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Algebraic Study of Fundamenial Characteristic
Classes of Sphere Bundles

By Shingo MURAKAMI

The cohomology theory of principal fibre bundles is extremely
developed in these several years by many mathematicians, above all
by A. Borel. Owing to this theory, the real cohomology structure of
an n—universal bundle for a compact Lie group is completely determined.
In particular, its base space, called n—classifying space, has the real
cohomology algebra which is isomorphic in dimensions <z—1 to the
algebra of invariant polynomial functions on the Lie algebra of the
structural group. Invariant polynomial functions are those which are
invariant under the operations of adjoint group. As for an arbitrary
given principal fibre bundle over a cell-complex with a compact Lie
group, it is well-known that this bundle is induced by a mapping, say
f, from its base space into an n—classifying space. The cohomology
homomorphism f* induced by f maps the cohomology algebra of the
n—classifying space into that of the base space and it defines as its
image the characteristic algebra whose elements are the so-called charac-
teristic classes of the given bundle. Recall that these notions do not
depend on the choices of the n—classifying space and of the mapping f.
Referring to the fact mentioned above, as far as we concern real coho-
mology we may regard the characteristic classes as the images under
a certain homomorphism of invariant polynomial functions. As a matter
of fact, for a differentiable fibre bundle H. Cartan [2] and S. S. Chern
[4] have availed themselves of a homomorphism explicitely given by
making use of the curvature form of a connection in the bundle. This
homomorphism will serve us as a foundation of the present work.

A sphere bundle is a fibre bundle whose fibre is a sphere acted by
a subgroup of the orthogonal group. Its characteristic classes are those
of the principal fibre bundle associated to it. As regard to the charac-
teristic classes of a sphere bundle, there are important ones—Pontrjagin
classes, Chern classes, etc.—which we call fundamental characteristic
classes. These are usually defined as the f*-images of special cohomology
classes in a Grassmann manifold—a concrete #n—classifying space for a
compact classical group. By detailed studies of Grassmann manifolds
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mainly due to W. T. Wu [8], we know many formulas and duality
theorems about these foundamental characteristic classes.

The purpose of the present paper will be now explained: If we
restrict our attentions to differentiable sphere bundles and apply there
the homomorphism of Cartan-Chern, we may regard the characteristic
classes as the images by this homomorphism of invariant polynomial
functions on the Lie algebra of the structural group and then we may
obtain relations among the formers from algebraic relations among the
latters. Resting on this principle, we shall derive properties of the
fundamental characteristic classes from those of the corresponding in-
variant polynomial functions. Our results will thus give the formulas
and duality theorems mentioned above in purely algebraic fashion.
Besides, in finding relations for invariant polynomial functions, essential
simplifications are provided by reducing these relations to those which
exist among elementary symmetric functions. To this respect our method
is previously expected by A. Borel-]J. P. Serre [1], and is motivated by
the questions imposed by them in connection with their proof-technique.

After we explain in §1 notations and elementary properties of
invariant polynomial functions on the Lie algebra of a compact Lie
group, we determine the structure of the algebras of invariant poly-
nomial functions for the orthogonal groups (§2) and for the unitary
groups (8§83). The structure of these algebras is theoretically known
owing to H. Cartan [2] etc. and is concretely given in lower dimensions
by Chern [3] [4] to compute the cohomology of Grassmann manifolds.
Resting upon the first main theorem on the vector invariants of the
groups, we shall complete these results by giving algebraically in-
dependent generators of the algebras in concrete forms. In §4, we
see how these generators change if we restrict them to subalgebras
which belong to subgroups of special type. The relations thus obtained
imply through the homomorphism of Cartan-Chern those which exist
between fundamental characteristic classes. This procedure is achieved
in §5 and the results furnish our main purpose. Finally we prove in
§6 a theorem which may suggest a topological meaning of our algebraic
method.

§ 1. Invariant polynomial functions.

Let G be a compact (not necessarily connected) Lie group and g
the Lie algebra of G. The inner automorphism induced by an element
a of G, x—axa™ (x€G), defines an automorphism of the Lie algebra g,
which we call adjoint mapping induced by ¢ and denote by ad(a).
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A polynomial function F on g is a function such that, if we
represent an element X of g by its coordinates X, ---, X, (r=dim g)
with respect to a coordinate system in g,

(1) F(X)=P(X, -, X),

where P is a polynomial of 7 variables with real coefficients. Obviously
this definition is independent of the choice of coordinate system in g.
A polynomial P with » variables defines uniquely a polynomial funttion
F on g and this correspondence is a omne-to-orie homomorphism from
the polynomial algebra into the algebra of functions on g. Therefore,
we can make the algebra of polynomial functions on g a graded algebra,
which we denote by

S(G) =3 G,

S*¥(G) being the module of polynomial functions of degree k, that is,
polynomial functions F which is represented by (1) using a homogeneous
polynomial P of degree k. In particular, S°(G) consists of constant
polynomial functions and contains the unit 1 of S(G), the polynomial
function which is identically equal to 1. As is well-known, to a poly-
nomial function of degree & we can associate a symmetric k-linear
function on g and vice versa. We call the k-linear function associated
to a polynomial function F of degree k the polar form of F and denote
it by the same letter F or, if necessary, by F(X?, ---, X*¥) with variable
vectors X*, ---, X* in g. Then F(X, ---, X)=F(X). F,, F, being poly-
nomial functions of degrees k and / respectively, the polar form of the
product F,F, is given by

(FIFZ)(Xi, e, Xk+1) — (_k—_,]_-—l)l 2 Fl(Xﬂ(n, e Xﬁ(k)) FZ(X#(kH)’ e Xn(k+l)) s
where 7= runs over all permutations of {1, ---, k+/}. Thus S(G) may
also be regarded in the following as the graded algebra spanned by
symmetric multilinear functions on g with this product.

By the way this notation will be used throughout this paper: 3>

shall mean the summation extending over all permutations = of the
letters indicated in the summation with =( ). Besides &, will denote
the signature of the permutation 7.

Now a polynomial function on g is called invariant if

Fad@)X) = F(X), for a€G, Xeg.
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A polynomial function F of degree k is invariant if and only if its
polar form satisfies the condition:

F(ad@)X?, ---, ad(e)X*) = F(X*, ---, X®),
for a€gG, X, -+, Xfeg.

The invariant polynomial functions on g form a graded subalgebra of
S(G). We shall denote it by

I6) =3 IMG), I*G)=IG)nS*G).

I’(G) is the module of all constant functions on g. We shall say that
some elements of positive degree in I(G) are generators of I(G), if
they generate the algebra together with 1.

Let G and H be compact Lie groups whose Lie algebras are g and Y
respectively. A homomorphism ¢ of H into G induces a homomorphism,
denoted also by ¢, of §) into g. Since this homomorphism is a linear
mapping we see at once that for a polynomial function F on g F(pX)(X € §)
is a polynomial function of Y. The latter being denoted by ¢*F, the
assignment of @*F to F defines a degree-preserving homomorphism ¢*
of S(G) into S(H). Moreover, if F is invariant by G, ¢*F is invariant
by H. Therefore ¢* maps I(G) into I(H). @* is called the dual mapping
of . Note that, if H is a subgroup of G and if ¢ is the injection of H
in G, the function @*F is nothing but the restriction of F on §.

Let G, and G, be compact Lie groups with Lie algebras g, and g,
respectively. The Lie algebra of the direct product G, xG, is the direct
sum g,+¢,. We know? that the tensor product S(G,)®S(G,) is isomorphic
to S(G,xG,) by the mapping which maps F,QF, (F;€S(G;), i=1, 2) to
the polynomial function F on g,+g, defined by

F(X+Y)=F/(X)F,(Y), Xeg, Yeg,.

In the following this function will be denoted by F,QF,. By this
isomorphism the submodule >} S¥(G,)®S*(G,) is mapped onto S*G),

kyFhy=k
We shall now show that I(G,)®I(G,) is mapped onto I(G,xG,). Obvious-
ly I(G)®I(G,) is mapped into I(G,xG,) and +Z I(G,) ®I*(G,) into
kytky=k

I*G,xG,). For an element a; of G; (=1, 2) the mapping Fi(X;)—
Fiad(a))X;) (F;€S*%(G;), X;€q;) is a transformotion ad“?(q;) in S*(G)).
The mapping «;—ad**?(a;) is a representation of the compact group G;
on the linear space S*(G;). Let X{* be the character of this representa-

1) See Chevalley [5] p. 27.
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tion. Since I%(G;) is the subspace of elements fixed by this representa-
tion, we have
dim I4(G) = [ X (@:)da;
&g
where the integral is taken with respect to the Haar measure on G;

with total measure 1. In the same way, we can consider the representa-
tion of G,xG, on S*G,xG,) with the character X and we have

dim I*(G, X G,) = j X®(a)da .

G1XGy

Now by the isomorphism of > S*(G,)®S*(G,) onto SKG,xG,) we see

kythy=k

easily that
XP(aa,) = 21 X (a,)X5*(a,) , a;€G; =1, 2).
kyFhy=k

Integrating both sides on G,xG,, it follows from the Fubini’s theorem '

S X®(@)da = 3 SXﬁkl)(a,)dal ngkz)(az)daz.
o ke k1+k2=kgl :

Therefore
dim I%(G, X G,) = 3} dim I*G,) dim I*(G,)

kytky=k

dim I*(G, xG,) = dim ( > I*(G,) Q I**(G,)) .

kyFEp=k

Thus by the above isomorphism > I*(G, ®I*(G,) is mapped onto

kyFhy=k

I*(G, xG,) and therefore I(G,)QI(G,) is mapped onto I(G,xG,).

