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Abstract

In medical science and biology, observations may be specified only by two certain observed points (each
observation being defined by upper and lower bounds) because of some restrictions in the observation
system. This grouped observation (or interval-censored observation) arises naturally whenever indi-
viduals or experimental units are observed only occasionally and where the failure event of interest dosed
not preclude continued follow-up. Thus, the midpoint of the interval can be used as a representative
value, and some corrections such as Sheppard, may be used to calculate some statistics or quantities such
as mean and variance (Stuart and Ord, 1986). However, this procedure may not be appropriate in some
cases because observations are often found to have skewed distribution, the numbers of intervals are often
small or the lengths of intervals are wide.

In this paper, we have proposed an exploratory approach to the inference of grouped observations
based on the power-normal distribution (PND) proposed by Goto et al. (1983) when the underlying dis-
tribution is unknown or there is no strong knowledge of process generating the data. '

We have firstly developed the procedure for fitting the PND to univariate grouped observations. We
have considered the most elementary case, in which there was only one variable of interest and its obser-
vations were given in a grouped form such as a frequency table. The explicit expressions for the maxi-
mum likelihood estimates of parameters were not available in ungrouped observation case, as shown in
Goto et al. (1983), and the present case was no exception. However, it was possible to gain some insight
into our proposed procedure using the criterion of maximization of likelihood, by investigating the as-
ymptotic properties of them. In deriving these properties, we have followed the approach to discrete
distributions in Hernandez and Johnson (1981). In their approach, the criterion of minimization of Kull-
back-Leibler information was used to obtain the parameter estimates. Our procedure showed that the
maximum likelihood estimates of parameters had the strong consistency and the asymptotic normality
under certain conditions: After having concrete and practical grasp of our procedure through several
numerical examples, medium-sized simulation experiment was performed to evaluate (i) the precision of
the maximum likelihood estimates of parameters and (ii) the effect of grouping or categorizing on them.

For (i), the results of simulation showed that, the precision of maximum likelihood estimate of trans-
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forming parameter was not so much influenced by the shape of the PND as the precision of the estimate
in ungrouped observation case. Nevertheless, the precision of maximum likelihood estimates of mean
and variance was as much influenced by the shape of the PND as the precision of those estimates in un-
grouped observation case. However, it was shown from some numerical examples that these effects
could be removed by using the normalizing power-transformation, which was the adjusted power-
transformation by Jacobian of transformation formula. . For (ii), the results of simulation showed that the
number of intervals had a great influence on the precision of maximum likelihood estimates and the pre-
cision decreased as the number of intervals increased.

The PND was also applied in the mixed observation case, where observation involved ungrouped (ex-
actly specified) and grouped ones. We have particularly focused on the two case of the right/or left cen-
sored observations and ungrouped observations available in the tail. Furthermore, it was applied in the
observations subjected to an upper constraint such as examination score and pefcentage or proportion, and
in discrete observations.

Next, we have focused on two variables situations and considered two variables grouped in (i) a corre-
lation table, (ii) grouped bivariate regression and (iii) simple linear regression when one or both variables
were given in a grouped form and their observations were generated form the bivariate power-normal
distribution (BPND). In all of (i), (ii) and (iii), the analogy of the procedure used in univariate grouped
observation case showed that the maximum likelihood estimates of parameters had the strong consistency
and asymptotic normality under certain conditions. Correlation table and regression were equivalent
situation in our viewpoint. Thus, the solution provided for correlation tables was easily modified to

include bivariate regression. The same sets of observations were then used to illustrate both procedures.
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Notations

Notation Definition/Example Content
General

o, O o(1), O(1/n) Stochastic order
r I'lv) = j; " e x" dx Gamma function

I Mo

Vector and Matrix
A A=(ail.;i=1’...p;j=1’...,q)

(A);

* X =(x,%,, %)
T xT’ AT
-1 A-l
ln ln = (Ll’...’l)T
On O" = (O’O’...’O)T
In = (6l];l,J =1,...’n)
I”
6; =1 =)
vf v I E _(F L F
ox axl axp
Vif V2f=(af/6xiaxj;i,j=L...’p)
R R(A4)

Random variables and Distribution
X

Product

Matrix with p rows and g columns

The ij element of matrix A

Column vector with components
xl ,7 X

n
Transposed matrix of matrix 4
Inverse matrix of matrix A

n x1 column vector with elements all
equal to unity

nx1 column vector with elements all
equal to zero

nxn matrix with all diagonal ele-
ments are unity and zeros elsewhere:
Identity matrix

Gradient vector

Hessian matrix

Space spanned by matrix A

Random variable
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Notation Definition/Example Content

X X=(X, X, )’ p -dimensional random variable
—as._, X, —”'—>X(n > ) Almost surely convergence

as ‘ Almost surely

—2 5 X, ——X(n—>x) Convergence in probability

— X, —4=X Convergence in distribution

Pr Pr[A] Probability of event A

E[] E[X], E[X] Expectation

E[[]

varf‘]

cov[]

N(u,0%)

Nn (:u? E)
PND(A, u,0)
Others

3 S N ~PR e P

o}

E[Y}x]

var[X]=E[X - B[X]}
var[X]=E[X -E[X]f
cov[X,Y]

2 =(0;) = var(X)

Conditional expectation

Variance

Covariance

Variance-covariance matrix
Normal distribution

n -dimensional normal distribution

Power-normal distribution

Transforming parameter

Maximum likelihood estimate of A

Maximum likelihood estimate of 1t

Maximum likelihood estimate of O

Weighted least square estimate of 1

Weighted least square estimate of O



Abbreviations

Abbreviation Definition

AIC Akaike’s information criterion
ANOVA Analysis of variance

APT Asymmetric power-transformation
AOPT Asymmetric odds-ratio power-transformation
BPND Bivariate power-normal distribution
DI Data investigation

FPT Folded power-transformation
GLIM Generalized linear model

NPT Normalizing power-transformation
OPT Ordinary power-transformation
PND Power-normal distribution

PT Power-transformation

PVE Proportion of variation explained
SPT Symmetric power-transformation



Lists of Data

Example 1 (Stuart and Ord, 1986): The data given below are 8,585 adult males in the United King-
dom (including, at the time of collection of the data, the whole of Ireland), distributed according to
height.

Height No. of Men Height

Example 2 (Stuart and Ord, 1986): The data given below are 7,749 adult males in the United King-

dom (including, at the time of collection of the data, the whole of Ireland), distributed according to

No. of Men
57 - 2 68 - 1,230
58 - 4 69 - 1,063
59 - 14 70 - 646
60 - 41 71 - 392
61 - 82 72 - 202
62 - 169 73 - 79
63 - 394 74 - 32
64 - 669 75 - 16
65 - 990 76 - 5
66 - 1,223 77 - 2
67 - 1,329 Total 8,585

weight.
Weight(lb.) No. of Men| Weight(lb.) No. of Men
0 - 2 190 - 263
100 - 34 200 - 107
110 - 152 210 - 85
120 - 390 220 - 41
130 - 867 230 - 16
140 - 1,623 240 - 11
150 - 1,559 250 - 8
160 - 1,326 260 - 1
170 - 787 270 - -
180 - 476 280 - 1
Total 7749
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Example 3 (Daniel, 1987): The data given below are the age of 75 cases of a certain disease reported

during a year in a particular state.

Age No. of Cases
5 - 14 5
15 - 24 10
25 - 34 20
35 - 44 22
45 - 54 13
55 - 64 5
Total 75

Example 4 (Pagano and Gauvreau, 1993): The data given below are the birth weight of 3,751,275

infants.

Birth Weight(grams)  No. of Infants

0 - 499 4,843
500 - 999 17,487
1,000 - 1,499 23,139
1,500 - 1,999 49,112
2,000 - 2,499 160,919
2,500 - 2,999 597,738
3,000 - 3,499 1,376,008
3,500 - 3,999 1,106,634
4,000 - 4,499 344,390
4,500 - 4,999 62,769
5,000 - 5,499 8,236
Total 3,751,275

Example 5 (Siegel and Morgan, 1996): The data given below are the 36 women’s professional golf

tournaments in 1979 paid the following prizes.

No. of Tour-
Thousands of Dollars naments

10 - 14 3

15 - 19 20

20 - 24 6

25 - 29 0

30 - 34 7

Total 36
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xiii

Example 6 (Anderson et al., 1985: Bland, 1995): The data given below are the age of death associ-

ated with volatile substance abuse (VSA) mortality for Great Britain.

Age VSA Death
0 - 9 0
10 - 14 44
15 - 19 150
20 - 24 45
25 - 29 15
30 - 39 8
40 - 49 2
50 - 59 7
60 - 4
Total 260

Example 7 (Brown and Hollander, 1977): The data given below are the results of the measurement

of serum cholesterol on the 500 adult males in a very small city.

Cholesterol Measure- No. of
ment Males
75 - 99 3
100 - 124 6
125 - 149 14
150 - 174 26
175 - 199 36
200 - 224 49
225 - 249 63
250 - 274 65
275 - 299 57
300 - 324 48
325 - 349 46
350 - 374 33
375 - 399 24
400 - 424 16
425 - 449 4
450 - 549 10

Total 500

Example 8 (Silverman, 1986): The data given below are the lengths of 86 spells of psychiatric treat-

ment undergone by patients used as controls in a study if suicide risks.

Silverman (1986) divides the

domain [0,800] into 20 intervals of length 40 to applying the density smoothing to the data set.

1
17
31
40
67
91

7
18
31
49
75
92

1 5
21 21
32 34
49 54
76 79
93 93

123 126 129 134
228 231 235 242
369 415 573 609

7
22
35
56
82

103
144
256
640

8
25
36
56
83

103
147
256
737

8
27
37
62
84

111

13 14 14
27 30 30
38 39 39
63 65 65
84 84 90
112 119 122

153 163 167 175
257 311 314 322
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Example 9 (Daniel, 1987): The data given below are the weights in ounces of malignant tumors re-
moved from the abdomens of 57 subjects. Daniel (1987) divides the data into the 7 interval of length 10

by using Sturges’ rule.

68 65 12 22
63 43 32 43
42 25 49 27
27 74 38 49
30 51 42 28
36 36 27 23
28 42 31 19
32 28 50 46
79 31 38 30
27 28 21 43
22 25 16 49
23 45 24 12
24 12 69

25 57 47

44 51 23

Example 10 (Chen, 1995): The data given below are the numbers of cycles to failure for a group of 60

electrical appliance in a life test.

14 34 59 61 69 80 123 142 165 210
381 464 479 556 574 839 917 969 991 1,064
1,088 1,091 1,174 1,270 1,275 1,355 1,397 1,477 1,578 1,649
1,702 1,893 1,932 2,001 2,161 2,292 2,326 2,337 2,628 2,785
2,811 2,886 2,993 3,122 3,248 3,715 3,790 3,857 3,912 4,100
4,106 4,116 4,315 4,510 4,586 5,267 5,299 5,583 6,065 9,701
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Example 11 (Industry Wage Surveys, 1976): The data given below are the weekly earnings of sec-
retaries. The observations outside the range [130,250) are given ungrouped. So five observations
falling in [120,130) are 121,123,125,127,129 respectively, and the last three observations are 255, 285

and 325 respectively.

Weekly Earning V N‘:ét(;tiizc Ungrouped
120 - 130 5 121,123,125,127,129
130 - 140 45
140 - 150 125
150 - 160 126
160 - 170 141
170 - 180 100
180 - 190 69
190 - 200 70
200 - 210 48
210 - 220 43
220 - 230 1"

230 - 240 24

240 - 250 4

250 - 260 1 255

260 - 270 0

270 - 280 0

280 - 290 1 285

290 - 300 0

300 - 310 0

310 - 320 0

320 - 330 1 325
Total 814

Example 12 (Fisher and Belle, 1993): The data given below are the aflatoxin levels of raw peanut
kernels, The observations outside [20,50) are given grouped. Therefore, the twelve observations
falling in {20,50) are 26,26,22,27,23,28,30,36,31,35,37 and 48 respectively.

No. of

Aflatoxin levels peanut Ungrouped
10 - 20 1
20 - 50 12 26,26,22,27,23,28,30,36,31,35,37,48
50 - 2

Total 15
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Example 13 (Sugiura, 1980,1981): The data given below are the total score of the common first-

stage examination for university entrance conducted in fiscal 1979, 1980 and 1981.

Year

Score 1979 1980 1981

0 - 300 2,622 2,400 4,500
301 - 350 4,972 5,700 7,800
351 - 400 9,166 11,400 13,500

401 - 450 14,996 17,400 21,600
451 - 500 22,351 25,500 30,600
501 - 550 31,015 34,800 37,500
551 - 600 38,808 44,100 43,800
601 - 650 45,079 49,800 45,600
651 - 700 46,363 48,600 43,200
701 - 750 42,061 41,700 36,300
751 - 800 33,429 29,700 27,900
801 - 850 22,632 16,200 17,700

851 - 900 11,160 s 700 8,100
901 - 950 2,486 70 1,910
Total 307140 333,000 340,010

Example 14 (Stuart and Ord, 1986): The data given below are the number of major labour strikes in
the U.K., 1948-59, commencing in each week. Stuart and Ord (1986) give the data as an example to

describe the Poisson distribution.

No. of commencing in No. of weeks with

this no. com-
week mencing
0 252
1 229
2 109
3 28
4 or over 8

Total 626
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Example 15 (Domae and Miyahara, 1984): The data given below are body weight of 1,084 students

who entered Saitama University in fiscal 1982.

All Male Female
. No. of . No. of . No. of

Weight Students Weight Students Weight Students

- 33.3 0 - 39.5 0 - 31.9 0

34.9 - 36.6 1 41.0 - 42.4 0 319 - 34.5 0
38.3 - 40.0 3 43.9 - 43.5 1 345 - 37.2 1
41.6 - 43.3 22 46.8 - 48.3 12 37.2 - 39.8 2
45.0 - 46.7 53 49.7 - 51.2 36 39.8 - 42.4 14
48.3 - 50.0 89 52.6 - 54 1 62 424 - 45.0 27
51.7 - 53.4 142 555 - 57.0 105 45.0 - 477 48
55.0 - 56.7 177 58.4 - 59.9 112 47.7 - 50.3 55
58.4 - 60.1 155 61.4 - 62.8 136 50.3 - 52.9 57
61.7 - 63.4 166 64.3 - 65.7 N2 529 - 55.6 51
65.1 - 66.8 112 67.2 - 68.6 66 55.6 - 58.2 31
68.4 - 70.1 80 70.1 - 71.5 44 58.2 - 60.8 22
718 - 73.5 38 73.0 - 74.5 26 60.8 - 63.4 8
75.1 - 76.8 22 85.9 - 77.4 21 63.4 - 66.1 7
78.5 - 80.2 11 88.8 - 80.3 8 66.1 - 68.7 2
81.8 - 83.5 4 81.7 - 83.2 4 68.7 - 71.3 2
83.5 - 9 83.2 - 8 713 - 4
Total 1,084 Total 753 Total 331

Example 16(Cramér, 1974): The frequencies in several groups of age of parents for 475,322 boy chil-

dren in Norway during nineteen years period 1871-1900.

Age of mother
' 20 25 30 35 40 45
Age of ) ) A _ _ . )
Father 25 30 35 40 45 Total
0- 20 377 974 555 187 93 25 6 2,217
20 - 25 2,173 18,043 11,173 3,448 1,022 258 30 36,147
25 - 30 1814 26,956 43,082 16,760 4,564 973 123 94,272
30 - 35 700 14,252 38,505 41,208 14,475 3,243 287 112,670
35 - 40 238 4,738 17,914 32,240 31,573 8,426 836 95,965
40 - 45 103 1,791 6,586 16,214 24,770 18,079 2,171 69,714
45 - 50 47 695 2,593 5,952 12,453 13,170 4,006 38,916
50 - 55 21 31 995 2,503 4,492 6,322 2,574 17,218
55 - 60 5 133 412 925 1,790 2,141 1,086 6,492
60 - 65 10 57 190 408 736 822 348 2,571
65 - 70 6 25 68 173 266 283 131 952
70 - 2 12 46 59 119 113 48 399
Total 5,496 67,987 122,119 120,077 96,353 53,855 11,646 477,533
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Example 17(Holmes, 1974): The frequencies in several groups of total miles driven and family in-

come for 4012 families (car owners) during 1973,

Family income

0 5 10 15 20 25 30 35

Miles driven 5 10 15 20 25 30 35 Total
0o - 3,060 123 42 31 15 7 2 1 6 227
3,050 - 4,900 141 9 50 16 18 6 6 9 337
4,900 - 6,550 99 109 102 32 20 7 10 13 392
6,550 - 8,700 89 134 109 46 44 12 16 16 466
8,700 - 10,850 82 102 130 60 51 19 18 25 487
10,850 - 12,900 41 69 146 75 53 30 25 36 475
12,900 - 15,350 46 68 116 80 51 42 23 33 459
15,350 - 18,500 18 44 100 97 60 33 28 39 419
18,500 - 23,500 18 51 76 68 62 44 19 44 382
23,500 6 39 61 58 60 37 43 64 368
Total 663 749 921 547 426 232 189 285 4,012

Example 18(Winkelmann, 1994): The frequencies of the number of employers and the number of un-

employment spells during the ten years period 1974-1984 for 1,962 individuals, provided by German

Socio-economic panel (SOEP).

Unem- Direct job change

ployment ¢ 1 2 3 4 5 6 7 8 9 10 12 Total
0 1,102 301 105 25 20 5 1 2 1 2 1,564

1 146 79 21 10 1 3 2 1 1 264

2 34 16 6 6 2 2 1 1 1 69

3 20 4 1 2 27

4 7 2 2 1

5 6 2 8

6 2 1 3

7 2 2

8 3 3

9 3 3

10 7 7

15 1 1

Total 1,333 404 133 43 25 10 4 4 1 2 2 1 1,962
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Example 19 (Mardia, 1970: Stuart and Ord, 1986): The frequency of the number of 9,440 beans
according to both length and breadth.

Breath (midpoint)

Length —= 6625 6.875 7.125 7.375 7.625 7.875 8.125 8.375 8.625 8.875 9.125 Total
95 1 ;
10.0 1 3 1 1 1 7
10.5 1 4 7 6 18
11.0 1 13 1 N 36
11.5 12 32 22 4 70
12.0 2 21 25 37 27 3 115
12.5 1 8 3 78 55 19 3 199
13.0 9 28 124 175 89 12 437
135 1 18 137 361 330 73 9 929
14.0 13 91 469 794 362 56 2 1,787
145 1 23 236 871 913 227 23 2,294
15.0 6 65 2385 956 574 93 3 2,082
15.5 4 81 375 494 156 19 1,129
16.0 1 7 44 105 101 17 275
16.5 4 18 23 8 2 55
17.0 2 a4 6
Total 2 10 72 170 530 1397 2579 2,742 1,483 400 48 5 9440

Example 20 (Stuart and Ord, 1986): The frequencies of the number of students in the University of
London, 1995, classified by the number of newspapers read and the number of newspapers looked at only,

on a particular day.

Number Number looked at only
read 0 1 2 3 4 5ormore Total
0 77 75 19 10 1 2 184
1 179 136 65 20 15 2 417
2 86 70 45 18 1 3 223
3 17 21 13 3 4 58
4 4 2 2 2 10
5 or more 2 2 2 6

Total 365 306 144 55 21 7 898




1
Introduction

1.1 Outline

In medical science and biology, observations may be specified only by two certain observed points (each
observations being defined by upper and lower bounds) because of some restrictions during process of
phenomenon occurring, or an observation system. Observations are also grouped into the interval in
advance by some criteria. This grouped observation (or interval censored observation) arises naturally
whenever individuals or experimental units are observed only occasionally and where the failure event of
interest dosed not preclude continued follow-up. Also, observations may be some property connected
with the health of the patient in clinical trials, so that patients are classified as “absent”, “mild”, “moder-
ate” and “ severe”. Furthermore, it is desirable for ease of calculation or graphical representation to
divide the observed range of variation into classes (Cox, 1957: Borkowf et al., 1997: Altman, 1998). On
the other hands, it is thought that variables are observed and recorded in finite precision. In a funda-
mental sense, all variables are eventually rounded or coarsened, i.e., grouped (Heitjan, 1989). In these
case, the midpoint of the interval can used as a representative value, and some corrections such as Shep-
pard, may be used to calculate some statistics or quantities such as mean and variance (Stuart and Ord,
1986). However, this procedure may not often be appropriate in some cases because observations are
often found to have skewed distribution, the numbers of intervals are often small or the lengths of inter-
vals are wide (Heitjan, 1989).

So, the probability, which the observations lie within the interval, can be obtained by supposing some
underlying distribution, which are appropriate for describing the phenomenon. Accordingly, the likeli-
hood can be constructed and the inferences about the parameters of distribution can be derived based on
the likelihood. In the inferences, the estimation of the parameter, which describe the shape of distribu-

tion, have received particularly focus (Gjeddebaek, 1949, 1956, 1957, 1959a, 1959b, 1961, 1968: Kull-



2 ‘ Introduction

dorff, 1962: Kempthorne, 1966: Barnard, 1976: Kempthorne and Folks, 1971: Copas, 1972: Giesbrecht
and Kempthorne, 1976: Nabeya, 1983: Stuart and Ord, 1986: Heitjan, 1989: Atkinson et al., 1991).
Then, goodness of fit test on chi-square statistics, or information criteria such as Akaike’s information
criterion (AIC, Akaike, 1972) have be used to select the underlying distribution (Kariya, 1975, 1979:
Kariya and Akasaka, 1976: Sugiura, 1980, 1981: Domae and Miyahara, 1984). Since such measures are
used under these underlying distributions, only the gap between the real and the ideal (hypothesis) can be
quantitatively represented and evaluated. However, it is difficult to try the flexible fitting of the dis-
tributions on date-adaptive as long as one persist in these underlying distributions. In practice, it is de-
sirable that the inference can be carried out on the family of the distribution or data-adaptive distribution
which include the underlying distribution, if it were possible, normal distribution with good "property” in
the statistical inferences (Matsubara and Goto, 1979: Goto, 1986).

In this paper, we propose an exploratory approach to the inference of grouped observations based on
the power-normal distribution (PND) proposed by Goto et al. (1983) when the underlying distribution is
unknown or when there is no strong knowledge of process generating the data. Here, the PND is a theo-
retical distribution supporting the underlying concept of power-transformation and includes normal dis-
tribution. |

In Chapter 2, we firstly proceed to develop the procedure for fitting of the PND to univariate grouped
observations. We consider the most elementary case, which is when there is only one variable of interest
and its observations are given in a grouped form such as a frequency table. This case is investigated in
Section 2.2 and serves to introduce the general methodology which will be used in subsequent section.
In all case, the maximum likelihood estimates are not obtainable analytically and iterative procedures
have to be employed to solve the likelihood equations. This procedure is considered in Section 2.2 and
2.3. In order to have a concrete and practical grasp of our procedure, several numerical examples are
illustrated. Then, medium-sized simulation experiment is performed to evaluate the precision of maxi-
mum likelihood estimates obtained in our procedure. The PND is also applied in the other univariate
observation case. These are generally called mixed observation case since they involve both ungrouped
(exactly specified) and grouped observations. Furthermore, it is applied in the observations subjected to
upper constraint and in discrete observations.

In Chapter 3 and 4, we focus on two variables situation and consider two variables grouped in a corre-
lation table, grouped bivariate regression, and simple linear regression when one or both variables are
given in a grouped form. Thus, the observations are from a bivariate power-normal distribution (BPND)

which is an extension of the PND to bivariate case. Correlation tables and bivariate regression are
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equivalent situations from our viewpoint. Thus, the solution provided for correlation tables is easily
modified to include bivariate regression.
In Chapter 5, some knowledge obtained by these investigations and considerations are summarized as

concluding remarks, and further developments are mentioned.

1.2 Grouped Observations

The problem of the statistical analysis of grouped observations has received a great deal of attention in the
literature, so we will just briefly review some aspects of this general problem which are of interest to
development of the present work. We first mention some situations in which we have to deal with

grouped observations:

*  The original observations are collected in grouped form (times of failure of objects subjected to
inspection at regular intervals and census observations in general, where the respondents check
the box corresponding to an appropriate level of age, income, etc),

* Individual observations are deemed confidential (this occurs very often with economic and so-
ciological information),

e Original observations show a tendency toward heaping at selected digits (usually happens with
age tabulations),

*  The set of observation is too vast and limited research funds prohibit the use of the exact values.

Compared with many other kinds of observations, the frequency theory of grouped observations analy-
sis is poorly developed. The main problem is that the sampling distributions of many potential estimates
are complex and unattractive, so that the usual sort of decision-theoretic analysis has not been undertaken.
Thus, for a long time the bulwark of the sampling theory of grouped observations was the Sheppard mo-
ment corrections, whose sampling properties are poor as Heitjan (1988) has indicated.

On the other hand, maximum likelihood estimates has been shown in the normal and exponential cases
to be consistent and asymptotically efficient (Kulldorff, 1961). Expect for these distributions, the as-
ymptotic theory has not been carefully examined. This has not deterred practice, however, where it has
become more common to see examples of grouped observations maximum likelihood estimation. The
main subjects related with this paper are reviewed as follows. See Gjeddebaek (1968), Haitovsky (1982)

and Heitjan (1989) for detailed reviews.

Maximum Likelihood from Grouped Observations
Maximum likelihood estimation has widely used with grouped observations. For the grouped univariate

normal observation, the work of Gjeddebaek (1949,1956, 1957, 1959a, 1959b, 1961, 1968) is foremost.
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Other contributors were Stevens (1948) and Yoneda and Uchiyama (1956). Taillis and Young (1962)
and Heitjan (1987) considered arbitrarily grouped bivariate normal data. Tallis (1967), extensions of
Lindley’s method are provided for multivariate distributions under equal grouping and univariate dis-
tributions under unequal grouping. Deken (1983) discussed higher dimensional multivariate date, but
his algorithm is appropriate only for very small grouping rectangles, in which case corrections can be a
viable alternative. Kulldorff (1961) presents a coherent recompilation of results on maximum likelihood
estimations for grouped observations from exponential distributions, and in the 1-parameter-unknown
case, for the normal distribution. Rao (1973) gives results for general multinomial model with cell
probabilities depending on the unknown parameters. Aigner and Goldberger (1970) covered the Pa-
reto’s law and Flygare et al. (1985) have treated the Weibull. Boardman (1973) considered the com-
pound exponential, a special case of bivariate grouping in which the grouping sets are unions of rectan-
gles and triangles. Most recently Pettitt (1985) and Beckman and Johnson (1987) have fit the t distri-

bution, including a degrees of freedom parameter, the latter by Newton’s method, the former by EM.

Choice of Algorithms

Because the usual definition of grouped observations subsumes standard kinds of censoring as well, good
algorithms for grouped observation likelihood calculations can be quite generally useful. Available
methods are variants of either EM, Newton-Raphson or Fisher scoring. Newton-Raphson appears to be
the swiftest, followed by scoring and EM (Schader and Schmid, 1984). Burrigde (1981) has suggested
using concavity parameterizations to speed up Newton-Raphson algorithms. EM algorithms, although
they have at best a linear rate of convergence, are guaranteed never to decrease the likelihood and so are
quite robust, a virtue not to be taken lightly in the face of the vagaries of real observations. They are
also easier to program and less costly per iteration than the other methods.

Computer programs in the literature are by Swan (Normal by Newton-Raphson, 1969), Benn and Side-
botton (Scale and location families by scoring, 1976) and Wolynetz (Normal linear model by quasi-EM,
1979a, 1979b).  Stirling (1984) has recommended the use of iteratively reweighted least squares for the
linear part (i.e., means and regression coefficients) in grouped observation models. This would permit
fitting these models in generalized linear model (GLIM), but difficulties in estimation of the nuisance

parameters may render this approach impractical.

Bivariate/Multivariate Grouped Observations and Regression
Abivariate frequency distribution is called a correlation table if the relationship between the two variables

is of interest (Kitagawa and Inaba, 1979). Yule and Kendall (1968) state that “ The difference between a
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correlation table and a contingency table lies in the fact that the latter term may be, and usually is, applied
to tables classified according to unmeasured quantities or imperfectly defined intervals.”

Pearson (1901) is apparently the first to attempt fitting a bivariate normal distribution to the observa-
tions given in a correlation table (even though he was only interested in estimating the correlation coeffi-
cient). He considered that that some 2X 2 tables were obtained by dividing a bivariate normal popula-
tion into for sections. Pearson then proposed a procedure for obtaining an estimate of O (the true cor-
relation coefficient) and the resulting estimate was called the tetrachoric correlation, because it is based
on the tetrachoric (four-entry) table. Among the known properties of tetrachoric correlation is its
equivalence with the maximum likelihood estimations [see Hamdan (1970)].

It was Pearson again who considered the problem of estimation of the correlation coefficient when only
one of the variables is dichotomized and the other is continuous, the same assumption of bivariate nor-
mality is made in order to find what is termed the biserial correlation. Tate (1955) reviews this problem
form several viewpoints and provides may new results.

Generalization of the tetrachoric method to a p X g correlation table by Ritchie-Scott (1918) leads to
the polychoric correlation.

The problem of regression when the observations are grouped has been reviewed by Haitovsky (1973),
particularly for the case when both the cell means and counts are available (a very frequency encountered
case in economic work). However, only one small chapter of that monograph is dedicated to the bivari-
ate normal regression model when the cell means are not available. Some results regarding bias and loss
of efficiency, due to the use of midpoints instead of cell means, are developed and connections with re-
gression when both variables are subjected to error are established.

In Fryer and Pethybridge (1972), a generalization of Lindley’s methods is proposed to obtain simpli-
fied estimates of the maximum likelihood estimations in the bivariate normal regression model. They
considered the following cased; (i) both variables grouped, and (ii) one variables grouped and the other
continuous.

