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Introduction

The study of the index of minimal surfaces in Euclidean space has been
quite active in these several years. Fischer-Colbrie [7], Gulliver and Lawson
[8], [9] have proved independently that a complete oriented minimal surface
in R® has finite index if and only if it has finite total curvature. More recently
Tysk [16] has proved that the index of a complete oriented minimal surface in
R? is bounded from above by an explicit constant times the total curvature.
For the situation in higher codimensions, see [2], [6] and [13].

In this paper we study the lower bound for the index of complete oriented
minimal surfaces in R®. In view of the above mentioned result due to Fischer-
Colbrie et al., we may restrict our attention to the surfaces with finite total cur-
vature. It is well known that such a surface is conformally equivalent to a
compact Riemann surface with finitely many punctures and the Gauss map
of the surface extends to the compactified surface as a holomorphic map. We
then give a lower bound for the index in terms of an invariant of the extended
Gauss map and the genus of the surface. As a corollary of this result, we give
a lower bound for the index in terms of the total curvature of the surface, when
all the critical values of the extended Gauss map are contained in some great
circle of the target unit sphere. By applying these results we show that the
index of the k-end catenoid and the Costa’s surface are not less than 2k-3 and
3 respectively. We also prove that if M is a complete oriented minimal sur-
face of genus zero and is not one of the plane, the Enneper’s surface and the
catenoid, then the index of M is not less than three. Finally we prove that the
index of the k-end catenoid is actually equal to 2k-3 by explicitly solving the
eigenvalue problem associated to the Jacobi operator.

The author wishes to thank Professors H. Ozeki and A. Kasue for their con-
stant encouragement and advice. He also thanks H. Naito for useful conversa-
tions.
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1. Preliminaries

Let M be a two-dimensional Riemannian manifold. For a function g on M
we consider the operator L=—A-g, acting on functions on M, where A is
the Laplace-Beltrami operator. We denote by Q the quadratic form associated
to L. Thus for a function # with compact support

Ou, u) = SM(ldul2+qu2)dA ,

where dA is the area element of M. For a relatively compact domain Q in
M, we define Ind (L, Q), the index of L in Q, as the number of negative eigen-
values (counted with multiplicities) of the Dirichlet eigenvalue problem

Lu=2uinQ, u=0 on 0Q.

It can also be defined as the maximal dimension of a subspace of C5(2) on
which Q is negative definite. We now define Ind (L, M), the index of L in M,
as the supremum of the numbers Ind (L, Q) over all relatively compact domains
in M.

If M is an oriented minimal surface in R? the associated Jacobi operator
L is given by L=—A—|B|? where B is the second fundamental form of M.
The equation Lu=0 is called the Jacobi equation. We define Ind (M), the
index of M, as the index of L in M.

At this point we recall the well-known fact that isothermal coordinates
for the induced metric together with the orientation give rise to a complex struc-
ture on M.

Let G: M— S*’C R?® be the Gauss map of M, where S? is the unit sphere
in R%. Then G is a holomorphic map with respect to the complex structure on
M just mentioned and that on S? induced by the stereographic projection form
the north pole (see [14]). We note that the formula |B|*=|dG |? holds.

We now let M be a complete oriented minimal surface in R® with finite
total curvature. By a theorem of Osserman [14], M is conformally equivalent
to a compact Riemann surface with finitely many punctures and the Gauss map
G extends to the compactified surface as a holomorphic map. We denote by
M and G the compactified surface and the extended Gauss map respectively.
We fix a conformal metric on M and consider the operator L=—A—|dG |2
Then we have

(1.1) Ind (M) = Ind (L, M)

(see Fischer-Colbrie [7, Corollary 2, p. 131]).
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2. The number of nodal domains of solutions of the Jacobi equa-
tion and a lower bound for the index

In this section we shall consider a slightly general situation as follows.
Let = be a compact Riemann surface and G: %— S? a nonconstant holomor-
phic map. We fix a conformal metric on = and consider the operator L;=
—A—|dG|?. We note that Ind(L;, X) and the kernel of L; are independent
of the particular choice of a metric on 5. The following proposition is an
immediate consequence of the celebrated Courant’s nodal domain theorem
(see [4]). If u is a solution of an elliptic equation on a surface, the set »7%(0) is
called the nodal line of % and each connected component of %—u"*(0) is calied
a nodal domain of «.