§ 2. Determination of I(O(nm)) and I(SO(n)).
1. Reduction of the problem.

Let R” be the real euclidean space of dimension n. We fix an
orthonormal coordinate system (e,, -+, ¢,) in R” and the coordinates of
a vector v will be designated by (v,, :--, v,). The orthogonal group
O(n) is the group of real orthogonal matrices ¢=(a;;) of degree » which
operate in R*; if v=av,

n
[ ) —
v; —-}"‘_,laijvj, i=1, -, n.
=

The rotation group SO(n) is the group of orthogonal matrices of deter-
minant 1. The group O(xn) being regarded as a Lie group, SO(n) is the
connected component of the unit element in O(z). The Lie algebra o(x)
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of O(n), which is at the same time that of SO(»), is represented by the
Lie algebra of real skew-symmetric matrices ;

f-—— (‘Eij)
Ei.i—'-éji:O, i) .7= 1, e, n,

and the adjoint mapping ad(e) induced by an element a of O(x) then
operates as the transformation by the matrix «;

(1) ad(a)é = aka™*, for £co(n).

Now we define, for two vectors #, v of R”, an element &(u, v) of
o(n) as follows :

i) j=1, oo,

(2) K, o) = (5w~ )
Then &(u, v) is an o(n)-valued bilinear mapping on R" and it is skew-
symmetric, i.e.,

(3) &, u) = —&(u, v).

(1) and the orthogonality of & imply

(4) ad(a)&(u, v) = E(au, av), for a€ O(n).

On the other hand, the elements

(5) ey, e;), 1<i<j<m,

form a basis of o(n).

In the sequel of this paragraph, G shall denote the group O(zn) or
the group SO(n). The Lie algebra of G is o(z) in both cases, but the
adjoint group on o(z) may be different for two cases.

Let

F=FE, -, &),

be an element of S*¥(G) in the polar form, that is, a real-valued symmetric
k-linear function on the Lie algebra of G. We associate to F a 2k—
linear function F’ on R” by the following definition :

(6) F'(u', v', -+, u¥, v*) = F(E@W, v'), -, E(uF, v%)),
for u', ¢, ---, u*, v*€ R". Then, by the symmetry of F,
(7) F/(uqz(n’ Uﬂ(l)’ - uvt(lz)’ vn(k)) =F’(u‘, vl’ - uk, Dk),

for any permutation 7= of {1, ---, k}, and, by the property (3) of &(u, v),
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( 8 ) F/(uly vl’ B vi’ ui) Tty uk’ vk)
= _F/(ul7 vli Tty uiy vi, ttty uk) vk)) Z=1; Tty k.
We shall denote by S,(G)Y the set of all 2k-linear functions on R”"

which satisfy (7) and (8). If F belongs to I*(G), then F’ is G-invariant,
ie.,

(9) Fl(au’, av', ---, au®, av*) = F’'(u', 0", ---, u*, v*), for a€G.

The set of 2k-linear functions satisfying (7), (8) and (9) will be denoted
by I.(G). Since a basis of o(x) is given by (5), we may easily see that
the definition of F’ for F is a one-to-one onto mapping from S*G) to
S.(G), by which I*(G) is mapped onto I.(G)'.

Now the set of all real-valued 2k-linear functions, denoted by L.,
is a module over the real number field R by obvious definitions of
scalar multiplication and addition. (L, is the module of constant func-

tions). The direct sum L=i L, shall be a graded algebra over R by
=0
defining product of F/€ L, and F,/ €L, to be the element of L.,;;
(Fllel)(uly vl’ "ty uk+l, vk+l)
:Fll(ul’ vl’ e uk, Z)k) Fz’(u"“, vk+1, . uk+1, Z)k+1).

We define next linear endomorphisms & and A of L which map each
L, into itself: for F € L,, put

| =

(@F!)(ul, Z)l, e u"’, vk) — 'ZﬂF/(uno), vn(l)’ . u‘il(k)’ v‘lt(k)),

= =

(AFN @, 0, -, uf, %) = 5 30 (=1)°F' (', "w', -, wh, ‘w),

\"]

where, in the second definition, the summation extends over all (w', ‘w*,
-+, w* ‘w*) such that for each i w’, ‘w’ are respectively #‘, v’ or v’, u’
and, for each term, @ is the number of w’ equal to . Obviously these
operators on L satisfy the following relations:

66 =6,
(10) AA=A,
SA = A,

A(1;'1,-};‘2,) = (AFI/)(AFZI) ’ for Fl’ Fz €L.

It follows immediately



194 S. MURAKAMI

(12) SAQKF, -+ F)) =>*S((SAF/) --- (SAF/)),

where F/, ---, F/ € L and % denotes a constant coefficient for each term.
The conditions (8) and (9) for F’€ L, are now equivalent to the

conditions

SF =F’
and

AFI — F/ R
respectively. Moreover, by (10), F’ satisfies (8) and (9) if and only if
(13) SAF =F’

and, for any F’'€ L, SAF’ satisfies (8) and (9). In other words, S.(G)
is the set of fixed points in L, of @A and is the image of L, under SA,
Note that & and A and so SA map a G-invariant function to a G-
invariant function.

The previous assignment of F’ € L, for Fe S¥G) is linearly extended
and it defines a one-to-one mapping from S(G) into L. The image S(GY
of S(G) is the direct sum of S,(G)’ and the image I(G)’ of the subalgebra
I(G) is the direct sum of I(G)Y. If F/, F, and (F.F,) is the images of
F,, F, and F,F, respectively, then obviously

(Fle), = @(Fll Fz,) .
In this respect, we define c—product of F,/ and F,’ in S(G) by
F/oF/ =@&(F/F)).

This allows us to regard S(G) as a graded algebra and I(G) as its
graded subalgebra. The above formula is then written in the form

(14) (F1Fz), = F1,° le

and this means that the mapping F—F’ is an isomorphism from the
algebra S(G) onto the algebra S(G). I(G) is mapped onto I(G)’ by this
mapping.

Thus the determination of the algebra I(G) reduces to that of the
algebra I(GY.

2. Generators of I(G).

The G-invariancy (9) of a 2k-linear function F’(k>>0) means that
F’ is a vector invariant of G. Put
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W, w) = ulu?,
i=1
[u17 ) un] = det ]u§|7
for u', ---, " € R". Then the first main theorem® on the vector invariants

of the group G implies that the function F’ is a linear combination of
terms with the following types.

) (b, u?2) - (P, uP) (0", v%) - (71, OU) (Ui, OT) oo (uF, D),
and, in case G=SO(n),

ii) [upl’ tty up,, vqu R z)qs] (up”'l, up,+2) o (upt_ly uﬁl)(vqs+1, vqs+2)

oo (V-1 VT (WP, VT41) oo (UPE, V%)

with »+s=#n. We may suppose here, by the multilinearity of F, that
{p:, =+, b} and {q., ---, ¢q,} are both permutations of {1, ---, k}. There-
fore each of these terms itself is a 2k-linear function with variables
u', v, -+, u*, v*. Now, if F’ belongs to S(G), then (13) implies that F’
is a linear combination of the 2k-linear functions which are obtained
by applying @A on these 2k-linear functions of type i) or of type ii).
Since these terms are G-invariant, the resulting 2k-linear functions are
also G-invariant. Thus they belong to the module I,(G) and span it.

Let = be a permutation of {1, ---, k}. It defines a mapping of L,
into itself as follows: for F'€L,,

(n'F’)(u‘, vl’ -, uk, vk) — F/(uvt(l)’ z)11(1)’ e uﬁ(k), vvz(k)) .
Then it is obvious that
SF' = &(=F’).

Suppose that an element F’ of L, (k>0) is decomposable, that is, there
exist F/ €L, (k,_>0) and F, € L,, (k,>0) such that

F' =F/F,.
Then, it follows from (11)

SAF' = S((SAF/)(GAF,))
= (BAF/)o(SAF,).
The same is true if #F’ is decomoposable, that is, #F’'=F, F, for some

z. Now take for F’ a 2k-linear function of type i) or type ii). If =F’
is not decomposable to a product of functions of type i) or of type ii)

2) See Weyl [7] p. 53.
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for any permutation = of {1, ---, B}, we call F’ to be irreducible.
Induction on the degree of F’, together with the above argument, implies
that for a not irreducible function F’ of type i) or of type ii), there
holds

SAF' = GAF/ o - cSAF/,

where F/, ---, F/ are irreducible functions of type i) or of type ii).
Since 1 and the functions SAF’ span I(G)Y when F’ varies over all
2k-linear functions of type i) or of type ii), we conclude that 1 and
©SAF’ generate the algebra I(G) when F’ runs over all irreducible 2k-
linear functions of type i) or of type ii). In the following we shall
give explicit forms of these generators.

Let F’ be an irreducible 2k-linear function of type i).

If k=1, the function F’ is of the form

F/ (w, v') = (u', v').
In this case put
K/ =SAF/.

Suppose k>1. We may associate to F’ the following table of &
pairs of numbers.

(15) (Pl; 172)) ) (pt+1» pt), (qu qz)» ) (qt—u qt)» (pt+1’ qt+1), Ty (pk’ qk)-

If p,=gq; for some i _>¢, then for the permutation = which permute p,
and 1 =F’ is decomposable with F,/ as factor. This contradicts the
irreducibility of F’. We call, for convenience, two numbers are paired
if they form a pair in (15). Then, this means that a number is never
paired with itself. Let us define now

(1) = p,

b, if ¢£>0,

2) —
=@ {q,, if £=0.