Some departures of the assumptions made by Fryer and Pethybridge (1972) are studied numerically by
Pethybridge (1975), these departures are; small samples, non-normality (the case studied is when non-
normality is barely detectable, since gross non-normality can be detected and invalidates the use of the
corrections) and unequal group widths “which might arise for instance when a transformation to normal-

ity is deemed necessary.”
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Effect of Grouping or Categorizing

Converting a continuous variable into a grouped or categorical one will result in loss of information.
But it can be, and often is argued that with three or more interval or categories the loss is small and is
offset by a gain in simplicity and the avoidance of assumptions. Corner (1972) quantified the loss of
information when grouping a normal distributed variable which is linearly related to the outcome vari-
ables using the relative efficiency, which is based on the ratio of the expected variances of estimated re-
gression coefficients under two models. For 2, 3, 4 and 5 groups, efficiency relative to an ungrouped
analysis is 65%, 81%, 88% and 92% respectively. And it is almost identical for an exponentially dis-
tributed variable.

Given the decision to grouping, it is not at all obvious how many groups to create. In practice, the
sample size should be one factor that influences the decision, as it is undesirable to have sparsely populat-
ed groups. The placing of the cutpoints may also not be obvious. To decide to the number of grouping
or interval, Sturges’ rule (Sturges, 1926) is commonly and widely used. Sakamoto et al. (1986) pro-
posed the procedure using Akaike’s Information Criterion (AIC)(Akaike, 1972). In stead of AIC Na-
gahata (1984) used the Fisher information and Mori (1975) employed the maximization criterion of inte-
grated mean squares of error. Using optimally placed intervals, as derived by Corner (1972) following
Cox (1957), is little different, in terms of efficiency, from using equally spaced intervals when the vari-
ables is normally distributed, but when the variables has an exponential distribution there is reduced effi-
ciency with equiprobable intervals (Lagakos, 1988). This result is important, as it is common to group-
ing in such situations, and equiprobable intervals are the norm. Morgan and Elashoff (1986) examined
the effect of grouping a continuous covariate when comparing survival times. Here too, unequal-

grouping give increased efficiency.

1.3 Power Transformation and Power-normal

Distribution

Data Investigation (DI) is particularly important in first step of process of statistical data analysis (Goto,
1986). In this step, it should be checked whether any assumptions of statistical methods to be applied
were satisfied or not by looking at the data form various points of view. The standard statistical
methods such as regression analysis or analysis of variance (ANOVA), which assume the linear model,

are derived in the basis of (i) additivity or linearity of the model, (ii) constant variance of error term, and
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(iii) normality of response observation. But, it is experientially known or seen in practice that all or
some of these three assumptions would not be satisfied. Thus, it is not easy to discuss the methods of
copying which reduce the discrepancy between the data and assumed model or build the bridge across the
discrepancy. It is considerably difficult to diagnose what the cause of the discrepancy is, and to present
consistently the methods of copying. It can think that the approach, which can avoid these assumptions
or not be affected by these assumptions, is developed. Alternatively, it can think that observation is
transformed to another scale in some methods in accordance with the premise and the nature of the statis-
tical method to be applied.

In data analysis, we must proceed considering the five points of view, i.e., methodology, interpretation,
theory, numerical operation (calculation), and practical application. It is needless to say “transforma-
tion” also need to be arranged with respect to each if the five points of view (Goto, 1986). Of transfor-
mations, “power-transformation” proposed by Box and Cox (1964) is comprehensive one, which includes
log, square, reciprocal transformation, and so on.

Unfortunately, the power-transformed variable Y™ of the positive variable Y lies in lower or upper
bounded region according to sign of transforming parameter A, and the distribution of the power-
transformed variables can not be full normal for A = Q. Only if original variable Y has a log-normal
distribution, the power-transformed variable Y™ will have a normal distribution (Hernandez and John-
son, 1980).  However, it is possible to make observations after power-transformation be near-normal,
and it is useful (Draper and Cox, 1969).

As Kruscal (1986) has suggested, in the order of (iii) normality of response observation, (ii) constant
variance of error term, (i) additivity or linearity of the models, these three assumptions will become im-
portant in the practical data analysis. However, in univariate problems such as deciding of “normal” or
reference range of laboratory data in clinical study, the evaluation of (iii) is most important, where linear-
ity or non-linearity is not assumed in the structure of data.

If it is careful of these things, it is desirable that power-transformation is applied in the practice from
two viewpoints.

First approach assumes that distribution shape dose not change by power-transformation, and achieve
(ii) or (iii). In this approach, normal distribution is usually assumed, and the name “power-
transformation”. The inference procedure will be based on the maximum likelihood in which the power-
transformed observations have exactly a normal distribution.

Second approach assumes that the original variable Y has “the power-normal distribution” and the

power-transformed variable Y™ has near-normal distribution. It is clear that this approach intends to
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achieve normality and the name “ power-normal transformation” stresses the fact. As above mentioned,
the distribution of power-transformed variables become a right or left truncated normal distribution ac-
cording to the sign of transforming parameter. In this case, the inference procedure is based on the
maximum likelihood allowing for the magnitude of truncated probability in the distribution of the power-
transformed variable. Because the evaluation of truncated probability become difficult in the practice,
the inference on parameters such as mean or variance is usually performed in which the transforming
parameter is assumed to be fixed. Then, it will be similar to the first procedure.

The applications of the PND are developed in the various models and analysis such as regression, sur-
vival, a multi-sample problem, bioassay, ANOVA and multivariate analysis, and it shows good perform-
ances. The genealogy of development and investigation on the power-transformation and the PND is
shown in Fig.1.3.1. The main subjects related with this paper are reviewed as follows. See Goto et al.

(1991) and Sakia (1992) for detailed reviews.

Data with Structure

Power-transformation is widely used in regression analysis. Power-transformation is performed to both
or either of response and explanatory variable, where it is focused only on the improvements of the mod-
els. Ordinary power-transformation of observation with non-normal error in regression analysis dose
not necessary imply the linearity of regression model. Nelder (1968) considered various transformations
models satisfy both normality of error and linearity of regression model, and proposed a transformation
methods of applying power-transformation to the former aim and log-transformation to the latter. The
method has been followed by Wood (1974). An impressive example has been given in his paper. Goto
et al. (1987) propose to apply the power-transformation to intend the achievement of two of (i) additivity
or linearity of the model, (ii) constant variance of error term, and (iii) normality of response observation,

and evaluate some performance of it. They refer to the transformation as double power-transformation.

Diagnostic and Robust Estimation

Maximum likelihood estimation is generally used to obtain parameter estimates. Several other methods
are proposed as alternative estimation. Andrews (1971) recommends the estimators based on significant
level of hypotheses testing for transforming parameter, and Hinkley (1975) gives the estimators based on
the ordered statistics of sampie (data). In addition, Hinkley (1977) and Carroll (1980) show the robust

estimation for transforming parameter.
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For diagnostic based on power-transformation, since Atkinson (1982) has proposed constructed vari-
able and related plots, Cook and Wang (1983), Carroll and Ruppert (1985), Goto and Hatanaka (1985)

and Atkinson (1986) improve the method or propose new type diagnostic tool.

Transformation for Counts Data and Discrete Distribution

We encounter responses with more than two ordered categories. Several explanatory variables or co-
variate are usually observed corresponding to the response, we are often interested in examining the effect
due to the explanatory variables on the response. In these circumstances, models in which a function of
the response probability is expressed by linear combination of the explanatory variables are often applied.
Logistic and proportional odds models are well known among such models. However, the response
function, which indicates transformation of the response probabilities in these models, is merely hypo-
thetical. In general, there is no evidence that symmetry distribution is assumed as a distribution on the
latent scale to ordered categorical response. Thus, it is necessary to diagnose and examine their appro-
priateness in any way. In order to answer to these requirements, the two models of power-
transformation can be applied. One is asymmetric power—transforination (Guerrero and Johnson, 1982),
and the other is symmetric power-transformation (Arandaz-Ordaz, 1981). These two transformations

can also be applied to observation subjected to an upper constraint (Atkinson, 1985).

Bioassay
Finney (1978) has discussed various transformations of metameters of dose and response in bioassay with
quantitative response, and describes in detail the application of poWer-transformation to examine the
adequacy.

In general dichotomous dose-response relation, use of the PND as tolerance distribution is proposed as

an extension view of probit analysis by Uesaka et al. (1981).

ANOVA

Applications of variable transformation to analysis of variance have been discussed for a long time by
many researchers. Many of them have aimed to achieve additivity of model and homoscedasticity of
error variance. Power-transformation using maximum likelihood method tries to satisfy normality of
residuals in addition to above two aims. In selecting the best transformation, it is said to be appropriate
to graph the changes on F-statistics of each factors, homoscedasticity test criteria, variance and skewness
and/or kurtosis of residuals, caused by the changes of transforming parameter. Criteria of homoscedas-

ticity and normality are considered to be appropriate for selection criteria when the observations are
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measured repeatedly [see Moore and Tukey (1954), Draper and Hunter (1969), Schlesselman (1971,
1973), Fuchs (1978,1979) and Goto et al. (1983) for detailed discussion about this topics].

Multivariate Analysis
Many of the theories of multivariate analysis are based on multivariate normal distribution. Thus, to
assure high theoretical properties in application, it is often desired to apply transformation bridging the
distribution of multivariate observations close to multivariate normal. In most of these cases applica-
tions of power-transformation seem to be useful. Then, we can estimate the transforming parameter
variables-wise or jointly following some procedures of Andrews et al. (1971) and Gnanadesikan (1977).
To evaluate multivariate normality of power-transformed observations, we can utilize test on multivari-
ate skewness and kurtosis (Mardia, 1970, 1974), the third and the fourth cumulants test (Uesaka and
Goto, 1979) or directional normality test [see Andrews et al. (1971), Goto et al. (1978) for details].
Other transformation procedures based on directional projection have been proposed by Andrews et al.
(1971). - Hatanaka, Goto and Nagai (1980) and Hatanaka, Inoue and tho (1981) have considered dis-
criminant analysis on the PND and evaluated some relative performances of it to ordinary Fisher’s linear
discrimination. Furthermore, Goto et al. (1980, 1981a, 1981b, 1982), Kawai et al. (1997) and Jimura et
al. (1997) have given some theoretical examination of definition and properties of the bivariate power-
normal distribution as the first step of generalization of univariate to multivariate power-normal distribu-

tion

Analysis of Repeated Measurement Experiment and Growth Curve
In this case, a variate with repeated measurements has been observed on a common characteristic. And
all the variables can be uniformly power-transformed; selecting transforming parameter affirms the ade-

quacy of the analysis on the scale after transformation.
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2
Univariate
Grouped Observations

2.1 Power-normal Distribution

For a positive random variable Y, the power-transformation is defined as

Y -1
— A=0

y® " M7 (2.1.1)
logY, A=0

where A is called the transforming parameter (Box and Cox, 1964). Then, the distribution of power-
transformed variable Y will become a near normal, which is the right or left-truncated distribution
according to the sign of A. Thus, Y has the power-normal distribution (PND), which probability

density function is given by

A-1 (A) 2 .
y O™ -w
‘A = A -/ 1.
g(y: 4, u,0) 7o eXp{ =" } 2.12)

where @ and o? are mean and variance in which the power-transformed variable Y® of Y havea

near-normal distribution, A(K) is the probability proportional constant term of the PND given by

O(sgn(A)k)), A=0,

A(x) = 1.
(x) {1, 120 (2.1.3)

where K = (Au +1)/(A0) is standardized truncation point of the near-normal distribution, and ®(")
is cumulative distribution function of standard normal distribution (Goto et al., 1983: Johnson et al.,

1994).
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Probability density function g(y :A,u,0°) have the 6 typical shapes; namely A >1 (J-shaped
distribution), A =1 (truncated normal distribution), c <A <1, A=c, O<A<c,and A <0 (L-
shaped distribution), where ¢ = 4/ (x?+4).

The m th moment about zero for the PND is given by

(2A0)™* $() D (2K)' (m v+l
gyn]-] V2 A& v (

, A>0,
24 2 ) g
cxp(mu +%m202), A=0

(2.1.4)

where ¢(*) is a probability density function of standard normal distribution, and I'(*) is Gamma
function. However, for A < 0, it will become

gy : A, u,0) =0(y*™). (2.1.5)
Then, the moments over |l| do not exist. Therefore, only if A =0, mean, variance, skewness and

kurtosis can be obtained (Uesaka and Goto, 1980). Also, s quintiles §(s) is represented by

s(s) = 1+ Az,)"* : (2.1.6)
where
- sO(k) +P(-x), A=0,
o LoH). ) (%) 2.1.7)
o s®(-x), A=0.
Therefore, midpoint of this distribution M, is given by
romm+x)*, A =0,
= (71 ) g (2.1.8)
exp(), A=0
where 7] is a quintiles defined by
lA(K) +®(-x), A>0,
f 9@ =17 2.1.9)
EA(K ), A<O.

It A(k) is nearly one, (1+ Au)Y* will be an approximation value of midpoint M. See Goto et al.
(1979), Goto and Inoue (1980), Uesaka and Goto (1980), Uesaka and Goto (1982), Goto et al. (1983),
Goto et al. (1984), Goto et al. (1991) and Johnson et al. (1994) for the detailed discussions about the
properties and performances of the PND. Thus, setting 6 T = (A, u,0?%), the log-likelihood function

for the sample of size 7 is given by



Completely Grouped Observations 15

1 (6)= —%mg(zn)-%logoz
(2.1.10)

1 & n
o Z(yf“ - u)?+(A —1)210gy,- - nlog A(x).

The maximum likelihood estimates of A, u and o? are obtained by maximizing this log-likelihood
function over A, 4 and O”. Then, assuming A(x) =1 in this situation equals that ¥;*) have a
normal distribution with mean ft and variance o in Box and Cox (1964). For fixed A, the

maximum likelihood estimates of w and o? are

n o, (4)
A Y
ALLH (A') = 2 ’
~ n

n iéf(l)" A F
6. (A)= 2 LA (2.1.12)
1= n ‘

(2.1.11)

respectively. Substitution of the these maximum likelihood estimates into the log-likelihood function

given by (2.1.4) yields, apart from constant

1,6,(1) = —glogé,?()»)ux—l)ﬁlogyi. 2113

A

The maximum likelihood estimate A is the value of the transforming parameter A for which the
maximized log-likelihood is a maximum. Furthermore, substitution of in into fi, (1) and G7(1)

yields the maximum likelihood estimates [, (}'.\n) and G’ (AA,‘) respectively.

2.2 Completely Grouped Observations

2.2.1 Fitting the PND to Grouped Observations

Let the observations of variable Y be grouped into k(k = 3) intervals denoted by I, =[y,,y,),
L =[yuya)e s I =[Yees Vi) s where 0=y, <y, <<y, <y, =®. The frequency of
the observations lying within interval I, =[y,,,¥,)(i =12, -+, k) will be denoted by #,, and
then the sum of the frequency is n = z f_lni . Let the probability that the observations lie within k
exclusive interval I,,[,,---,I, be denoted by p,,p,,:-,p, respectively, where
p= 2 1{‘-1 p; =1. Suppose that the frequency of the observations lying within the interval I, is

denoted by N ;» then its distribution will be a multinomial distribution.
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Pr(N, =n,,N, =n,,",N (2.2.1)

k
n! .
-—__'_—-; pil‘
! .--nk.IL_I

Usually, the maximum likelihood estimate p, of p; is given by p;, =n;/n.

Table 2.2.1 Fitting the PND to grouped observations

Upper and lower limit of Probability based on the PND
Interval the interval Frequency (0)
PND Near-normal Pri
1 [0,y,) ["'°°>}’1A)) ny (I)(zl)/A(K)
L | oys) ) | {0(z,) - @)}/ A(x)
I; [Yir Y:) [yl(-ll)a Vi A)) n; {q)(zi) - (I)(Zi-l)}/A(K)
k-1 [Yk-z’)’k-1) [y,(f)z,y,ﬁfi R | {q)(zk-l) "(I)(zk-z)}/A(K)
I, (Vi) [yk ) Ry {1' (I)(Zk-l)}/A(K)
(z)
e
g
/f \T(e)
Pena2(60) ]’/
S \“\
3\ Pruea (8)
pm()>>{/ | -

2z 2z 0

z)—Pzi-1) el
A% N

penil?)=

» Dz;)

B3 £

Figure 2.2.1 Fitting the PND to grouped observations
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In order to consider the likelihood for grouped observations based on the PND, the probability p; of
the observations lying within the interval I; is found by first power-transforming the interval
[y..»y;) and then applying the PND as a underlying distribution.  Therefore, setting

0" = (A, u,0), the probability Ppy; (@) based on the PND is given by
O(z,) - P(z,.,)

Peni(0) = A(K) (2.2.2)

where 2z =@ = u}fo, P (8) = ®(2)/AK) and  ppy(8) = fl- (z,)}/A(x).
Table 2.2.1 and Figure 2.2.1 show these relationships.

Therefore, the likelihood function for the sample of size 7 is given by
L,0)= HPPNL ). (2.2.3)
Then, the log-likelihood function becomes

k k
1,.(@)=1logL,(0)= 1ogn!—2 logn,!+ 2 n,; 1og ppy; (0). (2.2.4)

This log-likelihood function (2.2.4) are non-linear with respect to parameter A, so the maximum
likelihood estimates i, f and G of A, ¢ and O can not be presented explicitly. Even when
A is given as A, and A(K) =1 is assumed, the maximum likelihood estimates fi,(A,) and
G,(A,) of g and O can not be presented explicitly as (2.1.4). Then, fi,(4;) and G, (A,) are

given by the iterative formula

By () = 1y () + ( 00D D‘”n“’("o))), 025
u do
6,n () =6, (ho) +i(_D oL, O*)) - az,,(e(xo))). -
’ ’ G ou do
where
o VOO ;LG o FLOC) ;o cp pi o)

ou: oudo do
These derivatives associated with (2.2.5), (2.2.6) and (2.2.7) are given in Appendix 1. However,

(5,, (AO) can be presented explicitly in some situations”. Thus, it is possible to gain some insight into

*Once A and {4 are given as )\.0 and (4, if k = 3 and if the interval limits Y1 and Y2 are symmetric with

respect to ;. the MLE o (AO, ;uo) of O exists if and only if 0< n, < n,and is then given by

G(Ag> 1) =(¥2 - ,uO)/CI)"I(l/2+n2/2n)

where @ 7' (*) denote the inverse-function of @(-).
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our proposed procedure by investigating the asymptotic properties of ;\, [:L and 0. In deriving
these properties, we will follow the approach to discrete distributions in Hernandez and Johnson (1981).

These results will be shown in next section.

2.2.2 Properties of Parameter Estimates

The asymptotic properties of the maximum likelihood estimates A, fiand & of A, p and O will
be investigated. In the deriving properties of them, we will follow the approach to discrete distributions
in Hernandez and Johnson (1981).

Let 87 =(6,,0,,0,) = (A, u,0), Suppose that (i) the parameter space © is a compact subset
R*, which is given by © = {GT = (A,u,a)}, and (i) H(0) = E ¢ p;1og pp: (8)/p; which
has a unique global maximum at GOT = (A, Uy,0,)EO is a continuos function, where p, =
f L g (y)dy and g’ is the true probability density function. Also, suppose that (iii) 8, be an
interior point of © , and (iv) the Hessian of H (@), V>H(8,) be nonsingular at 8.

We know that ﬁim —> p, on an almost sure set, where p?,.’n =n, /n On this set, Stirling’s

approximation yields

k
llogn!——l—2logni!=
n n £

k k
logz‘n _zﬁin logﬁin
2n £ » »

. . 23.1)
+ > {(1 -k)logn- 2 log p, , } +0(n™).
n 1=
where O(n™') is uniformin @ . By (2.2.4), almost surely
1 I 5 . A
;ln (0) = 2 pi,n logpPNi (e) - E pi,n logpi,n +0(1)' (232)
i= (=]
Therefore, the inequality
1 k Pon: (0 ko k
~1,0)- 2[& log—"”lT(l = 2p,~,n log pe; (8) - Zpi 10g P (6)‘
= ‘ - = (2.3.3)
k k
+ 2 Pinlogp;, - Zp,- log p;| +o(1)
hold. Thus, because for 8 €O
k k
2 ﬁi,n log pey: (0) - ZP.' log ppyi (@) —=—0 (234
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as n — % (see Appendix 2) and continuity of xlogx, and p,, —**—p. as n —> o, the right
hand side of inequality (2.3.3) goes to zero with probability one uniformly in @ €© . Hence, as
n— o for 0EO

%aer&eHwy @33)

A

Therefore, it follows from Appendix 3 that @, —*—>8,, as n —> o by identifying H (@) with the
function f(@) of that Appendix.
In order to show the asymptotic normality of én , the gradient and the Hessian of the log-likelihood

function are considered. The gradient of [, (@) is given by

Vi (0) = 3L, (6) 9.,(6) ol,(6)
" 36, ~ 06, = a6,

(2.3.6)

and the Hessian of [, () , Vzln @) = (h,,,(0)) is the 3x 3 symmetric matrix with it elements
B, (0) = 3°1,(8)/30,00, (u,v =12,3), that is
’L,(0) 0°1,(8) 8°,(6)
3%02 ° 96,00, 6,00,
0%l (@) 3% () 0% (0
n( )’ zn(z)’ n( ) . (2.3.7)
90,00, 9°6] 36,06,
3’L,@) 9°L,0) 8°,0)
960,00, 96,00,  3°6;

V2l (8) =

It is readily from Appendix 1 that second partial derivatives are continuous on © . Using Taylor’s

formula to expand 7 V>V, (én) about 6,
1 s 1 1 . A
—=VI.(0,)==VI,0,)+=V°, (@ 6,-6 238
5,6) = 291,0) +-V L, @)V, -0)] @39

is obtained, where, 8 =7,08, +(1-7,)0,(0<7y, <1).
Next, since 8, —**—>0, as n —> %, with the assumption that @, is an interior point of ©,

VI, (é") = ( for all sufficiently large 7, on an almost sure set. Therefore, as 7 —> ®

—l—Vln @,) + lvzln N ){\/Z @, —00)}—”'—>0 (2.3.9)
n

Jn
sothat nV?VI (@,) and —n~'V?l (8, ){\/;(BA" -6, )} have the same limiting distribution.
Let D; be the indicator function of the set [, , thatis, D, (y;)=1if y, €I, and D/ (y;)=0 if
Y, €I, And @,(8,) = (1(80),@;,(8,),2:5(8,))" have the clements given by

dlog ppy; (0)

air (60) = 69

, r=123. (2.3.10)

8=8,
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Also, suppose that the random vectors X,(8,),X,(8,),"--,X,(0,) are identically and
independently distributed with E[X 1(00)]= VH(@,)=0 and E[X 8,)X7 @8, )] =W, where
W =(w,,) is given by

k
wuv = 2 piaiu (80 )aiv (00)

(2.3.11)
_ a P, alogpPNi(6)| alogpPNi(6)|
Z ; 36, leo 30, |,
Thus, n~'VI (6,) can be written as
1 1 n k 1 n
—=VI,(0,)=— D, (y)x;0,)=—> X,(0,). 2.3.12
\/;l— (6o) Zw 1;()’,)1;( 0) n; ,( 0) | ( )
Therefore, an application of the multivariate central limit theorem yields that, as n —
-—1—1,, 6,)—— N,(0.W). (2.3.13)
Jn
So, the fact that ﬁi’n —=&— p. as n —> % implies that
‘]'.‘h (6) a.s. az < 10 pPNi(e) - BZH(G) (2314)
n " 36,00, | £ P 708 ,. 36,00, .
Hence, as 7 —> © , with probability one uniformly in 8 €©
. 3°
lhlm n (en )_E_)___@ *
n 96,90,, |,
Therefore, Setting V' = {VZH CA )}_1 , and applying Slutsky’s theorem, as 7 —>
Jn@, -6,)—=—N,0,yWwV") (2.3.15)

is obtained.
The importance of the true probability density function g. is reflected in the asymptotic variance of

A

@, derived in above. If one is faced with the task of transforming grouped observations to near
normality, the true probabilities p; can be estimated by the observed frequencies ﬁi,n . Doing this one
obtains a consistent estimate of asymptotic variance of é” .

These results show that strong consistency and asymptotic normality of the maximum likelihood
estimates of A, W and O.

It should be noticed that the asymptotic results of this sections were obtain by pretending that the

distribution of the power-transformed variables Y of Y was exactly normal for some parameter
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values U, and O'g . Since Y('\“) can not have a normal distribution, the likelihood functions were

incorrectly derived. Here we determine the meaning of the limit of the maximum likelihood estimates

A

6,.
Hernandez and Johnson (1980) gave a new interpretation to the transforming parameter A obtained
by Box and Cox (1964) method. This new interpretation is based on the fact that the parameter value
found by minimizing the Kullback-Leibler information number between the probability density function
corresponding to Y™ and the normal probability density function is asymptotically equivalent to the
maximum likelihood estimates by Box and Cox (1964) method. It is in this sense that we say that the
distribution of the power-transformed variable Y™ is “close” to a normal distribution with parameters
iy and O‘g .

The generalization of the Kullback-Leibler information number interpretation to the both cases of
grouped and grouped observations combined with ungrouped is fairly obvious given that the Kullback-
Leibler information number is defined for probability density functions with respect to an arbitrary
measure V.

According to Kullback (1968), the Kullback-Leibler information number is defined as

£, £.1- [£0) log[%%—;}dv(y) @316

where f;(y)(i =1,2) are probability density functions with respect to the measure v . This number
provides a measure of the mean amount of information per observation from f, for discriminating
between f, and f,.

The definition of mean information per observation is motivated by the following considerations: Let
H, (i =1,2) be the hypothesis that ¥ is from the statistical population with probability density function
f;. Assume we have prior probabilities O(H,) = Pr[H, is true] and p(H,)=1-p(H,), then

Bayes’ theorem gives the posterior probabilities

fi(y)p(H,)
Y= 3.
Pl - T P 2347
Pr{H, Y |- 1- Pr[H, Y ] (2.3.18)

from which, taking the log-odds ratio, we obtain

o0 {Pr[H1|Y]}=1Og { fl(y)}mg {p(Ho} (2319)

Pr|H,[Y f2(») p(H;)
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or

D) [PIEED (e
log{fz(Y)}_log{Pr[Hz|Y_} l"g{mHz)}

= posterior log — odds -~ prior log - odds (2.3.20)

= gain in information per observation.

That is, log[f O/ fa (y)] is the information in ¥ =y for discrimination in favor of H, against

Hz- Its expected value, under H1 is

1f.:f,]=E, {1og%%;} 0321)

i.e., the mean information for discriminating in favor of H, against H, per observation”.

To make explicit the asymptotic equivalence of the minimizing values for the Kullback-Leibler
information number and the maximum likelihood estimates in the completely-grouped observation case
(the case of grouped observations combined with ungrouped ones is handled similarly) we consider the
Kullback-Leibler information number between two discrete distributions P; ={p ; ‘ p; >0i=1k,
and E D i =1}(j =12) defined on the same support. According to (2.3.16), the Kullback-

Leibler information numbers between P, and P, is

Dy

k
I[B;R]= 2 Py log(fii—). (2.322)

Setting
o ={Pi|P,~ =fDig'(y)dy >0,i =1,--,k},
N = {Pex 0] Pri 6) = B(z) = (2,1 )si =1,+-,k}

it follows easily that, under the condition mentioned to show consistency and asymptotic normality of

6, is also that value of @ which minimize I[Q;N].

* (i) Let Pl and Pz be two probability measures, since V = Pl +P2 dominates both, then some probability
density functions f1 and fz (associated with P1 and P2 respectively) always exist.

@) I[f,; f>]= O with equality holding if and only if f, = f, onasetof f; -probability one.
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Hence, obtaining the maximum likelihood estimates of @ using the likelihood function (2.2.4) is

asymptotically equivalent to finding the minimum of the Kullback-Leibler information number between

Q and N .
2.2.3 Algorithm for Parameter Estimation

In order to find the maximum likelihood estimate of 8" = (A, M,O) in our power-normal distribution
approach, we need to use an iterative procedure and this requires some initial estimates. Several
methods have been devised for obtaining approximate maximum likelihood estimates for ¢ and O
[c.f Lindley (1950), Swan (1969), Benn and Sidebottom (1976) and Wolynetz (1979a, 1979b)] which
may be used for getting initial values for those parameters. But the problem still remains with respect to
selecting an initial value for A. Thus, we cam apply a specialization to our case, of a two-stage

procedure. Namely,

* For fixed A, maximize [ (B) with respect to 4 and O, thus obtaining a value

6, (1) = (A, 1,(1),6,(1))
* maximize the already maximized log-likelihood [, (én (A)) withrespectto A to get é” (A)

In practice, the procedures of estimating parameters are based on Newton-Raphson iteration method.

Defining the estimates of A, u and O in the [-th iteration by A,, [, and &, respectively, the

algorithm is as follows:
STEP1: Select A, for initial value of A,.
STEP2: Select .’:"1(;'1) and &,(A,) for initial values of [, and &,.

Obtain K ; by solving the equation
Ay +1

ro,
And then calculate A(K) = 4, .

Ky

Estimate i:z, +1 and o 1+1 by the equation

2%1(8) 9%(0)] [018)
fa) [ .| 8 dudo ou
AN OIRER

2

Jdo

dudo o

Amp; pumfly,0=0 K=K,
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If |[:L,+1 - ,I:L,! +|6,+1 —6’1| >0 , replace [ by [ +1 and return to STEP3, where

d is a constant to judge convergence. In this paper, J is set at 0.0001.

~

Estimate A, byusing A;, [;, O, and K, by the equation
~ .~ oo 3°1(8
LY/ R0
A A .
A=Ay, p=fly ,0=Gp K=K,
STEP3: if ):m _):"l > ¢, replace I by i+1 and return to STEP 3, where € is a

constant to judge convergence. In this paper, £ is set at 0.0001.

STEP4: Calculate the log-likelihood form (2.2.4) by using A,,;, K., O, and K,,,.
STEPS: Stop the iteration, and A,,,, ;Lu 1 and 6'1.,, a2 by A, { and G, respectively.