Proposition 2.1. Let u be a nontrivial solution of the equation L;u=0 and
N the number of nodal domains of u. Then

(2.1) Ind (L, =)=N—1.

Proof. Let Ind(Lg, 2)=i. Then u is an (i41)-th eigenfucntion (that
is, an eigenfunction belonging to the (i4-1)-th eigenvalue) of L;. The nodal
domain theorem then says that the number of nodal domains of u is not greater
than 7+ 1, that is, V <i+1, or i > N—1, getting the desired result.

The next lemma assures the existence of nontrivial solutions of the equa-
tion Lsu=0.

Lemma 2.2. For a fixed vector acR®, the function u=a-G satisfies the
equation Lou=0. Moreover, if a=0 then u=0.

Proof. The first assertion follows from the fact that the holomorphic map
G satisfies the equation AG-|dG|*G=0. To show the second assertion
assume a=+0 and a-G=0. Then the image of G is contained in a great circle
of 8% By the holomorphicity, G is a constant map, a contradiction.

ReEMARK. The lemma shows that V'={a-G|a= R% is a three-dimensional
subspace of the kernel of Lg.

Let u=a-G for ac R*—{0}. We note that the nodal line #7*(0) is nothing
but the inverse image by G of the great circle S*, which is determined as the
intersection of the plane a- X=0 and S? where X=(X", X? X?) is the standard
coordinates on R?.

We now study the inverse image by G of a great circle of S2. Let S' be a
great circle of S We denote by {g,, -+, ¢,} the set of all the critical values of
G contained in S*, which we assume to be nonempty. Let G™Y(g,)={p{", ---,
P} for i=1,-+,s. We denote by b5 the branching order of G at p{’. Set
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t=>3{.1¢; and =33, ;5. In the following two lemmas and their proofs we

shall use some terminologies from graph theory, for which we refer the reader
to [1].

Lemma 2.3. Under the above situation, G™(S") is an embedded pseudograph
onZ,, consisting of t vertices {p$’} and bt edges.

Proof. We may assume ¢, :*-, ¢, lie on S in this order. By the definition
of branching order, G can be expressed relative to local coordinates 2 (resp. w)
around p§” (resp. ¢;) as

w = G(2) = 2+,

Hence there exist precisely 5”1 lifts of the arc ¢,¢;.,, starting from p§” (here
and in the following we interpret as ¢,4,=¢y, etc.). The terminal point of each lift
is among p{*Y, -+, pt*D. We consider these lifts of the arcs g;¢;.,, =1, -+, 5,
as edges. Since G is a local homeomrophism away from the branch points,
each edge has no self-intersections and any two edges do not intersect at their
interiors. Thus, G7(S") is an embedded pseudograph on =. It is easy to
verify that the pseudograph so obtained has the required number of edges.

For a great circle S* of S%, we denote by N(Z, G, S") the number of con-
nected components of 5—G7(S?). To estimate N(Z, G, S*), we need the fol-
lowing topological lemma.

Lemma 2.4, Let T be an embedded pseudograph on the compact orientable
surface S of genus g. Suppose that T has v vertices and e edges, and S—T has N
components. Then

(2.2) v—e+N>2—-2g.

Proof. The proof is by induction on g and is a slight modification of that
of Theorem 4.20 in [1]. For g=0, by the Euler’s formula for an embedded
pseudograph on the sphere, we have v—e-+ N=1+-k, where % is the number of
connected components of I'.  Since £>1, (2.2) holds for g=0.

We now let g>0. Then the surface S has g handles. Draw a curve C
around a handle of S so that C' contains no vertices of I'. We must consider
the following two cases:

Case (i). C intersects with no edges of T'.