By induction, if we define mutually distinct numbers =(1), ---, 7(7)
between 1 and % so that =(j) and =(j+1) are paired for j=1, -+, i—1,
we take for #({+1) a number which is paired with =(¢) and differs from
z(1), ---, =(¢), as far as it exists. After a finite number of times, we
arrive at the stage where =(f) is paired only with some of =(1), ---, 7(z).
Making use of the fact that a number between 1 and % appears in
exactly two pairs of (15), once as p and the other time as ¢, we may
easily show that, in this case, =(¢) is paired with =(1) as well as with
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7z(i—1). Suppose this is the case for i< k. We define =(i+1), -+, =(k)
to be the numbers which form the complement of {=(1), ---, =({)} in

the set {1, ---, k}. We have then a permutation = of {1, ---, k} for
which
n—lF/(ul’ vl’ Ty uk, vk)
= (@', ‘W)W, ‘W) - (W', W)W, ‘W) F (', o, e ub, oF),

where w’, ‘w’ are respectively #’, v/ or v’, w/ and F’” is a function of
type i). This contradicts the irreducibility of F’. Therefore i=k.
Moreover, this argument shows that F’ is obt&ined from the 2k-linear
function

F/(w, v', -, uf, v*) = (", w’)(¢*, o°) --- (0%, uP)(v*, u'),

by a permutation of variable vectors which permutes #‘ and ¢ for a
number of ;. Then AF'=+AF,’. Therefore, SAF’ is equal to *+ K/,
where

Kk, — @AFkl .

The functions +K,’ (k_>0) are generators of I(G) which are derived
from the irreducible functions of type i). Besides

(16) K/ =0, if k is odd.
For, by the property (8) of K/,
Kk,(ul’ vly "ty uk, vk)
= (—1)kKk/(vl’ uly Tty vk’ uk)
= (—l)k@A((ul’ 1)2)(u2’ 1)3) v (uk_I, vk)(uk) vl))
= (—1D*AB((2", u)(@, &) - (v, u* )@, )
—_ (_l)kA@((vﬂ(z)’ uﬂ(l))(vﬂ(3)’ u-)t(z)) (v‘lt(k)’ ufl(k—l))(vﬂ(l), uqz(k)))

== (ﬁl)kKkl(ul; Uly Tty uk’ vk))
where = is the permutation

(1, 2,3 -, k-1, k)
1, k, B—1, -+, 3, 2/.

Next let F/ be an irreducible function of type ii). This function
appears only if G=S0(n). Moreover, since the number of variables is
an even integer 2k, it follows immediately the number of members in
the bracket, that is, #, is even. Put #=2m. Now we can associate to
it the following table of one bracket and pairs of numbers :
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(17) [plv Tty pr’ q, >y 4,1, (ps+1» ps+2)y Tty (pt—ly pt),
(qr+17 qr+2)) Ty (QI—I’ qt)’ (pt-H) qt+1), Tty (pk» Qk)-

By the same reason as before, two numbers in a pair can not be equal
to one another. Let =(l), ---, =(k,) be the numbers which appear twice
in the bracket. If k,=m, we may derive from the irreducibility of F’
that £k, =%k and SAF’ is equal up to its sign to the function

Wm(ul) vly %y um’ vm) = [uly vl, ) um’ vm]-

If k,~>m, there remain numbers which appear once in the bracket.
One of them is defined to be =(k,+1). This number =(k,+1) appears
in a pair and let #(k,+2) be the number paired with it by this pair.

Suppose z(k,+1), ---, m(k,+1) are given so that two successive numbers
form a pair in (17). If =(k,+{) is paired in (17) with a number not
equal to =(k,+1), ---, m(k,+1), this number is taken as =(k,+7+1). Other-

wise, we may show easily that =(k,+¢) appears in the bracket. The
second case occurs certainly for some 7 _>1, and then we set k,=k, +1.
If k,+1">m, we may find a number =(k,+1) in the bracket which is
distinct from =(1), ---, =(k,), =(k,+1), =(k;). Taking k, instead of k,, we
may construct in the same way =(k,+1), =(k,+2) and so on, and arrive
at a number =(k,) in the bracket. In this manner we obtain numbers
z(1), -, =(k), 7w(ky+1), -+, =(k,), =(k,+1), ---, (k) so that the bracket
and some of pairs ih (17) are written, up to the order of numbers in
them, as follows:

[ﬂ(]-); ﬂ(l), R 7r(ko)’ ﬂ(ko), 77—'(k0+1), ”(kl)) ”(k1+1)7 “tty ”(kl)])
(”(k0+1), ﬂ(k0+2)), Tty (”(kl—l), ﬂ(kl));

(m(ksy+1), 7(ksy+2)), -, (m(ky—1), 7(k)) .

Fﬁrthermore, we may see from the irreducibility of F’ that k,=Fk and
all the pairs in (17) appear here. For later convenience, we put

lo=k07 llzkl—kO) Tty lszks'—ks—l

and consider the 2k-linear function

Z/lollu-ls (uly vl) ttty uk’ vk)
— @A([u‘, vl’ -, uk", vko, u”0+1, Ukl, uk1+1’ . Z)k]
(vk0+l7 uk0+2) o (vkl_l; ukl) (vk1+1) uk1+2) o (vk_l’ uk)) .

Then it follows from the above argument that the function SAF’ is
equal to 2 ,,...,.
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The functions W’,,, Z';,,...;; are generators of I(SO(2m)) which are
derived from irreducible functions of type ii).
Now, put

Pk’(ul, vl’ - uk’ Z)k) = A %zﬂ] gﬂ(vl, uﬂ(l)) (l)k, uu(k)) ,
5 1
Pkl(ul’ vly "ty uk’ vk) =A I; ; (Ul’ ui(l)) o (vl, uﬂ(k)) .

Obviously P, and P, are G-invariant 2k-linear functions which satisfy
(13). We shall show that each of {P,} and {P,/} generates the subalge-
bra of I(G)Y which {K,’} generate. Let /,, ---, /; be s numbers such
that >/ >-->=/,>1 and [, +---+/,=Fk. For convenience we put
ki=10L+--+/;(i=1, ---, s), and denote by [/, -+, I;] or briefly by [/]
the product of cyclic permutations (1---%,)(k, +1---k,)---(k,_,+1---k). Then,
as is well-known, any permutation = of {1, ---, k} is conjugate to such
a permutation [/, -, /], i.e. #=9[/]y™* by a permutation 7. In this
case,

(vl, uﬂ(l)) (Uk, un(k)) —
(1)7'(1), un(Z)) (v"l(kl), un(l)) (vﬂ(kl+1), un(k1+2)) (vn(k)’ un(ks_1+1)) .

Therefore, if 85 is the number of permutations which commute with [/],

Pk,(ulv vly "ty uky vk)
—alsie F!

p1 2 o g G0, ) (0, W) N, uh?) o (0, wher™)
: €3

where the summation extends over all such [/]’s which represent once
each conjugate class of the symmetric group. Applying (11) and (12),
it follows easily

&
P/=XS0FK, .o K,
18

Since, for s=1, /,=Fk, By=F and &,=(—1)*",

(18) Pk/ — (_l)k—l K’k+ Z (h Klllo"'oKls .
k C2ls>1 '8[1]

In particular, from (16),
19) P/ =0, if k& is odd.
Moreover, using the induction on 2 we may derive from (18)

(20) K/ = (=1)¥kP/+ 31 % P'jo-0P),
[11,s>1
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where * denotes a constant coefficient for each term.
Just in the same way, we can prove

1) pp=lg+ > Lk, kK,
k G318y
(22) P/ =0, if & is odd
(23) K/ =kP/+ X} *P/llc... Plls
[1)s>1

The formulas (18), (20), (21), (23) imply that each of the systems of
functions {K,'}, {P/}, {P,/} generates the same subalgebra in I(G).
Moreover, since

; EL(V, u™®) - (V% u*P) = det| (v, w)|s a1,k
= det (23] ymge 142l gor.oov)
=0, for k>n,

P/ =0 for k>n .

Therefore, if we denote by m the largest integer not greater than
n/2, we see from this and (19) that P, are all equal to zero except for
k=24, .-, 2m. Thus the functions P/, P/, ---, P’,,, generate the subal-
gebra which {K,} generate. By virtue of (18) and (23), we may see
that the same holds true about the functions K, K/, ---, K,, and about
the functions P/, P/, ---, P,,.

§ 3. Structure of I(O(n)).

As we have seen before, the algebra I(O(n)) is isomorphic to the
algebra I(O(n)) by the mapping F—F’ defined by (6) and the latter
algebra is generated by the functions SAF’ where F’ are irreducible
functions of type i). These functions are, up to their sign, {K,'}.
Moreover we know that each of systems of functions {K,, K/, .-+, K.},
{P/, P/, -, P}, {P;, P/, -, P,} generates the subalgebra of I(O(xn))
which {K,’} generate, in this case I(O(n)) itself. Consider the functions
in I(O(n)) which define K/, P/, P,/. If k is odd, these functions are zero
because K,/ =P, =P,/=0. If k is even these functions are put to be
K,, P, (—1):P,. When K,, P, and P, are considered, the suffix £ will
be always supposed to be even. Then, as we can easily verify,

Kk(él’ . gk) — %2 i Eﬂl) Eﬂ(k)
LT @y, e, ap=1

@@y apa;
1., ERy — 1 . 1 oo EF
Pk(é ’ ’ E ) - II; ; 5,,“ Zwk—‘l é:5”1(21:(1) . é:C”Izafvt(lz) ’
M 1) "% -
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Pk(é:l’ T gk) - (_k—]'-)§ ; zn} E‘1“10‘1t(1) o Ezkwﬂ(k) .