In the above algorithm, it is important to select (i, (A,) and O,(A,) for initial values of [, and
o ;- Methods such as weighted least square or specifying mid-point in the interval can be used to select
initial values. In this paper, weighted least square method was employed. Weighted least square

estimates [ and G of U and O are found as following:

Letting
i-1
7, =—1-an, 2sisk, (2.2.23)
n4
u, =@ (%) (2.2.24)
we have
n. n(l-n,
var(u;) = Var(n,)z = m -, 2 . (2.2.25)
bw)f  now)}
Therefore, the weights w; is
BICH) S
w, =17, (1-7;) : (2:2.26)
0, n, =01

Hence, weighted least square estimates [ and & of u and O used as initial estimates are given by
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LI

Zw
. St i) /3
St B ot S

To see that this maximum likelihood estimates 8 = (4,4, ():.),6,‘ (A)) indeed provides the

(22.27)

(2.2.28)

respectively.

absolute maximum of [, (@), we offer the following argument. Let 67 = ():, {1,5) be the value of
0 which maximizes [, (@), then
[,(0) = maxl, (4, u,0)
> max (A 0,(R),6,(A) (2.2.29)

21, (A, 4,(1),6,(1) = 1,©).
The last inequality will be true in view of above step.
In practice, it is not possible to get explicit expressions for &, (A) and &,(A), therefore the
procedure relies heavily upon the use of the Implicit Function Theorem [c.f. Mangasarian (1969)] to
assure the existence of such quantities. In the present situation, the conditions required for a correct

application of this theorem become:

() The matrix V2, ,l, (), which elements are the second order partial derivatives of I, ()

(u,0)"n

~

with respectto @ and O, is continuous at @ =@ , and interior point of ©,
1,6,)=0,where V,1.(8)=(3l,(8)/ou,3,0)/00),

[ (@) is nonsingular.

Gy Vv
(i) V?

(1,0)'n
(1,0)"n
Under the assumptions of Section 2.2.2, above conditions (i) and (ii) are clearly satisfied, at least for large
samples, and we need only to further assume that (iii) holds in order to apply our procedure.

To find the values é,. (A), we will have solve, iteratively, the maximum likelihood equations for u

and O given by Appendix 1. The estimated variance-covariance matrix of 6, is obtained from

%VWV = 1ty 80)) (9 ) (65))” (2230)

where the A ’sand w’s are given by Appendix 1 and (2.3.12) respectively.
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2.2.4 Examples

To have a concrete and practical grasp of the aim in the previous section, and make the impression of
them clear, we will fit the PND to some examples cited from published literature. Thus, we consider

mainly the following two points;

(i)  To consider the estimates and performances in fitting the PND to grouped observations
(ii) To consider the effects of grouping on estimates when observations are subsequently grouped

into some intervals
() The estimates and performances in fitting the PND to grouped observations

We will take up seven examples cited from literatures for discussion to consider the estimates and

performances in fitting the PND to grouped observations. These results of fitting and consideration are

as follows.
Table 2.2.1 Exmaplel: The results of fitting of the PND
Maximum log-likelihood Performance
Maximum log-likelihood [ (é (i)) —68.0317 Goodness of fit
Truncated probability 1- A(k) 1.0000 Chi-square statistics 25.254
Estimate of A p -value 0.1919
A 1.1107 Shape of original observations
95% confidence interval for AA ?'gigj Skewnesfs -o.oree
: Kurtosis 3.2244
Estimate of u Shape of power-transformed observations
a(d) 96.0289 Skewness 0.0014
Back to the original scale i~ (}:) 67.5341 Kurtosis 3.2236
a(l) 67.5209
Estimate of O
G(A) 4.0753
a(D) 2.5563

Example 1(Stuart and Ord, 1986): The data are grouped observations of height for 8,585 adult males
in the United Kingdom cited from Stuart and Ord (1986). = The results of fitting the PND to these
grouped observations are shown in Table 2.4.1. The value of transforming parameter A was estimated
as 1.1107 with the approximate 95% confidence interval (0.6804, 1.5415). This optimized value
suggests that these observations have a truncated normal distribution, and the likelihood ratio test
provides a convenience value of A as A=10 (p -value was 0.6312). For the optimized value, we

obtained [l(i) =96.0289 and & (AA.) =4.0753. The value of back-transformed ﬁ(i) to the original



scale, ,&'()C) was 67.5341. The back-transformed value [ft(i) was not far from the corresponding
one for the observations on the original scale, fi(1)=67.5209. The plot of the profile of maximized
log-likelihood as a function of A is shown in Figure 2.4.1, together with the value of chi-square
statistics.  Figure 2.4.1 shows that the values of chi-square statistics have a minimum at the

neighborhood of A =1.1107. From the estimated variance-covariance matrix of 6 , we had

Completely Grouped Observations

var[A] = 0.000000017400, var[@(A)] = 0.00000239513,

var[6(1)] =0.000134234351, cov[A, fi(A)] =0.000000010042,

cov[A, G(A)] =0.000001527671, cov[A(4), G(A)] =0.000134234351.
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-90.0

-110.0

log-likelihood
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-150.0

-170.0

Figure 2.2.1 Example 1: The profile of maximized log-likelihood and the value of chi-square statistics
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Figure 2.2.2 Example 1: The distribution of observations on the original scale
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The distributions of observations on the original and the power-transformed scale are shown in Figure
2.4.2 and 2.4.3 respectively. The value of chi-square statistics for goodness of fit was given as 25.254,
which was not quite significant at 5 % level. The values of the skewness and the kurtosis for the
observations on the power-transformed scale were given as 0.0014 and 3.2236 respectively. There were

little differences between those values on the original and power-transformed scale.

1600

1400 | Observed
N(96.0289,4.0753)

1200

1000 | Expected

) /; : kY
300 ) /
Sy
600 N\
|

N

Frequency

400 |

209

3
79.398 82.534 87.259 90.423 93.598 96.784  99.981 . 103.187 106.404 109.63
80.964 85.681 88.840 92,009 95196 98.381 101.583 104.794. 108.016 111.246

Height
Power-transformed Scale

Figure 2.2.3 Example 1: The distribution of observations on the power-transformed scale

Table 2.2.2 Example 2: The results of fitting of the PND

Maximum log-likelihood Performance
Maximum log-likelinood [(§(1)) ~ —106.5696 Goodness of fit
Truncated probability 1— A(K) 1.0000 Chi-square statistics 138.169
Estimateof A p -value near 0
A —0.4691 Shape of original observations
. ) - —0.5241 Skewness 0.7523
95% confidence interval for A —0.4590 Kurtosis 4.5679
Estimate of 1 Shape of power-transformed observations
ii(A) 1.9318 Skewness —0.0554
Back to the original scale 1" (4) 155.2640 Kurtosis 3.6820
A 157.2285
Estimate of O
SG(A) 0.0123
6D 21.1453

Example 2 (Stuart and Ord, 1986): The data are grouped observations of weight for 7,749 adult
males in the United Kingdom cited from Stuart and Ord (1986). The results of fitting the PND to these
grouped observations are shown in Table 2.2.2. The value of transforming parameter A was estimated

as —0.4691 with the approximate 95% confidence interval (—0.5241, —0.4590). This optimized
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value suggests that these observations have an L-shaped distribution, and the likelihood ratio test provides
a convenience value of A as AA = —(.5 (p -value was 0.6477). For the optimized value, we obtained
(1) =1.9318 and é(i)=0.0123. The value of back-transformed [(A) to the original scale,
ﬁ():) was 155.2640. The back-transformed value [ft'(AA) was smaller than the corresponding one
for the observations on the original scale, (1) =157.2285. The plot of the profile of maximized log-
likelihood as a function of A is shown in Figure 2.2.4, together with the value of chi-square statistics.
Figure 2.2.4 shows that the values of chi-square statistics have a minimum at the neighborhood of A=

—0.4691. from the estimated variance-covariance matrix of @ , we had

var[A] =0.00000000002, var| A(A)] = 0000000000019,
var[&(A)] =0.000000012688, cov[A, {(A)] = —0.000000000006,

cov[A, &(A)] =0.000000000000, cov] ﬁ(i),é(i)] = —0.000000000005.

160000.0

95% confidence interval

0.0 /

80000.0
-200.0

60000.0

-400.0 !
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*1008.0 Chi-square statistics //
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-2.0 .15 -1.0 -0.5 o0 0.5 1.0 1.5 2.0
Transforming parameter

Figure 2.2.4 Example 2: The profile of maximized log-likelihood and the value of chi-square statistics

as a function of transforming parameter A

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.5 and 2.2.6, respectively. The value of chi-square statistics for goodness of fit was given as
138.1689, which was very large and significant at 5% level. The value of skewness for the observations
on the power-transformed scale was given as —0.0554, which was not farther from zero than the value

of 0.7325 for the observations on the original scale. But the value for the kurtosis of the observations on

the power-transformed scale was given as 3.6820, which was not farther from 3 than the value of 4.5679

for the observations on the original scale. This shows that the power-transformed observations achieve

the near-normality in comparison with the original observations.
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Figure 2.2.5 Example 2: The distribution of observations on the original scale
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Figure 2.2.6 Example 2: The distribution of observations on the power-transformed scale

Example 3 (Daniel, 1987): The data are grouped observations of age of 75 cases of a certain disease
reported during a year in a particular state. The results of fitting the PND to these grouped observations
are shown in Table 2.2.3. The value of transforming parameter A was estimated as 1.0270 with the
approximate 95% confidence interval (0.5276, 1.5375). This optimized value suggests that these
observations have a truncated normal distribution, and the likelihood ratio test provides a convenience
value of A as A=10 (p-value was 09207). For the optimized value, we obtained
[L(i) =37.4010 and OA'(AA.) =13.7454. The value of back-transformed ﬁ(i) to the original scale,
,&'()A.) was given as 35.7822. The back-transformed value ‘l:\l,‘(i) was not far from the
corresponding one for the observations on the original scale, ((1) =35.7144. The plot of the profile of

maximized log-likelihood as a function of A is shown in Figure 2.2.7, together with the value of chi-
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square statistics. Figure 2.2.7 shows that the value of chi-square statistics have a minimum at the

neighborhood of A =1.0270. From the estimated variance-covariance matrix of 6 , we had

var[A] = 0.0000056198041, var[ [i(A)] = 0.057487932881,

var[d(i)] =1.014278128289, cov[A, ﬁ(i)] = —0.005168787157,

cov[A, 3(A)] =0.000233051678, cov[fi(L), G(A)] = —0.046395362893.

Table 2.2.3 Example 3: The results of fitting of the PND

Maximum log-likelihood

Maximum log-likelinood £(8 (1)) —1.0919

Truncated probability 1— A(k’) 0.9974
Estimate of A

A 1.0270

, . A 0.5276

95% confidence interval for A 15375

Estimate of u

Performance

Goodness of fit

Chi-square statistics 3.115
p -value 0.7943

Shape of original observations
Skewness —0.1407
Kurtosis 2.7070

Shape of power-transformed observations

ﬁ():) 37.4010 Skewness —0.1144
Back to the original scale [~ (i) 35.7822 Kurtosis 2.6925
acd) 35.7144
Estimate of O
G(R) 13.7454
() 12.5062
. 30.0
0.0 Chi-square s@istics PE————
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Figure 2.2.7 Example 3: The profile of maximized log-likelihood and the value of chi-square statistics
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The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.7 and 2.2.8 respectively. The value of chi-square statistics for goodness of fit was given as 3.1149,
which was not quite significant at 5% level. The values of skewness and the kurtosis for the
observations on the power-transformed scale were given as —0.1144 and 2.6925 respectively. There

were little difference between those values on the original and the power-transformed scale.
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Figure 2.2.8 Example 3: The distribution of observations on the original scale
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Figure 2.2.9 Example 3: The distribution of observations on the power-transformed scale

Example 4 (Pagano and Gauvreau, 1993): The data are grouped observations of birth weight for
3,751,275 infants cited from Pagano and Gauvreau (1993). The results of fitting the PND to these
grouped observations are shown in Table 2.2.4. The value of transforming parameter A was estimated
as 1.9234 with the approximate 95% confidence interval (1.9133, 1.9335). This optimized value
suggests that these observations have a J-shaped distribution. For the optimized value, we obtained

(i(A) =3221897.1896 and G(A)=1019537.7825. The value of back-transformed f[i(A) to the
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original scale, ,LAL*(AA) was given as 3398.920. The back-transformed value ﬁ'(i) was smaller than
the corresponding one for the observations on the original scale, ((1) =3348.4705. The plot of the
profile of maximized log-likelihood as a function of A is shown in Figure 2.2.10, together with the value
of chi-square statistics. Figure 2.2.10 shows that the value of chi-square statistics have a minimum at
the neighborhood of A =19234. From the estimated variance-covariance matrix of 6 , we have

a
~

var[A] = 0.000000000000, var[ ()] = 40.139600672481,

var[G(4)] =219607.995501813100, cOV[A, ﬁ(i)] = —0.00001676849,

A

cov[A, G(A)] =0.000003002326, cov[i(A),F(A)] = 167.995051562599.

Table 2.2.4 Example 4: The results of fitting of the PND

Maximum log-likelihood Performance
Maximum log-likefihood [ (é (}:)) —56159.2044 Goodness of fit
Truncated probability 1— A(x) 0.9992 Chi-square statistics 168478.550
Estimate of A p -value near 0
)C 1.9234 Shape of original observations
) ) A 1.9133 Skewness —0.8077
95% confidence interval for A 19335 Kurtosis 6.0253
Estimate of Shape of power-transformed observations
{i(A) 3221897.1896 Skewness 0.2232
Back to the original scale ‘LAL* ()C) 3398.9208 Kurtosis 4.3399
a@) 3348.4705
Estimate of O
G(A) 1019537.7825
é() 600.0442

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.11 and 2.2.12 respectively. The value of chi-square statistics for goodness of fit was given as
168478.550, which was very extensively large and was significant at 5% level. The value of the
skewness for the observations on the power-transformed scale was given as 0.2232, which was not from
zero than the value of —0.8077 for the observations on the original scale. But the value of kurtosis for
the observations on the power-transformed scale was given as 4.3399, which was not farther from 3 than
the value of 6.0253 of the observations on the original scale. This shows that the power-transformed

observations achieve the near-normality in comparison with the original observations.
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Figure 2.2.10 Example 4: The profile of maximized log-likelihood and the value of chi-square statistics

as a function of transforming parameter A
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Figure 2.2.11 Example 4: The distribution of observations on the original scale
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Figure 2.2.12 Example 4: The distribution of observations on the power-transformed scale
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Table 2.2.5 Example 5: The results of fitting of the PND

Maximum log-likelihood Performance
Maximum log-likelihood [ (é () —1.4422 Goodness of fit
Truncated probability 1—_A(x) 0.9986 Chi-square statistics 31.090
Estimate of A p -value near 0
A —1.3852 Shape of original observations
95% confidence interval for A :gg;ﬁg Sk::::ssi: ;gggg
Estimate of 1 Shape of power-transformed observations
(R 0.7098 Skewness —0.3990
Back to the original scale (i~ (AA) 19.1187 Kurtosis 3.9907
a) 20.8372
Estimate of O
G(A) 0.0040
() 6.0658
0.0 50.0
20 ) T~ Chi-square statistics

I 1 46.0
95% Confidence Interval
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Figure 2.2.13 Example 5: The profile of maximized log-likelihood and the value of chi-square statistics

as a function of transforming parameter A

Example 5 (Siegel and Morgan, 1996): The data are grouped observations of women’s professional
golf tournaments in 1979 paid the prizes cited from Siegel and Morgan (1996). The results of fitting the
PND to these grouped observations are shown in Table 2.2.5. The value of transforming parameter A
was estimated as —1.3852 with the approximate 95% confidence interval (—2.5724, —0.3833). This
optimized value suggests that these observations have an L-shaped distribution, and the likelihood ratio
test provides a convenience value of A as A=— 1.5 (p -value was 0.9359). For the optimized value,
we obtained fi(A)=0.7098 and (5(7:) =0.0040. The value of back-transformed ,[L(i) to the
original scale ,L'i‘(i) was given as 19.1187. The back-transformed value ﬁ'(i) was smaller than

the corresponding one for the observations on the original scale, ,lft(l) =20.8372. The plot of the profile
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of maximized log-likelihood as a function of A is shown in Figure 2.2.13, together with the value of chi-
square statistics. Figure 2.2.13 shows that the value of chi-square statistics have a minimum at the

neighborhood of A =—13852. from the estimated variance-covariance matrix of 6 , we had

var[A] =0.000000016361, var[Z(4)] =0.000000003486,
var[6(A)] =0.000000202341, cov[A, fi(A)] = —0.000000007638,

cov[A, G(A)] =0.000000009041, cov]fi(4),5(A)] =0.000000003856.
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Figure 2.2.14 Example 5: The distribution of observations on the original scale
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Figure 2.2.15 Example 5: The distribution of observations on the power-transformed scale

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.14 and 2.2.15 respectively. The value of chi-square statistics for goodness of fit was given as

31.0904, which was significant at 5% level.. The value of the skewness for the observations on the
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power-transformed scale was given as —0.3990, which was not farther from zero than the value of
1.0766 for the observations on the original scale. But the value of kurtosis for the observations on the
power-transformed scale was given as 3.9907, which was farther from 3 than the value of 3.0067 for the
observations on the original scale. This shows that the observations on the power-transformed scale

achieve only the symmetry of distribution in comparison with the observations on the original scale.

Table 2.2.6 Example 6: The results of fitting of the PND

Maximum log-likelihood Performance
Maximum log-fikefihood [ (é (i)) —16.7152 Goodness of fit
Truncated probability 1- A(x) 0.9881 Chi-square statistics 30.3485
Estimate of A p -value 0.0001
i —2.0010 Shape of original observations
] ) A —2.7076 Skewness 15.1208
95% confidence interval for A —1.7175 Kurtosis 308.0621
Estimate of Shape of power-transformed observations
(A 0.4984 Skewness —1.2273
Back to the original scale ‘l:L‘ (}:) 19.2109 Kurtosis 5.9269
a(l) 26.0651
Estimate of O
G(A) 0.0007
G 3.7477
0.0 . , Chi-squara statistics e
A 400.0

.200.0 35% confidence interval 350.0
300.0
-400.0 p 250.0

200.0

log-likelihood

-600.0

Chi-square statistics

150.0

100,
-800.9 0
log-likelihood 50.0

e
0.0

-1000.0 -
25 20 15 18 05 00 0.5 Lo 1.5 2.0 2.5

Transforming parameter
Figure 2.2.16 Example 6: The profile of maximized log-likelihood and the value of chi-square statistics

as a function of transforming parameter A

Example 6 (Bland, 1995): The data are grouped observations of the age of death associated with
volatile substance abuse (VSA) mortality for Great Britain cited from Bland (1995). The results of

fitting the PND to these grouped observations are shown in Table 2.2.6. The value of transforming
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parameter A was estimated as —2.0010 with the approximate 95% confidence interval (—2.6985, —
1.7283). This optimized value suggests that these observations had a J-shaped distribution, and the
likelihood ratio test provides a convenience value of A as A=20 (p -value was 1.0000). For the
optimized value, we obtained ﬁ.(}:) =0.4984 and OA'(AA.) =0.0007. The value of back-transformed
[L(i) to the original scale, [:‘L'(AA.) was given as 19.2109. ~ The back-transformed value ﬁ‘(}t) was
smaller than the corresponding one for the observations one the original scale, (1(1)=26.0651. The
plot of the profile of maximized log-likelihood as a function of A is shown in Figure 2.2.16, together
with the value of chi-square statistics. Figure 2.2.16 shows that the value of chi-square statistics have a

minimum at the neighborhood of A = —2.0010. from the estimated variance-covariance matrix of @ ,

we had

var[A] = 0.000000000045, var pc(i)] = 0.000000000002,
var[6(A)] =0.000000001340, COV[A, fi(A)] = —0.000000000011,

cov[A, &(A)] = —0.000000000062, cov{i(A), F(A)] = 0.000000000003.
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Figure 2.2.17 Example 6: The distribution of observations on the original scale

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.17 and 2.2.18 respectively. The value of chi-square statistics for goodness of fit was given as
30.3485, which was significant at 5% level. The value of the skewness for the observations on the
power-transformed scale was given as —1.2273, which was not farther from zero than the value of
15.1208 for the observations on the original scale. But the value of the kurtosis for the observations on

the power-transformed scale was given 5.9269, which was not farther from 3 than the value of 308.0621
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for the observations on the original scale. This shows that the observations on the power-transformed

scale achieve the near-normality in comparison with the observations on the original scale.
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Figure 2.2.18 Example 6: The distribution of observations on the power-transformed scale

Table 2.2.7 Example 7: The results of fitting of the PND

Maximum log-likelihood Performance
Maximum log-likelihood [ (é (A)) —28.6022 Goodness of fit
Truncated probability 1-A4(x) 1.0000 Chi-square statistics 5.9625
Estimate of A ‘ p -value 0.9885
): 0.6735 Shape of original observations
95% confidence interval for A ggggl Sk::: oss 03486
: osis 3.2930
Estimate of Shape of power-transformed observations
i(A) 63.2102 Skewness 0.0476
Back to the original scale ‘lft* ():) 271.5596 Kurtosis 3.0939
a 275.1416
Estimate of O
G(A) 12,5686
o)) 77.8525

Example 7 (Brown and Hollander, 1977): The data are grouped observations of the measurement of
serum cholesterol on 500 adult males in a very small city cited from Brown and Hollander (1977). The
results of fitting the PND to these grouped observations are shown in Table 2.2.7. The value of
transforming parameter A was estimated as 0.6735 with the approximate 95% confidence interval
(0.4221, 0.9304). This optimized value suggests that these observations have a distribution similar to
exponential one, and the likelihood ratio test provides a con§enience value of Aas )A. =0.5 (p -value

was 0.1787). For the optimized value, we obtained f(i(A)=63.2102 and G(A)=12.5686. The
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value of back-transformed ﬁ(i) to the original scale [L*(AA) was given as 271.5596. The back-
transformed value ﬁ():) was smaller than the corresponding one for the observations on the original
scale, fi(1)=275.1416. The plot of the profile of maximized log-likelihood as a function of A is
shown in Figure 2.2.19, together with the value of chi-square statistics. Figure 2.2.19 shows that the

value of chi-square statistics have a minimum at the neighborhood of A =0.6735. From the estimated

variance-covariance matrix of @ , we had

var[A] =0.000000575718, var[{i(A4)] = 0.004200134132,
var[6(1)] =0.149770774271, cov[A, fi(A)] = —0.000015447515,

cov[A, 6(A)] = —0.000003699686, cov[ii(iA),F(A)] = —0.001334047965.
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Figure 2.2.19 Example 7: The profile of maximized log-likelihood and the value of chi-square statistics

as a function of transforming parameter A
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Figure 2.2.20 Example 7: The distribution of observations on the original scale
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Figure 2.2.21 Example 7: The distribution of observations on the power-transformed scale

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.20 and 2.2.21 respectively. The value of chi-square statistics for goodness of fit was given as
5.9625, which was small and not quite significant at 5% level. The value of the skewness for the
observations on the power-transformed scale was given as 0.0476, which was nor farther from zero than
the value of 0.3486 for the observations on the original scale. But the value of the kurtosis for the
observations on the power-transformed scale was 3.0939, which was not farther from 3 than the value of
0.2930 for the observations on the original scale. This shows that the observations on the power-

transformed scale achieve the near-normality in comparison with the observation on the original scale.
The results of fitting the PND to seven examples suggest the following knowledge:

e The back transformed mean [L'(}:) was larger than (1) in the range of A >1, though
i ():) was smaller than (i(l) in the range of A <1. This due that the power-transformed
mean of original observations is smaller than the mean of power-transformed observations in the
range of A > 1, though in the range of A <1, it is larger than thé mean of power-transformed
observations.

o In the both range of A >2 and A <0, goodness of fit for the PND was not well. This is in
line with the simulation results for ungrouped observation case by Goto et al. (1983) and

Hamasaki and Goto (1996).

e Strict normality was not achieved, although the power-transformation yield a nearly symmetrical
distribution. Draper and Cox (1969) notice the fact that in some cases of ungrouped
observations, even when the transformation procedure dose not yield normality, it helps to

“regularize” the data.
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(ii) The effects of grouping on estimates when observations are subsequently
grouped into some intervals

Next, we consider the effects of grouping on estimates when observations are subsequently grouped into

some intervals. Then, we will employ the following four criteria to determine the length and interval.
*  AIC minimization criterion (Sakamoto et al., 1981): AIC
*  Fisher Information maximization criterion (Nagahata, 1984): Fisher
»  Maximization criterion of integrated mean squares of error (Mori, 1975): MSE
*  Sturges’ criterion (Sturges, 1926): Sturges

We take up three examples for discussion to the effects of grouping on estimates when observations are

subsequently grouped into some intervals.

Example 8 (Silverman, 1986): The data are the lengths of 86 spells of psychiatric treatment
undergone by patients used as controls in a study if suicide risks. Silverman (1986) divides the domain

[0,800] into 20 intervals of length 40 to applying the density smoothing to the data set

Table 2.4.8 Example 8: The results of fitting of the PND

Ungroup AlC Fisher MSE Sturges
Maximum log-likelihood
Maximum log-likelihood l(é()t)) —375.7840 —2.9821 - —7.8102 1.4488 —5.7401
Truncated probability 1- A(x) 1.0000 0.6752 1.0000 1.0000 1.0000
Estimate of A
A 0.1930 0.5589 0.0564 0.1485 0.0954
. , . i —0.4312  —0.4697 —0.2016  —0.2867
95% confidence interval for 1.4710 0.4415 0.3836 0.3575
Estimate of L '
i(A) 6.6996 9.7234 4.9456 5.9080 5.2462

Back to the original scale ‘a* ()’\\,) 73.6887 27.9645 78.4255 69.5083 70.3557
a)  122.3140 27.9681 64.9784 69.4934 70.3401

Estimate of O

d(}:) 2.8094 25.3451 1.3398 2.3125 1.7456
G(1) 1467513  314.5602  208.8818  194.1371  197.6197
Performance
Goodness of fit
Chi-square statistics - 8.1743 13.9479 29.3819 11.1405
p -value - 0.0425 0.1242 0.0215 0.6750
Shape of original observations

Skewness 2.2976 0.8589 1.1510 1.3642 1.3313
Kurtosis 8.4310 1.6204 2.8293 3.6910 3.5557

Shape of power-transformed observations
Skewness 0.0094 0.8303 0.6442 0.5809 0.5714

Kurtosis 3.0828 1.4967 1.4877 1.5837 1.5667
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Figure 2.2.22 Example 8: The profile of maximized log-likelihood
as a function of transforming parameter A
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Figure 2.2.23 Example 8: The profile of value of chi-square
as a function of transforming parameter A
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Figure 2.2.24 Example 8: The distribution of observations on the original scale
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Figure 2.2.25 Example 8: The distribution of observations on the power-transformed scale

The ungrouped observations of this example were grouped into some interval by using the four
methods of AIC, Fisher, MSE and Sturges, and so the four grouped observations were obtained. Thus,
the numbers of intervals k were 4, 10, 17 and 15 for each of four grouping methods. Then, the PND '
was applied to each of these four grouped observations. The results of fitting the PND to these four
grouped observations are shown in Table 2.4.8 together with that of fitting the PND to ungrouped
observations. The optimized value A =(.1485 for MSE was closest to A =0.1930 for ungrouped
observations. Thus, likelihood ratio test provides a convenience value of A as A =05 for Fisher,
MSE and Sturges, but A =0.0 for AIC. The both values of fi(A) =5.9080 and G(A) =2.3125 for
MSE were closest to ‘LAL()A.) =6.6996 and OA'(AA.) =2.8094 for ungrouped observations. The value of
back-transformed ﬁ(i) to the original scale for Sturges, ﬁ*(i) =70.3557 was closest to the
corresponding one for ungrouped observations on the original scale, ﬁ*(i) =73.6887. The plot of the
profiles of maximized log-likelihood for these four grouped observations as a function of A is shown in
Figure 2.2.22. Also, the related plot of profiles of value of chi-square as a function of transforming
parameter A is shown in Figure 2.2.23. These two plot show that the behavior of MSE and Sturges
seem similar.

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.24 and 2.2.25 respectively. The value of 8.1743 of chi-square statistics for AIC was smallest, which
was significant at 5% level. The next smallest value was 11.1405 for Sturges, which was not significant
at 5% level. All values of skewness for the observations on the power-transformed scale were not
farther from zero than those values for the observations on the original scale. But all values of the
kurtosis of power-transformed observations were farther from 3 than those values for the observations on

the original scale. These results show that the observations on the power-transformed scale achieve only
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symmetry of distribution in comparison with the observations on the original scale. Thus, the values of
the skewness and the kurtosis for the ungrouped observations on the power-transformed scale were given
as 0.0094 and 3.0828 respectively. These two values suggest the satisfaction of normality of distribution
for the observations on the power-transformed scale.

Example 9 (Daniel, 1987): The data are the weights in ounces of malignant tumors removed from the
abdomens of 57 subjects. Daniel (1987) divides the data into the 7 interval of length 10 by using

Sturges’ rule.

Table 2.4.9 Example 9: The results of fitting of the PND

Ungroup AIC Fisher MSE Sturges
Maximum log-likelihood

Maximum log-likelihood l(é(i)) —154.3191 —11.2144 —14.1412 —19.1662 —21.4330

Truncated7 probability 1—A(x) 1.0000 1.0000 1.0000 1.0000
Estimate of A

)C 0.2907 0.1428 0.1210 0.3692 0.4793

. , _ . —0.7043  —0.6021  —0.3019  —0.1898

95% confidence interval for A 0.9179 0.7621 0.9833 11174
Estimate of 1

Ay 61547 4.5914 4.3662 7.2856 9.3542

Back to the original scale ‘&* (AA) 34.0739 34.1505 33.2973 34.3380 34.8295
() 36.5263 34.1458 33.2033 34.3341 34.8251

Estimate of O

6()C) 1.2641 0.6851 0.6604 1.8775 24412
o) 16.1002 16.4320 18.2896 17.0816 16.5143
Performance
Goodness of fit
Chi-square statistics - 12.6569 11.6311 15.7027 18.6947
p -value - 0.0488 0.2349 0.2052 0.1329
Shape of original observations

Skewness 0.6852 0.7128 0.7400 0.6978 0.6497
Kurtosis 2.9153 2.1511 1.8267 2.2618 2.2437

Shape of power-transformed observations
Skewness —0.0182 0.1277 0.1482 0.2352 0.2626
Kurtosis 2.5384 2.1142 2.1218 2.0103 2.0472

The ungrouped observations of this example were grouped into some intervals by using the four
methods of AIC, Fisher, MSE and Sturges, and so the four grouped observations were obtained. Thus,
the numbers of intervals k for each of grouping methéds were 7, 10, 13 and 14. Then, the PND was
applied to each of these four grouped observations. The results of fitting the PND to these four grouped
‘observations are shown in Table 2.4.9 together with that of fitting the PND to ungrouped observations.

