

Title	Index of the exponential map of a center-free complex simple Lie group
Author(s)	Lai, Hêng Lung
Citation	Osaka Journal of Mathematics. 1978, 15(3), p. 553-560
Version Type	VoR
URL	https://doi.org/10.18910/10876
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Lai, H.-L.
Osaka J. Math.
15 (1978), 553-560

INDEX OF THE EXPONENTIAL MAP OF A CENTER-FREE COMPLEX SIMPLE LIE GROUP

HENG-LUNG LAI¹⁾

(Received August 12, 1977)

0. Introduction

Let \mathfrak{G} be a connected Lie group with Lie algebra G . In general, the exponential map $\exp: G \rightarrow \mathfrak{G}$ is not surjective. As in Goto [4], for an element $g \in \mathfrak{G}$, we shall define the index (of the exponential map) $\text{ind}(g)$ to be the smallest positive integer q such that $g^q \in \exp G$, if it exists, otherwise, $\text{ind}(g) = \infty$. The index $\text{ind}(\mathfrak{G})$ of the Lie group \mathfrak{G} is defined to be the least common multiple of all $\text{ind}(g)$ ($g \in \mathfrak{G}$).

In Lai [6], the author proved the following theorem:

Theorem. *Let \mathfrak{G} be a connected (real or complex) semisimple Lie group with finite center. Then $\text{ind}(\mathfrak{G})$ is finite.*

More generally, M. Goto proved the following theorem:

Theorem (Goto [3]). *Let K be an algebraically closed field (of characteristic 0 or prime), and let \mathfrak{G} be an algebraic group over K . Then there exists a natural number q such that for any $g \in \mathfrak{G}$, we can find a connected abelian subgroup of \mathfrak{G} containing g^q .*

In case $K = \mathbb{C}$, this implies that $\text{ind}(\mathfrak{G})$ is finite for any algebraic group \mathfrak{G} over the field of complex numbers.

Theorem (Goto [4]). *Let \mathfrak{G} be a semi-algebraic group over \mathbb{R} (the field of real numbers). Then $\text{ind}(\mathfrak{G})$ is finite.*

In Lai [6], the author also computed $\text{ind}(\mathfrak{G})$ for some connected complex simple Lie groups \mathfrak{G} . In the case where \mathfrak{G} has trivial center, which most interests us in the present paper, the results in [6] can be summarized as follows. Note that \mathfrak{G} can be identified with the adjoint group $\text{Ad}(G)$ of (all inner automorphisms of) its Lie algebra G .

1) Partially supported by the National Science Council, Republic of China.

(1) G is of type A_{n-1} . Then $\exp: G \rightarrow Ad(G)$ is surjective. Because: $Ad(G) \cong Ad(sl(n, \mathbf{C})) \cong SL(n, \mathbf{C})/\text{center} \cong GL(n, \mathbf{C})/\text{center} \cong PGL(n, \mathbf{C})$; and in the following commutative diagram, π (the canonical projection) and Exp (the exponential map of matrices) are surjective.

$$\begin{array}{ccc} gl(n, \mathbf{C}) & \xrightarrow{\text{Exp}} & GL(n, \mathbf{C}) \\ \downarrow d\pi & & \downarrow \pi \\ sl(n, \mathbf{C}) & \xrightarrow{\exp} & PGL(n, \mathbf{C}) \end{array}$$

(2) When G is of type B, C , or D . We first considered the corresponding classical groups (the symplectic group $Sp(n, \mathbf{C})$ and the special orthogonal group $SO(n, \mathbf{C})$), and proved that the square of any element in each case lies inside the image of the exponential map. Then, in each case, we found some element in $Ad(G)$ of index exactly equal to 2.

(3) G is of type G_2 . We proved that $\text{ind}(g) \in \{1, 2, 3\}$ for any $g \in Ad(G)$, and constructed elements of index equal to 2 and 3 respectively.