X1, "y ak=1

The polynomial functions with these polar forms are then given by

Kk(g) = 2 lswlwz ot fwkwl ’
@y, o, A=

(24) P& = % e,

n
E [ 27¢P) @&k’
1 0 @p=1

&

5 _ (=12 &
Pk(é:) - 1’3 Zﬂ o ;wk=1£“1“1(1) ga‘ka'lt(k) :
Each of {K,, K,, ---, K.}, {P,, P, ---, P.,.}, {P,, P,, ---, P,,,} generates the
algebra I(O(n)).
Now consider the linear subspace ) of o(z) defined by

§;=0 for (4, )==2/—1, 2]) or (27, 2/-1),
l=1, -, m.
h is then an m-dimensional commutative subalgebra of the Lie algebra
o(n), and it generates a maximal torus 7 in the group SO(n). As was

mentioned in § 1, we have the homomorphic mapping #*:1(O#))—IT)
by taking restrictions to ) of invariant polynomial functions on o(#n).

We can choose as coordinates on Y) the restrictions x,, -+, %,, of &,, -,
E.nam-1- Then, since T is abelian, I(T) is the algebra of all polynomials
in x,, ---, x,,. Now,. denoting the restrictions on % of the functions

K,, P,, P, by the corresponding small letters, we have

kul2) = 2(—=1)" 31 2,
(25) pux) =23 xi-x) (L=I=m); pux)=0(>m),
3, <d;
Pun) = 3 ..l
W= S
for x=(«,, -+, x,,). The polynomials p,, p,, -, p., are elementary sym-
metric functions in %, ---, 2%, and so they are algebraically independent.
It follows immediately that the functions P,, P,, ---, P,, are also algebra-
ically independent as polynomials in &;; (1 <i<j <#u). Since these func-
tions generate the algebra I(O(x)) in the algebra of polynomials in &;;,
we see first that I(O(n)) is isomorphic to the polynomial ring with m
variables over the real number field, and secondly that the mapping
t* : I(O(n))— I(T) maps the algebra I(O(n)) isomorphically on the set of
symmetric functions of x%, ---, x%. From this, we may easily deduce
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that K,, K,, ---, K,, as well as P,, P,, ---, P,,, are also algebraically in-
dependent generators of the algebra I(O(n)).
We thus obtain the following.

Theorm 1. The algebra 1(O(n)) is generated by each of the following
system of functions

P y T PZm;
Pz’ Pu Ty sz-

[N}
-

29 Ku Y sz;
P,

given in (24). The functions in each system are algebraically independent
as polynormal functions.

Note that algebraic independence of polynomial functions does not
depend on their expression by coordinates of the variable vector.

Since the generators given in the above theorem are of even degree,
we have

Corollary. I*(On)) =0, if kis odd.
For convenience, we put
P,=P,=1.
The it holds

(26) SU(—1)"PyPyy =0 for 1<I<m.

h=0

Proof. Take the identity for (m+1) variables x,, -+, %,,, ;
JT (L—223) [T (L +22% 4+ +222m) = [ (1—(t22)™
The coefficients of #/ in both sides yield
3} (=1 P ) =0,

where we put p,=p,=1. Since the mapping ¢*:I1(On))—I(T) is iso-
morphic into, we get the required formula (26).

4. Structure of I(SO(n)).

Evidently I(O(n))1(SO(n)), and so I(O(n)) C I(SO(n)) .

If # is odd, then irreducible functions of type ii) do not appear and
the functions SAF’ for irreducible functions F’ of type i) generate the
algebra I(SO(n)). These generators are precisely those of I(O(n)).
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Therefore I(SO(#n)) = I1(O(n)). The assertion of theorem 1 holds then
for I(SO(n)).

Suppose that #=2m is an even integer. In this case, we have as
generators of I(SO(n)), besides the functions SAF’ for irreducible func-
tions of type i), the functions GAF’ for irreducible functions of type
ii). These are given, up to their sign, by W’,, and Z/;,,...,,. The func-
tions in I(SO(2m)) which define ﬁW’m and %Z’,o,l...,s are designat-
ed by W, and Z,O,l...,s. They are

Wm(gl: Em) = Z ¢, 51(1)1!(2) E:tn(n—l)"l(n) ’
Zlolr'"s (E E )
n
@)
—EZ &, 2 EniDn(@)
2ml VRIS @1y s @py—1y Byt Vig—1=1
n(k n(ky+1) n(ko-+2) n(k n(k;+1) n
&y 210—1 ety 2°10+1 wlgwlwoz a1, 17: e+ 210+3 57,5 ) -

and the polynomial functions with these polar forms are

(27) W (E) 2 Eﬂ(l)ﬂ(z) Eﬂ(n-l)n(n)
Z £3 3 (LT b
1011 IS(E) 2ml ' 2 @ y"')wll—lﬂzly"'y ﬂ[s—1=1§ T

"{‘:1:(210 -1) 7r(210)§71:’(210+1)w1§a1w2 ‘fa,,_ln(210+2)§ (2l +3)8, " £ Yig-17e(n) -
The restrictions of these functions on % are as follows.

(28) w,(x) = (—1)"%,-- %,,,,
0, if some /, are even, h=1,
zzozl---zs(x)={(_1)mxl...xm( > (— 1) D+l /2 sl
Ured JC UL k) o )
Now the functions W3, Z7, ..., belong obviously to I(O(n)). The restric-

tion of W2 on Y is w2 which is equal to p,,. Since the mapping
t*: I(On))—I(T) is one-to-one, it follows

(29) Wi =P,,.

As regards Z,,...;;, 2},,...;, Teduces to O if some /, is even, and by the
same reason as above Zj, .., itself is zero. As the algebra of polyno-

s

mial functions on o(#) has no zero-divisor, it follows

Zi1s =0, if some /, is even
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Suppose all /,, -+, /, are odd. In the expression of z,,.., for this case,
the polynomial of x,, ---, x,, in the parenthesis is a symmetric function
of x%, .-+, x%, so that it is a restriction of a function F of I(O(n)).
Therefore z,,,.., is a restriction of the function W,F. The functions
Zi -1, and (W,F) belong to I(O(n)) and reduce on § to the same func-
tion 2j,,...,,. It follows by the same reason as above that (W, FyP=2Z}, ...,
and

Zlollmls = &+ W,,,F .

This shows that Z,, .., is contained in the subalgebra generated by
I(O(n)) and by W, in I(SO(n)). Together with the previous considera-
tion, I(SO(x)) is then obtained by adjoining W, to I(O(n)). Since
P, P, ---, P,, generate I(O(n)) by theorem 1 and since P,,= W2 by (29),
it follows that P, P,, ---, P,,_,, W,, are generators of I(SO(2m)). More-
over, by the same argument as for I(O(#)), we may easily see that these
generators are algebraically independent polynomial functions and fur-
thermore that the same conculusion is true if we replace P,, P,, -,
pP,., ., W, by K,,K,, -, K,, ,, W,, or by P,, P,, -, P, ., W,..
The following theorem is thus proved.

Theorem 2. The algebra I(SO(n)) is generated by each of the follow-
ing systems of functions defined by (24) and (27); if n is odd,

Kza K.n ) sz;
P2 P4 .

» Poy ooy Py
P, P, -, P,,,
and if n=2m is even,
sz Ku ) sz—za Wm;
Pz’ Pu HE) sz—z; Wm;
P, P, .., P, , W,.

We call P, and P, Pontrjagin- and dual Pontrjagin invariant function
of degree k respectively, and W,, Euler-Poincaré invariant function.

§3. Determination of I(U(mn)).

The structure of I(U(m)) is determined in a similar way as that of
I1(O(m)), so we discuss this determination briefly in this paragraph
remarking differences for these two cases.

Let C™ be the complex m-dimensional euclidean space with a fixed
orthonormal coordinate system e,, ---, ¢,, and the coordinates of a vector
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v will be denoted by v,, -+, v,,. The unitary group U(m) is the group
of unitary matrices of degree m which operate in C™ in the usual
manner, and it has the Lie group structure. The Lie algebra u(m) of
this group is the Lie algebra of complex skew-hermitian matrices;

E=(Cy)>» Cy+8u=0, 4, j=1, -, m.
For an element a € U(m), ad(a) is then the transformation
ad (@) = ata™.

We define for two vectors # and » in C™ the element (%, v) of u(m)

by the following formula,
(1, _
E(u, v) = (7 (u,-v,-—v,-uj)>

i j=1, *r,m

In the following, C™ is regarded as the real 2”-dimensional vector space
R*™ with the basis e, \/—1e,, ***, €éu, \/—1¢,,. Then ¢(u, v) is a u(m)—
valued biliner function on R** which satisfies

( 1 ) g(v) u) = '—é’(uy 1)) ’
(2) SV —1u, /—10) = ¢ (u, v),
(3) ad(a)é’(u, v) = &(au, av), for ac€ U(m).

The elements

4) g(ei; ej), 1§i<j§m
( { fV—1le, ¢), 1si<j=m.

form a basis of u(m).
Let F=F({, -+, &%) € S*(U@m)). We associate to F the 2k-linear
function F’ on R*® which is defined by

(5) F'@', v, -, u*, v*) = FE&@w', v"), -, L@ v9).