A =0.3692 for MSE was closest to A =0.2907 for ungrouped observations. Thus, likelihood ratio test
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A A

suggests a convenience value of A as A =0.5 for MSE and Sturges, but A = 0.0 for AIC and Fisher.
The both values of fi(A) =7.2856 and (1) =1.6775 for MSE were close to fi(A) =6.1547 and
(5’(i) =1.2641 for ungrouped observations. The value of back-transformed ﬁ():) to the original
scale for AIC, ,12* (i) = 34.1505 was closest to the corresponding one for ungrouped observations on the
original scale, ﬁ‘():) =34.0739. The plot of the profiles of maximized log-likelihood to these four
grouped observations as a function of A is shown in Figure 2.2.26.  Also, the related plot of profiles of
value of chi-square as a function of transforming parameter A is shown in Figure 2.2.27. These two
plot show that the behavior of MSE and Sturges seem similar, whereas that of AIC and Fisher seem

similar.
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Figure 2.2.26 Example 9: The profile of maximized log-likelihood

as a function of transforming parameter A
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Figure 2.2.27 Example 9: The profile of value of chi-square statistics

as a function of transforming parameter A
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The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.28 and 2.2.29 respectively. The value of 11.6311 of chi-square statistics for Fisher was smallest,
which was not quite significant at 5% level. The next smallest value was 12.6569 for AIC, which was
significant at 5% level. All values of the skewness for the observation on the power-transformed scale
were not farther from zero than those values for the observation on the original scale. But all values of
the kurtosis for the observations on the power-transformed scale were farther from 3 than those values for
the observation on the original scale. These results show that the observations on the power-transformed
scale achieve only symmetry of distribution than the observation on the original scale. Thus, the values
of the skewness and the kurtosis for the ungrouped observations on the power-transformed scale were
given as —0.0182 and 2.5384 respectively. These two values suggest the only satisfaction of symmetry

of distribution for the observations on the power-transformed scale.

25

><AIC
™ Fisher
-2 MSE
“ Slurges

20

[

Frequency

10 20 30 40 50 60 70 80

Weight
Qriginal scale

Figure 2.2.28 Example 9: The distribution of observations on the original scale
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Figure 2.2.29 Example 9: The distribution of observations on the power-transformed scale
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Example 10 (Chen, 1995): The data given below are the numbers of cycles to failure for a group of 60

electrical appliance in a life test.

Table 2.4.10 Example 10: The results of fitting of the PND

Ungroup AIC Fisher MSE Sturges
Maximum log-likelihood

Maximum log-likelihood 'l(é(i)) —160.0081 0.7591 1.5721 6.6875 5.8117

Truncated probability 1-A4(x) 0.8052 0.9654 0.9414 0.9477
Estimate of A

A 0.3799 0.8501 0.5519 0.5908 0.5774

. ‘ i —0.2010 0.0368 0.2287 0.1643

95% confidence interval for 1.8522 0.9800 0.8999 0.9245
Estimate of L

ﬁ(i) 4.9169 11.0851 7.1356 7.4753 7.2828

Back to the original scale ,&‘ (i) 16.0120 15.7587 18.0585 17.4540 17.4094
A1) 21.8257 15.7575 18.0569 17.4525 17.4080

Estimate of O

é(i) 3.1682 14.2510 4.9243 5.8527 5.5547
o (1) 19.2461 23.8951 22.1464 21.9659 22.1003
Performance
Goodness of fit
Chi-square statistics - 0.0756 6.9247 18.2273 12.8712
p -value - 0.9946 0.6450 0.3746 0.4578
Shape of original observations
Skewness 1.2554 0.8244 0.9871 1.0041 0.9888
Kurtosis 5.1255 2.0483 2.6925 2.9859 2.8448
Shape of power-transformed observations
Skewness —0.1667 0.6234 - 0.5585 0.5130 0.5305
Kurtosis 2.3160 1.9906 1.7018 1.7180 1.6661
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Figure 2.2.30 Example 10: The profile of maximized log-likelihood

as a function of transforming parameter A
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Figure 2.2.31 Example 10: The profile of value of chi-square statistics

as a function of transforming parameter A

The ungrouped observations of this example were grouped into some intervals by using the four
methods of AIC, Fisher, MSE and Sturges, and so the four grouped observations were obtained. Thus,
the numbers of intervals k were 4, 10, 18 and 14 for each of grouping methods. Then, the PND was
applied to each of these four grouped observations. The results of fitting the PND to these four grouped
observations are shown in Table 2.4.9 together with that of fitting the PND to ungrouped observations.
The optimized value A =0.5519 for Fisher was closest to A =0.3799 for ungrouped observations.
Thus, likelihood ratio test provides a convenience value of A as ): = 0.5 for Fisher, MSE and Sturges,
but A =1.0for AIC. The both values of [i(A)=7.1356 and G(A) =4.9243 for MSE were close to
(i(A) =4.9169 and G(A) =3.1682 for ungrouped observations. The value of back-transformed
,&(AA.) to the original scale for AIC, ﬁ'(i) =15.7587 was closest to the corresponding one on the
original scale for ungrouped observations ﬂ*(i) =16.0120. The plot of the profiles of maximized
log-likelihood to these four grouped observations as a function of A is shown in Figure 2.2.30. Also,
the related plot of profiles of value of chi-square as a function of transforming parameter A is shown in
Figure 2.2.31. These two plot show that the behavior of MSE and Sturges seem similar, whereas that of
AIC and Fisher seem similar at neighborhood of A =0.5.

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.2.32 and 2.2.33 respectively. The value of 0.0756 of chi-square statistics for AIC was smallest, which
was not quite significant at 5% level. The next smallest value was 6.9247 for Fisher, which was not
significant at 5% level. All values of the skewness for the observations on the power-transformed scale
were not farther from zero than those values for the observations on the original scale. But all values of

the kurtosis for the observations on the power-transformed scale were farther from 3 than those values for
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the observations on the original scale. These results show that the observations on the power-
transformed scale achieve only symmetry of distribution in comparison with the observations on the
original scale. Thus, the values of the skewness and the kurtosis of ungrouped observations on the
power-transformed scale were given as —0.1667 and 2.3160. These two values suggest the satisfaction

of normality for the observations on the power-transformed scale.
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Figure 2.2.32 Example 10: The distribution of observations on the original scale
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Figure 2.2.33 Example 10: The distribution of observations on the power-transformed scale

The results of fitting the PND to the above three examples suggest that it is preferable to transform the
ungrouped observation because grouping results in loss of information and that the loss of information
depends on the number of intervals. Only when the ungrouped observations are not available should
grouped observations be transformed. Thus, we may want to transform to normality

e for better description or for model building purposes,

* to interpolate between the given observations,
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* and to smooth count observations.

2.2.5 Simulation Experiment

2.2.5.1 Objective and Design

The log-likelihood function (2.2.4) are non-linear with respect to parameter A, so the maximum
likelihood estimates i, ‘Et and G of A, p and O can not be presented explicitly. And thé
performances of the transformation can not be evaluated without observations. Therefore, the
performance of fitting the PND to grouped observations will be evaluated in some simulation experiments
in which main aims were

(i) to evaluate the effects of factors on estimates in fitting the PND to grouped observations,

(ii) to evaluate the difference in estimates between fitting to the PND to grouped and ungrouped

observations, namely to evaluate the loss of information in subsequently grouping
The each of designs corresponding to above two aims is as follows
(i) Evaluation of effects of factors on estimates in fitting the PND to grouped
observations

In order to evaluate the effects of factors on estimates ;» , i and & in fitting the PND to grouped

A

observations, we employed the three indexes, namely mean square error of A

M, = MSE[A] = E[4 - A%,

mean square error of U

M, ;, = MSE[A(A)] = E[i(4) - uT’

and mean square error of &

M, ;, = MSE[6(A)] = E[&(1) - o).

Also, conditional mean square error of {(A) and G(A) given A
M, ., = MSE[A(AA)] = E[a(A) - AA)F

and

M, . =MSE[G(AA)] = E[6(A)- (M)

(A1)
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were used in order to evaluate the difference in - [ft(/{) and fi(A), é(i) and G(A).

In the simulation, the PND was assumed as a distribution of the original observations, and sample seize
n, shape of the PND A , coefficient of variation after the transformation T, and truncated point K
were taken up as a factor which has a effect on estimates of i, i:t and O . Three levels of K
(kK =1, 2 and 3) were defined corresponding to the value of 1 — A(k) = 15.87, 2.88 and 0.14%. The
value of A were determined in 6 way corresponding to the 6 typical shaped of the PND, namely A > 1,
A" =1 (truncated normal distribution), A, <A <1, A’ =A_,0<A <A_ and A <0 (L-shaped
distribution), where A, = 4/ (k? +4). And 3 values of T (T =2, 4 and 16) were selected. The

selected value of K, A" and T are shown in Table 2.5.1 and 2.52.

Incidentally, once the value of K, A and T are given, W and O are given by

1
S
and
T
oO=—7""
A (kT -1)
respectively.

Then, for all combinations of K, A , T, pseudorandom numbers were generated from a standard
normal distribution using an acceptance/rejection technique by Kinderman and Ramage (1976). These
normal random numbers were inverse-transformed by power-transformation (2.1.1), and then the 1000
sample for sample size 7, which has the PND, were generated. Thus, the sample sizes were specified
in 4 ways, namely # =25, 50, 100 and 200. Furthermore, these samples were grouped by using the

procedure by Sturges (1926), and then the PND were fitted to them.

Table 2.5.1 The truncation point K and the truncated probability

Truncation Truncated
point probability AK T
K 1-A(k)
1 0.1587 .08 2
2 0.0288 0.5 4
3 0.0014 0.3077 16

Table 2.5.2 Selected truncation points K and the transforming parameters A

K A>1 AXN=1 MA<A<l A=Xi 0<A <k A<0
1 2.0 1.0 0.90 0.8 0.40 —1.0
2 2.0 1.0 0.75 0.5 0.25 —1.0
3 2.0 1.0 0.60 0.3077 0.20 —1.0
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(ii) Evaluation of the loss of information in subsequently grouping
In order to evaluate the difference in estimates between fitting of the PND to grouped and ungrouped
observations, namely to evaluate the loss of information in subsequently grouping, we employed the three

indexes, namely

D iT E [ic - iu B

D, ;, = Eliio(As) = fiy (A’
and

D, ; =E[65(A;) -6, (%)),

where Ay, fig (AAG) and G (iG) are estimates for grouped observations, and ):U ., Hy ()A.U) and
Sy (XU) are for ungrouped observations.

In the simulation, the PND was assumed as a distribution of the original observations, and sample seize
n, shape of the PND A , coefficient of variation after the transformation 7, and truncated point K
were taken up as a factor which has a effect on estimates of }A. , W and O in the same way as (i). In
addition to these three factors, the number of intervals k was taken up.

Then, for all combinations of K, A , T, pseudorandom numbers were generated from a standard
normal distribution using an acceptance/rejection technique by Kinderman and Ramage (1976). These
normal random numbers were inverse-transformed by power-transformation (2.1.1), and then the 1000
sample for sample size 7, which has the PND, were generated. Thus, the sample sizes were specified
in 4 ways, namely 7 =25, 50, 100 and 200. Furthermore, these samples were grouped by three level of
number of interval K (k" =k/2, k and 2k) obtained by using Sturges’ rule, and then the PND
were fitted to them. Also, to evaluate the difference in estimates between fitting of the PND to grouped

and ungrouped observations, the PND was fitted to ungrouped observations before grouping.

2.2.5.2 Results and Interpretations

(i) Evaluation of effects of factors on estimates in fitting the PND to grouped
observations

To evaluate the effects of sample size #, shape of the PND JL', coefficient of variation T, and
truncation point K on the maximum likelihood estimates A, f(A) and G6(A)of A, u and O,

mean square errors M., M,:(i and Mé():) of A, (A) and O(A) were calculated for

)

generated 1000 samples for combinations of factors. The mean square errors M i M and

a(h)
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Mé qy ere then subjected to the 4-way analysis of variance (ANOVA) allowing for sample size &,
shape of the PND A, coefficient of variation T , and truncation point K. The results of ANOVA for
M i Mﬁ ) and Mé (i 2T shown in Table 2.5.3, 2.5.4 and 2.5.5 respectively. In order to compare
the results with those in ungrouped observation case, the results of ANOVA for M i Mﬁ @ and
M& ) in ungrouped observation case are shown in Table 2.5.6, 2.3.7 and 2.3.8. The both results of
ANOVA were interpreted as follows by p -value associated with F -value for variation of factor and the

proportion of variation explained (PVE) by factor.

- Table 2.5.3 Table of ANOVA for M ; : Grouped observation case

Source df. M.S. F-value p-value PVE
Sample size n 3 46833 3476.905 near 0 34.02%
Shape of the PND A 5 8.7607 6503.932 near 0 63.64%
Coefficient of variation T 2 0.0016 1.222 0.2974 0.01%
Truncation point K 2 0.0042 3.111 0.0474 0.03%
Interaction 7 x A’ 15 0.3054  226.739 near 0 2.22%
nxXt 6 0.0010 0.752 0.6088 0.01%
X xt 10 0.0003 0.216 0.9946 0.00%
nxK 6 0.0016 1.214 0.3023 0.01%
A xx 10 0.0080 5.947  near0 0.06%
TXK 4 0.0003 0.230 0.9209 0.00%
Residuals 152 0.0013
Total 215 13.768

Table 2.5.4 Table of ANOVA for M;z 0y’ Grouped observation case

Source d.f. M.S. F-value p-value PVE
Sample size 7 3 0.0865 0.499  0.6839 0.31%
Shape of the PND A 5 5.4283 31.287 near 0 19.57%
Coefficient of variation T 2 9.0261 52.024 near 0 32.54%
Truncation point K 2 3.9051 22.508 near 0 14.08%
Interaction 7 x A’ 15 0.0042 0.024  1.0000 0.02%
nxt 6 0.0070 0.040  0.9997 0.03%
A xT 10 41509  23.925  near0 14.96%
nxK 6 0.0008 0.005  1.0000 0.00%
A xx 10 17355  10.003  near0 6.26%
TXK 4 3.3661 19.401 near 0 12.13%
Residuals 152 0.1735
Total 215 27.8840

For M i in grouped observation case, all of main effects except for T were significant at 5 % level.
The significant interactions at 5 % level were #xA  and A xK . The value of 63.64% of PVD by
A’ was the largest, and the next largest PVE was the value of 34.02% by #n. On the other hand, for

M ; in ungrouped observation case, as we have seen in grouped observation case, all of main effects
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except for T, the two interactions 7 XA and A xK were significant at 5 % level. But the largest
PVE was the value of 98.62% by A", and so the values of PVE’s by remaining factors were very little.
These results show that precison of maximum likelihood estimate of the transforming parameter A in
grouped observation case is not so much influenced by the shape of the PND A" as the precision of the
estimate in ungrouped observation case. The estimate of main effect A and the 95% confidence
interval for M i in grouped and ungrouped observation case is shown in Figure 2.5.1. And, the
estimate of main effect n and the 95% confidence interval for M ; in grouped and ungrouped
observation case is shown in Figure 2.5.2. Figure 2.5.1 shows that the values of M ; in grouped and
ungrouped case in the range of A <0Oand A" >1are larger than those values in the remaining ranges,
and the 95% confidence interval for M in the range of A" >0 is the largest. Figure 2.5.2 shows that
the values of M i in grouped observation case decrease as n increase. But the values of M i in

ungrouped observation case do not so much decrease with 7 increase as grouped observation case.

Table 2.5.5 Table of ANOVA for M‘i e Grouped observation case

Source df. M.S. F-value p-value PVE
Sample size n 3 0.1218 0.103 0.9581 0.04%
Shape of the PND A 5 96.4313 81.724 near 0 34.96%
Coefficient of variation T 2 33.6486 28.517 near 0 12.20%
Truncation point K 2 74.9241 63.497 near 0 27.16%
Interaction 7 x A’ 15 0.0562 0.048  1.0000 0.02%
nxt 6 0.0168 0.014 1.0000 0.01%
A xT 10 149725 12689  near0 5.43%
nxXK 6 0.0189 0.016 1.0000 0.01%
A xx 10  31.4560 26659  near0 11.40%
TXK 4 22.7872 19.312 near 0 8.26%
Residuals 152 1.1800
Total 215  275.6133

For Mﬁ i in grouped observation case, all of main effects except for 7 were significant at 5 %
level. The significant interactions at 5 % level were A xT, A xk and TxK. The value of
32.54% for PVE by T was the largest and the next largest PVE’s were the values of 19.57% by A ,
1496% by A XT, 14.08% by K, and 12.13% by TxK. On the other hand, for Mu(i) in
ungrouped observation case, all of main effects except for 7, the three interactions A xT, A xK
and TxK were significant at 5% level. These results show that precison of maximum likelihood
estimate of the mean L in grouped observation case is as much influenced by the shape of the PND A
and the coefficient of variation T as the precision of the estimate in ungrouped observation case. The

estimate of interaction A’ XT and the 95% confidence interval for M,2 ) in grouped and ungrouped
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observation case is shown in Figure 2.5.3. Figure 2.5.3 shows that the value of M;i i and the 95%
confidence interval in grouped and ungrouped observation case in the range of 0< A< A, is largest |

and the values of Mﬁ(i) decrease as T increase.

Table 2.5.6 Table of ANOVA for M ; - Ungrouped observation case

Source d.f. MS. F-value p-value PVE
Sample size n 3 0.0438 412510 near 0 0.63%
Shape of the PND A 5 6.9020 64964.630 near 0 98.62%
Coefficient of variation T 2  0.0001 0.920 0.4020 0.00%
Truncation point K 2 00267 251.460 near 0 0.38%
Interaction 7 x A’ 15 0.0152 143.150  nearO 0.22%
nXT 6 0.0001 1.250 0.2841 0.00%
A xT 10 0.0001 0.820  0.6095 0.00%
nXK 6 0.0001 0.620 0.7144 0.00%
A xK 10 0.0106  99.370  nearO 0.15%
TXK 4 0.0001 0.820 0.5160 0.00%
Residuals 152  0.0001
Total 215 6.9988
Table 2.5.7 Table of ANOVA for M;i i Ungrouped observation case
Source d.f. M.S. F-value p-value PVE
Sample size n 3 0.0132 0.072 0.9747 0.04%
Shape of the PND A’ 5 6.6269  36.384  near0 19.64%
Coefficient of variation T 2 11.8657 65.148 near 0 35.17%
Truncation point K 2 4.8266 26.500 near 0 14.31%
Interaction nx A 15 0.0006 0.003  1.0000 0.00%
nXTtT 6 0.0001 0.001 1.0000 0.00%
A xT 10 4.6225 25379  near0 13.70%
nxXK 6 0.0000 0.000 1.0000 0.00%
A XK 10 1.8362  10.082  near0 5.44%
TXK 4 3.9145 21.492 near 0 11.60%
Residuals 152 0.1821
Total 215 33.8884

For M‘i 0 in grouped observation case, all of main effects except for n were significant at 5 %
level, and the significant interactions at 5 % were A xT s A xK and TXK. On the other hand, for
M& i in ungrouped observation case, all of main effects except for #, the three interactions A xT ,
A xK and TXK were significant at 5% level. The value of 34.96% for PVE by A was the largest
and the next largest PVE’s were the values of 27.16% by K, 12.20% by T, and 11.04% by A xK.
These results show that precison of maximum likelihood estimate of the mean (& in grouped observation

case is as much influenced by the shape of the PND A’ and the truncation point Kk as the precision of

the estimate in ungrouped observation case. - The estimate of interaction A xx and the 95%
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confidence interval for Mé @ is shown in Figure 2.5.4. Figure 2.5.4 shows that the value of Md i

)
and the 95% confidence interval in grouped and ungrouped observation case in the range of 0 < A< A,

is largest and the values of Md(i) decrease as K increase.

Table 2.5.8 Table of ANOVA for Md i’ Ungrouped observation case

Source d.f. M.S. F-value p-value PVE

Sample size 7 ‘ 3 0.0592 0.103 0.9581 0.04%
Shape of the PND A 5 70.7229 81.724 near 0 34.96%
Coefficient of variation T 2 33.6919 28.517 near 0 12.20%
Truncation point K 2 80.6211 63.497 near 0 27.16%
Interaction nx A’ 15 0.0086 0.048 1.0000 0.02%

nxt 6 0.0011 0.014 1.0000 0.01%

A xT 10 12,6688 12689  near0 5.43%

nxK 6 0.0025 0.016 1.0000 0.01%

A XK 10 27.2458 26.659 near 0 11.40%

TXK 4 24.1596 19.312 near 0 8.26%
Residuals 152 1.0409
Total 215  250.2222
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Figure 2.5.1 The estimate of main effect A’ and the 95% confidence interval for M i

In A <0,2:0<A <A, 3 A=A, 4 A <A <15 A =16 A >I
Next, to evaluate the effects of sample size # , shape of the PND A , coefficient of variation 7 , and
truncation point K on the difference in ((A) and f(A), 6(L) and G(A), conditional mean
Al and M
1000 samples for combinations of factors. The conditional mean square error M
Mé(im

coefficient of variation T, and truncation point K . The results of ANOVA for grouped observation

square errors M of ‘[L()A.) and OA‘()C) given A were calculated for generated

(AR
a1y and

were then subjected to the 4-way ANOVA allowing for sample size 7, shape of the PND A,
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case are shown in Table 2.5.9 and 2.5.10. The results of ANOVA were interpreted as follows by p-

value associated with F -value for variation of factor and the PVE by factor.

1.2 } Grouped

0.6
Ungarouped

=

0.2

Mean square error

RS S

0.0

25 50 100 200

Sample size

Figure 2.5.2 The estimate of main effect n and the 95% confidence interval for M i

=&~ Grouped: t =2

T =a- Grouped; =4
4 =o= Grouped: t =16
~#~ Ungrouped: ¢ =2
e Ungrouped: t =4
-~ Ungrouped: t =16

Mean square error
~

Shape of the PND

Figure 2.5.3 The estimate of interaction A XT and the 95% confidence interval for M i)

I A <0,2:0<A <A, 3 A=A, 4 A <A <15 A =16 A >1I

For M,2 ay° all of main effects except for A were significant at 5 per cent level. The significant

interactions at 5 % level were nXT, nxK and TXK . The value of 87.07% for PVE by n was the
largest, and the values of PVE’s by the remaining factor were very little. The estimate of main effect 7

and the 95% confidence interval for M is shown in Figure 2.5.5. Figure 2.5.5 shows that the

A(A|2)

values of M decrease as 7 increase. - Namely, this means that the difference between [i(A)

A(AIA)
and fi(A) decrease as 7 increase.
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Mean square error

~3~ Grouped: =1
~o~ Grouped; x=2
=0~ Grouped: x=3
- Ungrouped: x =I
=4 Ungrouped: =2
~+= Ungrouped: « =3

Figure 2.5.4 The estimate of interaction A’ XX and the 95% confidence interval for M, @

Shape of the PND

e
N [

)

I A <0,2:0<A <A, 3 A=A, 4 A <A <5 A =16 A >1I

Table 2.5.9 Table of ANOVA for M

£(AIA)
Source df. M.S. F-value p-value PVE

Sample size n 3 0.0352 444.035 near 0 87.07%
Shape of the PND X 5 0.0001 0.791 0.5580 0.16%
Coefficient of variation T 2 0.0010 13.040 near Q 2.56%
Truncation point K 2 0.0013 16.733 near0 3.28%
Interaction nx A’ 15 0.0000 0.486  0.9450 0.09%

nXT 6 0.0006 7.313 near 0 1.43%

A xT 10 0.0001 0.805  0.6244 0.16%

nxK 6 0.0009 11.956 near 0 2.34%

A xk 10 0.0001 0.791  0.6379 0.16%

TXK 4 0.0010 13.040 near 0 2.56%
Residuals 152 0.0001
Total 215 0.0404

Table 2.5.10 Table of ANOVA for M, AR
Source d.f. M.S. F-value p-value PVE

Sample size n 3 0.0267 507.236 near 0 82.13%
Shape of the PND A’ 5 00000 0792 05568 0.13%
Coefficient of variation T 2 0.0013 23.878 near 0 3.87%
Truncation point K 2 0.0023 43.626 near 0 7.06%
Interaction nx A’ 15 0.0000 0.342  0.9898 0.06%

nxXt 6 0.0004 7.690 near 0 1.24%

},‘ XT 10 0.0000 0.574 0.8333 0.09%

nxK 6 0.0004 7.749 near 0 1.25%

A xK 10 0.0000 0.792  0.6362 0.13%

TXK 4 0.0013 23.878 near 0 3.87%
Residuals 152 0.0001
Total 215 0.0325

59
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For Ma Ay’ all of main effects' except for A were significant at 5 % level. The significant
interactions at 5 % level were mXT, nxK and TXK . The value of 82.13% for PVE by n was the
largest, and the PVE’s by the remaining factors were very little. The estimate of main effect 7 and the
95% confidence interval for M

M

SI%) is shown in Figure 2.5.6. Figure 2.5.6 shows that the values of

SGim decrease as 1 increase. Namely, this means that the difference between G(A) and (1)

decrease as n increase.

0.04

0.03

0.02

Mean square error

0.01

0.00
25 S0 100 200

Sample size

Figure 2.5.5 The estimate of main effect n and the 95% confidence interval for M!2 A

0.04

6.03

0.02

Mean square error

0.01

0.00

25 50 100 200
Sample size

Figure 2.5.6 The estimate of main effect n and the 95% confidence interval for M‘j A

(ii) Evaluation of the loss of information in subsequently grouping

To evaluate the effects of the number of intervals K , sample size 7, shape of the PND A, coefficient
of variation T, and truncation point K on the difference in estimates between fitting to the PND to
grouped and ungrouped observations, the mean square differences D): s D;i ) and D& Gy were

calculated for generated 1000 samples for combinations of factors. D, D‘2 ) ad D, @ were
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subjected to the 5-way ANOVA allowing for the number of intervals k , sample size 7, shape of the
PND A, coefficient of variation T, and truncation point K. The results of ANOVA for Di’

Dﬁ(i) and Da(;:) are shown in Table 2.5.11, 2.5.12 and 2.5.13. The results of ANOVA were

interpreted as follows by p -value associated with F -value for variation of factor and the PVE by factor.

For Dﬂ 0’ k™, n and A were significant at 5 % level. The significant interactions at 5 % were
k'xn, k'xA, nxA', k" xKk, nxx and A xK. The value of 47.66% for PVE by k" was
the largest, and the next largest PVE’s were the values of 22.55% by sample size #, 8.86% by k'xn,
7.64% by nx A and5.62% by k x A . The estimate of interaction k™ xn and the 95% confidence

interval for Dﬁ @ is shown in Figure 2.5.8. Figure 2.5.8 shows that the values of Dﬁ @ decrease as

)
n and k* both increase. Namely, this means that the difference between fi;(A;) and [, ()CU)

decrease as Kk and » both increase.

Table 2.5.11 Table of ANOVA for D}:

Source d.f. M.S. F-value p-value PVE
The number of intervals k& 2 7323102 4946.349 near 0 59.44%
Sample size n 3 243.2190 1642809 near 0 19.74%
Shape of the PND A’ 5 355458  240.092 near 0 2.89%
Coefficient of variation T 2 0.0165 0.111 0.8948 0.00%
Truncation point K 2 0.0355 0.240 0.7869 0.00%
Interaction k' X7 6 208.8811 1410.876 near 0 16.95%
k' x A 10 8.5664 57.861 near 0 0.70%
nxA 15 2.6091 17.623 near 0 0.21%
kxt 4 0.0062 0.042  0.9966 0.00%
nXT 6 0.0075 0.051 0.9995 0.00%
A xT 10 0.0072 0.049  1.0000 0.00%
kxx 4 0.0198 0.134  0.9699 0.00%
nxK 8 0.2796 1.889  0.0807 0.02%
A xK 10 0.3627 2.450  0.0072 0.03%
TXK 4 0.0098 0.066  0.9920 0.00%
Residuals 558 0.1481
Total 647  1232.024

For D ; » all of main effects except for T were significant at 5 % level. The significant interactions
at5 % level were k- xn, k" x A, nxA and A xK. The value of 59.44% for PVD by k™ was
the largest, and the next largest PVE’s were the valued of 34.02% by sample size # and 16.95% by
k*xn. The estimate of interaction k X7 and the 95% confidence interval for D; is shown in

Figure 2.5.7. Figure 2.5.7 shows that the values of Di and the 95% confidence interval decrease as
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A A

k" and n both increase. Namely, this means that the difference between A.G and )LU decrease as

k and 7 both increase.