We cut the handle along C and cap the two resulting holes. Then we obtain
a new embedded pseudograph I', (=T as abstract pseudoygraphs) on the com-
pact surface S; of genus g—1. Suppose that S,—I", has N, components.
Then it is easy to see that V;<<N-+1. By the inductive hypothesis, we have
v—e+N,>2—2(g—1). Hence v—e+N >3—2g and (2.2) holds in this case.

Case (ii). C intersects with edges of T".
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By perturbing C if necessary, we may assume that the total number of inter-
sections of C with edges of T" is finite, say k. Suppose that C intersects with
m edges of T". At each of the k intersections of C with the edges of T" we add
a new vertex. And each subset of C lying between consecutive new vertices is
identified as a new edge. Moreover, m edges of I" which intersect with C is
subdivided into m--k new edges. Let the new embedded pseudograph so formed
be denoted by I';. Suppose that T, has v, vertices and e, edges, and S—T,
has N, components. Then v,=v+k and e;=e+2k. Each portion of C that
became an edge of T', is in a component of S—T'. It is easy to see that the
addition of such an edge divides that component into at most two components.
Since there are k& such edges, we have N;<N+k We now cut the handle
along C and cap the two resulting holes. Then we obtain a new embedded
pseudograph T', on the compact surface S, of genus g—1. Suppose that T,
has v, vertices and e, edges, and S,—T", has IV, components. Since the vertices
and edges resulting from the curve C have been divided into two copies, we
have w,=v,+k=v+2k and e,—e,--k=e+3k. Moreover, N,=N,+2<N+
k+2. By the inductive hypothesis, we have v,—e,+N,>2—2(g—1). Hence
(v+2k)—(e+3k)+(N-+k+2)>2—2(g—1). Thus,v—e+N >2—2g, getting the

desired result.

In the next proposition we adopt the following notation for simplicity. For
a subset ACZ, we set

b(G, A) = 3)ea b(G, ),
where b(G, p) is the branching order of G at p.
Proposition 2.5. Let S* be a great circle of S®. Then
(2.3) N, G, SH=b(G, G(SY)+2—2¢,
where g is the genus of 3.

Proof. Consider G™(S?) as an embedded pseudograph on 3 as in Lemma
2.3. (2.3) follows by applying Lemma 2.4.

Theorem 2.6. Let 3 be a compact Riemann surface of genus g and
G: 3 — S? a nonconstant holomorphic map. Then the inequality

2.4) Ind (Lg, £)>b(G, G-{(SY)+1—2¢
holds for any great circle S* of S?.

Proof. Let a be a nonzero vector in R® orthogonal to the plane spanned
by S* and set u=a-G. By Lemma 2.2, u is a nontrivial solution of the equa-
tion Lyu=0. The number of nodal domains of # is nothing but N(Z, G, S").



458 S. NAYATANI
(2.4) now follows by combining (2.1) and (2.3).

3. Lower bounds for the index of minimal surfaces in R® and
examples

The following theorem is a rephrasement of Theorem 2.6 (see the last
paragraph in § 1, in particular, (1.1)).

Theorem 3.1. Let M be a complete oriented nonplanar minimal surface in
R® of genus g with finite total curvature and G: M— S? the extended Gauss map,
where M is the compactified surface. Then the inequality

Ind (M)>b(G, G~(SY))+1—2g
holds for any great circle S* of S*.
Corollary 3.2. Let M and G be as in Theorem 3.1. Suppose that all the

critical values of G are contained in some great circle of S*. Then

Ind (M) 2_21— [ (—xaa-1,

T
where K is the Gauss curvature of M.

Proof. By the Riemann-Hurwitz formula, the total branching order of G
is 2(n—14-g), where n is the degree of G. Apply Theorem 3.1 and substitute

n=(1/47:)SM (—K)dA.

Corollary 3.3. Let M be a complete oriented minimal surface in R® of
genus 2ero. Suppose that M is not one of the plane, the Enneper’s surface and the
catenoid. Then

Ind (M)>3.