The symmetry of F and properties (1) and (2) of ¢(#, v) imply respectively

(6) F'@™®, v™®, .| y=b g*®) = F/4}, 3", -, ub, v¥)

for any permutation = of {1, ---, &k}, and

(7) F'(u, v, -, V', u, -, u*, v¥) = —F(u', v, -, u’, V%, -, u, 0¥,
i=1, -, k,

(8) F'(u, 0%, ++y /—1t’, /=10, -+, u*, VF) =F W', v*, -+, u’, V%, -+, u*, v%),
i=1, -, k.
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From the fact that u(m) has the basis (4), we see easily that F is
- ~uniquely determined by F’ associated to it and that the properties (6),
(7) and (8) of a 2k-linear function F’ are characteristic for F’ to be
associated to a function F in S¥(U(m)). Moreover F belongs to I*(U(m))
if and only if F’ is invariant, that is,

(9) F'(au', av*, ---, au®, av®) = F'(u', v*, ---, u*, v%) for a€ U(m) .

We denote by S.(U(m)) the set of 2k-linear functions which satisfy (6),
(7) and (8) and by I(U(m)) its subset consisting of invariant functions.

Now, let L, be the module of 2k-linear functions on R*™. As is
defined in §2, the direct sum L=§_‘, L, is a graded algebra over the real

number field with linear endomorphisms & and A. R*™ being real vector
space obtained from C™, we can define a linear endomorphism J of L by
the following formula: For F'eL,,

]F,(ul7 vly °tty uk’ vk)

= lk D Y R | N VS [/ vy
2k (<)
* u* ’ vk) ’
where the summation is taken over all subset {7, ---, 7;} of {1, .-, k}.
Then »
(9) JI=J], &J]=J8, A]J=]A.
(10) ](FI/FZI):]FI,]FZ/’ for Fl,) FZIEL-

J maps an invariant function to an invariant function. The condition
(8) of a 2k-linear function F’ is now equivalent to ]F '=F

The direct sums S(U(m)) = Z]S,,(U(m))’ and I(Um ZI,,(U(m))'

are in L. Moreover, S(U(m)) and I(U@m))’ are contained in S(O(2m))’,
since the elements of S(O@2m))’ in L, are defined by the conditions (6)
and (7). S(U@m)) and I(U(m))’ are then subalgebras of the algebra
S(O@2m))’ with o-product, which are isomorphic to S(U(m)) and I(U(m))
respectively. While, we know that S(O@m))’ is the set of elements
SAF/(F'e L). From this and (9), it follows that S(U(m))’ is the set of
elements SAJF/(F'e€L). By the same reason, I(U(m)) is the set of
elements SAJF’ where F’ are invariant elements in L. Note that J is
an endomorphism of the algebra S(U(m))’, as is easily seen from (9) and
(10).

Now we extend the coefficient field of L, the real number field,
to the complex number field. The algebra so obtained is denoted by
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L°=§0 L;. An element F’ of L{ is uniquely represented as
f
(11) F'=F/+\/—1F/

with F/, F/€ L. Therefore F’ may be considered as a complex-valued
2k-linear function on R?®*". If F/ and F, are invariant, then F’ is an
invariant complex-valued 2k-linear function, and the converse is true.
The endomorphisms &, A, J are naturally extended onto L. Denote by
I(U(@m))’ the set of elements SAJF’ where F’ are invariant complex-
valued 2k-linear functions on R*". Then elements of IJ(U(m)) are
complex-valued 2k-linear functions which satisfy (6), (7) and (8). Let

I°(U(@m))’ be direct sum il,ﬁ(U(m))’. I'(U@m))’ is the complexification of
£=0

I(U@m)), that is, F’ belongs to I°(U(m))’ if and only if the components
F/, F/ of F’ in the expression (11) belong to I(U(m))’. According to
this, we can extend the o—product in [(U(m)) onto I°(U(m)) and we may
also consider this product in I°(U(m))’ as the product between complex-
valued functions satisfying (6) and (7) which is defined in the same way
as the o—product in S(U@m)). From this, if we obtain a system of
generators of the algebra I°(U(m))’, the elements of I(U(m)) which are
the components in the expressions (11) of these generators generate the
algebra I(U(m))’. Therefore, in order to obtain generators of I(U(m)),
it is sufficient to get those of I°(U(m))’.

Let F’ be a complex-valued invariant 2k-linear function on R*”.
The first main theorem on the vector invariants of the group U(m)
implies that F’ is representable as a polynomial of inner product (-, -)
between variable vectors.® Together with the 2k-linearity of F’, it
follows that F’ is a linear combination of the 2k-linear functions of the
2k-linear functions of the following form

(12) (w', w?) (W?, w') - (W*, w*)

where {w', w? ---, w*™', w**} is a permutation of {u', ¢, ---, u*, v*}. Since
an element of I°(U(m))’ is of the form SAJF’ with an invariant 2k-
linear function F’, we see from this that the functions which result by
applying &SA] to the functions (27) span the linear space I°(U(m))’. Now,
changing the notation, we denote the 2k-linear function (12) by F'.
Assume that, for some i, #' =w*' and ' =w*2(1<j, j,<k). Then
JF/ (-, N/ —=1ut, / —=10%, --) =—JF'(---, ', v, ---), and by the property (8)
of JF', JF'=0, a fortiori, SAJF’'=0. The same is true if #‘=w1?,

3) See Chern [3] p. 97.
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vi=w2"'(1 <4, j,<k) for some i. Therefore, we may restrict our atten-
tion to the functions F’ in which w/'=w*1", vV=w"2 or wu’ = w’,
vVi=wr (1L, j»<k) for each i. For such a function F’ it is obvious
that JF"=F’ and so SAJF'=G&AF’. If we permute #’ and ¢’ in the
definition (12) of F’, we obtain a new 2k-linear function F, and
AF/=—AF’. Therefore, as far as we require the additive generators
of I(U@m)), it is sufficient to consider the functions of the form

(13) SA @, uh) (vP2, u®) - (V%, u’),

where {p,, ---, p} and {q,, --*, ¢,} are both permutations of {1, ---, k}.

Once we know that 1 and the functions of the form (13) (k varying
also) span I°(U(m))’, we can use the same argument as in §2.2 to require
generators of the algebra I(U@m))’. The following results are then
obtained : Put

B/, v', -, u*, v) =SA((v', @) (P, w)--- (VF, uY)),

1 .
C /(ul, vl’ e, uk, ,Uk) — '28 (vl’ un(l)) e (vk, U (k)) s
= |
Ck’(u’, 1)1, e, U5, U ) = ] E (Z)l, U (1)) (05 u ¢ ).

Then each of the systems of functions {B,}, {C,}, {C)} generates the
algebra I°(U(m)). Moreover, C,/=0 for k= >m and C/, ---, C’,, generate
I'(U(m)). Then since C,/(k<m) is expressible by B/, :--, B/,, and also
by C¢,, -+, C,,, B/, -, B',, as well as C/, ---, C,’ generate I‘(U(m)).
The values of B, are real if k£ is even and are purely imaginary
if £ is odd. This is seen by the argument used in the proof of §2 (16).
The same is true about C,” and C/, since they are expressible as polynomials

of Bl’, -, B,, with real coefficients. Therefore B/,

(\/ —1)* (\/ 1)k
-_C,’ belong to I(U(m)) for all k. Then, according to the discussion

(\/ ) L
given before and the above result, a system of generators of [(U(m)) is
given by each of the following systems.

K/i:l)kBk/, k=1, -, m;
e

1 _
= C/
V=D
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1 B/ 1
=D V=D*
pond the following functions in I(U(@m)).

1
(V—=D*

To the functions c/, C,/, there corres-

Bk(é‘) = “—l"_ zm] galaz gwﬂa o Zwkacl ’

(\/—l)kacl, ,ap=1
_ 1 1 i
Cul) = =Dk sz b @, ..§k=1 C“‘l%m é"“’lz‘tfr(lﬂ ’
= _ 1 1 i
Cu(§) = ~ =1 k1 Zﬂ o --Z:wkzl é‘wlwm) gwkwﬂ(k) :

Notice that these functions are considered as polynomial functions on
the real vector space u(m). I(U(m)) is generated by each of the follow-
ing systems of functions

Bl7 BZ7 Ty Bm;
Cv Czr "y Cm;
Cl: (—’72’ R Cm-

Finally we show the algebraic independence of these generators.
Let T’ be the maximal torus of U(m) which consists of diagonal unitary
matrices. The abelian subalgebra % of u(m) corresponding to 7’ is
composed of diagonal matrices &=(¢{;;), {;;=0 if i==j. Coordinates in
Y are introduced by setting

=_1 g, =L
xl \/__vl é‘ll) ’ xm \/:j gmm .

I(T') is the algebra of all polynomials in #,, -:-, x,,. By the mapping
¥ : I(Um)) — I(T’) dual to the injection ¢ : T— U(m) the functions B,,
C,, C, are mapped to the following functions b, c,, Cs.

bk(x) = é x’: ’

(15) @)= 2V x; e xy, (R=Em); cplx) =0 (k>m),
i< <ldp
x) = 23 Xiy ot Xip
L <in
where x=(x,, -+, %,,). The polynomials ¢,, -:-, ¢,, are elementary sym-

metric functions and so they are algebraically independent. It follows
then that C,, :-+, C,, are algebraically independent and by the mapping
I(Um)) — I(T"), I{U@m)) is mapped univalently onto the algebra of ele-
mentary symmetric functions of x,, ---, x,,. Therefore I(U(m)) is iso-
morphic to the polynomial ring with m variable over the real number
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field. From this, we see further that the m generators B,, -+, B,,, and
C,, -, C, are algebraically independent.
Thus we get the following

Theorem 3. The algebra I(U(m)) is generated by each of the follow-
ing system of functions

Bl’ Bz’ ’ Bm;
Cl’ CZ’ ’ Cm ;
al} 62, ’ Cm’

defined by (14).
The functions. in each system are algebraically independent as poly-
nomial functions.
For convenience, we put
C,=C,=1.
Then, there holds
(16) SV (—1*Cilh, =0, for 1<k<m.

h=0

Proof is completely analogous to that of the formula §2 (20): We
make use of (15) instead of §2 (25) used there.