Table 2.5.12 Table of ANOVA for D[2 @

Source d.f. M.S. F-value p-value PVE
The number of intervals &~ 2 0.9276 262.266  near0 47.66%
Sample size n 3 0.1133 32.022 near 0 5.82%
Shape of the PND A 5 0.4389 124.096 near 0 22.55%
Coefficient of variation T 2 0.0005 0.127 0.8804 0.02%
Truncation point K 2 0.0072 2.048 0.1300 0.37%
Interaction k' XN 6 0.1725 48.761 near 0 8.86%
k' x A 10 0.1093 30.899 near 0 5.62%
XA 15 0.1488 42055  near0 7.64%
kxt 4 0.0002 0.062  0.9929 0.01%
nXT 6 0.0003 0.089  0.9974 0.02%
A xT 10 0.0003 0.077  0.9999 0.01%
kxx 4 0.0099 2792  0.0257 0.51%
nxXK 6 0.0085 2.413  0.0260 0.44%
A xK 10 0.0051 1.455  0.1530 0.26%
TXK 4 0.0005 0.132  0.9707 0.02%
Residuals 558 0.0035
Total 647 1.9464
Tuble 2.5.13 Table of ANOVA for D, @
Source df. M.S. F-value p-value PVE
The number of intervals k" 2 352033 134.156 near 0 39.03%
Sample size 7 3 14.7641 56.264 near O 16.37%
Shape of the PND A’ 5 9.1583  34.901 near 0 10.15%
Coefficient of variation T 2 0.0088 0.034 0.9668 0.01%
Truncation point K 2 1.4264 5.436  0.0046 1.58%
Interaction k‘ Xn 6 15.7201 59.907 near 0 17.43%
k' x A 10 7.7863 29.673 near 0 8.63%
nxA 15 32564 12410  near0 3.61%
kxt 4 0.0059 0.022  0.9990 0.01%
nxt 6 0.0044 0.017  1.0000 0.00%
A XT 10 0.0086 0.033  1.0000 0.01%
kxx 4 1.3709 5.224  0.0004 1.52%
nxK 6 0.6919 2.637  0.0157 0.77%
A xK 10 0.5078 1.935  0.0383 0.56%
TXK 4 0.0142 0.054  0.9945 0.02%
Residuals 558 0.2624

Total 647 90.1898
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Mean square error
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Figure 2.5.7 The estimate of interaction k' Xn and the 95% confidence interval for D.
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For D all of main effects except for T were significant at 5 % level. The significant

S(iy?
interactions at 5 % level were kxn, kxA , nxA, kxk, nxk, and A XK. The value of
39.03% of PVD by k" was the largest, and the next largest PVE’s were the values of 16.37% by sample
size n, 10.15% by A, 17.43% by k" xn and 8.63% by kxA . The estimate of interaction
k" xn and the 95% confidence interval for D& i is shown in Figure 2.5.9.  Figure 2.5.9 shows that

the values of D(j ) decrease as k and n both increase. Namely, this means that the difference

between Gg(Ag) and G (Ay) decreaseas k™ and n both increase.

2.3 Grouped Observations Combined with

Ungrouped Observations

We now assume that it is possible to obtain some exactly specified values besides the counts of
observations in other specified intervals. The following cases of mixed (grouped and ungrouped)
observations are considered.

*  Ungrouped observations available in the tail

*  Right and/or left censored observations

¢ Individual observations arbitrarily chosen

*  Ungrouped observations at fixed proportions of the observation

We now proceed to study each one of these cases separately.

2.3.1 Ungrouped Observations Available in the Tail

Here, we should considered a censoring scheme where exact values are recorded only for observations
either in the lower or the upper tail, or both extremes. The rest of the observations are grouped. More
precisely, the values of all observations below the (specified) fixed value y; or above the fixed value
Y,., are recorded exactly, while those in between y, and Y, are grouped into the intervals
Y2 s [Vers Vi), where O<y <---<y, <. This is a form of fixed time censoring
which produces mixed observations of exact and grouped.

The motivation behind this formulation is that it is good statistical practice to report extreme values
exactly for further scrutiny. This may be done either to check for outliers or to delineate unique features

of the phenomenon under study, particularly those related to the tail behavior of the distributions.
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Pretending that Y, have the power-normal distribution, namely PND(A,, 1,,02) for some
0, = (Ay,H,,0,), the log-likelihood 1, (Gly) of the mixed observations for the sample of size

k
n= Z 11 , becomes

k-1

k
1,6]y) = logn!-zlogn,-! + Zni log pevi (6)

L=

2
1 17y - u
—%(n1 +n, )log2nx ——2—(n1 +n,)logo? -5 Z(Z—’— (2.3.1)
]

7y

+(A=1) Y logy; = (m +n,)A(x)

where ppy;(8) is defined in (2.2.2) and z 77 stands for the sum over the smallest 7, and the

largest n, order statistics. Notice that (2.3.1) can also be written as

L@y =18 _, @)+, ©]y) (2.32)
where
k k-1
1 . 0)= 10gn!—2 logn,!+ 2'1,- log pey; (0) (2.3.3)

is the part of the log-likelihood corresponding to the grouped observations, and

1 1 ma( y® — )
(u) — il 2__ J
19, ly) = =3 (0, +n)log 27 - —(n, +n,)logo 22(———; ) o

Ry sy

+(A—1)210gyj —(n, +n,)A(x)

is the part corresponding to the ungrouped observations.

Now, we consider the properties of estimates of A, @ and O based on the behavior of
w1, @)).

Let p, and ppy; (@) be defined as in Section 2.2.2, and suppose that (i) the parameter space © is
the compact subset of R’ defined by © = {OT = (A, M,G)“ul sM,s,s0ss,,asAsb for
some 0<M,s,,s,,b<® and ~®<a< 0}, (ii) the moments Eg‘[Yza] and Eg,[YZb] are
finite, and (iii) H (@) +E,.[D, A (6|y)] has a unique global maximum at @ =0, where
H@)= 2 P 10g(Penpi @)/ p;). Furthermore, suppose that (iv) @, be an interior point of
©, and furthermore suppose that (v) E ..[Y* logY]? and E g [Y? log Y]’ both are finite, (vi)

VH(8,) +E . [Dyur, ())VE (8,]y)] = 0
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. 2 u - .
and (vii) V' ={V°H(8,) +E,.[D, )V )(00|y)]} ! exists.
By strong low of large number, n,/n—=%%— p, as n — ®, and Stirling’s formula and (2.3.3) give

k
1, (0) = %mgzﬂ - log 2t
=~ n

ot (2.3.5)

1 k n,
+5 [(l—k)logn - Zlog——‘—] + Zni log ppy; (8) +O(n™)
i= n L=
where O(n™") is uniform in @ for an almost sure set. If p, =0 for some i,then 7, =0 and the
term involving 7; is excluded from the log-likelihood. Thus, writing p,, =n,/n(i =1--,k), we

have with probability one, as n —>
1
~ L5 ©) = me log P (6) - 21)." log p,, +o(1). (2.36)

A procedure similar to that of Section 2.2.2 establishes that as 7 —> %, uniformly on ©

k-1 k-1
Zﬁi,n log peyi (8) - 2?: log ppy; (8)|——0. (2.3.7)

It also follows from the continuity of xlogx thatas n —

k k
zﬁi,n logﬁi,n = zpi log p;

a.s. 3 0

This last results in conjunction with (2.3.6) and (2.3.7) yields almost surely

hml,f’f,’,l_,,k ) = Zp, log ~ BN~ pPN‘( ) +(p,logp, + p, logp, ) (2.3.8)

uniformlyin 8 €O .
Next we consider the approximation

K901 = Doy O @)+ D 212 B =)
(2.3.9)

y—-Jy u u
+ D[y,,_l,yk.ﬁe)( € : )ll( )(8|yk-l + 8) + D[yk_,-l-s,ao) (y)ll( )(elyk-l + 8)

to Ipup, (y)ll(")(ﬂly) which is continuous in Y for each & >0 . It follows from Appendix 7 that

as n — ©, uniformly on ©

21‘“’(0')1 )—=—E.[260] (23.10)

with l(") (Bly)] is continuous.

Here, let us consider [ ,E 2'& (6| y) given by (2.3.4) which we observe can be expressed as

ZDIIUIk (yj)ll(“)(OIYj);
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By analogy of the above approximation, we define
Lnitn.c 6]Y) = 2 1@ )). 2.3.11)
j -

Also, to simplify the notation, let I,, =[y, —¢,y,) and I, =[y,, ¥, +€). Then

u u 13 u Y u
L, @y -11,, . - ;2{% (y,.)[lf )~ " el - e)}

Jj=1
u Yi=Ye- u
+D, (y,~)[lf @ly;) -(—’—ﬁ)a‘ 'Oyes + e)”

(2.3.12)

so that
1

L0, 6]) - lﬁ,“znk .6 10ly)

5_2 1,,u1,,,(y )

n

1
5—2Dll',u1“(yj)r(}’j)
n 4 :

(2.3.13)

where r(°) is defined in Appendix 7. Thus, applying the strong low of large number, for € < 8(n)

1 . a.s.
;ZDA,e o, O )r(y))—2—=E.[Dy o, Ir(MI< % (2.3.14)
]-

say for € sufficiently small, since r() is intergerable. 'We also have

[E,- (1 6]Y)] - E,.[Dy,0r, ) )] = B, 12 (6]Y) - Dy, (9)H 6])

(2.3.15)
= Eg"lDll_,UIk', (y)r(y)‘ < 5
Adding and  subtracting ll,(:zn,, . (6|y) E,.[l (")(Hly)] to 'llrfj‘znk . (Gly) -
E o [Dyur, 0L @]y)], we get
l Lifon, €)= E [Py, ) <10, @) -1, e<e|y>|
o + =Ll @) -E. [ ‘")(Gly)lx (23.16)

+[E,. (12 6)] - E,..[Dyr, () 6])])

Results (2.2.10), (2.2.13) and (2.2.15) applied to the right hand side of (2.2.16) yield the almost sure limit
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hm

1,. ’
L1, 01) B, [y, )(ely)]l

1
= 11_1:2; Il,_,UI,m ;) +Eg*[D[1_EUIk_, rm]+0

J

n.n

<=+

2 2

uniformly in 8 €0, for given 1 >0, whenever 0 <€ <0(n). Since 7 is arbitrary, it follows

that, with probability one, uniformly in 8 €O

lim— 1,5"3,, = E,.[Dyur, 0 @[] 23.17)

n—x n

It follows from expression (2.3.2) and results (2.3.8) and (2.3.17) thatas 7 — o, uniformly in 8 €O

—l (Bly)——*zp, log Zev2?] e () -(p,logp, + p,logp,)
D (2.3.18)

+E,.[D, 0, 000 @)

Result (2.3.15) implies that E ..[D; ,, (V)] 0 (Gl ¥)] is also continuous in @ since E .[[; “ (Bly)]
is continuous. Thus, from (2.3.18) and Appendlx 3, we obtain the strong consistency of 0" .

-2

To establish the asymptotic normality of 0 , we consider n times the gradient of the log-

~

likelihood evaluated at @,. After an expansion in Taylor's series about @, the fact that
Vi, (én ly) =0 almost surely for » large enough, implies that n~
n’'v
+(1-7,)9,(0<7y, <D

Next, we can write

%Vln (00| ) = —{Vl(-nl—nk (00) + Vlrs:lz'tk (eo}’)}

=;JZX,'(60)

where the random vectors X,(0,), -+, X ,(@,) are identically and independently distributed with

and

the same limiting distribution, where 8, =y,0,

(2.3.19)

mean vector

E,.[X(8,)] = VH(8,) + E,.[ Dy, ())VE (8,]y)] = 0

and covariance matrix W = (w,, Y(u,v =1,2,3) with elements given by
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. =k-1p. alogpPNl(e)} alogPPNi(e)‘
w 2 ! 20, ‘eo 99, b
e @ly)| Y ol @)

96 I 30

u 00 v

+ Eg‘ IIlUlk )

G

Applying the multivariate central limit theorem gives that, as # — 0, the asymptotic normality of

nV?*vI (8, I y) and consequently
Y)[«/; @, -6, )]—d—’ N;(O,w). (2.3.20)

Premultiplying the left hand side of (23.20) by the matrix V', defined by V =
2 u -1 .
{VZH(0,) +E,.[D;u;, )V B|y)]}" gives

1y @
n

V{%Vzln @, y)[JZ @, - e@]}—“—» N,(O,WvYWwT). (2.3.21)
Next, we will use the representation

Ly, @ly) = Lvue @)+ Vi1, @)) 2322)

n n n

to consider the grouped and ungrouped Hessians separately. By the same argument in the Section 2.2.2,

we concluded that, as n —> @

Loy 0.)——=V*H(@,). (2.3.23)
n

n-ny-=n,

In the Appendix, we have mentioned, for easier reference, some properties of the second order partial
derivatives of [ (Gﬂy) established by Hernandez (1978). By Appendix 5, we know that these
derivatives are continuous in (B,Y) and Appendix 6, they are also g-integrable. These facts are used
in what follows.

For u and Vv arbitrary but fixed, define

azl‘“)(B{y)
3 d 6 '—"——_l_a
1 @) 36,90,

8’1" (8ly)
36,00,

d, .. @ly) = ZD )LEY), d,...0]) = Zd @)

d, (el)’) =
(2.3.24)

with 1%(@]y) as defined in (2.28). Then, |d,, (8]y)| = |d,(B|y)| implies that |d, , (B]y)| is also
dominated by g-integrable function H,,(y) that dominates 'd 1(GI y)l By considering the sequence
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of sets {S,}.., used in Appendix 7, we deduce that ,d Le (9' y)‘ is equicontinuous in @ for Y ES,.
Thus, applying Appendix 4, as # —> %, uniformly in @ €©

1 5.
;dn,mk,e 6]y)—2=—E,.[d,, (0|)] (2.3.25)
and the limit function is continuous.

Next, we have

1a4,...@; E I yﬂ
n n

+|Eu[dy, 6,]9)] - E,.[d,, B[]}

y) "Eg'[dl(eo!)’] =

¥)-E,.[d,(6,

ny+ng €

(2.3.26)

The first term on the right hand side of this expression tends almost surely to zero because of (2.3.25),
while the second term also converges to zero with probability one because of the continuity of

E,.[d,, (Boly)] and the fact én —=22—0,. Hence, with probability one

1 R _
dn, g (en y) _Eg* [dl,e (60 ,y)]

n

lim =0. (2.3.27)

Now, adding and subtracting n™d I N
E,.[Dyur, (1), @, |Y)] , We obtain

P%Ww;
n

y) - Eg“ [dl,:-: (e()ly)] to n—ldn1 +ny (er:

y)-

¥) =E.[Dyy, (¥)d, (OOIY)]i

»

1
= y) - ;l-dn, 1y & (en

y)|

+[E,.[d,, @o]y)] - E o-[Dyu, (), 8o|))

+

La,.. @
n

ny+n,

la,.. .0
n

ny+my €

¥)-E,.[d,,0,|y)] (2328

Therefore, following the same reasoning as in steps (2.3.13) through (2.3.17)

la,.. @ s @]
n

6

nyeny ( n

1
y)-—d
n

1 n
y)| = ;lel_,Ul,m )HLG;)

~ (2.3.29)
LE{' [D[L,UI,“‘ (y)Huv (yj )]

as n—>,andfor >0
[Ey-[d,. 80]y) - Eg-[D1ur, 9)d1 Bo]y)| = Eg-[Dy, sy, )H. ()]
n

<—.

2
if € is sufficiently small. Thus, by taking limit as 7 — ® in (2.3.28) and using (2.3.27), (2.3.29) and

(2.3.30)

(2.3.30), we get the almost sure condition
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. |1 .
l{{g;d"#"k @.1y) _Eg*[DIIUIk (Y)dl(eob’)] <n

Since 7} is arbitrary, it follows that,as 7 —> ®©

L4, @
n

ny+ny

y)_&_)Eg‘[DIIUIk (»)d, (eoly)] (2.331)

As u and v were arbitrarily chosen in (2.3.24), resuits (2.3.31) implies that, as n —> o

1

VU0, 0,1) B[y, )V @) (2332)
Using results (2.3.23) and (2.3.31), we finally conclude that, as n —> ©

1 * a.s. u -

~V1,0, )=V H(6,) + E;.[D;, IV @[] =V (23.33)

Consequently, n[V?] (@,|y)]"'V ' —2—1, as n—> o, which together with (2.3.21), gives the

A

asymptotic normality of the maximum likelihood estimates @, where I, denotes the 3x3 identity

2.3.2 Right and/or Left Censored Observations

The following type of mixed observations occurs when a censoring scheme operates in such a way that
observations falling between the specified limits y, and y, are recorded exactly, while only the counts
of values lower Y, and upper y, (0 <y, <y, <) are available. This is the usual double Type I
censoring scheme [c.f. Kendall and Stuart (1973)], which for our case, divides the positive real line into
* three intervals, namely I, =[0,y,),I, =[y;,y,) and I;=[y,,%), and yields observations of
grouped and ungrouped.

Then the log-likelihood function of the mixed observations of size # is given by

3
!, (el}’) = logn!—Elogn,.!-i- n,10g ppy, (0) + 15 10g ppy; (6)

2

-n V)
1 1 1°& (v -u
-=n,log2w - =n,logo’ - = e 2.3.34
52 log2m —=n, log 21( - ] (2:334)
+(A-1) Elogy ;= nA(K)
J=ny+l

where n =n, +n, +n,,and

(A) 1

1 D4 Wil . -
Pan®) =550 2 s o= s

" _

1- q)(—}i?-———ﬂ)]. (2.3.35)

g
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Here, we notice again that (2.3.34) can be rewritten as

1,0|y) =12, ©)+128]y) (2.3.36)
where
1), (0) =logn!~ 2 logn,!+n,10g ppy; () + 15 108 D3 (8) (2:3.37)
is the part of the log-likelihood linked to the grouped observations, and
neny [y 2
140)y) = ——n2 log 2 —ln2 logo? - 1 2 (L-—)
A o
Jemd (2.3.38)
+(A-1 EIOgyJ. -n,A(x)
jany+1l

is the part linked to the ungrouped observations.

Now, we consider the properties of estimates of A, @ and O based on the behavior of
nl (9| y). This procedure goes essentially as that of previous section, so we just present a few main
intermediate steps.

Let p, =/, g (y)dy for i =1,2,3 and let ppy,(0) and Ppy;(@) be as in (2.3.35). Suppose
that (i) the parameter space © is the compact subset of R defined in previous section, (ii) the
moments Eg.[YZ“] and Eg*[YZb] are finite, and (i) H(@)+E,.[D, (y)ll(“)(9|y)] has a

unique global maximum at @ = @,,, where

H@)=p, 1ogpPN1( )+P3 logppm( )

1 ps
Furthermore, suppose that (iv) @, be an interior point of ©, (v) E g.[Ya logY]?
b 2 o
E,.[Y”" logY]" both are finite, (vi)

VH(8,) +E .[D; (y)VL{(0,]y)] =0 (2.3.39)

and (viiy V ={V*H 6,)+E,.[D,, (y)Vzll(“)(eo|y)]}'l exists. We immediately have that,
uniformly on ©

hml(g) @) = p, logp"”( )+p2 log p, + ps logp”“( ) (2.3.40)

ny+ny
1 3

Here, we define an approximationto D, (y)! @ (GI y) which is continuous in ¥ Ve >0
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l(“)(ely) D[y1 y,+e)(y)(y 4 )l(u)(e‘y)+D[y,+e yz+s)(y)l(u)(e‘y)
(2.3.41)

Y27 Y
D[Yz'f’}’z)(y)(_z—;_)ll( )(e'y)

By the uniform strong low of large number described in Appendix 4, we obtain that, as n —

uniformly in @ €O, with E_.[I{“' (8]y)] continuous
i U g MUACEY)! (23.42)
2
Therefore, (2.3.41) provides the almost sure limit
lim 11 ©0]y) = E,.1D,, I @])] 2343
uniformly in @ €@ . Thus, combining (2.4.38) and (2.3.42), we finally obtain the probability one limit
lim1,(6]y) = H(©) + p 0g p, +E,.[D,, ()@} @340

uniformly in @ €© . Hence, the strong consistency of én is deduced from Appendix 3.
A Taylor’s series expansion of 1 V*VI, (Bly) about @, then allows for establishing that, as

n— oo

[JZ @, -eo)]—“» N,(0,W) (2.3.45)

A

for 0,: lying on the segment joining 6

Ly
n

and @, where the 3x3 matrix W = (w,, )is defined by

n

W =p alogpPNl(G)I alogppm(ﬂ)!
uv 1 aeu a@v 8o

o

+p alogpPNS(e)‘ alogppm(e)!
88, |, 3, |,

ol @ly)| | a1 @)y)|
00 00

u 6o v 8,

+E..| D, (¥)p

Since the second order partial derivatives

2
d logpPNi (e)’ i =1’3
38,30,

are uniformly continuous in 8 € @, it easily follows that, as n —>

VH@,). (2.3.46)

ny+ny

1 21(3) (3)
n

Now, defining
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37 @y)

dl,e(ely)— ae 90

for fixed # and Vv, we can use the uniform strong low of large number to concluded that, as 7 —>

1 ”-Endu(eb’ )—=—E.[d,, (6]y)] (2.3.47)

j=m+l
uniformly on ©, where the limit function is continuous. Then, using the fact that the second order
partial derivatives of ll(") (Gly) are g-integralbe, we can also obtain that, as n —>

1 u a.s. [
=V(0]y)—22—E,.[D, (»)VL @,|y)]. (23.48)

Finally, it follows from (2.3.45) and (2.3.47) that

hm v

n—-ao

*H(8,) +E,.[D,, )V (6|y)] =V . (2.3.49)

Applying Stutsky’s theorem to (2.3.44) under the (2.3.48), we have the asymptotic normality of

maximum likelihood estimate 8, .

In the case just discussed, the censoring arose because some values fell outside an observable range;
the censoring tool place at certain fixed points and is called Type I censoring. Type II censoring is said
to occur when a fixed proportion of the observations is censored at the lower and/or upper ends of the
range of Y. In practice, Type II censoring often occurs when Y, the variate under study, is a time-
period (e.g., the period to failure of the piece of equipment undergoing testing) and the experimental time
available is limited.

From the theoretical point of view, the prime distribution between Type I and Type II censoring is that
the former case, the number of censoring observations is a random variable, while in the latter case it is

fixed in advance. The distribution theory of Type II censoring is correspondingly simpler.

If the censoring is of Type II, with 7, and #, fixed, the log-likelihood function is

3
l, (9|)’) = IOg”!‘zl()gni!"‘ n,10g pey, (8) + 15108 oy (0)

2

1 1 1 (YW -u
-=n,log2w -=n,logo® -— L4 M 2.3.50
S log2n ——n; log !21( - (2.3.50)
+(A- I)Elogy - n,A(x)

Jmny+l

with
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1 (yih-p 1 & —u
pPNl(0)=A(K)(D ; and Ppm(e)‘—'TK) 1-9 ——(17— (2.351)

where y, ., and y, ., denote the n, +1 st and n - n,th order statistics respectively. Expression
(2.3.34), (2.3.35), (2.3.50) and (2.3.51) are of exactly the same form. They differ in that the quantities
involved in (2.3.51) are random variables, but not in (2.3.35) and that 7, and 7, are random variables
in (2.3.34) but not in (2.3.50). Given a set of observations, however, the formal similarity permits the
same methods of iteration to be used in obtaining the maximum likelihood estimators. Moreover,

asymptotically, the behavior of the two cases is very similar.

2.3.3 Individual Observations Arbitrarily Chosen

In the present case, we assume that it is possible to record / arbitrarily chosen exact values besides the
counts, with _lim h/n=p(0 s p=<1). Asituation like this may arise for instance, when a large
completely grouped observations are available and then it is decided to draw another small observations
(independent of the previous observations) of exact values, to improve the accuracy of the results (in this
situation p would be close to zero). It will be assumed that the proportion p is fixed and specified in
advance.

Let the observations be grouped into k(k = 3) intervals denoted by I, =[y,,¥,) I, =
[¥¥5) s I, =[¥¢1>y,) as was assumed in Section 2.2. But now let the total grouped
‘observations be of size n—h = 2 f_lni , where the frequency of the ith interval, as before. The
independent observations of A ungrouped observations make the total sample size of the mixed
observations equal to 7.

The log-likelihood of the mixed observations, based on the tentative assumption that

Y, ~ PND(A,, 144,074, is obtained as

k k

h
[, (ely) = log(n —h)!-2ni!+ Znipm. (’)) ——2—log2n:

= i=

2
1&(y7 -
1

. \ (2.3.52)
u

-—logog? —— A-DNlogy. -hA(x

Slogo” -2 - ] +( )]E_ gy; (x)

J=

where ppy; (8) is given by (2.2.2).
The corresponding likelihood is Z, (8|y) =1%),(8) +1{ (6]y) with
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k k
1£)(8) = log(n - h)'-z : Z” Peni () (23.53)

[E

and

2

h (A)
1 6ly) = —%1og2n—510ga -12(y’ ”)

(2.3.54)
+(A- 1)2 logy; - hA(k).
]-

Now, we consider the properties of estimates of A, f and O based on the behavior of
nl, (9|y) . This procedure is based mainly on results obtained in Section 2.3.1 and 2.3.2

Let p; and Ppyp; (@) be defined as in Section 2.2.2, and suppose that (i) the parameter space © is
the compact subset of R’ defined by © = @T = (A, u,o‘)"u' sM,s, s0ss,,asAsb for
some 0<M,s,,5,b<® and —©<a< 0}, (ii) the moments Eg.[Yza] and Eg,.[YZb] are finite,
and (iii) (1- p)H(@)+ pE g.[ll(“)(0| y)] has a unique global maximum at 6 =8,, where
H@®)= 2 * D;10g(pp;(0)/p;). Also, suppose that (iv) 6, be an interior point of @, (v)
E.[Y* logY]’ and E o [Y?log YT both are finite, (vi)

V1= pVH(8,) ++/PE . [VL{ 8,[y)] = 0

and (vii) V = {(1- p)V2H (8,) + PE ,.[V?I (,|y)]}" exists.
Since h/n — p as n—> %, it follows that both # —> and n—-h—>® as n—>. Using

Stirling’s approximation and Appendix 2, it is easy to show that, as 7 —> %, uniformly on ©

n-h 1

—l 5(0) = — 1 (@)—=—(1- p)H(6) (23.55)

and, by the uniform strong low of large number, uniformly on ©

l(u)(a’ )____l(u)(aly)'-—>pE l(")(ely)] (2.3.56)

where E,. A (0|y)] is continuous. Together (2.3.55) and (2.3.56) imply that, uniformly on ®
.1 ”
lim —/, @ly) = - p)H (@) + pE,.[[{ (8]y)]. 2.3.57)

Then, by Appendix 3 with f(@)=(1-p)H(@) + pEg.[ll(")(Gly)], é,, — 0, as n—> %, with
probability one.

Next, by the multivariate central limit theorem, as n — h—w
1

Vn-h

VI®) (0,)——N,(U,.W,) | (23.58)
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and

|
—= VI @,|y)—— N, (U,,W,) (2.3.59)

vh

W, = 2?,(1 (alogpPNz(e)g )(alogapepm(e)’ )] ’
B Y % ) 33

I @ly)| ) o1 @ly)|
64 8y 33

where

W, =| var

2 g*

00 a0

u v

U =VH@),and U, = Eg.[Vll(")(Goly)]. Therefore, as 1 —> o
lwn @,)y)——N,(0,W) (2.3.60)

Jn
where W =(1- p)W, + pW,.
Now, expanding by Taylor’s formula, it can be shown that n?vi, (Boly) and

n'v . = rné” +(1-r,)8, for
some O<r, <1. Also,as n—>®

1 V3I® (@0,)—=—(1- p)V*H(8,) (2.3.61)
and

1 ’

v ~IVL @,[y)] (2.3.62)
so that

vy (2.3.63)

n

as n—> . Thus, Slutsky’s theorem enables to conclude Jn (én -0,)—=—=N,(0,VWV) as

n—>w,

2.3.4 Ungrouped Observations at Fixed Proportions of

Observations

The last case of mixed observations to be studied arises when a fixed number of proportions [h1 REIN 5

with O0<h, <1(i =1,---,k) and 2 f_lhi =1] is determined at the outset. Suppose that it is
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permitted to make an exact observation after each proportion hi (i =1,---,k —1) of order statistics has
occurred. If n, =hn+1for i=L---,k-1and n, =n- 2 “In,, where n is the total sample
size, then the sampling scheme can be expressed as follows:
Obtain k —1 ordered observations y,, ,"**,¥,,  ,and n—k +1 grouped values such that
n, observations fall in [0,y,, )

n, observations fallin [y, .y, )

n, observations fallin [y, ,%)
i -~
where Y, denotes the 2 ju7tj +1st order statistic, so that O<y, <y, =<-sy, <.
Notice that y,, is counted as one of the 7,,; observations falling in VsV l) .
Therefore, probability ppy; is defied as

Vg = H

(o}

A
Yoo, = H

o

1
(@) = 0]
Pei (@) P

-
()

(2.3.64)

where

1 (¥ -u
PPN1(0)=A(K)(D( . )

Then, for Y &S, the log-likelihood function obtained under the tentative assumption that
Y, ~PND(A,, ty,0¢) becomes

k
1,8]y) = logn!-logn, !—2 log(n, =1)!+n, log pp, (@)

& k- k-
+ 2 (n; -1)log p,y; (0) - —21—10g2n: - Tlloga2 (2.3.65)

ki v® _ k-1
1 [Zi"—(;—ﬁ) +(A —1)2 logy, —(k-1)A(x)

2&
where S is the set in which the requirements of the sampling scheme are fulfilled.