(4) G is of type F_4 . We used a computer to compute all the determinants of the coefficient matrices of any four (linearly independent) positive roots (expressed in terms of simple root system) and we found that $\text{ind}(g) \in \{1, 2, 3, 4\}$. Again, we constructed elements of index 3 and 4 respectively.

(5) When G is of type E , we couldn't find a workable method to find $\text{ind}(Ad(G))$. We only gave some lower bounds.

For details, see [6].

Let $m_1\alpha_1 + \cdots + m_l\alpha_l$ be the highest root of G with respect to a fixed Cartan subalgebra H expressed in terms of a simple root system $\{\alpha_1, \dots, \alpha_l\}$. Then $I(G) = \{1, m_1, \dots, m_l\}$ is a set of positive integers depending only on the type of G ; for example, $I(A_l) = \{1\}$, $I(B_l) = I(C_l) = I(D_l) = \{1, 2\}$, $I(G_2) = \{1, 2, 3\}$, $I(F_4) = \{1, 2, 3, 4\}$. The above results suggest that $\text{ind}(Ad(G))$ may have some relationship to $I(G)$. The main purpose of this paper is to prove the following theorem.

Theorem. *Let G be a complex simple Lie algebra, $Ad(G)$ the adjoint group of G and $m_1\alpha_1 + \cdots + m_l\alpha_l$ the highest root expressed in terms of a simple root system $\{\alpha_1, \dots, \alpha_l\}$. Then $\{\text{ind}(g); g \in Ad(G)\}$ equals $I(G) = \{1, m_1, \dots, m_l\}$.*

To prove the theorem, we use a method from Borel-Siebenthal's [1] classification of maximal subalgebras of maximal rank in a compact simple Lie algebra.

The author would like to take this opportunity to thank Professor M. Goto for his help and many useful suggestions. I would also like to thank Prof. A. Borel who pointed out some mistakes in my earlier argument.

1. Review and notation

Let G be a complex semisimple Lie algebra with a (fixed) Cartan sub-algebra H . Let Δ be the root system of G with respect to H , $\Pi = \{\alpha_1, \dots, \alpha_l\}$ a fundamental root system of Δ , and $-\alpha_0 = m_1\alpha_1 + \dots + m_l\alpha_l$ the highest root.

Let B be the Killing form on G . Then for each $\alpha \in \Delta$, we can find $h_\alpha \in H$ with $B(h, h_\alpha) = \alpha(h)$ for all $h \in H$, and $e_\alpha \in G$ such that

$$\begin{aligned} G &= H + \sum_{\alpha \in \Delta} \mathbf{C} e_\alpha, \\ [h, e_\alpha] &= \alpha(h) e_\alpha, \quad [e_\alpha, e_\beta] = N_{\alpha, \beta} e_{\alpha+\beta} \quad \text{if } \alpha + \beta \neq 0 \text{ is in } \Delta, \\ [e_\alpha, e_{-\alpha}] &= -h_\alpha, \quad [e_\alpha, e_\beta] = 0 \quad \text{if } 0 \neq \alpha + \beta \notin \Delta. \end{aligned}$$

Let $H_0 \subset H$ be the real vector space spanned by h_α ($\alpha \in \Delta$), then $\beta|_{H_0}$ is real for any $\beta \in \Delta$. Since $\Pi = \{\alpha_1, \dots, \alpha_l\}$ is linearly independent, we can choose $h_1, \dots, h_l \in H_0$ such that $\alpha_i(h_j) = \delta_{ij}$, $1 \leq i, j \leq l$. The lattice $\Omega = \mathbb{Z}2\pi i h_1 + \dots + \mathbb{Z}2\pi i h_l \subset iH_0$ ($i = \sqrt{-1}$) is the kernel of $\exp|_H: H \rightarrow \text{Ad}(G)$. For simplicity, we identify Δ with a subset of iH_0 by the map $\alpha \mapsto \frac{1}{2\pi i} h_\alpha$, and introduce an

inner product in iH_0 by $(h, h') = \frac{-1}{(2\pi)^2} B(h, h')$. Then $(\alpha, h) = \alpha(h)/2\pi i$ for $\alpha \in \Delta$, $h \in iH_0$.