Proof. We may assume that the total curvature of M is finite. By the
assumption the total curvature of M is not more than —8x, or equivalently
the degree of the extended Gauss map, say G, is not less than two. Then it is
easy to verify, using the Riemann-Hurwitz formula, that G has at least two
critical values. Take any two of them and let S* be the great circle of S? pass-
ing through these two values. Then G%(S?) include at least two branch points
of G and thus b(G, G~(S*))>2. Apply Theorem 3.1.

ReMARK. Lopez and Ros [12] have proved that the Enneper’s surface and
the catenoid are the only complete oriented minimal surfaces in R® with index
one. The above corollary improves their result when the genus of the surface
is zero.
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ExampLE 3.4 (k-end catenoid). Let M, be the k-end catenoid, k>2, which
was discovered by Jorge and Meeks [11]. 1M, is a complete oriented minimal
surface of genus zero with total curvature —4=(k—1) and & embedded ends.
Let I1: S*—C U {oo} be the stereographic projection from the north pole. Then
the extended Gauss map G: M,=C U {0} —S? is given by

0-G(z) = =+,

The critical values of G are precisely (0, 0, -=1) (i.e., the north and south poles),
which are clearly contained in a great circle of S®. Applying Corollary 3.2, we
obtain

Ind (M,)>2k—3 .

We note that the inequality (2.3) becomes equation in this case.
Actually we can show that

Ind (M) = 2k—3

by explicitly solving the eigenvalue problem associated to the Jacobi operator
of M, (see §4).

ExampLE 3.5 (Costa’s surface). Let M be the Costa’s surface [3]. M is a
complete oriented minimal surface in R* of genus one with total curvature
—127 and three ends. It was proved by Hoffman and Meeks [10] that M
was embedded. Let L be the square lattice in C generated by 1 and 7 and P
the Weierstrass P-function for L. Then the extended Gauss map G: M=
C|L— S?is given by

o-G([z]) = -2 R
)= 5y
where [2] is the point in M corresponding to 2&C and a=2\/2zP(1/2).
We note that a is a positive real constant. The branching of P’ is shown in
the following table, where z; (j=1,2, 3,4) are as in Figure 1 and b is some
positive real constant.

Table 1.
branch point | branching order value
0 2 oo
2 1 b
2 1 —b
23 1 ib
2 1 —ib
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Let S* be the great circle of S?% corresponding to the real axis of the complex
plane via IT. It passes through the critical values IT7}(0), I1"*(a/b) and I1"(—a/b)
of G. The corresponding branch points are [0], [2,] and [2,] with branching
order 2, 1 and 1 respectively. Applying Theorem 3.1, we obtain

Ind (M)=3.

We note that the set G7(S")=[(P")™* (real axis U {oo})] is actually as in Figure
2 (see [5, p. 38]) and the inequality (2.3) becomes equation in this case also.

1 i
[ ]
Z
90°
1[2 A d 12
Z, Z, Z, z Z,
[ A
60°
0 0
12 1 12 1
Fig. 1. The segments &E (7=1,2,3,4) Fig. 2. The loci of real values of P’ are
have the same length, shown as the thick lines.

4. The eigenvalue problem associated to the Jacobi operator of
the k-end catenoid

Let G: Z,=C U {c0}—S? be the holomorphic map of degree n defined by
I1- G(2)==2", where n is a positive integer. 'Then
2Re(2") 2Im(2") |[z]|*—1 >
lz[™+17 [z]*+1" |z|"+1/°

We fix an arbitrary conformal metric ds*=p|dz|? on =, and consider the eigen-
value problem

G(z)= (

4.1) —Au=x|dG|*’x  on 3.

Let (r, 8) be the polar coordinates on C. Then the Laplace-Beltrami operator

is expressed as
A :l(iz 19,1 21)
p\or r or 1 96%°

and by a direct computation, we have
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o 1 8”272“_2

Iy

Hence in these coordinates (4.1) is equivalent to

|dG|*

%u 1 ou , 1 0% 8n?rn?
4.2 Al TR T
*2) or* + r or * r* 06 + (*"+1%)

U —

For real number e and nonnegative integer 7, we define

( _{a(a+1)---(a—|—i——1) i i>1,
@) = 1 if i=0.