To establish the asymptotic properties of the maximum likelihood estimates én in this situation, we
will suse the concept of quantile. The p is the quantile (O < p <1) of the distribution F(y) is
formally defined as real number &, suchthat F(§,)s p and F(§,+0)=p. Thesample p the
quantile then F(§,)=p and F(§,+¢€)>pVe>0. The sample p th quantile is
correspondingly Y(,,j. - Assume that §p is unique, then the following is well-known fact which

follows from the Glivenko-Cantelli lemma. With probability one, as n —
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Yoo ~Sp (2.3.66)
Setting
y0=0: y,-=§.~h,and yk=oo
so that
j:..g Oy =k (2.3.67)

we can apply (2.3.66), assuming uniqueness of the Y, ’s, to get

y, —it sy (2.3.68)

as n—> . Hence, by the continuity of ®(y), letting n —> o, we get

1 y A _
pPNl(ely) Peni(0) = A(x) (D( : po ),
(2.3.69)
1

DPoni (Bly) Pei(0) =

) _ (A)
¢(yt ) (D( yz-l ;u)].
o g

Using Stirling’s approximation for factorials, as we did in the procedure of Section 2.2.2, it follows that ,

for YES

%ln (0|y) = {Z h; log ppy; (8|y) - Zhi logh; + 0(1)}

A(x)

2

)
+{- %log 2~ k——llog 21n (2—”'—0——) (2.3.70)

Nt 2 logy,, - k—lA(K)}
n £ n
Next, the first order partial derivatives of [, (GI y) are

O _n&, $0.)-000) _1&80)-90)
a0, o& PPND:(G‘}’) o £ pPNDi(ely)

11§, I ()
T o? [Zy” ] A(k) 9A
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aln(eb)) _n < A Z . $(yia) = Z:6(y:) 1 S Zi(yi) - 20(:) k-1

a0, o pPNDi (Gly) of Penpi (Gly) o
., (23.71)
y(“ __n 3A(x)
2 Ax) Ou
oL@y _ng, 0y =90 1K)y ~ 0y,
30, O£k " ppN,(BIY) o £ ppN.-(Gly)
k=1 vy
__1_ ym 'm+2108y,,, n aA(K)
o £ A(x) do

where Z; =(y,(n -u)/cr and y,, ') - (A)/dl
Thus, by comparing n”'[, (Gly) and n”'VI_ (Oly) with their analogues in the completely grouped
observations case n 'l (@) and n"'VI (@), we can readily observe the asymptotic equivalence, as
n—>oo, The same thing occurs in the Hessians. Thus, provided that Eg.[YZ“], Eg,[YZb],
a 2 b 2 . . :
E,.[V*logY]" and E,.[Y"logY]" are all finite, the only thing we have to do is change p; by A

in Section 2.2.2 and that theorem holds true also for current case.

2.3.5 Examples

In this section, the two examples will consider the two situations of Section 2.3.1 and 2.3.2. One is the
example of the weekly earnings of secretaries cited from Industry Wage Surveys (1976), which will be
used to consider the case of the ungrouped observations available in the tail. The other is the aflatoxin
levels of raw peanut kernels cited from Fisher and Belle (1993), which will be used to consider the case

of the right and left censored observations.

Example 11 (Industry Wage Surveys, 1976): The data are the weekly earnings of secretaries. The
observations outside the range [130,250) are given ungrouped. = So five observations falling in
[120,130) are 121,123,125,127,129 respectively, and the last three observations are 255, 285 and 325
respectively.

The results of fitting the PND to these grouped observations are shown in Table 2.3.1. The value of
transforming parameter A was estimated as —1.3145 with the approximate 95% confidence interval
(—1.3354, —1.2936). This optimized value suggests that these observations have an L-shaped
distribution. For the optimized value, we obtained [:L(AA.) =(.7598 and 6(3’:) =0.0002. The value
of back-transformed ﬁ(i) to the original scale, ,EL‘(AA) was given as 162.3285. The back-
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transformed value ‘[L‘(AA) was smaller than the corresponding one on the original scale,
(1) =172.6924. The plot of the profile of maximized log-likelihood as a function of A is shown in
Figure 2.3.1, together with the value of chi-square statistics. ~Figure 2.3.1 shows that the value of chi-

square statistics have a minimum at the neighborhood of A =0.7598.

Table 2.3.1 Example 11: The results of fitting of the PND

Maximum log-likelihood Performance
Maximum log-likelihood [ (é ():)) —61.7163 Goodness of fit
Truncated probability 1-A(x) 1.0000 Chi-square statistics 60.0566
Estimate of A p -vaiue near 0
i ~1.3145 Shape of original observations
. A —1.3354 Skewness 1.0742
95% confidence interval for A —1.2936 Kurtosis 5.4620
Estimate of 1 Shape of power-transformed observations
ia(A) 0.7598 Skewness 0.0337
Back to the original scale [f()LA) 162.3285 Kurtosis 2.5476
a(1) 172.6924
Estimate of O
S(A) 0.0002
() 26.7211

-40.0 1000.0

95% contidance interval

-60.0 F

H
j
400 | | 800.0

-100.0 P
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<1200 |
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Chi-square statistics

-160.0 F /

<1800 fi 200.0

-200.0 o
~~"""" Chi-square statistics

-220.0 0.0
2.8 LS -0 0.5 0.0 0.5 1.0 L35 2.0

Transforming paramaeter

Figure 2.3.1 Example 11: The profile of maximized log-likelihood and the value of chi-square statistics

as a function of transforming parameter A

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.3.2 and 2.3.3 respectively. The value of chi-square statistics for goodness of fit was given as 60.0566,
which was significant at 5% level. The value of skewness for the observations on the power-
transformed scale was given as 0.0337, which was not farther from zero than the value of 1.0742 for the

observations on the original scale. But the value of the kurtosis for the observations on the power-
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transformed scale was 2.5476, which was not farther from 3 than the value of 5.4620 for the observations
on the original scale. This shows that the observations on the power-transformed scale achieve the near-

normality in comparison with the observation on the original scale.
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80 r

Frequency

60 PND{-1.3145,0.7598,0.0002)
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120 130 | G d { 250 330
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Ungrouped The weekly earnings of secretaries Ungrouped
Original scale

Figure 2.3.2 Example 11: The distribution of observations on the original scale
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Figure 2.3.3 2 Example 11: The distribution of observations on the power-transformed scale

Example 12 (Fisher and Belle, 1993): The data are the aflatoxin levels of raw peanut kernels. The
observations outside [20,50) are given grouped. So, the twelve observations falling in [20,50) are
26,26,22,27,23,28,30,36,31,35,37 and 48 respectively.

The results of fitting the PND to these grouped observations are shown in Table 2.3.2. The value of
transforming parameter A was estimated as —0.9460 with the approximate 95% confidence interval
(—3.1041, 1.2031). This optimized value suggests that these observations have an L-shaped
distribution. ~ For the optimized value, we obtained ﬁ(l‘:) =1.0165 and 6‘(i) =0.0130. The value
of back-transformed [L(AA.) to the original scale, [:t‘():) was given as 31.3752. The back-transformed
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value (i) was smaller than the corresponding one on the original scale, ft(1)=3.8682. The plot of
the profile of maximized log-likelihood as a function of A is shown in Figure 2.3.4, together with the
value of chi-square statistics. Figure 2.3.4 shows that the value of chi-square statistics have a minimum

at the neighborhood of A = —0.9460.

Table 2.3.2 Example 12: The results of fitting of the PND

Maximum log-likelihood - Performance
Maximum log-likelihood [ (é (A) —9.2062 Goodness of fit
Truncated probability 1- A(K ) 0.9991 Chi-square statistics 10.2138
Estimate of A p -value 0.5972
A —0.9460 Shape of original observations
95% confidence interval for A —?;ggl Sk::::ssi: ?igi?
Estimate of u Shape of power-transformed observations
a(A) 1.0165 Skewness ~0.0305
Back to the original scale 2" (A) 31.3752 Kurtosis 1.3964
a(l) 33.8682
Estimate of O
G(A) 0.0130
(D) 11.8505

-8.5 24.0
95% confidence intervai

9.0 F I { , 220
/ 20.0
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Figure 2.3.4 Example 12: The profile of maximized log-likelihood and the value of chi-square statistics

as a function of transforming parameter A

The distributions of observations on the original and the power-transformed scale are shown in Figure
2.3.5 and 2.3.6 respectively. The value‘of chi-square statistics for goodness of fit was given as 10.2138,
which was not quite significant at 5% level. The value of skewness for the observations on the power-
transformed scale was given as —0.3049, which was not farther from zero than the value of 0.2963 for the

observations on the original scale. But the value of the kurtosis for theobservations on the power-
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transformed scale was given as 1.3964, which was far from 3 as same as the value of 1.0541 for the

observations on the original scale. This shows that the observations on the power-transformed scale

achieve the near-normality in comparison with the observations on the original scale.
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Figure 2 3.5 Example 12: The distribution of observations on the original scale
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Figure 2.3.6 Example 12: The distribution of observations on the power-transformed scale

2.4 Further Problems, Other Analysis

2.4.1 Normalizing Power-transformation

The power-transformation defined by (2.2.1) dose not generally has scale invariance with the

transformation of observations. - For this reason, it is meaningless to perform subsequent statistical
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processing by quantities or statistics which depend on scale of observations in before and after of the
transformation (Atkinson, 1982, 1985: Box and Cox, 1982: Hinkley and Runger, 1984: Goto et al., 1991).
Then, in order to take away scaling effect which depends on the transforming parameter, it may be
recommended to apply “the normalized power-transformation (NPT)” which is adjusted ordinary power-
transformation (OPT) by n th root of Jacobian of transformation (Box and Cox, 1964: Hinkley and
Runger, 1984: Goto et al., 1991: Duan, 1993). By working with NPT rather than OPT, quantities or
statistics can be directly comparable in before and after of transformation, and the effect of the
transforming parameter on the parameter estimates in the model will become much small (Hinkley and
Runger, 1984: Duan, 1993: Hamasaki and Goto, 1996). Furthermore the asymptotic variance of the
model parameters in which NPT is used will smaller than that of OPT (Bickel and Doksum, 1981: Carroll
and Ruppert, 1981: Hinkley and Runger, 1984).
NPT corresponding to OPT defined by (2.1.1) is

Y -1
—, A=0,

Yipr =4 AY* g 2.4.1)
YlogY, A=0

. - Wn
where Y denotes the geometric mean q_I f_ll y,."')‘/ of the observations y,,--,y, . Thus, the

Jacobian of transformation corresponding to (2.1.1) and (2.4.1) are

YO, A0
Jopr =14 . ’ ’ (242
OPT {Y", A=0, )
_ 3k
1+u 1-y"), A=0,
J ot = ni £ (243)
1+ logY, A=0

respectively. Thought the Jacobian (2.4.2) corresponding to (2.4.1) do not exactly equal to one so that
the effect of A can not entirely be removed on the scale of normalized power-transformed scale,
Jyr —2% 51 forall A as n—> .

To illustrate above arguments, let us consider the seven examples in Section 2.2.4. The estimates of
refitting the PND to seven examples in Section 2.2.4 by using NPT are shown in Table 2.4.1 together with
that of OPT. Table 2.4.1 shows that there are little differences in the estimate of transforming parameter

A between OPT and NPT for all seven examples, though there are large difference in ((A) and
a(A).
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Table 2.4.1 Comparison of estimates between OPT and NPT

Example _ OPT NPT Example OPT NPT
Y 1.1107 1.1108 i —1.3852 —1.4363
Example 1 [i(4) 96.0289 60.2330| Example 5 fi(4) 0.7098 1016.0138
G(A) 4.0753 2.5563 G(L) 0.0040  4.9643
A —0.4691 —0.4691 A —2.0010 —2.0010
Example2  fi(A4) 19318  3215.1206|Example 6  (A) 0.4984 3470.0952
G(A) 0.0123 20.4423 G(A) 0.0007  4.7330
A 1.0270 1.0270 A 0.6735 0.6736
Example 3 ‘EL(}C) 37.4010 34.0309|Example 7 ﬁ(i) 63.2102  390.0697
S(A) 13.7454 12.5068 G(A) 125686  77.5640
A 1.9234 1.9234
Example4  [((A) 3221897.1896  1828.0513
G(A) 1019537.7825  578.4517

Next, to evaluate how stable working with normalized transformation can make the scale of the power-
transformed observations, namely how it can removes the effect of the transforming parameter on the
scale of the power-transformed observation, the 7 th root of the Jacobian of power-transformation were
calculated for seven example. Also, to evaluate the effect of A on @ and O, we calculated two

relative change rates defined by

R, () = lim A2+ 8) ~AR)/A _ BR)

R TEY i) 4
R (1) - limS A =OQ)A_ ') 245
R ey ey *

The values of the 7 th root of the Jacobian of normalized power-transformation, and two relative change
rates are shown in Table 2.4.2 together with those of OPT.. Table 2.6.1 shows that the values of the 7 th
root of the Jacobian of NPT are more close to one than that of OPT, for all seven examples. Also, two
relative change rates which NPT was used were more smaller than that of OPT, in particular, Example 2,
5 and 6, where A were estimated as a negative value. These results suggest that the scale of
normalized power-transformed observations is more stable than that of power-transformed observations.
However, the values of the 7 th root of the Jacobian of power-transformation in any examples do not
exactly equal to one, so that the effect of A can not entirely be removed on the scale of normalized

power-transformed observations. However, note that, assuming that J z;'r =1 over the practically’

important range of A, the absolute location of normalized power-transformed observation YPSQ. will
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not be the same as that of Y and will depend on A (Hinkley and Runger, 1984: Hamasaki and Goto,

1996).

Table 2.4.2 Comparison of Jacobian, R; and R between OPT and NPT

Example OPT NPT
n th root of Jacobian 1.5945 1.0004
Example 1 R,(4) 0.0000000466 0.0000001184
R, (A) —0.0000050754 —0.0000128975
n th root of Jacobian 0.0006 1.0004
Example 2 R, (%) 0.3009197352 0.0000000010
R,(A) —273.6778455808 —0.0000009247
n th root of Jacobian 1.0990 1.0265
Example 3 R;(A) 0.0000000039 0.0000000047
R,(A) —0.0000000249 —0.0000000301
n th root of Jacobian 1761.5789 1.0000
Example 4 R;(A) 0.0000000000 0.0000000127
R,(4) 0.0000000000 —0.0000001566
n th root of Jacobian 0.0007 1.0496
Example 5 R, (A) 132.8646662489 0.0000007384
R, (i) —101852.0826853260 —0.0007223971
n th root of Jacobian 0.0001 1.0076
Example 6 R;(}) 7859.8394818762 0.0000000985
R,(A) —19552473.7652356000 —0.0003918026
n th root of Jacobian 0.1621 1.0056
Example 7 R;(A) —0.0000000278 0.0000000000
R,(A) 0.0000004982 —0.0000000004

2.4.2 Observations Subject to an Upper Constraint

The power transformation defined by (2.1.1) is appropriate for observations constrained to be non-
negative. But in some cases the observations may also be subject to an upper constraint. For example,
the observations might be the score of an examination paper out of 100, the true value of which must lie
between 0 and 100. Unless the value lies near zero, when the upper constraint is of little importance, a
power-transformation of the observations will not, in general, provide a simple model. If the values all

lie near one hundred, for example in the range 90—100, then a transformation from the family



88 Univariate Grouped Observations

(100-Y)* will sometimes be useful. But for the complete range of values of ¥, a more general
class of transformations needs to be studied.

In this section, we introduce four analogues of the power-transformation for the observation subjected
to an upper constraint C, so that the true values are constrained to lie between zero and ¢. These are
respectively folded power-transformation (FPT), symmetric power-transformation (SPT), asymmétric
power-transformation (APT) and asymmetric odds-ratio power-transformation (AOPT) (Arandaz-Ordaz,

1981: Guerrero and Johnson, 1982: Goto et al., 1986: Atkinson, 1985).

Folded power-transformation (FPT): This transformation is defined by

A A
Y_Z%'_Z_l, A=0,
Y - . (2.4.4)
log( ), A=0
c-Y

where c is the upper constraint of variable Y. The FPT coincides with the logistic transformation for
A=0if c=1. Forvaluesof Y near zero, the transformation behaves like the power-transformation
Y* , whereas for values of Y near one it behaves like (c —Y)A. Suppose that, once the model has

been fitted, expected value on the power-transformed scale is (. Then, Y, the expected value on the

original scale, satisfies the relationship
Y -(c-Y)=Ad (2.4.5)

Except for a few special values of A, such as zero and one, analytical inversion of this transformation is
not possible. Thus to obtain expected values on the original scale of the observations the iterative .

solution of relationships like (2.4.5) is required.

Asymmetric power-transformation (APT): This is a direct application of the power-transformation

defined by (2.1.1) notto Y, but to the ratioc/(c —Y), and defined by

1 c *
— ( ) -1}, A =0,
@ |A\e-Y
Y8 = (2.4.6)
c
lo X A=0.
o ==7)

However this transformation does not yield the original observations for A =1.

The advantage of APT is that it is readily inverted. For a given A, we can write
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A

L) - 2.4.7
() | @47)

which can be inverted straightforwardly to yield
y o S +D* 4c
(Au+D?

(2.4.8)

Asymmetric odds-ratio power-transformation (AOPT): This is a direct application of the power-

transformation defined by (2.1.1) not to Y, but to the odds-ratio Y/(c —Y'), and defined by

[ A
UL ] 2o
C—.
Y®, - (2.4.9)
lo Y A=0
L & c-Y/ ’

The AOPT coincides with the logistic transformation for A =0 if c=1. However this
transformation does not yield the original observations for A=1.
The advantage of AOPT is that it is readily inverted. For a given A, we can write

A

Y )\ _ql- (2.4.10)
c-Y “

1

A

which can be inverted straightforwardly to yield
c(Au+1)"*

_cAu+l) 2.4.11
1+(Au+1)" (24.11)

Thus the fitted model can readily be used to provide predictions and confidence intervals on the original
scale of the observations one these have been calculated on the power-transformed scale.

Symmetric power-transformation (SPT): This transformation is more complicated than APT and
"~ AOPT. But it has the advantages of being invertible and of yielding the undefined observations for

A =1 as well as reducing to the logistic transformation for A =0 if ¢ =1. STP is defined by

A A
2V -0t
MY +(c-Y)

Y
lo R A=0.
=)

Interm of odds Y/(c =Y), rather than Y, (2.4.9) is

Y = (2.4.12)
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Y& - 2[y/c-n} -1

seT =y [Y/(c —Y)]A 1 (2.4.13)

These two forms emphasize the connection between SPT and those of two preceding transformations.
The number of (2.4.13) is the AOPT, while the number of (2.4.12) yields the FTP. The inverse of the
transformation is found, by

A Ya
c 1+ )\.[.L/Z
(C - Y) (———1 )2 ) (2.4.14)

which can readily be further re-arranged to give a slightly cumbersome expression for Y as a function of

u.
A strange feature of the transformation given by (2.4.12) is that

A -A
Yot = Yeor’ (2.4.15)

which is easily shown since

-A A
¢ =>/ S (2.4.16)
c-Y c-Y o

The maximized log-likelihood is therefore symmetrical about A =0.

As one comparison of above four transformations, let us consider the total score of the common first-

stage examination for university entrance cited from Sugiura (1980,1981).

Example 13 (Sugiura, 1980, 1981): This data are the grouped observations of total score of the
common first-stage examination for university entrance conducted in fiscal 1979(13A), 1980(13B) and
1981(13C) cited from Sugiura (1980, 1981). Because these observations were the score of an
examination paper out of 1000, the true value of which should lie between 0 and 1000.

The results of fitting the PND to these three grouped observations 13A, 13B and 13C by using FPT,
APT, AOPT and SPT are shown in Table 2.4.3, 2.4.4, and 2.4.5 respectively together with those of the
ordinary power-transformation (OPT). The plots of the profile of maximized log-likelihood [ 6(L)
as a function of A for 13A, 13B and 13C are shown in Figure 2.4.1, 2.4.5 and 2.4.9 respectively. The
related plots of value of chi-square statistics are shown in Figure 2.4.2, 2.4.6 and 2.4.10 respectively.
FPT, AOPT and SPT yield the logistic transformation for A =0 and so coincide at that point. OPT,
FPT and SPTv also coincide at A=1. For A =0.5, the behavior of FTP and SPT seem similar,
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though they diverge as A increases toward 2. For SPT, because of the symmetry of [ (é (1)) and chi-

square statistics, the slope of the two functions is zeroat A =0.

Table 2.4.3 Example 134(1979): The results of fitting of the PND

OPT FPT APT AOPT SPT
Maximum log-likelihood
Maximum log-likelihood [ (é (}:)) —2651.9942 —185.5613 —1155.7049 —150.1864 —196.8037
Truncated probability 1- A(K) 0.9994 1.0000 1.0000 1.0000 1.0000
Estimate of A
)C 1.5066 0.1478 —0.6366 —0.0689 0.4269
. o a 1.4857 0.1269 —0.6575 —0.0898 0.4060
95% confidence interval for A 1.5275 0.1687  —0.6157 _ —0.0480 0.4478
Estimate of L
ﬁ(i) 11315.1434 1.5154 0.7598 0.5867 0.5981
Back to the original scale ﬁ (){) 643.8190 - 645.9787 645.4067 645.9738
4 636.7576
Estimate of O
é(}:) 3489.4185 1.5446 . 0.1977 0.6044 0.6102
Q) 134.9674
Performance
Goodness of fit
Chi-square statistics = 4755.0929 273.9908 2035.6975 155.8879 245.5072
p -value near 0 near 0 near 0 near 0 near 0
Shape of original observations
Skewness —0.2855
Kurtosis ~ 2.5904
Shape of power-transformed observations
Skewness —0.0281 0.0597 0.0900 0.0725 0.0926
Kurtosis 2.4163 2.8727 2.6133 2.9766 2.8746
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Figure 2.4.1 Example 134(1979): The profile of maximized log-likelihood

as a function of transforming parameter A
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Figure 2.4.2 Example 13A(1979): The profile of the value of chi-square statistics

as a function of transforming parameter A
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Figure 2.4.3 Example 13A(1979): The distributions of observations on the original scale
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Figure 2.4.4 Example 134(1979): The distributions of observations on the power-transformed scale
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Table 2.4.4 Example 13B(1980): The results of fitting of the PND

OPT FPT APT AOPT SPT

Maximum log-likelihood
Maximum log-likelihood [(é()[)) —2459.6568 —265.1823 —1301.8472 —255.3088 —265.1776

Truncated probability 1-A(x) 0.9996 1.0000 1.0000 1.0000 1.0000
Estimate of A
A 1.4760 0.0026 —0.6210  —0.0125 0.0307
. ~ 1.4551 -0.0183 —0.6419 —0.0334 0.0000
95% confidence interval for A 1.4969 0.0235  —0.6001 0.0084 0.1388
Estimate of u
,j,(}t) 9057.2813 0.5177 0.7365 0.5141 0.5177
Back to the original scale i ()  624.4131 - 626.3418  626.1623  626.6112
a(d) 618.3322
Estimate of O
o"(}:) 2691.3180 0.5773 0.1867 0.5737 0.5772
() 128.6309
Performance
Goodness of fit
Chi-square statistics  4608.9699 388.5771 2338.4420 374.5717 388.6457
p -value near 0 near 0 near 0 nearQ near 0
Shape of original observations
Skewness —0.2943
Kurtosis 2.5295
Shape of power-transformed observations
Skewness —0.0627 0.0688 0.0257 0.0130 0.0320
Kurtosis 23772 2.9796 2.4812 2.7439 2.7447
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Figure 2.4.5 Example 13B(1980): The profile of maximized log-likelihood

as a function of transforming parameter A
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Figure 2.4.6 Example 13B(1980): The profile of the value of chi-square statistics

as a function of transforming parameter A
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Figure 2.4.7 Example 13B(1980): The distributions of observations on the original scale
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Figure 2.4.8 Example 13B(1980): The distributions of observations on the power-transformed scale
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Table 2.4.5 Example 13C(1981): The results of fitting of the PND
OPT FPT APT AOPT SPT
‘ Maximum log-likelihood
Maximum log-likelihood [(G(A)) —2581.7629 —380.1049 —1567.3202 —110.5031 —401.4169
Truncated probability 1— A(K) 0.9998 0.9900 0.9999 1.0000 0.9999
Estimate of A
A 1.2713 0.2390  —0.7483  —0.1103 0.5427
0 . i 1.2504 0.2181 —0.7692 —0.1312 0.5218
95% confidence interval for 1.2922 0.2599 —0.7274 —0.0894 0.5636
Estimate of u
ﬁ(i) 2746.1563 2.0490 0.6814 0.4488 0.4649
Back to the original scale ;2' (i) 612.3333 - 614.3975 613.0833 614.7633
a(l) 608.0712
Estimate of O
(5'(i) 785.6198 2.6781 0.1784 0.6004 0.6077
éQ) 139.0661
Performance
Goodness of fit
Chi-square statistics 4616.3647 597.8618 2836.8749 74.6738 640.2104
p -value near 0 near 0 near0 near 0 near 0
Shape of original observations
Skewness —0.1375
Kurtosis 2.4327
Shape of power-transformed observations
Skewness 0.0041 0.1051 0.1146 0.0829 0.1385
Kurtosis 2.3736 2.7285 2.5250 2.9005 2.7591
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Figure 2.4.9 Example 13C(1981): The profile of maximized log-likelihood

as a function of transforming parameter A
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Figure 2.4.10 Example 13C(1981): The profile of the value of chi-square statistics

as a function of transforming parameter A
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Figure 2.4.11 Example 13C(1981): The distributions of observations on the original scale
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Figure 2.4.12 Example 13C(1981): The distributions of observations on the power-transformed scale
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The distributions of observations on the original scale for 13A, 13B and 13C are shown in Figure 2.4.3,
2.4.7 and 2.4.11 respectively. The distributions of observations on the power-transformed scale are
shown in Figure 2.4.4, 2.4.8 and 2.4.12 respectively. The values of chi-square statistics for AOPT in all
three observations were smallest among five transformations. The values of the skewness and the
kurtosis for the observations on the power-transformed scale show that the observations transformed by

AOPT satisfy more normality than the remaining four transformations.
2.4.3 Application to Discrete Observations

The contents developed in previous sections can be applied directly to discrete observations such as count
or the number of events. Let Y be a discrete random variable with the probability p, = Pr{Y =i } at
i for 0 <i< N. Thus, the probability p; can be approximate to the probability based on the PND,
Dpnp: Which is given by

i ) _ P AV _
Peni (@) = A(lK) {cb(( i AL £ ) - @((———A)G——‘i)} (2.4.17)

where A is the constant of correction for continuity with range 0 < A <1. As the value of A,

A =05 is often used. And then, for 7 trials,if p, =0 as i >n

1 (D((l-A)‘”—u),

Peno(0) = A(0) p

1 (n-1+0)% -
Penn (@) Ax<) {1 (D( > )} (2.4.18)

Therefore, maximum likelihood estimates of A, @ and O can be obtained by maximizing the log-

likelihood
n
1 (0)= 2 1, 10g poy; (@) - nlog 2A. , (2.4.19)
As an example of the above procedure, let us consider the number of major labour strikes in the UK,
1948 — 1959, commencing in each week cited from Stuart and Ord (1986).

Example 14 (Stuart and Ord, 1986): The data are the number of major labour strikes in the U.K.,
1948 — 1959, commencing in each week, which Stuart and Ord (1986) give as an example to describe the

Poisson distribution. . The results of fitting the PND to these observations are shown in Table 2.4.6.
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The value of transforming parameter A was estimated as 0.7307 with the approximate 95% confidence
interval (0.5036, 0.9508). This optimized value was very close to 1/2 which is theoretical value to
Poisson distribution to achieve constant variance, but the 95% conficence interval did ﬁot include 1/2.
There was then no disagreement between the results obtained in this section and the. theoretical
considerations in Hamasaki and Goto (1998b), though the likelihood ratio test does not provide a
convenience value of A as A=05 (p -value was 0.0499). For the optimized value, we obtained
fi(A) = —0.2893 and G(A)=1.0290. The value of back-transformed {i(A) to the original scale,
i ():) was given as 0.7225. The back-transformed value - i~ (AA.) was smaller than the corresponding
one on the original scale, ((1)=0.7509. The plot of the profile of maximized log-likelihood as a
function of A is shown in Figure 2.4.14, together with the value of chi-square statistics. Figure 2.4.14

A

shows that the value of chi-square statistics have a minimum at the neighborhood of A =0.7307.

Table 2.4.6 Example 14: The results of fitting of the PND

Maximum log-likelihood Performance
Maximum log-likelihood [ (é (A) —10.2939 Goodness of fit
Truncated probability 1-A4(x) 0.8529 Chi-square statistics 0.4435
Estimate of A p -value 0.9311
}: 0.7307 Shape of original observations
95% confidence interval for A 82232 Skewness 08254
: Kurtosis 2.0737
Estimate of u Shape of power-transformed observations
(A —0.2893 Skewness 0.3587
Back to the original scale 3" (4) 0.7225 Kurtosis 2.0059
Q) 0.7509
Estimate of O
G(A) 1.0290
() 1.1077

The distributions of observations on the original and the power-transformed scale are shown in Figure
'2.4.14 and 2.4.15 respectively. The value of chi-square statistics for goodness of fit was given as
0.4435, which was quite significant at 5% level. The value of skewness for the observations on the
power-transformed scale was given as 0.3587, which was not so much far from zero as the value of
0.8254 for the observations on the original scale. But the value of the kurtosis for the observations on
the power-transformed scale was given as 2.0059, which was far from 3 as same as the value of 2.0737
for the observations on the original scale. This shows that the observations on the power-transformed

scale achieve only symmetry of distribution in comparison with the observations on the original scale.
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Figure 2.4.14 Example 14: The profile of maximized log-likelihood and the value of chi-square statistics

as a function of transforming parameter A
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Figure 2.4.15 Example 14: The distribution of observations on the original scale
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2.4.4 A Multi-sample Problem

In this section, we consider a multi-sample problem on the PND in which observations are grouped.
Thus, the procedure developed by Goto et al. (1984) can be applied directly to this case.
Suppose we have p random samples of size n;(j=1---,p). Let us denote them by

Yi=1-n;5j= 1,---,p}. We consider a sequence of hypotheses

Hpy 1Y ~g(y;l,j,[,tj,0'f),
H,:Hyyand A, =4, =--=1 =A4,
H,:H, and 0} =0} =---=0? =0,

H,; :H; and C,.“ =0,i=1---,J

where p = (L, Uy 5 Uy )" and C, is r,x p matrix which consists of the first 7, row of C,,
and C, isa r, x p full rank matrix. Weassume 7, <F, <---<7;.

Thus we have a sequence of hypotheses Hpy DHy, DH; OH, DOH, D---DH, . Letus
denote the maximum value of log-likelihood function under H. by I(H.) and the number of
parameters to be estimated by p(H.). AIC for model selection

AIC = =2I(H.) +2p(H.) (2.4.19)
can be applied to choose the best model in the sequence of hypotheses.

Other hypotheses for the transforming parameter of the scale parameters can be incorporated into
sequence.

When we fit the PND to the observations, we expect Hu to hold, and this implies Hl,N holds.
Description of observations by a model is to re-express the variation among the observations by signals
through filter of the model.