Let $\text{Ad}(\Delta)$ denote the Weyl group of Δ . Any element S of $\text{Ad}(\Delta)$, regarded as a linear transformation on iH_0 , can be extended to an inner automorphism of the Lie algebra G . Let $T(\Omega)$ be the group of translations of the euclidean space iH_0 induced by elements in Ω . Then, if G is simple, the group $\text{Ad}(\Delta) \cdot T(\Omega)$ acts transitively on the set of all cells, see Goto-Grosshans [5] Chapter 5. We summarize as follows:

Let G be a complex simple Lie algebra and C_0 the fundamental cell: $C_0 = \{h \in iH_0; (\alpha_1, h) > 0, \dots, (\alpha_l, h) > 0 \text{ and } (-\alpha_0, h) < 1\}$. Let \bar{C}_0 denote the closure of C_0 . Then for any h in iH_0 , we can find $U \in \text{Ad}(\Delta) \cdot T(\Omega)$ such that $h \in U\bar{C}_0$.

In sections 2 and 3 below, we consider $\text{ind}(g)$ for $g \in \text{Ad}(G)$ where G is a complex simple Lie algebra.

2. Upper bound for $\text{ind}(g)$

Theorem. *For any $g \in \text{Ad}(G)$, $\text{ind}(g) \leq m_i$ for some $i = 1, \dots, l$.*

Any element g in $\text{Ad}(G)$ has a decomposition $g = g_0 \cdot \exp N$ into semisimple part g_0 and unipotent part $\exp N$ such that $g_0 \cdot \exp N = \exp N \cdot g_0$. Let $G(1, \text{Ad } g_0)$ denote the 1-eigenspace of $\text{Ad } g_0$ in G . Then $G(1, \text{Ad } g_0)$ is a sub-algebra of G and $N \in G(1, \text{Ad } g_0)$.

By Gantmacher [2], g_0 is conjugate to some element in $\exp H$. Hence, to prove our theorem, it suffices to consider elements g whose semisimple part lies in $\exp H$, i.e. $g = \exp h_0 \cdot \exp N$, $h_0 \in H$, such that $N \in G(1, \text{Ad } \exp h_0)$. Let

$\Delta(h_0) = \{\alpha \in \Delta; Ad \exp h_0 \cdot e_\alpha = e_\alpha\} = \{\alpha \in \Delta; \alpha(h_0) \in 2\pi i\mathbb{Z}\}$. Then $G(1, Ad \exp h_0) = H + \sum_{\alpha \in \Delta(h_0)} \mathbf{C}e_\alpha$, and $\Delta(h_0)$ satisfies (i) $-\alpha \in \Delta(h_0)$ whenever $\alpha \in \Delta(h_0)$, and (ii) if $\alpha, \beta \in \Delta(h_0)$ and $\alpha + \beta \in \Delta$, then $\alpha + \beta \in \Delta(h_0)$. Hence $\Delta(h_0)$ is a subsystem of Δ , and we can choose a simple root system $\Pi(h_0) = \{\beta_1, \dots, \beta_r\}$ of $\Delta(h_0)$.

Lemma 1. *To find an upper bound for $\text{ind}(g)$ ($g \in Ad(G)$), it suffices to consider elements with semisimple part $\exp h_0$, where $h_0 \in iH_0$ and $\Pi(h_0)$ has cardinality $l = \text{rank } G$.*

Proof. Assume that $h_0 = x_1 h_1 + \dots + x_r h_r$ for some complex numbers x_i . For each $j=1, \dots, r$, since $(\exp ad h_0 - 1)e_{\beta_j} = 0$, we have $\beta_j(h_0) = 2\pi i k_j$ for some $k_j \in \mathbb{Z}$. If k_j are all zero, then for any $N \in G(1, Ad \exp h_0)$ we have $[h_0, N] = 0$, and $\exp h_0 \cdot \exp N = \exp(h_0 + N)$, i.e. $\text{ind}(\exp h_0 \cdot \exp N) = 1$. So we assume some $k_j \neq 0$, hereafter.