The hypergeometric function F(a, b; c; x) is a real analytic function of x, [x| <1,
defined by

Fla, b; c; %) = %x x| <1,

where ¢ is not a nonpositive integer. F(a, b; ¢; x) satisfies the hypergeometric
differential equation

2
x(l——x)‘—ll—{— {c—(a+b+ l)x}fll—aby =0.
dx? dx
For nonnegative integers p and g, we set

Ppa(t) = (l—tz)"””F<P+21+1, —p; i+1;i(1_,)) ,  —l<it<1,
n n 2
and

Vp,4(7) = Pp.q <1‘2”———1) ) 0<r<eo.
’ ’ r2n+1

We note that F(p—l—Zl—f—l, —p; i—|—1;—;—(1-—t)) is a polynomial of # of de-
n n
gree p. By a direct computation, we obtain

Lemma 4.1. o, (t) and v, (r) satisfy the ordinary differential equations

0% 0 L |
43 1—) %P 0,02 | (0 i) ) _0,
(+3) ( )at2 ot +< (n 1—¢ ?
and
G, 180 () S g\
*+4) or? * r or +(7\' (r*"4-1)? r"’)v =0,

respectively, where 7\.=% ( p—i—%)( p—}—% + 1) .
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Lemma 4.2. v, ,(r) cos g0 and v, (r) sin g0 satisfy (4.1) with
v=1(p+L)(p+2+1).
2 n n
Proof. Let u be one of the two functions above. By (4.4),
u , 1 0u R

¢ 1 %
ou, oy =Ty 2 0%
6r2+ r or + (rz"—}—l)zu " r* 80°

. . . 1 q q
Therefore u satisfies (4.2) (or (4.1)) in C— {0} with X—E<p+ ; )(p—{—_ns{— 1).

It is easy to see that u is smooth at =0 and co. Hence u satisfies (4.1) on the
whole 3.

Lemma 4.3. {v, ()} ,=0102.- forms a complete orthogonal system in

2 o 8n2r2n—1
L ((0, b iy dr).

Proof. Setting t=

2n 2 2n-1
L:L, we have dt:ﬁr— dr. Hence it suffices to
Pl (1)

prove that {@, ,(£)} y=o.1,2,.. forms a complete orthogonal system in L*(—1, 1), dt).
The orthogonality follows easily from (4.3). The vertification of the comple-
teness is also standard, so we omit it.

The next lemma follows easily from Lemma 4.3.

Lemma 4.4. {v, () cosgf, v, ,(r) sin g0} 5 .12, forms a complete or-
thogonal system in L*(3,, |dG|*dA), where dA is the area element of the metric ds’.

In summary we have proved the following proposition.

Proposition 4.5. The eigenvalues of (4.1) are exhausted by
i (1 .
x,.z—(— 1), i=0,1,2 .
2n\n + ) !
The eigenspace belonging to '\, is spanned by
{0,,4(7) cos g8, v, ,(7) sin g0} psg—; -
In particular, the multiplicity of \; is given by

_{ 2p+2  if i=pntq, q¥0,

Tl 2pr1 if i=pn.

Theorem 4.6. Let =, and G be as in the beginning of this section. Then
Ind (LG7 20) =2n—1.
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Proof. We denote by Q the quadratic form associated to L; (see § 1) and
by R the Rayleigh quotient associated to the problem (4.1). Thus for a func-
tion u=0

R(w) = Louulsz/Lo 2|dG|7dA .

We note that Qu,u)<<0 if and only if R(u)<<1 for any u=0. Therefore, by
a variational characterization of the eigenvalues of (4.1), Ind (L, =) is equal to
the number of the eigenvalues (counted with multiplicities) of (4.1) which is
less than one. Hence Ind(Lg, 5p)=2>1721 m;=2n—1, getting the desired result.

RemARK. It will be of some interest to observe that the dimension of the
kernel of L is three for all #.

Corollary 4.7. Let M, be the k-end catenoid (see Example 3.4). Then
Ind (M,) = 2k—3 .

After the completion of this paper we learned that Choe [17] obtained
independently some of the results in this paper.
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