As an example of our procedure, let us consider the body weight of male and female students who

entered Saitama University in fiscal 1982 cited from Domae and Miyahara (1984).

Example 15 (Domae and Miyahara, 1984): The data are the body weight of 1,084 students who
entered Saitama University in fiscal 1982 cited from Domae and Miyahara (1984). They consider
whether the cube root of observations of body weight of 753 male and 355 female students who entered

Saitama University in fiscal 1982 have a normal distribution or not. The results of fitting the PND to
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these grouped observations are shown in Table 2.4.7. The value of transforming parameter A for male
was estimated as —0.8013 with the approximate 95% confidence interval (—1.3345, —0.2790),
suggesting that these observations have an L-shaped distribution. On the other hand, The value of
transforming parameter A for female was estimated as —0.8528 with the approximate 95% confidence
interval (—1.6149, —0.1234), suggesting that these observations have an L-shaped distribution. The
likelihood ratio tests provides a convenience value of A as A = —1.0 for both observations (p -value
Was 0.4639 and 0.7208 respectively). These results show that both observations of male and female

have the same shaped distribution.

Table 2.4.7 Example 15: The results of fitting of the PND

Male Female
Maximum log-likelihood

Maximum log-likelihood [(8(A)) —28.8719 —20.3891
Truncated probability 1-A(x) 1.0000 1.0000

Estimate of A
A —0.8013 —0.8528
. : , « —1.3345 —1.6149
95% confidence interval for A —0.2790 —0.1234

Estimate of U
a(d) 1.2015 1.1318
Back to the original scale i (1) 60.6604 50.9519
4 61.3929 51.6225

Estimateof O
G(A) 0.0043 0.0042
é() 7.2563 6.2896

Performance

Goodness of fit
Chi-square statistics 10.7618 6.3100
p-value 0.7693 0.9741

Shape of original observations
Skewness 0.5610 0.6346
Kurtosis 3.4996 3.8246
Shape of power-transformed observations

Skewness ~—0.0878 —0.1101
Kurtosis 2.9810 3.1465

Furthermore, in order to look at whether they have the same distribution, we consider them on the
sequence of hypotheses. The results of fitting of the sequences of hypotheses are shown in Table 2.4.8. -
These results show that the value of AIC for hypotheses H,, was minimum, and then this hypotheses in
which each of male and female has a power-normal distribution was adopted on AIC. The estimate of

the transforming parameter for this hypotheses was —0.8181, suggesting that these observations have an
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L-shaped distribution. Thus, the same result was also obtained by likelihood rate test. The

distributions of observations for male and female on the original and the power-transformed scale are

shown in Figure 2.4.17 and 2.4.18.

Table 2.4.8 Example 15: The results of fitting of the sequences of hypotheses
likelihood rate test

Hypotheses A I o;n-?i)l((z‘l}xomod AIC Chi-square D -value
Hpy —49.2160 110.5520

H, —0.8181 —49.2672 108.5344 0.0124 0.9113
H —0.4294  —53.1050 112.2100 7.6756 0.0056
H, —0.4019  —307.7293 619.4586 509.2486 near 0

0.20

Female: PND(-0.8528,1.1316,0.0042) Male: PND(-0.8013,1.2015,0.0043)

015 p

0.10 p

Relative Rate

0.05

4.00 -
0.0 10,0 20.0 300 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Weight
Untransformed Scale

Figure 2.4.17 Example 15: The distribution of observations on the original scale
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Figure 2.4.18 Example 15: The distribution of observations on the power-transformed scale



3 .
Bivariate
Grouped Observations

3.1 Bivariate Power-normal Distribution

In this section, the relationship between a set of two positive variables (Y;,Y,) is considered. Suppose
that (Y;,Y,) have the bivariate power-normal distribution (BPND), and then, through transforming
parameters A = (A,,A,), the power-transformed variables (¥, ,Y;*?’) of (Y;,Y,) have nearly a
bivariate normal distribution. Here, the BPND is an extension-of the PND to two-dimensional case,

which probability density function is given by

yrlye

g(y1,y,) = Zl(‘fj?)f(ylm,yg’)) (3.1.1)

where
1 1

(A,)’ (A2)y = expl-= (31)’ (&) , 3.1.2

fOr™, ™) 2”0_10_2‘/1—_? P{ 2Q()’1 Y )} ( )
Q(y;Al) yél\q))___ 1—p2

2 2y (3.1.3)

) Y 2 Y — V[ y9P -, +(y§)’)-uz)
0, 0, 0, o,

(Goto et al., 1980). @ and Y, are vector of mean parameter and variance-covariance matrix, in which

(Y;("‘) ,Yz“’)) have nearly a bivariate normal distribution, given by
T
p=(u,u,) (3.14)
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ol 0,0
3= 97 PO 2) (3.1.5)
poo, 0O,

respectively.  And, the probability proportional constant term of the BPND, A(l, u, E) is presented
by

A1) = [ 000, : ) du, (3.16)

in term of joint probability density function of a bivariate standard normal distribution”

(3.1.7)

1 ul - 2pouu, +u?
¢, (u;,u,:0) = = CXPy~ 1~ o, 2B .
2n41-p

2(1-p%)

Table 3.1.1 The values of a,, a,, b, and b,

A A, a, b, a, b,

A.2<O - -K,

A <0 A, =0 -0 -K, - o
/\2 >0 -K, oo
)—2 <0 -0 -K,

A =0 A, =0 - ) - )
A, >0 -K, e
Az<0 - 0 -K,

A >0 A, =0 -K, o - oo
A, >0 -K, o0

Then, if truncation point of ¥; and ¥, are k, = (A, +1)/A,0, and K, = (A, u, +1)/A,0,
respectively, @,, a,, b, and b, are given as Table 3.1.1 respectively. ~Actual magnitude of
A(A, @, canbe evaluated in term of the both distribution function @, (+,0) and ®(") of a bivari-
ate standard normal distribution and univariate standard normal distribution. Namely, for A; <0,
A(A,u,) is denoted by
D,(-Kx,,-K, : p), A, <0,
A, 3) = 1o(-x)), A, =0, (3.1.8)
Q(-k,) - @, (KK, 1 p), A, >0,

2 Though an ordinary bivariate standard normal distribution is denoted by N, (0,1,), in this paper denoted by

. . 1 p
distribution N, (0,I,) with variance-covariance matrix I, = ( L
0
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for A, =0

1-®,(c,), A, <0,

AA,u1,3) =11, A, =0, (3.1.9)
P,(x,), A, >0,

and for A, >0

O(x,) - P, (K, K, 1 p)A, <0,
AA,u, ) =10(x,)), A, =0, (3.1.10)
@, (k,,K,: ) Ay >0.

See Goto et al. (1980, 1981a, 1981b, 1982), Kawai et al (1996) and Jimura et al. (1996) for detailed

discussions about the properties of the BPND.

Therefore, setting 0" = (A A, 0y, u2,o‘12,022 , P), the log-likelihood function for the sample of

size n is given by

1 (@) = -nlog2x ——;—{logaf +logo? +log(l- pz)}

2 2
1 c Y1(1M) = Uy Y1(IM) - U, yg?Z) - U, yg?) o)
- - 2 -2p (3.1.11)
21-p) £ o0y g, 9, o,

O —1)§logyu + (A, —1)Zlogyz, ~nlogA(A,u,3).

The maximum likelihood estimates of A, A, U, U,, 012 s 0'22 and O are obtained by maxi-
mizing this log-likelihood function (3.1.11) over each of these parameters. Thus, assuming

A(A,u,Z) =1, for fixed A, and A,, the maximum likelihood estimates of u,, u,, ol, o and

P are given by
A) (A2)
e () = Zy" s AR = Zyj; ,
62.(h) = Z i “‘"“)} 62,() = Z 2 “2""‘)} 6112

Y3 = i, (o) Y 752 = gy ()
on ) = 2( XS )( G )

respectively. Substitution of the these maximum likelihood estimates into the log-likelihood function

given by (3.1.11) yields, apart from constant
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1,6) = -2 {og5?, (1) +log &, (2,) +log- P} (W)}
» n (3.1.13)
+ (k=D Y logyy + (A, ~D Y logyy.

The maximum likelihood estimates }A,ln and A;n are the values of the transforming parameter A, and
)Lz for which the maximized log-likelihood is a maximum. Furthermore, substitution of AAM and A:z"
into i, (A), f,,(A), 6L (X), 62,(A) and P,(A,A,) yields the maximum likelihood esti-
mates oy (y), B (P) s Gin(ay), 63,(Ray) a0d B, (s, ) respectively.

3.2 Completely Grouped Observations
3.2.1 Fitting the BPND to Grouped Observations

In this section, the procedure of fitting the BPND to two variables which observations are grouped into
several intervals is developed.

Let the observations be grouped into & x [ cells, specified beforehand and determined by k(k = 3)

interval with I, =[¥10, Y1)y Tiz =[V1: Y1) 5Ty =[Vieers i) on ¥, and by I(I 2 3) inter-
val with Ty =[Y20, Y2 )L =[V21: Y2 )r oA -[Yzl-v Yy) on Y, where 0=y, <y, <
<Yy <Yy =% and O=y, <y, <<y, <y, =%. Then, the frequency of the

observations lying within the & th cell is denoted by #,, and is given by the two-way frequency table

if »
shown as Table 3.2.1. In general, it is called a correlation table (Kendall and Buckland, 1982: Kitagawa

and Inaba, 1979).

Table 3.2.1 Correlation table for two set of observations Y, and Y,

Y I I, I I,
Y, Total
2 (V0o Y1) BZXT5 279 Duoys) 0 DuaoYu)
I, [Y20:Y21) ny noy Ny Ry n,
Iy, [V ¥n) Ny, Ny n, %) n,
I, [Y2jm15Y2;) n; ny; n; n; n,;
I, Yaras Y) ny ny ny ny n,
Total - nl‘ nz. oe n[. o0 nk- n




Completely Grouped Observations 107

Therefore, setting 0" = (A A 1y, ,uz,olz,czz , ). for grouped observations shown as the cor-
relation table in Table 3.2.1, the likelihood function for the sample of size #n = 2 f_l 2 lj_ln,.j can be

written as
k1

! "
L,©) =—k——’f——[1 Pt 0) (3.2.1)

where  Dgpy;i (@) is the probabiiity based on the BPND given by
1

A, u,Y) (3.2.2)
x @, (z), ’zz,j) + (I)Z(Zl,i-l’zz,j-l) - (I)Z(Zl,i’ZZ,j—l) - q)2(zl,i-17z2,j)

Paeni @)=

where z,; =(z{; - 14,) / 0, and z,; = (zg;?) - U,) / O, . Then, the log-likelihood function be-
come
k1 ko
1,(0)=1logL,0)= logn!—z 2logn,.j + 2 zn,.j log pgey; (6) (3:23)
. t=] j= im ]-1
The maximum likelihood estimates A,, A,, f,, f,, O, O, and P of A, Ay, py, Uy,
O,, 0, and P can be obtained by maximize the log-likelihood function (3.2.1). The asymptotic

properties of the maximum likelihood estimates A;, A,, @, f,, G,, G, and P in this situation

are given in Section 3.3.

3.2.2 Properties of Parameter Estimates

In this section, the asymptotic properties of the maximum likelihood estimates A,, A,, gy, Uy, O,
G, and P of A, A,, Wy, U,, O, O, and P are considered by using the analogy of the proce-
dure in the Section 2.2.2.

Let 87 =(91’62793’94’65’06’97)=(A1’A2’“1:“2’01’02:p)’ ﬁun =nij/n’and

Dj =j;v1: K g*(yly.}’2)dy1d}’2

211
where g' is the true probability density function. Suppose that (i) the parameter space © is a compact
set givenby © = br = (A, A, U, U5,0,,0,, p)}, and (ii)
H@)= 2 :‘-lpij 10g pgen;; (6)/Pi;
which has a unique global maximum at @, €@ is a continuos function. Also, suppose that (iii) 0,

be an interior point of © , and (iv) the Hessian V>H (8,) of H (@) be nonsingular at 8.

Stirling’s approximation yields
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—logn'-——-ZZlognu'— llogZJr 22p,,nlogp,,n

. (3.2.4)
— (- k)logn - log p. -1y,
+ {( )logn 2]2 ogp,,,n}+ O(n™)
By (2.2.1)
1 £ )
~1,0) = 2 E Dy 108 pip; () - 2 > Py logpy,+o(D). (3.2.5)
(=] j=l =]

Therefore, the inequality

p ,( )
—1 (6) - 22 p, log—= ‘ iE 2p,,nlogpm, @)- 221),, 108 Pyen; (G)I
Zp., ,logp,, - Z Zp,, log p;

+o(l)

(3.2.6)
hold. Thus, because it follows from the analogy of Appendix 1 thatas n — o, for 6 €0

' k1
2 Zﬁl]u log pgpy; @)- 2 2pij longPNij @)——
1=l J= T=l I=

a.s.

———>p; as n —> @, the right hand side of inequality (3.2.6)

(3.2.7)

and continuity of xlogx,and P,

goes to zero with probability one uniformlyin @ €E®. Hence,as n — ©,for 0 €O

—z @)—=— H (0) (32.8)

A

Therefore, it follows form the analogy of Appendix 2 that @, —=>—>8,, as n — ® by identifying
H (@) with the function f(@) of the Appendix.
In order to show the asymptotic normality of én , the gradient and the Hessian of log-likelihood func-

tion are considered.  The gradient of [, (@) is given by

[
)M AN (3.2.9)
80,
and the Hessian of /,(@) isthe 7x7 symmetric matrix V°I,(8) = (h,, ,(8)) with its elements
9%l (8
h, 0)=—"—, uyv=1-7 3.2.10
uv,n( ) aeuaev u,v ( )

Itis réadily seen that the second partial derivatives are continuous on ® . Using Taylor’s formula to

expand n VI (é") about 6,
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1 oy 1 1 » =
—_ =—VI ~V? -
VL) VL0 @)@, -6,)} (G211

is obtained, where 8, =y,0, +(1-v,)8,(0<y, <1).
Next, since 8, —**—>0 as n — o, with the assumption that &, is an interior point of ©,

Vi, (én) = 0 for all sufficiently large 7, on an almost sure set. Therefore, as n —> %

L g1, @)+ 1v%,0.)}n @, -8,)}—=—0 6212
I p

sothat n"?VI (8,) and — n'*v* (@, ){\/;(9” -6, )} have the same limiting distribution.

Since we can write

m=l

vz (@, )—— 1[221 (V) (0, )]——-EX ©,) (3.2.13)

where D;; is the indicator function of the set [}, thatis, D, (Yu)=1if y, €I, and D, (y,)=
g Y
0 if y,,, ¢]ij ’ aij (60) = (aijr (e())) and

alongPij C))
06

r

a, (0,) = (a;6,)) =( ] r=1---7 (3.2.14)

then the random vectors X,(8,),":*,X,(6,) are identically and independently distributed with
E[X,(0,)]= VH(8,) = 0 and E[X,(8,)X"(8,)]= W, where W =(w,,),,, is given by

k

= 21 I2Pijaiju @o)ex;, 0,)
1=l J=

] (3.2.15)

: alongPq (G)I alogPBsz(e)l
"33 A L)

Thus, an application of the multivariate central limit theorem yields that, as n —> ®

1
:/_n_—ln (80)

Furthermore, from Hessian of /,(8), we can write

1 ke . .
;huv,n (9) = 2 Zpij,naij,uv (6) (3217)
tm]

—4 >N, (0,W). (3.2.16)

where &, (@) is uniformly continuous for @ E® for each # and v. So, the fact that

i v

a.s.

Dy, 25> p; as n —>  implies that uniformly on C]

1 &« pBPNx (6) d*H(0)
~h,, ,(0)—=— : . 3.2.18
n wa () 69 a0, (22 p aeuaev ( )
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A

Hence, as O, lies on the segment jointing @, and @, we have as n — @

n

d*H(0)

29,06,), (3.2.19)

Therefore, Setting V' = {VZH A )}”1 , we can apply Slutsky’s theorem to finally conclude that as

n —» 0
Jn@, -8,)—==—N,(0,yWV™). (3.2.20)

These results show that strong consistency and asymptotic normality of the maximum likelihood esti-

-~ A

mates A, Ay, fy, Uy, Oy, O, and P of A, Ay, iy, U;, O, Oy,a0d P.

3.2.3 Examples

To have a concrete and practical grasp of the aim in this paper, and make the impression of them clear, the
performance of fitting the BPND to grouped observations are numerically examined through some exam-
ples cited from published literature. Thus, to evaluate the bivariate normality of the simultaneous
power-transformed observations, we adopted the following three tests.

Test 1: test whether third and fourth cumulants equal to zero or not (Dahiya and Gurland, 1973:

Takeuchi, 1974)
Test 2: assess multi-dimensional skewness and assess multi-dimensional kurtosis (Mardia, 1970)

Test 3: assess the size of sample which falls into the each of four quadrants of two-dimensional coor-

dinates (Takeuchi, 1974: Shibata, 1981)

Example 16: Cramér (1974) considers the relationship between the age of father and mother of 475,322
boys of live born children in Norway during nineteen period 1871 —1900, which observations are the frequencies
in several groups of these two variables. The results of fitting the BPND to these observations setting
age of father as Y] and age of mother as Y, are shown in Table 3.2.1. The value of transforming
parameter for father was estimated as —0.0630, which was close to zero, whereas for mother, it was esti-
mated as 0.4330. These optimized values of transforming parameters suggest that the observations of
age of father and mother have a log-normal and exponential respectively. In the fitting of PND to each
of the two variables, the value of transforming parameter for father was given as 0.1204, and for mother it
was given as 0.3613. There was thus no disagreement between the results on the transforming parame-
ter drawn from the fitting of the BPND and the PND. The plot of the profile of maximized log-
likelihood as a function of A, and A, is shown in Figure 3.2.1. For the optimized values of these two

transforming parameters, we obtained fi, (A,) = 34.5489, f, (A,) =8.0022, G, (A,) =0.1904 and
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G, (A,) =0.9445. The values of back-transformed [, (A,) and fi, (4,) to the original scale,

a, (AA,,) and f1, (7(2) were given as 34.5474 and 31.6761 respectively. Both of them were smaller
than the corresponding values on the original scale, (1) =35.6991 and [, (1) =32.1275. Also, the
value of ;3(}‘1,);) was given as 0.6264, which was slightly larger than the value of 0.6183 for P(1,1)

on the original scale.

Table 3.2.1 Example 16: The results of fitting of the BPND

Original BPND PND
(Untransformed) (Transformed) Age of father Age of mother
Maximum likelihood and estimate
Maximum - —1608753.9991 —2282.3949 —6816.4912
log-likelihood
A - —0.0630 0.1204 -
A, - 0.4330 - 0.3613
My 35.6991 3.1749 4.3941 _
!j, 1' 34.5474 34.0205
U, 32.1275 8.0022 _ 6.8835
,jz 31.6761 31.7243
o, 8.5334 0.1904 0.3310 -
g, 6.7001 0.9445 - 0.7266
0 0.6183 0.6264 - -
Performance
i 0.1610 ¥y, 0.0421
Test 1 p-value nearQ p-value near 0
P 01971 ¥, 0.0077
p-value near 0 p-value 0.0024
Skewness 0.0002 Skewness 0.0001
p-value nearQ p-value 0.0504
Test 2 . .
Kurtosis 9.3914 Kurtosis 8.1434
p-value near 0 p-value near 0
2 2
48140.7147 47618.3182
Test3 X X 8
p-value near 0 p-value near 0

The distributions of observations on the original and the power-transformed scale are shown in Figure
3.2.2 and 3.2.3 respectively. The results of these three tests in Table 3.2.1 show that the observations on
the power-transformed scale satisfied the bivariate normality in comparison with the observations on the

original scale.
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Figure 3.2.1 Example 16: The profile of maximized log-likelirood
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Table 3.2.2 Example 17: The results of fitting of the BPND

113

Original BPND PND
(Untransformed) (Transformed) Family income Miles driven
Maximum likelihood and estimate
Maximum - —16621.4776 —45.1614 —51.0135
log-likelihood
A, - 0.3600 0.3504 -
A, - 0.3550 - 0.4453
Hy 12259.5713 76.3190 71.4135 _
ﬁ; 10969.0813 10946.5108
25 15.2430 4.2016 _ 4.6688
ﬁ; 13.0865 12.4973
&1 6802.4333 17.3144 17.0563 -
g, 10.1955 1.7868 - 2.4593
0 0.4009 0.4381 - -
Performance
Vi 0.1188 ¥y, 0.0450
Test 1 p-value near 0 p-value 0.0430
. 0.1261 Ty 0.0456
p-value near0 p-value 0.0407

Skewness 0.0097 Skewness 0.0075
p-value 0.164Q0 p-value 0.2831

Test 2 ; ;
Kurtosis 7.5353 Kurtosis 6.7365
p-value 0.9999 p-value 1.0000
2 2
705.9977 29.8819
Test 3 X X 329
p-value near 0 p-value near 0
IR TS
. 7 Lot N
/ g . : 95% confidence Tegi \\
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Figure 3.2.3 Example 17: The profile of maximized log-likelihood

as a function of transforming parameters A, and A,
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PND,(0.3600,0.3550,76,3190,4.2016,17.3144,1.7868,0.4381)
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Figure 3.2.4 Example 17: The distribution of observations on the original scale
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Figure 3.2.5 Example 17: The distribution of observations on the power-transformed scale

Example 17: Homles (1974) considers the relationship between family income and the amount of mon-
ey spent on gasoline based on the observed value of them for 4,012 families (car owner) during 1973.
Thus, as the amount money spent on gasoline could not be directly observed, he uses the total miles
driven instead of the amount money.. The observations are frequencies in several groups of total miles
driven and family income. The results of fitting the BPND to these observations setting family income
as Y, and total miles driven as Y, are shown in Table 3.2.2. The value of transforming parameter for
family income was estimated as 0.3600, whereas for total miles driven, it was estimated as 0.3550. The-
se optimized values suggest that the both observations of family income and total miles driven have an
exponential distribution. In the fitting of PND to each of the two variables, the value of transforming
parameter for family was given as 0.3504, and for total miles driven it was given as 0.4453. " There was
thus no disagreement between the résults on the transforming parameter drawn from the fitting of the

BPND and the PND. The plot of the profile of maximized log-likelihood as a function of A, and A,
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is shown in Figure 3.2.4. For the optimized values of these two transforming parameters, we obtained
@, (A) =763190, f, (ACZ) =4.2016, G, ()T1) =17.3144, and G, (JQ) = 1.7868. The values of
back-transformed [Ll(lk.l) and i, (l‘\.z) to the original scale, [21.(}’\.1) and f1, (AA,Z) were 10969.0813
and 13.0865. Both of them were smaller than the corresponding values on the original scale,
{2, (1) =12259.5713 and [i,(1) =15.2430. Also, the value of ,(A)(AA,I,)’:Z) was given as 0.4381, which
was slightly larger than the value of 0.4009 for O(L1) on the original scale.

The distributions of observations on the original and the power-transformed scale are shown in Figure
3.2.5and 3.2.6 respectiveiy. The results of these three tests in Table 3.2.2 show that the observations on
the power-transformed scale satisfied the bivariate normality in comparison with the observations on the

original scale.

Example 18: Winkelmann (1994) considers the relationship between the number of employers and the
numbers of unemployment spells during the ten year period 1974 —1984 for 1962 individuals, provided
by German Socio-economic panel (SOEP). And using the information on the number of employers and
the number of unemployment spells, Winkelmann (1994) investigates direct job change. The results of
fitting the BPND to these observations setting the number of employers as Y, and the number of unem-
ployment spells as Y, are shown in Table 3.2.3. The value of transforming parameter for the number of
employers was estimated as —0.1270, whereas for the number of employment spells, it was estimated as
--1.6470. These estimates suggest that the observations of employers and unemployment spells both
have an L-shaped distribution. However, in the in fitting the PND to each of the two variables, the vai-
ues of the transforming parameter for the number of employers and for the number of unemployment
spells were estimated as 0.3011 and 0.1204 respectively. Both of them were near zero, suggesting a log-
normal distribution. The plot of the profile of maximized log;likelihood as a function of A, and A, is
shown in Figure 3.2.7. For the optimized values of these two transforming parameters, we obtained
fy(A) = —0.8054, fi,(A,)=—17013, &,(A4)=07623, and &,(A,) = 0.7963. The values of
back-transformed {2 (A,) and 1,(4,) to the original scale, {i; (A4) and f;(A,) were given as
0.4645 and 0.4445 respectively. The value of [ (AA.I) was smaller than the corresponding one on the
original scale, (1) =0.5395, whereas the value of i, (Atz) was larger than the corresponding one on
the original scale fi,(1)=0.3736. Also, the value of P(A,A,) was given as 0.1096, which was
slightly larger than the value of 0.0501 for P(LY) on the original scale

The distributions of observations on the original and the power-transformed scale are shown in Figure

3.2.8 and 3.2.9 respectively. The results of these three tests in Table 3.2.3 show that observations on the
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power-transformed scale satisfied the bivariate normality in comparison with the observations on the

original scale.

Table 3.2.3 Example 18: The results of fitting of the BPND

Original BPND PND
(Untransformed) (Transformed) Employers Unemployment
Maximum likelihood and estimate
Maximum
- —3642.3400 —24.1869 -31.
log-likelihood 31.2127
)Ll - —-0.1270 0.3011 -—
A, - ~1.6470 - 0.1204
Wy 0.5395 —0.8054 —1.2943 _
.’:‘1 0.4645 0.1940
127} : 0.3736 —1.7013 _ —2,0413
‘az 0.4445 0.0961
o, 1.0828 0.7623 1.4323 -
o, 1.1049 0.7963 - 1.6545
0 0.0501 0.1096 - -
Performance
Vi 01341 ¥, 0.1603
Test 1 p:value near Q p:value near 0
Ya 0.3262 Yy 0.2013
p-value near 0 p-value near 0
Skewness 2.5966 Skewness  0.0516
p-value nearQ p-value 0.0021
Test 2 . .
Kurtosis 70.4191 Kurtosis 11.3122
p-value nearQ p-value near 0
2 2
2827.9281 2765.4151
Test3 X X
p-value nearQ p-value near 0

Example 19: Mardia (1970) and Kendall and Stuart (1977) consider the relationship between length and
breadth of 9,440 beans, which observations are the frequencies in several groups of these two variables. The re-
sults of fitting the BPND to these observations setting length as Y, and breadth as Y, are shown-in
Table 3.2.4. The value of transforming parameter for length was estimated as 4.0560, whereas for
breadth, it was estimated as 2.6860. These optimized values suggest that the both observations of length
and breadth have a J-shaped distribution. In the fitting of PND to each of the two varijables, the value of
transforming parameter for length was given as 3.0319, and for breadth, it was given as 3.1300. There
was thus no disagreement between the results on the transforming parameter drawn from the fitting of the

BPND and the PND. The plot of the profile of maximized log-likelihood as a function of A, and A,
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is shown in Figure 3.2.10. For the optimized values of these two transforming parameters, we obtained
() = 126423733, 3, (A,) =14.4953, G,(A) =3014.5518 and §,(4,) =11.4446. The val-
ues of back-transformed [ (/{1) and {1, ();) to the original scale {i; ()A.l) and fi, ()A,Z) were given
as 14.4953 and 7.9869 respectively. Both of them were slightly larger than the corresponding values on
the original scale, [ (1)=14.4035 and fi,(1)=7.9804. Also, the value f)(l},iz) was given as
0.7562, which was slightly smaller than the value of 0.7590 for 5(1,1) on the original scale.

The distributions of observations on the original and the power-transformed scale are shown in Figure
3.2.11 and 3.2.12 respectively. The results of these three tests in Table 3.2.4 show that the observations
on the power-transformed scale satisfied the bivariate normality in comparison with the observations on

the original scale

v.0
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L8470}

20
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-0.5 -0.1270 0.0 0.5
A

Figure 3.2.7 Example 18: The profile of maximized log-likelihood

as a function of transforming parameters A, and 7\.2
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Figure 3.2.8 Example 18: The distribution of observations on the original scale
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Figure 3.2.9 Example 18: The distribution of observations on the power-transformed scale
Table 3.2.4 Example 19: The results of fitting of the BPND
Original BPND PND
{Untransformed) (Transformed) Lengths Breadth
Maximum likelihood and estimate
Maximum
- —30806.3758 —185.7441 —73.1354
log-likelihood
)\,1 - 4.0560 3.0319 =
)LAZ - 2.6860 - 3.1300
y , 14.4035 12642.3733 1033.7271 _
™ 14,4953 14.2285
273 7.9724 98.4120 _ 172.8152
!22 7.9869 7.4724
o, 0.9166 3014.5518 184.0468 -
o, 0.3493 11.4446 -~ 22,0982
o 0.7590 0.7508 - -
Performance
Y1z 0.4605 7, 0.1595
Test 1 p-value nearQ p-value near 0
P 0.6177 ¥, 0.1598
p-value near 0 p-value near 0
Skewness 0.0105 Skewness - 0.0066
p-value 0.0026 p-value 0.0351
Test 2 . .
Kurtosis 10.2394 Kurtosis 8.7884
p-value near Q0 p-value near 0
2 2
1380.0420 1378.7311
Test3 X X
p-value near(Q p-value near 0
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Figure 3.2.11 Example 19: The distribution of observations on the original scale
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Figure 3.2.12 Example 19: The distribution of observations on the power-transformed scale
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Figure 3.2.10 Example 19: The profile of maximized log-likelihood

as a function of transforming parameters A, and },2
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Table 3.2.5 Example 20: The results of fitting of the BPND
Original BPND PND
(Untransformed) (Transformed) Read Looked at only
Maximum likelihood and estimate
Maximum
- —2264.2991 -15.0338 -13.
log-likelihood 13.2485
A - 0.4720 0.4818 -
Az - 0.7080 - 0.6022
i, 0.1961 0.0779
.‘21 0.9777 1.2063 1.0795
o -
Az. 1.0327 1 0.1369 _ 0.2971
i, 1.1396 0.7208
g, 1.0707 0.9087 0.8009 -
g, 0.9298 0.8377 - 1,1460
o 0.0936 0.0935 - -
Performance
Vi 0.0823 7, © 0.0679
Test 1 pA-vaIue 0.0419 p:value 0.0769
Yn 0.0888 Yy 0.0828
p-value 0.0311 p-value 0.0411
Skewness ~ 0.1187 Skewness  0.0657
p-vaiue 0.0014 p-value 0.0434
Test 2 . .
Kurtosis 10.6200 Kurtosis 8.2923
p-value near 0 p-value 0.1368
2 2
377.3460 77.407
Test 3 X X 877.4072
p-value near0 p-value near 0

2.0
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.
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Figure 3.2.13 Example 19: The profile of maximized log-likelihood

as a function of transforming parameters A, and A,
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Figure 3.2.14 Example 20: The distribution of observations on the original scale
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Figure 3.2.15 Example 20: The distribution of observations on the power-transformed scale

Example 20: Stuart and Ord (1986) considers the relationship between newspapers read and the number of
newspapers looked at only for students in the University of London, which observations are the frequencies of the
number of students classified by these two variables. The results of fitting the BPND to these observations
setting length as Y] and breadth as Y, are shown in Table 3.2.5. The value of transforming parameter
for newspapers read was estimated as 0.4720, whereas for newspapers looked at only, it was estimated as
0.7080. These optimized values suggest that the observations of newspaper read and looked at only both
have an exponential distribution. In the fitting of PND to each of the two variables, the value of trans-
forming parameter for newspaper read was given as 0.4818, and for look at only, it was given as 0.6022
There was thus no disagreement between the results on the transforming parameter drawn from the fitting
of the BPND and the PND. The plot of the profile of maximized log-likelihood as a function of A, and

A, is shown in Figure 3.2.13. For the optimized values of these two transforming parameters, we ob-
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tained {1, (4,) =0.1961, {,(4,)=0.1369 &,(4,)=09087 and G,(A,) =0.8377. The values of
back-transformed (i, (;1) and [i,(,) to the original scale, i (A,) and fi;(A,) were given as

0.12063 and 1.1396 respectively. Both of them were smaller than the corresponding values on the origi-
nal scale (&, (1)=0.9777 and fi,(1)=1.2327. Also, the value of ﬁ(}:l,/f.z) was given as 0.0935,
which was close to the value of 0.0936 for O(1,1) original scale.