Since $\exp h_0 = \exp(h_0 + \Omega)$, if we can find a positive integer d and integers n_1, \dots, n_l such that for $h = dh_0 + \sum_{j=1}^l 2\pi i n_j h_j$, $[h, dN] = 0$, then the index of $\exp h_0 \cdot \exp N$ divides d . For this, it suffices to choose d and n_j with $\alpha(h) = 0$ for all $\alpha \in \Delta(h_0)$, or equivalently for all $\alpha \in \Pi(h_0) = \{\beta_1, \dots, \beta_r\}$. Therefore, the problem reduces to finding d so that $\beta_i(\sum_{j=1}^l n_j h_j) = -dk_i$ has integral solutions n_1, \dots, n_l .

Choose $\beta_{r+1}, \dots, \beta_l \in \Delta$ so that $\{\beta_1, \dots, \beta_l\}$ is a maximal linearly independent subset of Δ . We write $\beta_i = \sum_{j=1}^l p_{ij} \alpha_j$ where p_{ij} are integers. Consider the following system of linear equations:

$$\begin{aligned} p_{i1}n_1 + \dots + p_{il}n_l &= -k_i & i = 1, \dots, r; \\ p_{i1}n_1 + \dots + p_{il}n_l &= 0 & i = r+1, \dots, l. \end{aligned}$$

Since (p_{ij}) is a nonsingular integral matrix and k_i are integers, this has a (nontrivial) rational solution, say r_1, \dots, r_l .

Let $h'_0 = 2\pi i(r_1 h_1 + \dots + r_l h_l) \in iH_0$, then $\beta_1, \dots, \beta_l \in \Delta(h'_0)$. Suppose we can find a positive integer d' and integers n'_1, \dots, n'_l such that $\beta_i(d'h'_0 + \sum_{j=1}^l 2\pi i n'_j h_j) = 0$ for all $\beta \in \Delta(h'_0)$, then $(n_1, \dots, n_l) = (n'_1, \dots, n'_l)$ is the solution for the following system of linear equations:

$$\begin{aligned} \sum_{j=1}^l p_{ij} n'_j &= -d' k_i & i = 1, \dots, r; \\ \sum_{j=1}^l p_{ij} n'_j &= 0 & i = r+1, \dots, l. \end{aligned}$$

Thus we have $n'_j \in \mathbb{Z}$ such that $\beta_i(\sum_{j=1}^l 2\pi i n'_j h_j) = -2\pi i d' k_i$ ($i=1, \dots, r$). Hence for $h = d'h'_0 + \sum_{j=1}^l 2\pi i n'_j h_j$, we have $\beta_i(h) = 0$ ($i=1, \dots, r$) and so $\beta(h) = 0$ for all $\beta \in \Delta(h_0)$.

We have proved that $\text{ind}(\exp h_0 \cdot \exp N) \leq \text{ind}(\exp h'_0 \cdot \exp N)$. Therefore, we may replace h_0 by h'_0 which satisfies Lemma 1 by our construction. ||

Given an $n \times n$ nonsingular integral matrix A , the Smith canonical form of A is a diagonal matrix $D = \text{diag}(d_1, \dots, d_n)$ such that there are $Q_1, Q_2 \in GL(n, \mathbb{Z})$ with $A = Q_1 D Q_2$ and $d_i | d_{i+1}$ (the positive integers d_i are called the elementary divisors of A). We shall denote the biggest one, d_n , by $d(A)$.

Given $h_0 \in iH_0$ as in Lemma 1, the coefficient matrix $P = (p_{ij})$ of $\Pi(h_0)$ expressed in terms of a simple root system is a nonsingular $l \times l$ matrix. From the proof of Lemma 1, we see that $\text{ind}(\exp h_0 \cdot \exp N) \leq d(P)$, so our problem is to find $d(P)$.

