hallπ-subgroup of . Hence, ∩ = ∩ , as wanted.

CASE 2. Assume < . Then, working by induction on the group order, we
can find a subgroup of , a normal subgroup of satisfying Oπ′ ( / ) = 1
and an -invariantπ′-special characterβ of such that induction defines a bijection
of Irr( | β) onto B̂. Moreover, if is a Hallπ-subgroup of , then is a defect
group of B̂ and / ∼= / .

Now, since induction of characters defines a bijection ofB̂ onto B, the induction
map θ 7→ θ is a bijection of Irr( | β) onto B. Next, by the definition of defect
groups (Section 4 of [10]), the subgroup is a defect group ofB. Furthermore, by
Lemma 4.1 in [10], ∩ is a Hall π-subgroup of . Now, just as in case 1, it
follows that / ∼= / , and consequently / ∼= / . This completes
the proof of the lemma.

Lemma 5. Let θ ∈ B2′ ( ), where is solvable and let be a vertex ofϕ = θ0.
Suppose that is a normal subgroup of such that* and / is cyclic,
and let µ be an irreducible constituent ofθ . Then, µ ∈ B2′( ) and if θ ∈ B ∈
Bl2( | µ), we have / ∼= / , for any defect group ofB. Furthermore,
B = {χ ∈ Irr( | µ) : χ0 = ϕ} and the number of elements ofB is exactly| / |.

Proof. Sinceθ ∈ Irr( | µ), the characterµ lies in B2′ ( ) by Corollary 7.5
in [6]. Consequently, we haveµ0 ∈ I2′ ( ) andϕ ∈ I2′( | µ0).

By Theorem 3, there exist a solvable group , a 2′-subgroup ⊆ ( ), a linear
characterν of and bijections of Irr( | µ) onto Irr( | ν) and 0 of I2′ ( | µ0)
onto I2′( | ν). Furthermore,ω = 0(ϕ) has a vertex such that ∼= / .

Let = (B). By Theorem 3 (b), is a 2-block of overν. Moreover,ω is an
irreducible Brauer character associated with . As / is cyclic, the vertex is
cyclic and it follows by Theorem VII.15.1 in [2], that has as adefect group.

Let now be any defect group forB. Then, by Theorem 4.2 in [11], we have
/ ∩ ∼= . Since / ∼= , it follows that / ∼= / .

Next, by the theory of blocks with cyclic defect groups (Theorem 68.1 in [1]),
ω is the unique irreducible Brauer character associated withand there are exactly
| | (= | / |) ordinary irreducible charactersλ in . Furthermore, every character
λ lies overν and satisfiesλ0 = ω. In particular, we have ={η ∈ Irr( | ν) : η0 = ω}.
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It follows from Theorem 3 (a) thatB = −1( ) = {χ ∈ Irr( | µ) : χ0 = ϕ}, and con-
sequently, the number of elements ofB is equal to the number| / | of elements
in . The proof of the lemma is now complete.

We are almost ready to start the proof of Theorem 1. All we neednow are few
general facts about -rational characters.

Let be any finite group and for an integer ≥ 1, denote byQ the field
Q( 2π / ) generated by 2π / over the fieldQ of rationals. Now, fix a prime and
write | | = = , where ( ) = 1. LetG denote the Galois group Gal(Q /Q ). If
χ is a character (resp. irreducible character) of and ifσ ∈ G, the functionχσ de-
fined byχσ( ) = χ( )σ is also a character (resp. irreducible character) of . It is clear
from the definition of -rational characters given in the introduction of this paper, that
χ is -rational if and only ifχσ = χ for all σ ∈ G.

Next, let be a subgroup of . Then,Q| | ⊆ Q and it follows thatθσ is de-
fined for every characterθ of and everyσ ∈ G.

We can now prove our main result.

Proof of Theorem 1. Letθ be the element of B2′ ( ) such thatθ0 = ϕ, and fix an
irreducible constituentµ of θ . By Lemma 5,µ ∈ B2′( ) and if θ ∈ B ∈ Bl2( | µ),
we have,B = {χ ∈ Irr( | µ) : χ0 = ϕ}, and the number of elements ofB is | / |.
This suffices to prove (i). Next, we prove (ii).

By Lemma 4, there exist subgroups ⊳ ⊆ satisfying O2′ ( / ) = 1 and
an -invariant 2′-special characterβ of such that induction defines a bijection of
Irr( | β) onto B. Furthermore, if is a Sylow 2-subgroup of , then is a defect
group of B and / ∼= / . By Lemma 5, we have / ∼= / . There-
fore, / ∼= / and it follows that / is a cyclic 2-group. Moreover, as

* , we have that| / | > 1.
Next, write | | = 2 and | | = = 2 , where both and are odd inte-

gers. Assume that a characterζ ∈ Irr( | β) is 2-rational. Then, the values ofζ are
in Q . Since divides , the values ofζ lie in Q and it follows that the values of
the characterζ all lie in Q . In other words,ζ is 2-rational. Therefore, to show (ii),
it suffices to find two 2-rational characters in Irr(| β).

Recall that is a Sylow 2-subgroup of . Then, / is a Sylow 2-subgroup
of / . Since O2′ ( / ) = 1 and / is cyclic, it follows from Theorem 6.3.3
in [4], that / ⊳ / . Now, let be the subgroup of such that/ is the
unique subgroup of / of index 2. As / ⊳ / , it is clear that / ⊳ / ,
and so ⊳ .

Since β is -invariant, Corollary 4.8 in [3] implies that there exists a 2′-special
characterζ0 ∈ Irr( | β). Set (ζ0)0 = ω. Next, fix an irreducible constituentη of (ζ0)
and write = {λ ∈ Irr( | η) : λ0 = ω}. As ζ0 is 2′-special, is a vertex ofω.
Moreover, since / is cyclic of order 2, Lemma 5 says that contains exactly 2
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elements, the characterζ0, of course, and another characterζ1.
As ζ0 ∈ Irr( | β) and β is -invariant, we haveη ∈ Irr( | β), and consequently
⊆ Irr( | β). So now, to complete the proof, it suffices to show that the characters

ζ0 and ζ1 are 2-rational. First, note thatζ0 is 2-rational by Lemma 3.1 in [8]. Next,
we prove thatζ1 is 2-rational.

Write (ζ1) =
∑

=1 η , whereη ∈ Irr( ) and η1 = η. Now, let σ ∈ Gal(Q /Q ).
Then, for each ,ησ is well defined (see the remarks preceding the proof) and (ζσ1 ) =∑

=1 η
σ. Since ζ0 is 2′-special, then so isη by Lemma 2.2 in [6]. Hence,η is

2-rational by Lemma 3.1 in [8]. In other words, the values ofη are in Q , where
is the order of a Hall 2′-subgroup of . As divides , we haveQ ⊆ Q and it fol-
lows thatησ = η. This shows thatζσ1 ∈ Irr( | η). Next, we have (ζ1)0 = ω. So, clearly
(ζσ1 )0 = ω and we conclude thatζσ1 ∈ . Now, as ={ζ0 ζ1} and ζ0 is 2-rational, we
haveζσ1 = ζ1, necessarily. Hence,ζ1 is 2-rational, as wanted.
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