We call C, and C, Chern and dual Chern invariant functions of
degree k respectively.

8§ 4. Relations.

In this paragraph we consider inclusions between some groups and
study the effect of its dual mapping —restriction mapping— to the
invariant polynomial functions of special types.

1. On)C U(n).

The real matrices in the group U(x) form its subgrup O(n).
The dual mapping * of the injection O(zn)— U(n) maps I(U(n)) into
I(O(n)). Since I*(O(n))=0 for odd k (Corollary to theorem 1),

*C,=1¥C, =0, if k is odd.
For even k, it is obvious from the definitions (§2. (24), § 3. (14)) that
k
Cu(&)=(=1)2 P(),

Cu&) =Py, for Ecom).
That is,
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k
(—=1)z P,, if & is even,
(1) L*C'F{o, if £ is odd.
, . P,, if kis even,
(1) ‘*Ck={0, if & is odd.

2. U(m)SO@2m).

The complex m—dimensional euclidean space C” on which the group
U(m) operates may be regarded as the real 2m-dimensional euclidean
space R*"; if ¢,,---,¢, is the previously given orthonormal coordinate
system in C”, e,, \/—1¢€, **, €m, \/—1 e, give the associated orthonor-
mal coordinate system in R®*". The transformation in R*™ determined
by an element of U(m) is written by an orthogonal matrix of deter-
minant 1 with respect to this associated coordinate system. In this way,
U(m) may be considered as a closed subgroup of SO(2m). Let ¢ be the
injection U(m)— SO(2m). In the notation of 8§82 and 3, : maps the
maximal torus 7’ of U(m) onto the maximal torus 7 of SO(2m). In
more detail, using concrete description of ¢ in matrical form, we see
easily that the mapping u(m)— 0(2m) induced by ¢« maps an element with
coordinate («x,,---, %,,) of § to the element with the same coordinates.
Both I(T) and I(T’) being represented as the polynomial ring with vari-
ables x,, -, x,,, this means that the dual mapping of the restriction ¢
of ¢ on T’, is the identity mapping of this polynomial ring. While we
know in 8§82 and 3 that the mappings #*: I(SO@2m))— I(T) and
t’*: [([Um)) — I(T’) are both univalent. Since wof/ =tor/, t/¥or* =*ot*
and, after the above identification, o*=¢*"tof*,

This being said the f*-image of P,; is by definition p,;;

Pu®)= 23 xi --xi, (I=<m); pu(x)=0 (I">m) (§2 (25))
iy <o <ldg
and the #*-image of C, is c;;
(%)= <2<. X Xy (L=m); ¢,(x)=0 (/>m) (§3 (15)).
n< <y
Then, in comparing the coefficients of #* in both sides of the identity

[T a—xy) =[] A—tx) [] A+1x)
we have - ’ '

(—=1)! poy(x) = ﬁo (=D cp(x) C2_4()
Applying #*7!, we obtain .
(2) (= D! #*Py= 33 (—1)* CiCurs
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Remark that C,=0 for k >m.
The #*-image of P,; is pu;;

D)= >3 i i, 82 (25))
-7
and the #*-image of C, is Cs;
GX)= 2 x;exy, (83 (19)).
= =i
Now, it holds for an even integer N
[7 1-(tx,-)2‘N+‘>:__ m 1+(tx,-)N+‘ m 1—(tx,-)N+‘
s 1—(tx)? s 1+tx, S0 1—tx,

]:Z A+ (Ex)2+ --- +(tx")2N)=ZZ (L4 (E5,) 4+ -+ + (£2)™)
_lj1(1+(tx9 + o+ (Ex)N) .

Taking N sufficiently large, the coefficients of #* in both sides give

21
Da(x)= E) (—1)*C,(2) Co_p)
Applying #*7' we have
(2), L*pzl:g)(—'l)kckézl—k-
Finally, since

W(%) = (—1)"x, -+ x,,, (8§82 (28)),
cm(x) =Xyt Ko (§ 3 (15)) )

we have #*w,,= (—1)t*c,,. Therefore

(3) F*W,,=(—1)"C,,.

3. SOM)xSON')_SOmn) wW+n'=mn).

Let #/ and #” be positive integers such that #'+#n”=mn. The ele-
ments a@==(a;;) of SO(n) with a;;=20;; for W< i <n (resp. for 1 <i <#')
form a subgroup which is isomorphic to SO(#’) (resp. SO(#”’)) by an
obvious isomorphism. The product of these two subgroups is isomor-
phic to SO#')xSO(”’). We may therefore regard the groups SO(#),
SO(#”), SO(n') x SO(#”’) and their Lie algebras o(#’), o(#”), o(#')+0o(n”’) as
in SO(n) and in o(xn) respectively. Let m’ and m’’ be the largest inte-
gers not greater than #'/2 and #"//2 respectively. By the procedure of
§2, we find a maximal torus 7’ of SO(#) and introduce coordinates
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x/, -+, %y in the Lie algebra Y of 77. The same is done for SO(#")
with two primes. Put %, =¥ +Y%"”, b, generates the subgroup 7" x 7" in
SO(n) and it is a commutative subalgebra of o(z) with coordinates
(x/, ) X, 27, -+, 201). The element with coordinates (x,, -+, X,
x,, -, xm) is represented in o(n) by the followingTmatrix:

k ek
0 —X :
x/ 0 :
0 -——x;,,/ :
3 D ceevernrerinniienenenennnnens
T 0 —a
x” 0
0 ——x;,://
: x,,,,/,// 0 :
KK | eeeerenteneonteercetsansane o seececertnreacssesssratanns 0

where the coefficients not written are all zero and the line and row in-
dicated by * (resp. by =*x) appear if and only if # (resp. #”) is odd.
The maximal torus T of SO(#) and the subalgebra § with coordinates
(%,, -+, x,,) being as in § 2, we can then easily find an element «, € SO(#n)
so that ad(e) maps %, into § and that the image of (x/, -, %,
x/, -+, x7) has the coordinates

— ! . ju———i4 —_— — Al
XyT=Xy s 0y Xt = Xt s Xt i1 =K1, *** 5 Xl om?? = X1

and, if m'+m”"<m, x,=0. The last case occurs only when both #»’
and #” are odd.

Now we have seen in §1 that I(SO(#')) Q I(SO(»”")) is isomorphic to
I(SO(#’) x SO(#”")). This isomorphism is obtained by regarding F' ® F”
(FY € I(SO(#')), F”” € I(SO(n’"))) as the function on o(#’)+o(n”)

(FI ® FII)(EI_,_S//) ____F/(E/) FII(EII) , E/ e D(nl) , g// 6 0(’,l//) .

Therefore, if F’ (resp. F”) reduces on % (resp. on %”) to a function
represented by a polynomial f’(x’) of x/,---, ., (resp. f”(x”) of
x/, -, x0) F'QF” reduces on §, to the function represented by the
polynomial f’(x) f”(x”) of %/, -+, xp, %/, -+, xmr. Since the dual map-
pings of the injections 7'— SO(»’) and T — SO(#’) are one-to-one, the
dual mapping of the injection ¢,: T’ X T"” —SO(#') x SO(n”) is one-to-one,
which means that F/ ® F” is uniquely determined by f'(x') f”(x”).

On the other hand, let F be an element of I(SO(n)), that is, an in-
variant polynomial function on o(n). If the restriction of F on § is
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represented as a polynomial f(x,, -, %,,) of x,, -, x,,, F reduces on Y,
to the function represented as f(x,, -+, X, X/, =, X)) if W' +m"’" =m
and as f(x/, -+, X0, x”, -+, X, 0) if m'+m”’<m. This is seen from

the fact that F(ad(a,) &) =F() for £€o#x) and from the above choice of
coordinates in §,. The Pontrjagin invariant function P,, reducing on 9
to the function p,,(x) in §2 (25), it follows in particular that P,, reduces
on h, to the following function.

pzl(xly x’/) = < <E< lezi x;,/ x’jl x'§1u (1 _S__l;m'+m") ,
1514 iy =
185, S, UV =1

0 (I=m+m"),

where (&, &)= (x/, -+, X, %/, -, 2)€Y,. Then, if we denote by
by (resp. p,”) the restriction of the Pontrjagin invariant function P,/
(resp. P,”) of SO(#’) (resp. SO(#n”)) on Y (resp. on Y)’), we have

D', &) =1/+;——: Do (&) o (%) .

Since the dual mapping of #,: T’ x T"” —SO@#’) x SO(n”’) is one-to-one and
since Py @ P’y is reduced to the function psy(x)p's (%) on H,, we
see that

(4) FPy= >\ Piy QPiy,

vIr=]

where ¢* is the dual mapping of the injection SO®’) x SO@#"’) — SO(x).

In a completely similar manner, we obtain
(4Y FPy= > Piy@Plhu,

v =1

where P,;, P;, and P’} are the dual Pontrjagin invariant functions of
SO#), SO(n’) and SO(n”’) respectively.

If n=2m, the Eular-Poincaré invariant function W,, is considered.
Analogous argument implies that

W @ Wi if w’'=2m' and n”’ =2m"

(5) W,,,={ 0 if #»’ and n” are odd.