Now let S be in the Weyl group $Ad(\Delta)$. Then S can be extended to an automorphism of the Lie algebra G , which can be extended to an inner automorphism σ of the Lie group $Ad(G)$. Clearly $\text{ind}(g) = \text{ind}(\sigma g)$ for any automorphism σ of $Ad(G)$. Therefore, to find an upper bound for $\text{ind}(g)$ ($g \in Ad(G)$), we may replace g (whose semisimple part is $\exp h_0$) by an element whose semisimple part is $\exp Sh_0$ ($S \in Ad(\Delta)$).

On the other hand, $\exp h_0 = \exp(h_0 + \Omega)$, so we may replace h_0 by $T(\Omega)h_0$.

Combining these and the proposition we stated at end of section 1, we get

Lemma 2. *Let $-\alpha_0 = m_1\alpha_1 + \dots + m_l\alpha_l$ be the highest root. To find an upper bound for $\text{ind}(g)$ ($g \in Ad(G)$), it suffices to consider elements whose semisimple part has the form $\exp h$ ($h \in iH_0$) with $(\alpha_1, h) \geq 0, \dots, (\alpha_l, h) \geq 0$ and $(-\alpha_0, h) \leq 1$.*

Let $\tilde{\Pi} = \{\alpha_0, \alpha_1, \dots, \alpha_l\}$, be the extended simple root system. To simplify our problem further, we need some discussions in the Borel-Siebenthal theory. The following two lemmas are known. For the sake of completeness, we include a proof here.

Lemma 3. *Let $h \in \bar{C}_0$ be an element satisfying Lemma 1, then $\Pi' = \tilde{\Pi} \cap \Delta(h)$ is a simple root system of $\Delta(h)$ with respect to a suitable ordering.*

Proof. Given any positive root $\beta = b_1\alpha_1 + \dots + b_l\alpha_l$, it suffices to prove that β can be written as a linear combination of roots in Π' with integral coefficients, all non-negative or all non-positive.

(a) $-\alpha_0 \notin \Delta(h)$, i.e. $(-\alpha_0, h) \notin \mathbb{Z}$.

Since $0 \leq (-\alpha_0, h) \leq 1$, so $0 < (-\alpha_0, h) < 1$. Then the inequality $0 \leq b_1(\alpha_1, h) + \dots + b_l(\alpha_l, h) = (\beta, h) \leq (-\alpha_0, h) < 1$ implies that $(\beta, h) = 0$ because $(\beta, h) \in \mathbb{Z}$. Hence $b_j(\alpha_j, h) = 0$ for all j ; i.e. $(\alpha_j, h) = 0$ or $\alpha_j \in \Delta(h)$ whenever $b_j \neq 0$. Therefore β is a linear combination of $\alpha_j \in \Delta(h)$ with nonnegative coefficients.

(b) $-\alpha_0 \in \Delta(h)$, so $(-\alpha_0, h) = 0$ or 1.

If $(-\alpha_0, h) = 0$, then $(\alpha_1, h) = \dots = (\alpha_l, h) = 0$ and $h = 0$, which is the trivial case we have excluded (Lemma 1). Hence $(-\alpha_0, h) = 1$, so $(\beta, h) = 0$ or 1.

If $(\beta, h) = 0$, the same argument as in (a) gives what we want.

If $(\beta, h) = 1$, then $(-\alpha_0, h) = 1$ and

$$0 = (-\alpha_0 - \beta, h) = (m_1 - b_1)(\alpha_1, h) + \cdots + (m_l - b_l)(\alpha_l, h).$$

Since $m_j \geq b_j$, $(\alpha_j, h) \geq 0$, we have $\alpha_j \in \Delta(h)$ whenever $m_j - b_j \neq 0$. Hence $\beta = -\alpha_0 - (m_1 - b_1)\alpha_1 - \cdots - (m_l - b_l)\alpha_l$ is a linear combination of roots in Π' with non-positive integral coefficients. ||

Therefore, $\Pi(h) = \tilde{\Pi} \cap \Delta(h)$ is a simple root system of $\Delta(h)$. By Lemma 1, we consider elements $h \in iH_0$ such that $\Pi(h)$ has cardinality l . If $\Pi(h) = \Pi$, then $\Delta(h) = \Delta$ and $h \in \Omega$, and in this case, $\exp h \cdot \exp N = \exp N$.