The distributions of observations on the original and the power-transformed scale are shown in Figure
3.2.14 and 3.2.15 respectively. The results of these three tests in Table 3.2.5 show that the observations
on the power-transformed scale satisfied the bivariate normality in comparison with the observations on

the original scale.

These results of five examples show bivariate power-normal distribution would be helpful to “regular-
ize” the observations even when strict bivariate normality was not achieved. Also, the correlation coef-
ficient for power-transformed observations increases than the original observations. For ungrouped
observations, if (X,Y) are jointly distributed in the bivariate normal distribution with correlation p,
and transformation is made to X =X (X) and Y =Y (¥) with E,[X ] and E,[Y"] both
finite, then the correlation of the new variables X and Y~ is less in absolute value than o.
Namely, for ungrouped observations, transforming so that bivariate normality is more nearly satisfied
should increase the correlation coefficient in absolute value. This suggests that the same may be true in

grouped observations.



4
Extensions
to Regression

The bivariate normal regression problems are considered within the framework developed in the previous
section. Now the major interest is to obtain a “good” prediction equation on the basis of observations

presented in a correlation table. Also, simple regression problems are briefly mentioned.

4.1 Bivariate Regression

4.1.1 Bivariate Regression in Grouped Form

Regression of Y, on Y| is considered. The other case follows by symmetry. If the simultaneous

power-transformed observation of (Y4;,%;), (;™,Y ™)) have nearly a bivariate normal

distribution, for A, = 0, conditional probability density function of YZ(A’Z) given Yl(m = yl(l‘) is
given by
’ f(y(lz) y(M))
h(ySP M = y ) = b (4.1.1)
son( A () _
@ gn( 2)(K‘2+pyl My
1-p° o,
where
(A2) ]y, (M) 1
FOPy) = -
V2no, Jl -p
2 (4.1.2)

[0}
y3) -, - o2y - )

Xexpl—-—m——m—mm——
P 20%(1-;)2){ 7,
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Therefore, the conditional expected value of Y”") given Yl()“) = yl(h')

E[Yzw)lylw) =y1(m] “ +p ( ) _ )

A (Ax)
g,y1-p*¢ i/%—(——z('fz +P ~ ) (4.1.3)
-
1 )

,__1—,02 (K2+P p

yields the regression function of Yz(m on YI(M) on the scale of transformed observations. Here is, the

which for A, = 0 is given by

regression function of Y, on Y] on the BPND given by

J’ pova . &\ pavel
v-0 1

where p =1/A, , and

2
(A,0,)° 1 ( Y1(Al) l—‘l)
C, = ~2=2r—exp{- ————| K, + p1—>
" Jox P 21-pH)\ ° P o,
4 (4.1.5)

(4)
o -1—-(,<2 +y1__ﬁ)
1

Ji-p° o

where I'(*) denotes gamma function.

Our power-transformed normal approach requires the maximum likelihood estimates of the parameter
A, A,, Wy, Uy, Oy, O, and P. By invariance principle of maximum likelihood estimates {c.f.
Zehna (1966)], we obtain the maximum likelihood estimate of 0. = (A2, Bays s ,LLZ,O'I,O'Z)T ,
for a given sample of size n, as O, =(Ay, Ay, 0, Oon /G s fis BionsT1nsFap )’ Where
By =00,/0,, 8, =(AusAsmsPrsfisns flansG1as Gy, )" can be obtained as indicated in Section
3.2

The asymptotic properties of @, can also easily obtained from those of @,. Since 0, isa

. R ) ar A
continuous function of @, strong consistency of @, implies that lim,_ 6, =8, with probability

one. Furthermore [c.f. Rao (1973)]},as n —>
Jn(@: -6,;)——N,(0,RVWV'R")

where R = (96, / 08, )7,, and VWV is the matrix appearing in Section 3.2.2.
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The following numerical illustration uses Example 16 considered in Section 3.2.3. The parameter

A

estimates for the regression Y; (age of father) on Y, (age of mother) became A, =—0.0630 A, =0.4330,

B, =pG,/6, =01263, I, =3.1749, [i, =8.0022, &, =0.1904 and &, =0.9445.

The normal

regression lines on the power-transformed scale and the corresponding regression curves after transforming back to

the original scale shown in Figure 4.1.1 and 4.1.2 respectively. We can appreciate from these two plots how lines

follow the modal points.
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Figure 4.1.1 Example 16: Regression curve obtained on power-transformed scale
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Figure 4.1.2 Example 16: Regression curve after transforming back to the original scale
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4.2 Simple Regression

4.2.1 Both Variables in Grouped From

In the ordinary regression based on power-transformation, it is assumed that the power-transformed

observations Y "’ have the linear model. Namely, in the case of simple regression

Y% = B+ Bx™ +e,, W=1-,n) (42.1)

where B, and B, are unknown parameters to be estimated, xy‘) are known power-transformed
independent'variables, €, are independently and identically distributed N(O,O'Z). The situations
mentioned in Section 4.1 are applied to this case.

Suppose that the observations are given in a frequency table like Table 4.2.1, where X, = y; =0 and
X, =y, =% . For a given sample size 7, the quantities #, are supposed to be fixed. In order to
carry out calculations with grouped data, it is customary to assume that the observations are placed at the
midpoints of the intervals. Namely, for the independent variables, if x, E[x,,X;), we use the
midpoint xﬁ})given by

(M) (&)
() _ Xie + X

Xy > 4.22)
in stead of xy‘) . Therefore, model (4.2.1) will become
}/“(A'z) = ﬂ() + ﬁlxl(i::) + Ei (42.3)
Table 4.2.1 Frequency Table
* Total
Y [x0,%1) [x,x,) 0 Dox) o [Xeox) ota

[Yos 1) ny ny niy Py n,

i y2) Ry Ny n;; P n,
[Yj-l’yj) nlj n2j ves nij “es nkj n,’-
iy ny Ry ny Ry n,

Total n, n, e n, ot n,.

Since Y, is independent of Y, for u = v, setting 0" =(A4,A,,B,,B,,0), for given sample of

size 7, the log-likelihood function is given by
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k ! kI
1,(0)= 2 {log”i- !‘2 logn; !} + 2 2 n; 108 pypy; (6) (4.2.4)
I= T= i=1 J=

where

(h) )
i = By = Buxi™

(o

~-d

(@) =
pBPNz}( ) A(K

(o)

1 | y{? = By - Bux™
)

) . (425)

and

'<p(wo : ff"m)“} 30,

A(x) =11, A, =0, ~ (4.2.6)
(D(A'Z(ﬁ()-‘.ﬁlxz(h))*—l)’ A2<O.

W

In order to obtain the adequately model in a regression situation, we assume that the true underlying
distribution of Y wvaries according to level of X. That is, we assume Y, has probability density
function g, concentratedon (0,%), whenever x, liesin [X,;,X;). Then, the true probabilities for

the interval [y, ,y;) become
py= [ D)y, =Lk, j =L @2

Now, we will consider the asymptotic properties of estimatesof A,, A,, B,, B, and O.

Let  pgpy;(8) and p; be as in (4.2.5) and (4.27). Let £, .7, be some fixed numbers such
that 0<7r, <1Vi and 2 f_lr,- =1, and suppose that (i) the parameter space ® C R’ is compact, (ii)
lim, ., n,/n=7,, a0d (i) H(@) =) £ Y 517Dy 108(Pup; @)/ P;) attains 2 unique global
maximum at 8, = (A, A, By Bio» T )T, Furthermore, suppose that (iv) 8, is an interior point
of © and (v) the Hessian of H (@) is nonsingular at 6.

For a fixed but arbitrary i, consider the sequences of independently and- identically distributed
indicator functions {D, (y, yu=L-,n} with Pr.[D, (y,) =1]=p,;(j=L---,0). The

LS.

strong law of large number implies that ﬁu =n; / n,—=— p; as n;,—>® for each j-

Consequently, a procedure similar to that of Appendix 2 yields that, as #n, —> ®

—e2 ), (4.2.8)

! !
2 Dy log pepy; (8) - 2 D;; 108 Py (6)
= IE

Now, since 77/, (@) can be approximated almost surely by
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Eon, L L A
2 o 2 P 10g ppy; (0) - 2 p;logp; | +o() (4.2.9)
i= J= ]=
we readily obtain the almost sure limit
: k1 (0
lim l1,, ) = 2 2 r.p; 1og£-“"ﬂ(—) =H(0) (4.2.10)
n—so pp =1 4= i

uniformly in @ . Then, Appendix 3 gives the desired strong consistency of én. The asymptotic

normality of én is established along same lines as the procedure for Section 2.2.2.

4.2.2 Only One Variable Grouped

Here, we consider first the case in which only the dependent variable is grouped. Suppose that #,
observations of the variable Y are made at the fixed value X;, where i =1,---,k and E f_ln,. =7 is
the total sample size. 'We can deal with this situation exactly as in the previous case. The only change

needed is to substitute the approximate quantities xﬁ;) used previously, by the exact transformed

(A)

observations X; .

The other case is when the outcomes of the random variable Y are exactly specified, but the value of
X are grouped into the intervals [0,x,),[x;,%,), ", [%;1,%) . In the latter case, we again consider the
model (4.2.1) which gives rise to the log-likelihood for given sample of size n
n n

1,8]y) = ——2-10g27r - —2—log0'2

0k (4.2.11)
1 5, (yo» o Dlog v -nd

"20_2 2 WV ? =By = Bix; +n(A, -Dlogy, (x)

Ump I=

where 8, =1if x, €[x,_;,X;) and 0 otherwise.

Now, if let n; = 2 " 0, (@ =1--,k) and assume that Y, has the probability density function g
whenever X, belongs to [X;_;,X;), we are able to consider the asymptotic properties of A, 4,, By,
B, and O.

Let r,, --,r, be some fixed numbers such that 0 <7, <1 Vi and 2 f.‘_lri =1. Suppose that (i)
the parameter space © is the compact set given by © ={0 = (A,,A;, B, ﬁl,o)Tllal sM,,
|B|<M,,s,soss,,ash sbcsA, sd, with 0<M,,M,,s,,s,,b,d <® and -» <a,
c <0}, (i) E,.[Y*] and E,.[Y?] are both finite Vi, (iii) lim, .7, /n=7, and (iv)
2 ¢t rE o L (0' y)] has a unique global maximum at @ =8,,. Furthermore, suppose that (v) 8,

im}

g%
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is an interior point of @, (vi) E,.[Y" logY]? and E,. [Y? logY]* are both finite Vi, (vii)

E et \/r_iEg*,. Vi, (60|)’)] =0, and (viii) V' = {2 et \/;i—Eg'i [V*,(6, IY)]}l exists.

Then, the log-likelihood for one observation of Y is

LOy) = —%mgzﬂ —%logoz

. (4.2.12)

20°

(y® = B, = Bx J +n(x, ~Dlogy - A(x).

To show that é,, —=22 >0, as n—> o, we will apply Appendix 4 to this log-likelihood function.
First, since the power-transformation x™ s increasing in both x and 11 , we see that, forall 8 E O

and Y >0, 1,(8]y) s h(y), where
h(y) = -;—loan +|logs,| + [logs,|

+s{2[{y(‘"}2 +{y(.b)}2 +ME+M2Z +(e +1)] [log y|

with Z =max,{Z}(c)+Z}(d)} and e= max{]a|,b}. Since h(y) is g, - integrable, the first

(4.2.13)

assumption of the strong law of large number is satisfied. The second assumption is also satisfied by
considering the set S =[j " j1(G =12,---) so that Pr,. [(O,W)—U7_15J]=O. The last
assumption of Appendix 4 is-seen to hold since [, (Gly) is continuous on @x.S;, a compact set, and
this implies that [, is equicontinuous in @ for YES,. Hence,as n —> ®, with probability one
1
;Ell (Blym) - Eg‘i [ (Ob’)] (4.2.14)
m=l
uniformly for @ € ©, and the limit expectation is continuous in 8 .

Now, let us partition the 7 - dimensional vector X as X' =[x, -+, X,] where x; is the n,-
dimensional vector whose elements lie in [X,_;,X;). Corresponding to this partition in x, we will
consider ¥ =[Y,,---,Y¥,]. Then, we observe that 2 ;_1ll(e|ym) =1, (6|Y,), so that (4.2.14)
yields, thatas n —>

1 1< &qn 1
~1,8[Y) = "Zl,.,. @) = 2——1,,,. @)

n n& “f nn
| ) (4.2.15)
s zr,.Eg.i XCg)

uniformly in @ €©, with the limit function continuous. Thus, we can apply Appendix 3 to get the
desired strong consistency of 8.

The asymptotic normality of é,, is obtained by mean of an expansion of the gradient VI, (én

Y)

about @, that is
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L Vi, @,)¥) = —=V1,@,7) + 21,8,
n

n Jn

for some 0,: lying on the segment joining 6, and 6,. Application of the multivariate central limit

1

Y)Vn(@, -90,) (4.2.16)

theorem, for each I

VL, (6,1,)—> N, (U, W,) as n, =0

NS

where U, =E . [V, (80|Y)] and W, = var,, [V, (BOIY)]. Consequently

1 X ;11
77O > \/:\/:z @,[Y,)——=N,(0,W) @2.17)

where W = 2 k.rW,. Now, on an almost sure set, VI (8,

Y)=0 for n sufficiently large.
Therefore, (4.2.16) and (4.2.17) imply that

197 @:[¥)Wn (@, -8,)—— N, (0,W). (4.2.18)
n

Next, results similar to Appendix 5 and Appendix 6 enable us to use the uniform strong law of large

number to obtain, almost surely
. 19°,0)Y) & 9°,(8ly)
hm—————=2riEg. —
—ep 30,00, & ‘1 36,96,

where the convergence is uniform in @ and the limit function is continuous. Hence, as

er: = Ynén + (1— Y)eo for some ‘yn E(O,l) and én —rS g 90

lazln(8|Y)| a.s. ¢ rE azll(eoly)
n 30,00, | . 2 i1 96,00,

"

as n—=>0 Yu,v,oras n—>»
1

=V*,@,
n

Y)AEQEH V21, @,)y)]=v. 42.19)

The conclusion is then reached from (4.2.18) and (4.2.19).

It should be noticed that, in order to apply out procedure to the case in which Y is ungrouped, we
must know the true probability density function gi‘ . On the other hand, when Y is grouped (and X
is either grouped or ungrouped) we do not require the specific functional forms of the g: ’s.. Moreover,

the true probabilities p;; , defined (4.2.7) are consistently estimated by observed frequency 7, / n;.
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4.2.3 Example

The following numerical illustration uses Example 17 considered in Section 3.2.3 to show how to fit a
simple regression model when both ¥ and X are given in grouped form. If we consider the
observations of miles driven as indirect observations of amount of money spent on gasoline, then the
problem of fitting a regression line to the power-transformed variables y®) (miles driven) and xM
(family income) becomes that of fitting an Engel functionto ¥ and x.

The maximum likelihood estimates are )A.l =0.3560, iz = 0.3750, Bo =0.5032, /§1 =0.0514 and

O =1.9004. The fitting regression line on the power-transformed scale and the corresponding regression

line after transforming back to the original scale shown in Figure 4.2.1 and 4.2.2 respectively.

7135 Foee
6.605-
6.015

§.3424..
4.550.4...

Miles driven

3
20T

47.116 C 62919 76.009  86.490 101.282
56.401 69.988 81.074 92.695

Family income
Powar-transformed scale

Figure 4.2.1 Example 17: Regression line on the power-transformed scale

Miles driven

Family income
Original scale

Fig 4.2.2 Example 17: Regression line after transforming back to the original scale
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5.1 Conclusions

Statisticians have long known that their models do not perfectly mirror reality. In grouped observation
problems, the most attention has been fixed on such problem as what to do with the observations which
are more log-tailed or prone to outlier, rather than the standard models imply. The motivation of our
investigation was to develop the procedure which would give reliable inference in the absent of strong
knowledge of progress generating data, and include the standard model based on normal distribution.

‘We have firstly developed the procedure for fitting the PND to univariate grouped observations. We
have considered the most elementary case, in which there was only one variable of interest and its obser-
vations were given in a grouped form such as a frequency table. The explicit expressions for the maxi-
mum likelihood estimates of parameters were not available in ungrouped observation case, as shown in
Goto et al. (1983), and the present case was no exception. However, it was possible to gain some insight
into our proposed procedure using the criterion of maximization of likelihood, by investigating the as-
ymptotic properties of them. In deriving these properties, we have followed the approach to discrete
distributions in Hernandez and Johnson (1981). In their approach, the criterion of minimization of Kull-
back-Leibler information was used to-obtain the parameter estimates. Our procedure showed that the
maximum likelihood estimates of parameters had the strong consistency and the asymptotic normality
under certain conditions. ~After having concrete and practical grasp of our procedure through several
numerical examples, medium-sized simulation experiment was performed to evaluate (i) the precision of
the maximum likelihood estimates of parameters and (ii) the effect of grouping or categorizing on them.
For (i), the results of simulation showed that, the precision of maximum likelihood estimate of trans-

forming parameter was not so much influenced by the shape of the PND as the precision of the estimate
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in ungrouped observation case. Nevertheless, the precision of maximum likelihood estimates of mean
and variance was as much influenced by the shape of the PND as the precision of those estimates in un-
grouped observation case. However, some numerical examples showed that those effects could be re-
moved by using the normalizing power-transformation, namely the adjusted power-transformation by
Jacobian of transformation formula. For (ii), the results of simulation showed that the number of inter-
vals had a great influence on the precision of maximum likelihood estimates and the precision decreased
as the number of intervals increased.

The PND was also applied in the mixed observation case, where observation involved ungrouped (ex-
actly specified) and grouped ones. We have particularly focused on the two case of the right/or left cen-
sored observations and ungrouped observations available in the tail. Furthermore, it was applied in the
observations subjected to an upper constraint such as examination score and percentége or proportion, and
in discrete observations.

Next, we have focused on two variables situations and considered two variables grouped in (i) a corre-
lation table, (ii) grouped bivariate regression and (iii) simple linear regression when one or both variables
were given in a grouped form and their observations were generated form the BPND. In all of (i), (ii)
and (iii), the analogy of the procedure used in univariate grouped observation case showed that the maxi-
mum likelihood estimates of parameters had the strong consistency and asymptotic normality under cer-
tain conditions. Correlation table and regression were equivalent situation in our viewpoint. = Thus, the
solution provided for correlation tables was easily modified to include bivariate regression. The same

sets f observations were then used to illustrate both procedures.

5.2 Further Developments

Survival times are inherently continuous, and for the most part statisticians model them that way. Yet,
times can not often be observed very exactly. For example, in cancer clinical trials, patients may be
reexamined only at, say, 3-month intervals, and often the follow-up times themselves are random. If the
endpoint of interest is time until detectable tumor recurrence, this quantity is known only up to the ap-
proximate 3-month gap between the last negative and the first positive follow-up. Observations of this
kind have come to be known as “ interval censored”, a name that emphasizes the connection with the
common problem of right censoring mentioned in Section 2.3.2. Interval and right censoring are not
special cases of grouping in narrow sense of the word, because the partition of the sample space in cen-

soring need not be fixed. However, if the censoring time distribution or the distribution of censoring
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interval limits is not related to survival time, the relevant part of the likelihood is effectively grouped
observation likelihood, and these problem can be treated within our framework.

Maximum likelihood estimation has been widely used in grouped observation case as in ungrouped.
When models involve an unknown shift or cutoff value, for example in the shifted power-transformation
case (Box and Cox, 1964), such problem as likelihood do not have a consistent global maximum likeli-
hood estimates in ungrouped observation case, apparently disappears in grouped observation likelihood in
large samples (Atkinson, 1985: Atkinson et al., 1991). One of alternative methods to avoid this problem
is the maximum product of spacing (MPS) proposed by Cheng and Amin (1983) and it is interesting to
note that their “ likelihood” has the functional form of a grouped observation likelihood (Cheng and Iles,

1987: Cheng and Taylor, 1995).
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1-x2
, - o2 ¢(K)’ A >0,
g
a 1-x? '
‘ e o (x), A <0.

Appendix 2

Assume that the parameter space © is a compact subset of M. The maximum likelihood estimates
of 87 = (A, u,0) will be defined as that value of @ €@ which, for a given sample of size 7, gives

A

a global maximum for [, (0). The value is denoted by 8, .

Let [, =[y.,¥:), p; =f1,.g (dy, Pip =n;/n, Dpy;(@) be asin (222), and D, (") be
the indicator function of the set [ ,thatis D,(y)=1if y &I and 0 otherwise.

For each i =1,---,k, consider the sequence of independent and identically distributed 0 -1 random
variables {D cO)i=L, n} with success probabilities Pr,.[D,(y)=1]=p,. We write
Prg, () to emphasize that the probability is determined with respect to the true probability density func-
tion g* . |

Since n; = 2 '}=1 D I (y j) , it follows from the Strong Law of Large Numbers that asz —>

Dip =Dy (A2.1)

Let A={w€®lﬁm(m')—>pi asn —>°°}. Then, for € >0 and w €A, we obtain,

| 2@,-,,. (@) p,)10g pps(8)] = 2{1‘),-,” @) - 1108 Doxs @)

k

s¢€ 2 Ilog Peni (9)|

(A22)

for Yn=N(e,mr) and 6 EO.

Next, since y* is monotone increasing in A and y,, <y, foreach i =1k, it follows easily
that poy; (@) >0 on ©. Also, form the continuity of z,(8) = (yim - [,L)/O' for 0EO, we
have that 10g ppy; (@) is continuous on © .  This result and © being compact by assumption imply

the existence of R, = inf,o l0g ppy; (@) > —. Hence forany 8 €O
k

2 llog Penpi (0)| s R (A2.3)

where R = 2:‘_ 1|R,~| <. Therefore, it follows form (A2.2) and (A2.3) thatas n —
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d.s. 0

k k
\2 ﬁi,n log ponp: (@) - sz log ponp: (8)

Appendix 3

Assume that the parameter space © is a compact subset of R*?. The maximum likelihood estimates
of 87 = (A, u,0) will be defined as that value of @ €© which, for a given sample of size 1, gives
a global maximum for [, (@) given in (2.2.4). The value is denoted by én . Also, suppose that f is
a continuous function from © to R, n™' (@) — f(@) uniformlyin @ EO, f(@) hasa unique
global maximum at 8 =8,.

To obtain a contradiction, suppose that éa does not converge almost surely to 90. That is, assume
there exists a set B such that for each w €B, é” (w) #6, as n—>x, where Pr(B)>0. Let
C = %ﬂln_ll,, (@) — f(0) as n — 0, uniformly in @ E@} and consider D =BNC, Pr(D) =
Pr(B)>0.

Since © is compact, for each @ &D , there exists a subsequence {m}C {n} and limit point 8
depending on @ such that ém (w)—=0, as m—>o, with @, =8,. Forafixed wED, we

have

L1, 6@ - 10,) 2| L 6 @) - fOu @) +| G @) - £O,)

(A3.1)
1 )
s max—1, 0(@)) - f @(@)) +|f @, @) - £ ©.)}
m
Then, letting 7 —>  on the right hand side of (A3.1), we get
maxl -1 (0(@)) - f(e(w))l —~0 (A32)
€9 |\m

because D =BNC and lf(ﬂm (@) — 6, )! —> (0 by the continuity of f. Thus, for

wED, n—>»
1 ~

However, by definition of @, , we have

1.@.)=—=1,0,) (a3.4)
m m
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so that, taking the limit of (A3.4), we obtain f(8,) = f(8,) for @ED . Since Pr(D) >0, this
contradicts the assumption that 8 gives a unique maximum and we conclude that én —=—0, as

n —> ®© as asserted

Appendix 4

We consider is the result which is sometimes called the uniform strong law of large number and is estab-
lished by Rubin (1956).

Let {Y,}f‘:1 be a sequence of independently and identically random variables with values in an arbi-
trary space . Let © be a compact topological space and let f be a complex-valued function on

©x ¥, measurable in Y foreach 8 EO. Let P be the common distribution of the Y,’s. If

1

(a) there is an integrable v suchthat | f(8,y)|<v(y), VOEO, YEX,
(b) there is a sequence {S,};., of measurable sets such that P(F - US ;) =0, and

i=l

(c)foreach i, f(B,y) isequicontinuousin @ for YES,.

Then, with probability one
1 n
2 F@.y) = [1O.Y)P()
J-

as n —> o uniformly for @ € ©, and the limit function is continuous.

Appendix 5

Let ©, the parameter space, defined as© = ?T = (A, [,L,O')“[,LI =M,s, <o <s,,asAsb for

some 0<M,s,,s,,b < and —°0<a<0}.

Let
[@ 1 1 2 1 y(l) - U i
©(6ly) = -=log2m - ~logo® - —| =———| +(A-Dlogy, (A5.1)
2 2 2 Lo}
Du(e’}’) = "0'-2: (AS5.2)
D,(8,y) =207 (y" - p), (AS.3)
D;(0,y) = oy’ ®, ’ (A5.4)

D,0,y)=-07-307(y* - u)*, (A5.5)
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Dy (8,y) =207 (y™ -u)y'™®, (A5.6)
D,0,Y) =02 (y® — w)y"® _{» F. (as.7)
Then, VO EO
3% (8]y)
— "2 =D (0 H
3000, |~ P~ @) = Hu ()

where

%{Y? (logy,)-y®} A =0,

M _

-;-(logyi)z, A =0,
Llyrogy,)? - 2l{yi*(10gy,-) ~y®H a=o,
”(}.) = A A

1
5 oy, A=0
and the H , ’s are as follows:
H,(¥)=s",

H,(y) =257(y | +|y®|+ M),

H,(0) =570 +y'®),
H,,(y)=s;" +6s{4l ‘“)}2 +{y(”)}2 +MJ

et o]

Since y®, y'® and y"™ are continuous function of (A,Y), it follows that the D, ’s are

H(y) = 51H12(Y)qy”(n)

continuous in @ and Y .

Appendix 6

Let Y be a positive random variable and assume that the expected value E[Y*], E[Y?],
E[Y*logY]* and E[Y’logY)’ are finite. Let ©® and H,,(y) be defined as in Appendix 5.
Then, E[H,, (¥) <] Vu,v.
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Appendix 7

Let ll(;)(ﬂly) be the approximation to D, (y)ll(“)(ﬂly) defined in (2.3.9). Let © be as in Ap-
pendix 5.
Firstly, | l(“)(aly) ISII(")(BIy) |<7(y) VOE® and Y >0, where, letting ¢ = max{lal b}

r(y)= ElogZJr +|log51| +ilogs2! +s1'2[{y(”’} + {y(")} +M2]+ (c +1)'logy| ~ A(K).

Since  (logx)® < {y@) +{y®y, Eg.[Yza] <o  and Eg.[YZb] <o  imply that
E,.[r(¥)] <, so that condition (a) of Appendix 4 is satisfied.
Secondly, Choose the set S, as follows:
S =[0,9, ]V, + e =2/ C+D5 Yy = e = )/ G+ D]V, Ve +ili =12, 50
that U i1S; =[0,%) and Pr,.[(0,) - U 15:]1= 0, thus verifying condition (b) of Appendix 4.
Finally, we note that S, is compact Vi and [ )(6|y) is continuous in both @ and Y, so that
l(")(ely) is uniformly continuous on ©xS,. That is, | ll(,';) (Gly) l(“)(ely1 |<n for any
n >0 whenever || (@7,y) -0, ,y,)|l.< ), where ||-]| , denotes the Euclidean norm in the
p -dimensional space. Thus, by setting [|@ ~0, ||;<0(n) for yES,. Hence, [ (“)(Bi y) is
equicontinuous in @ for yES,.

Therefore, all the assumptions of Appendix 4 hold and we obtain that, as n —> ®©

2310 6ly )2 E (12 @]y)]

7=l

uniformlyin @ €O .
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