4, Um)xUm"'YU@m) (m +m’=m).

Let m’ and m” be positive integers such that m'+m’’ =m. The
elements a=(a;;) of U(m) with a;;=39;; for m'<i <m (resp. 1 <i <)
form a subgroup isomorphic to U@m’) (resp. U(m”)). The product of
these subgroups is isomorphic to U@m’) x U(m'’’). The injection of U(@n’)
x U(m'’) is denoted by ¢«. T’ and T being maximal tori of U(m’) and
U(m’’) respectively which are chosen in §3, the product T/x T” coin-
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cides with the maximal torus T of U(m) given in §3. Therefore the
subalgebra Y) of u(m) which belongs to 7" is the direct sum of the sub-
algebras Y and %)’ which belong to 7’ and to 7" respectively. More-
over the coordinates in % and in §” give those in §.

This being settled, we can use the same argument as in the
previous section to find the forms of #C, and of #C,. Considering
them of %) and using the fact that the dual mapping of the injection
T'xT”—Um')x Um'”) are one-to-one, we obtain the following formulas.
(6) FC= 2 Cy@Cyr,

KART=k

(6) FC= > Cu®C,.

§ 5. Fundamental characteristic classes

Let (E, M, G) be a differentiable principal fibre bundle: E is the
bundle space and M is the base space; E and M are differentiable
manifolds and G is a Lie group. All mappings which appear in the
definition of principal fibre boundle are supposed to be differentiable.”
We assume further that E, M and G are all compact and call such a
bundle a G-bundle. g will denote the Lie algebra of G.

In the following cohomology is considered over the real number
field if the contrary is not stated. Owing to Cartan [2] and Chern [4]>
the following results about the characteristic algebra of a G-bundle
(E, M, G) are known. Define a connection in the bundle and let Q be
the curvature form of the connection. Q is a g-valued differential form
of degree 2 on E. For an element F of I*(G), that is, an invariant
polynomial function of degree %k on g, we can consider the real-valued
differential form F(Q) of degree 2k on E. Then F(Q) may be regarded
as a differential form on M and it is closed on M. By a theorem of
de Rham, F(Q) represents a cohomology class [ F(Q2)] of M. This defini-
tion being linearly extended over I(G), the mapping F—[F(Q)] is a
homomorphism of the algebra I(G) into the cohomology algebra H(M)
of M. Denote this homomorphism by X. A theorem of Weil asserts
that X is independent of the choice of the connection in the bundle.
We shall define the dimension of a polynomial function of degree % to
be 2k and O shall have all dimensions >>0. A main theorem states
that if the G-bundle is #—universal in the sense of Steenrod [6] the

4) About the definitions of principal fibre bundles and of related notions we reffer to
Steenrod [6].

5) The assumption on the connectedness of structural group imposed in Chern [4] Chap.
III can be excluded when we generalize the definition of adojoint mapping as in §1.,
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homomorphism X is isomorphic onto in dimensions < #. An arbitrary
G-bundle (E, M, G) is induced from an n-universal bundle (E, M, G)
with #>>dim M by a mapping f of M into M. Then the composition
of the homomorphism X for (E, M, G) and of the cohomology homomor-
phism f* induced by f coincides with the homomorphism X for (E, M, G).
Since f* is the characteristic homomorphism of the G-bundle and since
H(M)=0 in dimensions >#, this allows us to regard the image of X
as the characteristic algebra of the bundle.

We apply the above general theory first to O®)-bundles and SO(#)-
bundles. In such a bundle, we put

o 1

T 2n)* Py,

pu_1
@y

(1)

pzl; l=0’ 1’2’ b

and, if the bundle is an SO(2m)-bundle,

n 1
(2) W::WXW,”.

The members in the left-hand sides are characteristic classes of dimen-
sion indicated by the superscript. P*, P and W” are called the /-th
Pontrjagin class, the /~th dual Pontrjagin class and the Euler-Poincaré
class of the given bundle. Since X is a homomorphism the following
theorems follow immediately from theorems 1, 2 and §2 (26), @29

n
respectively. (Recall that m is the largest integer gg).

Therem 4. The characteristic algebra of an On)-bundle is generated
by the Pontrjagin classes P°, P*, .-, P*" and also by the dual Pontrjagin
classes P°, P*, ... P,

Theorem 5. The characteristic algebra of an SOn)-bundle is gener-
ated by the Pontrjagin classes P°, P*,---, P*" and also by the dual Pon-
trjagin classes P°, P* ... ‘P if n is odd. It is generated by the classes
P, Pt ..., P * and the Euler-Poincaré class W" and also by the classes
P, Pt ... P agnd W" if n=2m is even.

Theorem 6. In an On)- or SOn)-bundle,

SU—1PPHUPK D=0,  for 1<I<m.

h=

Therem 7. In an SO2m)-bundle,
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WruW”=PpP,
Next consider an U(m)-bundle. We put

1

C* =
(2m)*

X‘Ck ’

(3) T
2k — X —
C 2o Ce, k=0,1,2,
C* and C* are the k-th Chern class and the k-th dual Chern class
respectively of the U(@m)-bundle. The following theorems follow from
Theorem 3 and §3 (6).

Theorem 8. The characteristic algebra of an U(m)-bundle is gener-
ated by the Chern classes C° C%?,---,C* and also by the dual Chern
classes C°, C?, -, C*™.

Theorem 9. In an U(m)-bundle,
SU—1FCHUCEP =0, for 1<k<m.
=0

Now let G’ be a closed subgroup of a compact Lie group G. A G-
bundle (E’, M, G’) defines in a natural way a G-bundle (E, M, G). We
say in this case that the G-bundle is equivaledt to the G’-bundle and
also that the G’-bundle is a G’-subbundle or simply a subbundle of the
G-bundle. A connection in the G’-subbundle may be extended to a con-
nection in the G-bundle, and then the curvature form of the latter con-
nection reduces on the bundle space E’ of the subbundle to the curva-
ture form of the former connection. Considering the homomorphisms
X and X’ for the G- and G'-bundle by these connections, we can easily
obtain the following formula. Denoting by ¢* the dual mapping of the
injection of G’ into G,

(4) X=X os*,

The real matrices in the group U(z) form its subgroup O(). Sup-
pose that an U(r)-bundle is equivalent to an O(z)-bundle. Applying the
homomorphism X’ of the O()-bundle to both sides of §4 (1) and (1)’
and using the relation (4), we obtain by the definitions (1) and (3) the
following

Theorem 10. If an U(n)-bundle is equivalent to an Om)-bundle,
there hold among the Chern classes and the dual Chern classes of the
U(n)-bundle and the Pontrjagin classes and the dual Pontrjagin classes
of the Om)-bundle the following relations
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Czk={ (—1)%P2’*, if £ is even,

0 , if £ is odd;
Ok — { p*, if k is even,
0, if & is odd.

Let the inclusion U(m)SO@2m) be as in §4. 2. We obtain from
the formulas §4 (2), (2)’ and (3) the following theorem in the similar
way as above.

Theorem 11.° Let the inclusion U(m)SO@2m) be as in §4. 2. If
an SO@2m)-bundle is equivalent to an U(m)-bundle, the Pontrjagin classes,
the dual Pontrjagin classes and the Euler-Poincaré classes of the SO2m)-
bundle are expressed by the Chern classes and the dual Chern classes of
the U(m)-subbundle as follows:

2l

(=1 P =3 (— 1) CHu 2,
Pu: é’ (_1)h Cvzhucvu—zh ,

=0
W7”=(—1"C".

Suppose that the direct product G, xG, of two groups G, and G, is
a closed subgroup of a compact Lie group G. If a G-bundle (E, M, G)
equivalent to a G, xG,-bundle, there are weakly associated to the G, xG,-
subbundle a G,-bundle (E,, M, G,) and a G,~bundle (E,, M, G,). We say
then that the G-bundle is the Whitney product of these two bundles.
The G,xG,—subbundle is induced from the product bundle (E,XE,,
MxM, G,xG,) with the structural group G,xG, by the disgonal map-
ping d of the space M into MxM: d(x)=(x, x) for x€ M. In order to
study the homomorphism X’ of the G, x G,~subbundle, introduce connec-
tions in the G,~bundle and in the G,-bundle. Obviously these connec-
tions define a connection in the product bundle. Using these connections

we consider the homomorphisms X,, X, and X for the G,~bundle, for the
G,-bundle and for the product bundle respectively. Then, from the
definitions of these homomorphisms we may easily deduce the following
relations : Denote by @, and ¢, the projections of M x M onto the first
factor M and onto the second factor M respectively, and the cohomology
homomorphisms induced by them are indicated by adjoining asterisk.
I(G,xG,) being identified with I(G, ® I(G,) as before, there hold for
F,€I(G) and F,€ (G,

6) This theorem is originally obtained by Wu for the corresponding integral classes. See
Wu [8] Theorem 9.
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X(F,@1) =p*X.F;,
X(1Q F) =@ *X,F, .
Since X is a homomorphism, it follows
X(F, @ F,) =@ *X,F, u@*X,F, .

On the other hand, since the diagonal mapping induces the bundle map-
ping from the G, xG,-subbundle to the product bundle, it follows from
a general theorem” that X' =d*oX. Besides, @,od and @,°d being the
identity mapping of M, d*op* and d*op,* are the identity mapping of
H(M). Therefore, application of the cohomology homomorphism d* to
both sides of the above formula implies

(5) X (F,QF,)=XF,UX,F,.