Lemma 4. *If $\Pi(h) \neq \Pi$ has cardinality l , then $h = 2\pi i h_j / m_j$ for some j such that $m_j > 1$.*

Proof. Since $\Pi(h) = \Delta(h) \cap \tilde{\Pi}$, we have $\Pi(h) = \tilde{\Pi} - \{\alpha_j\}$ for some $j > 0$. Therefore $0 < (\alpha_j, h) < 1$ and $(-\alpha_0, h) = 1$ because $(-\alpha_0, h) \geq m_j(\alpha_j, h)$. For $i > 0$, $i \neq j$, we have $(\alpha_i, h) = 0$ or 1 and the inequality

$$m_i(\alpha_i, h) < m_i(\alpha_i, h) + m_j(\alpha_j, h) \leq (-\alpha_0, h) = 1$$

implies that $(\alpha_i, h) = 0$ and $m_j(\alpha_j, h) = (-\alpha_0, h) = 1$. So $h = 2\pi i h_j / m_j$. ||

In the case $m_j = 1$, we have $\Pi(2\pi i h_j / m_j) = \Pi$.

Conclusion. Let G be a complex simple Lie algebra. To find an upper bound for $\{\text{ind}(g); g \in Ad(G)\}$, it suffices to consider elements $g \in Ad(G)$ whose semisimple part has the form $\exp 2\pi i h_j / m_j$ for some j , i.e. $g = \exp 2\pi i h_j / m_j \cdot \exp N$.

Clearly, $g^m = \exp mN$ for such g . We have proved:

Theorem. *For any $g \in Ad(G)$, there exists i such that $g^m \in \exp G$. In other words, $\text{ind}(g) \leq \max \{m_i; 1 \leq i \leq l\}$ for all $g \in Ad(G)$. This is the same as saying that $\text{ind}(g) \in \{1, m_1, \dots, m_l\}$.*

3. Existence of elements with index m_j (in case $m_j > 1$)

In [6], we have shown the existence of such elements in some cases. Here we shall give a unified short proof by using results in Steinberg [7].

We define an element x in a semisimple Lie algebra G to be regular if the centralizer $z_G(x) = \{y \in G; [x, y] = 0\}$ of x (in G) has minimal dimension. By a Borel subalgebra, we mean a maximal solvable subalgebra of G . If H is a Cartan subalgebra of G with root system Δ and $U = \sum_{\alpha > 0} Ce_{\alpha}$, then $B = H + U$ is a Borel subalgebra. Theorem 1 and its corollary in Steinberg [7] (pp. 110–112) have obviously the following Lie algebra analogues.

Theorem. *Let G be a semisimple Lie algebra with a Cartan subalgebra H , and $B = H + U$ a Borel subalgebra containing H . Let x be a nilpotent element in G . Then the following conditions are equivalent:*

- (a) x is regular.

- (b) x belongs to a unique Borel subalgebra.
- (c) x belongs to finitely many Borel subalgebras.
- (d) If $U = \sum_{\alpha > 0} \mathbf{C}e_\alpha$ and $x = \sum_{\alpha > 0} c_\alpha e_\alpha$ ($c_\alpha \in \mathbf{C}$), then $c_\alpha \neq 0$ for any simple root α .

Corollary. If $x \in U$ is regular, then $z_G(x) \subset U$. In particular, $z_G(x)$ consists of nilpotent elements.

Retaining the notation above, consider $h_0 = 2\pi i h_j/m_j$. Then $\Pi = \tilde{\Pi} - \{\alpha_j\}$ is a simple root system in $\Delta(h_0)$ and $G(1, \text{Ad } \exp h_0) = H + \sum_{\alpha \in \Delta(h_0)} \mathbf{C}e_\alpha$. Let $N = \sum_{i=0, \dots, l; i \neq j} e_{\alpha_i}$. Applying the above theorem, we see that N is a regular element in the semisimple subalgebra $G(1, \text{Ad } \exp h_0)$, so the above corollary implies that any element of $G(1, \text{Ad } \exp h_0)$ which commutes with N must be nilpotent.

Let $g = \exp h_0 \cdot \exp N$. If $g = \exp x$ for some $x \in G$, then x has a decomposition $x = x_0 + N$, where x_0 is semisimple and $[x_0, N] = 0$. Clearly $x \in G(1, \text{Ad } g) = G(1, \text{Ad } \exp h_0)$. Since $N \in G(1, \text{Ad } \exp h_0)$, we have $x_0 \in G(1, \text{Ad } \exp h_0)$. But $[x_0, N] = 0$, so the above argument implies that x_0 is nilpotent. Thus $x_0 = 0$ because x_0 is also semisimple. This implies that $\exp h_0 = \exp x_0 = 1$ which is absurd ($m_j > 1$). Therefore $g \notin \exp G$.

Next, let \mathfrak{G}_1 be the connected subgroup of $\mathfrak{G} = \text{Ad } G$ corresponding to the subalgebra $G_1 = G(1, \text{Ad } g)$. Clearly, $g \in \mathfrak{G}_1$ because $\exp h_0, \exp N \in \exp G_1 \subset \mathfrak{G}_1$. If $g^p = \exp x$ for some x in G , then x lies in G_1 because $g^p \in \mathfrak{G}_1$. (We have $G_1 = \{x \in G; \exp x \in \mathfrak{G}_1\}$). But N is a regular nilpotent element in G_1 , it cannot commute with any nonzero semisimple element in G_1 . The same argument as above implies that the semisimple part of g^p must be 1, i.e., $\exp ph_0 = 1$ or $ph_0 \in \Omega$. This cannot happen if $p < m_j$.

Therefore $\text{ind}(g) = m_j$.

Q.E.D.

The results in sections 2 and 3 give the following:

Theorem. Let G be a complex simple Lie algebra and $-\alpha_0 = m_1\alpha_1 + \dots + m_l\alpha_l$ the highest root expressed in terms of a simple root system. Then

$$\{\text{ind}(g); g \in \text{Ad}(G)\} = \{1, m_1, \dots, m_l\},$$

which is the set of all positive integers $\leq \max\{m_i; 1 \leq i \leq l\}$.

Corollary. $\text{ind}(\text{Ad}(G))$ is the least common multiple of $\{m_1, \dots, m_l\}$.

We can list our result in the table:

Type of G	A	B	C	D	G_2	F_4	E_6	E_7	E_8
$\max\{\text{ind}(g)\}$	1	2	2	2	3	4	3	4	6
$\text{ind}(\text{Ad}(G))$	1	2	2	2	6	12	6	12	60

Bibliography

- [1] A. Borel and J. de Siebenthal: *Les sous-groups fermés de rang maximum des groupes de Lie clos*, Comm. Math. Helv. **23** (1949), 200–221.
- [2] F. Gantmacher: *Canonical representations of automorphisms of a complex semisimple Lie group*, Rec. Math. **5** (1939), 101–144.
- [3] M. Goto: *On an integer associated with an algebraic group*, J. Math. Soc. Japan **29** (1977), 161–163.
- [4] M. Goto: *Index of exponential map of a semi-algebraic group* (to appear).
- [5] M. Goto and F. Grosshans: Semisimple Lie algebras, Marcel-Dekker, New York, 1978.
- [6] H.L. Lai: *Surjectivity of exponential map on semisimple Lie groups*, J. Math. Soc. Japan **29** (1977), 303–325.
- [7] R. Steinberg: Conjugacy classes in algebraic groups, Lecture Notes in Mathematics No. 366, Springer-Verlag, 1974.
- [8] J. Tits: Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Mathematics No. 40, Springer-Verlag, 1967.