Now we apply these considerations to the inclusion SO(#’) x SO(»n’)
CSOmn) defined in §4. 4. If an SO@#®)-bundle is the Whitney product
of an SO@’)-bundle and an SO@”)-bundle, we can consider the Pon-
trjagin classes and the dual Pontrjagin classes of the SO(#z)-bundle, of
the SO@’)-bundle and of the SO(»”)-bundle simultaneously in the coho-
mology algebra of the common base space. They are denoted by P*,
Pet; rpt /P oand “PY, ”PY respectively. Then, X, X/, X, and x, being
the homomorphisms for the SO@)-bundle, for the SO®’)xSOx")-
subbundle, for the SO(#’)-bundle and for the SO(»"’)-bundle respectively,

1
P - (2”)21 2l
= e NP By @)
=(2—]7;,')2_1 X’(I/Jrg:lpéz/ X Pu) (by §4 (4))
= 1 4 1 4
= e P G %P By (9)

= N 1y pa’
v =1

Similary §4 4)’ implies
p41= 2 /PU/U//PMI/ .

Iz

If n=2m then §4 (5) implies

7) See Chern [4] p. 65.
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W — { WY V"W™,  if n’ and #” are even,
0 , if #»' and #” are odd,

where 'W” and ”W”’ are the Euler-Poincaré classes of SO(n’)-bundle
and of SO(n”’)-bundle respectively.
Thus we get the following

Theorem 12. If an SOn)-bundle is the Whitney product of an
SOW')-bundle and an SOW’)-bundle, the Pontrjagin classes and the dual
Pontrjagin classes and, if n=2m, the Euler-Poincaré class of the SO(n)-
bundle are expressed by those of the SOw')-bundle and of the SOn’)-
bundle as follows

Pu_____ 2 /PU/U//PH//,
npr=]
pu: 2 'P”/U”P”N,
wEr=|
W — { "WYWY, if w oand n’ are even,
0 , if w and n” are odd.

In a similar way we can deduce from §4 (6) and (6)’ the following

Theorem 13.° If an U(m)-bundle is the Whitney product of an
Um')-bundle and an Um'’)-bundle, the Chern classes and the dual Chern
classes of U(m)-bundle is expressed by those of the U(m')-bundle and of
the Um')-bundle as follows

2k 12k 12k

¢ _k'-i-lag# ¢V ’
2k 12k 11 2k
C —klﬂz;:kC v CE

REMARK. In the above argument we restrict our consideration to
the real cohomology. If we denote by H(M, Z) the integral cohomology
ring and by H(M) the real cohomology algebra of a manifold M, there
is a natural ring homomorphism from H(M, Z) into H(M). This homo-
morphism is one-to-one if H(M, Z) has no torsion. Now we know that
the characteristic classes of a G-bundle considered in this paragraph are
the images of the corresponding integral characteristic classes by this
homomorphism.” Therefore the relations among the formers obtained
in this paragraph hold still true among the latters in the integral
cohomology ring if H(M, Z) has no torsion. Moreover the relations
given in theorems 9 and 11 hold true in integral cohomology ring.
For, an (2N—1)-universal bundle for the group U(m) is constructed over

8) Cf. Wu [8] Theorem 15.
9) See Chern [4] Chap. IV.
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the complex Grassmann manifold G(m, N) which is composed of m—planes
in a complex (m+ N)-dimensional vector space. This Grassmann mani-
fold has the cellular decomposition by even-dimensional cells, and so
H(G(m, N), Z) has no torsion. Therefore the relations hold in it. Since
any U(m)-bundle (E, M, U(m)) is induced by a mapping f: M—G(m, N)
for a sufficiently large N and since f* induces a ring-homomorphism of
H(G(m, N), Z) into H(M, Z) which defines integral Chern classes and
integral Pontrjagin classes etc., we see immediately that the relations
hold in H(M, Z). A universal bundle for the group Um’) x U(m”) is
provided by a bundle over the product of two Grassmann manifolds
G/, N')xG(@m"’, N”), and the cohomology ring of this product manifold
has no torsion. Since a Whitney product of an U(m’)-bundle and an
U@mw’)-bundle has a bundle mapping to this bundle with sufficiently large
N and N”, we may see by an analogous argument that the relations
given in theorem 13 hold true for integral Chern classes and for inte-
gral dual Chern classes.

§ 6. The dual mapping of injection

Consider a compact Lie group G and a closed subgroup K of G,
whose Lie algebras are respectively g and f. We shall give in this
paragraph a theorem which might provide topological signification for
the dual mapping of the injection :: K— G.

Let (E, Mg, G) be a G-bundle in the sense of §5 and = its projec-
tion. We construct the weakly associsted fibre bundle over M, with the
fibre G/ K. Let My be its bundle space and p its projection. p induces
a mapping of the cohomology algebra H(M,) into H(Mg). On the other
hand there is a natural mapping 7x of E onto My and it defines a K-
bundle (E, Mg, K). And there holds obviously

(1) o= pomg.
As we have explained in § 5 the homomorphisms

Xg: IG) - H(Mj) ,
Xk I(K)— H(Mk)
are defined using connections in the bundles. Besides there is the dual
mapping
1 IG) — 1K),

which is defined by taking the restrictions of invariant polynomial
functions on g to .
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Theorem 14. Notations being as above,
p* o Xg =Xy o o*

Proof. Take a connection in the G-bundle (E, Mg, G). This is
given by a g-valued linear differential form o on E with the following
properties. (All differential forms considered are supposed to be differen-
tiable) : R*» being the mapping for differential forms induced by the
right translation of E by an element a of G,

(2) Rfo =ad (¢ e for a€G;

To an element X of g, i.e., to a left-invariant vector field X on G, let
X* be the well-defined vector field on E which is transformed to X by

any admissible mapping of G onto a fibre. Then the value of w for X*
is constant and it is equal to X, that is,

(3) o(X¥) =X for Xeg.

The curvature form Qg of this connection being the covariant differential
of o, it is a g-valued differential form of degree 2 on E. One knows
the following structure equation.

(4) Q,G=dco+%[co, o].

Now, since f is stable under the adjoint mappings ad(a) for a€ K
and since a—ad(e) (@€ K) is a represention on g of the compact group
K, there is a subspace m of g so that it is stable under ad(a) for e € K
and that g is the direct sum of ¥ and m. Decomposition of the values
of  according to this decomposition of » yields a f-valued linear dif-
ferential form o, on E and an m-valued one , such that

(5) »w =0 to,.

If we denote by ady¢(e) and ad, (a) the linear transformations of f and of
m respectively which is induced by ad(a) for a€ K, it follows from (2)
and (3) the following relations :

Rfo, = ad¢(a™) o, for a€ K,

(6] { o, (X*¥) = X, for Xet;
(7) { Rfw,=ad (@ e, for ackK,
@,(X*) =0 for Xef.

10) In this proof, we use notions and elementary results in the theory of connections.
See Chern [4] Chap. III or Nomizu; Lie groups and differential geometry, Tokyo, 1956.
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(6) means that o, defines a connection in the K-bundle (E, My, K). Let
D be the covariant differentiation and Qg the curvature form of this
connection. Then, the following formulas are known

(8) QK=dco1+%[col, o],
and
(9) DQ,=0.

From the properties (7) of w,, we can prove the following relations just
as (8) and (9)

(10) Dcoz = dco2+[a)1, wz] ,
(11) Do, =[Qf, o.].

By virtue of (5) and (10), (4) is transformed into the form

(12) QG=QK+DQ>2+—;—[@2, o,].

If we consider the homomorphisms X; and X, using these connections
in the bundles, we have by definition,

Xo(F) =[FQg], for FeI*G),
XK(F,) = [F,(QK)]) for Flélk(K) ’ k=0; 1) )

where F(Q;) and F/(Qg) are considered as differential forms on M, and
on My respectively, i.e. those which induce F(Qg) and F’(Qg) by the
dual mapping 7% and #% of the projections, and [ ] denotes the coho-
mology class represented by the closed differential form in it. Therefore,
the assertion of the theorem states

P¥[F(Qe)] = [(*F)(Qg)], for Fel*G), k=0,1, -

This holds obviously for £#=0. Suppose 2>0. The dual mapping =%
for differential forms induced by projection =4 is one-to-one and it com-
mutes with the differentiation. Then, together with the definition of p*
and ¢* it follows from (1) that the above equation is equivalent to the
following : There exists a differential form ® on My of degree 2k—1
such that

(13) F(Qg)—F(Qg) = dri® .
Such a differential form P is obtained by a similar procedure as in the

proof of a theorem of Weil (Chern [4] p. 58). In fact, F being con-
sidered in the polar form, put
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QX, YY=FX, Y, ---, Y), for X, Yeg.
Then

FW+Y+2)—F(W)=kFk \1 QY +2tz, W+tX~+1t2Z)dt.
Jo
Therefore, (12) implies

F(Qg)—F(Q) =k S QDo+t @y, w.], QK+tDm2+§ [ws) @ D)dt .
Now, by (9) and (11) and [[e,, ®.], ®,]=0,
dQ(w,, QK+tDw2+’;i [0, ©,])
= DQ(o,, QK+tDw2+§[m2, 1)

= Q(Da)2+t[a)2, wzl QK+tDa’z +£22* [“’2» a’z]) .
Therefore
F(Qg) —F(Qg) = d| 5 EQlw,, QK+tDw2+t2—2[a>2, o, ])dt .
]
The differential form in the parenthesis can be expressed in the form

7z*®  as is seen from the properties (7) of o, and and analogous pro-
perties of Qk, Dw, and [e,, ®,]. The theorem is thus proved.

(Received September 30, 1956)
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